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COMMUNICATION WITH COMPUTING  machinery has 
become increasingly ‘chatty’ these days: Alexa, Cortana, 
Siri, and many more dialogue systems have hit the 
consumer market on a broader basis than ever, but do 
any of them truly notice our emotions and react to them 
like a human conversational partner would? In fact, the 
discipline of automatically recognizing human emotion 
and affective states from speech, usually referred to as 
Speech Emotion Recognition or SER for short, has by now 
surpassed the “age of majority,” celebrating the 22nd 
anniversary after the seminal work of Daellert et al. in 
199610—arguably the first research paper on the topic. 
However, the idea has existed even longer, as the first 
patent dates back to the late 1970s.41 

Previously, a series of studies root-
ed in psychology rather than in com-
puter science investigated the role of 
acoustics of human emotion (see, for 
example, references8,16,21,34). Blanton,4 
for example, wrote that “the effect of 
emotions upon the voice is recognized 
by all people. Even the most primitive 
can recognize the tones of love and fear 
and anger; and this knowledge is shared 
by the animals. The dog, the horse, and 
many other animals can understand the 
meaning of the human voice. The lan-
guage of the tones is the oldest and most 
universal of all our means of communica-
tion.” It appears the time has come for 
computing machinery to understand it 
as well.28 This holds true for the entire 
field of affective computing—Picard’s 
field-coining book by the same name 
appeared around the same time29 as 
SER, describing the broader idea of 
lending machines emotional intelli-
gence able to recognize human emo-
tion and to synthesize emotion and 
emotional behavior. 

Until now, the broader public has 
experienced surprisingly little auto-
matic recognition of emotion in every-
day life. In fact, only few related com-
mercial products have found their 
way to the market, including the first-
ever hardware product—the “Handy 
Truster”—which appeared around the 
turn of the millennium and claimed to 
be able to sense human stress-level and 
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timally quantify the time axis.32 Start-
ing with representing emotion in an 
adequate way to ensure proper fit with 
the psychology literature while choos-
ing a representation that can well be 
handled by a machine, two models 
are usually found in practice. The first 
model is discrete classes, such as the 
Ekman “big six” emotion categories, 
including anger, disgust, fear, happi-
ness, and sadness—often added by 
a “neutral” rest-class as opposed to 
a value “continuous” dimension ap-
proach that appears to be the favored 
approach today.17 In this second ap-
proach, the two axes arousal or activa-
tion (known to be well accessible in 
particular by acoustic features) and 
valence or positivity (known to be well 
accessible by linguistic features17) pre-
vail alongside others such as power 
or expectation. One can translate be-
tween the categories and dimensions 
such as ‘anger’→{negative_valence, 
high_arousal} in a coarse quantization. 
Other aspects of modeling include the 
temporal resolution17 and the qual-
ity and masking of emotion, such as 
acted, elicited, naturalistic, pretended, 
and regulated.

Annotation. Once a model is decided 
upon, the next crucial issue is usually 
the acquisition of labeled data for train-
ing and testing that suits the accord-
ing emotion representation model.13 A 
particularity of the field is the relatively 
high subjectivity and uncertainty in the 
target labels. Not surprising, even hu-
mans usually disagree to some degree 
as to what the emotion should be ex-
pressed in the speech of others—or any 
other modality accessible to humans.13 
Self-assessment could be an option, 
and is often used when no information 
to annotators is available or easily ac-
cessible, such as for physiological data. 
Suitable tools exist, such as the widely 
used PANAS, allowing for self-report 
assessment of positive and negative 
affect.39 Yet, self-reported affect can 
be tricky as well, as no one has exact 
knowledge or memory of the emotion 
experienced at a moment in time. Fur-
ther, observer rating can be a more ap-
propriate label in the case of automatic 
emotion recognition that today largely 
targets assessment of the expressed 
emotion, rather than the felt emotion. 

Likewise, external annotation may 
be more focused on the emotion ob-

deception contained in speech. Ap-
proximately 10 years later, the first 
broad-consumer market video game 
appeared. “Truth or Lies” (THQ) was 
equipped with a disc and a micro-
phone for players to bring the popular 
“Spin the Bottle” game to the digital 
age. Unfortunately, the meta-review 
service metacritic.com reported only 
a score of 28 out of 100 based on only 
six reviews from professional critics. 
The tech side seemed premature: re-
viewers complained about “unstable 
tech” and “faulty software” that failed 
to achieve what it promised—detect 
lies from human speech. However, the 
first success stories can be observed 
at this time; including the European 
ASC-Inclusion projecta that reports 
encouraging observations in open tri-
als across three countries for a seri-
ous video game that teaches autistic 
children in a playful way how to best 
show emotions. Interestingly, a recent 
study shows that voice-only as modal-
ity seems best for humans’ empathic 
accuracy as compared to video-only or 
audiovisual communication.22 

Here, I aim to provide a snapshot 
of the state-of-the-art and remaining 
challenges in this field. Of course, over 
the years further overviews have been 
published that the reader may find of 
interest, such as references2,6,15,20,38 or 
on the broader field of affective com-
puting17,43 where one finds an overview 
also on further modalities such as facial 
expression, body posture, or a range of 
bio-sensors and brain waves for the rec-
ognition of human emotion. These sur-
veys cover progress up to 2013, but quite 
a bit has happened since then. Further, 
this short survey is the first to provide 
an overview on all open competitive 
challenges in this field to date. Finally, 
it distills a number of future tendencies 
discussed here for the first time.

The Traditional Approach
Let’s start off by looking at the conven-
tional way to build up an engine able to 
recognize emotion from speech.

Modeling. First things first: ap-
proaching the automatic recognition 
of emotion requires an appropriate 
emotion representation model. This 
raises two main questions: How to rep-
resent emotion per se, and how to op-

a http://www.asc-inclusion.eu
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served and being indeed observable. 
Likewise, usually five or more exter-
nal raters’ annotations—particularly 
in the case of crowdsourcing—form 
the basis of the construction of tar-
get labels, for example, by majority 
vote, or average in the case of a value 
continuous emotion representation.17 
Further, elimination of outliers or 
weighting of raters by their agree-
ment/disagreement with the majority 
of raters can be applied, for example, 
by the evaluator weighted estimator 
(for example, Schuller and Batliner32). 
Such weighting becomes particularly 
relevant when crowdsourcing the la-
bels, such as in a gamified way, for ex-
ample, by the iHEARu-PLAY platform.b 
In the case of value continuous label 
and time representation, for example, 
for continuous arousal assessment, 
raters often move a joystick or slider 
in real time per emotion dimension 
while listening to the material to rate. 
This poses a challenge to time align 
different raters’ annotations, as delays 
and speed variations in reaction time 
coin the annotation tracks. Such de-
lays can be around four seconds,37 and 
time warping enabled alignment algo-
rithms should be preferred. In the case 
of discretized time, that is, judgment 
per larger segment of speech, pairwise 
comparisons leading to a ranking have 
recently emerged as an interesting al-
ternative, as it may be easier for a rater 
to compare two or more stimuli rather 
than find an absolute value assignment 
for any stimulus.17

To avoid needs of annotation, past 
works often used acting (out an experi-
ence) or (targeted) elicitation of emo-
tions. This comes at a disadvantage be-
cause the emotion may not be realistic 
or it may be questionable whether the 
right data collection protocol was fol-
lowed such that the assumptions made 
on which emotion is finally collected 
would hold. In the present big data era, 
simply waiting for the emotion sought 
to become part of the collected data 
seems more feasible aiming at collec-
tion of emotion “from the wild” rather 
than from the lab.

Audio features. With labeled data 
at hand, one traditionally needs char-
acteristic audio and textual features 
before feeding data into a suited ma-

b https://ihearu-play.eu

chine-learning algorithm. This is an 
ongoing active subfield of research in 
the SER domain—the design of ideal 
features that best reflect the emotional 
content and should be robust against 
environmental noises, varying lan-
guages, or even cultural influences. 
Most of the established ones are rath-
er low level, such as energy or spectral 
information, as these can be robustly 
determined. Yet, in the synthesis of 
emotion, there is a strong focus on 
prosodic features, that is, describing 
the intonation, intensity, and rhythm 
of the speech next to voice quality fea-
tures. The automatic analysis of emo-
tional speech often adds or even fo-
cuses entirely on spectral features, 
such as formants or selected band-
energies, center of gravity, or roll-off 
points and cepstral features such as 
MFCC or mel-frequency bands as well 
as linear prediction coefficients.2,15,38 
Based on frame-by-frame extraction, 
one usually derives statistics by apply-
ing functionals that map a time series 
of frames with varying length onto a 
scalar value per segment of choice.2,6 
The length may vary with the unit of 
analysis, such as voiced or unvoiced 
sound, phoneme, syllable, or word. A 
second of audio material or shorter 
can be recommended considering the 
trade-off of having more information 
at hand versus higher parameter vari-
ability if the length of the analysis win-
dow is further increased. A high num-

ber of functionals is often used such 
as moments, extremes, segments, 
percentiles, or spectral functionals, 
for example, as offered by the openS-
MILE toolkitc that provides predefined 
feature sets that often serve as base-
line reference in the research compe-
titions in the field. The current trend 
is to increase the number of features 
up to some several thousands of brute-
forced features that was often in stark 
contrast to the sparse amount of train-
ing material available in this field.17,38,43

Textual features. Going beyond 
how something is said, textual features 
as derived from the automatic speech 
recognition engine’s output are mostly 
looking at individual words or se-
quences of these such as n-grams and 
their posterior probability to estimate 
a particular emotion class or value.23 
Alternatively, bag-of-word approaches 
are highly popular, where each textual 
entity in the vocabulary of all mean-
ingful entities—from now on referred 
to as words—seen during vocabulary 
construction usually forms a textual 
feature.18 Then, the frequency of occur-
rence of the words is used as actual fea-
ture value. It is possibly normalized to 
the number of occurrences in the train-
ing material, or to the current string of 
interest, length of the current string, 
or represented by logarithm, in binary 
format, and so on. Linguistically moti-

c http://audeering.com/technology/opensmile

Figure 1. A current speech emotion recognition engine. 

The chain of processing follows from the microphone (left) via the signal processing side of 

preprocessing and feature extraction (dark orange boxes) via the machine learning blocks (light 

orange) to encoding of information to feed into an application. Dashed boxes indicate optional 

steps. Five databases are shown in red. Crowdsourcing serves labeling efforts in the first place. 
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factors. As training a holistic model is 
difficult due to the almost entire ab-
sence of such richly annotated speech 
data resources that encompass a wide 
variety of states and traits, weakly su-
pervised cross-task labeling offers an 
alternative to relabel databases of emo-
tional speech in a richer way.

Efficient data collection. An ever-
present if not main bottle neck since 
the beginning is the scarcity of 
speech data labeled by emotion. Not 
surprising, a major effort has been 
made over the last years to render 
data collection and annotation as 
efficient as possible.17,38,43

Weakly supervised learning. Semi-
supervised learning approaches could 
prove successful in exploiting addition-
al unlabeled data, once an initial en-
gine was trained.12,25 The idea is to have 
the machine itself label new previously 
unseen data—ideally only if a meaning-
ful confidence measure is exceeded. 
However, it seems reasonable to keep 
human labeling in the loop to ensure a 
sufficient amount of quality labels. Ac-
tive learning can help to reduce such hu-
man labeling requirements significant-
ly. The machine preselects only those 
unlabeled instances for human label-
ing, which seem of particular interest. 
Such interest can be determined, for 
example, based upon whether a sample 
is likely to be from a class or interval 
on a continuous dimension that has 
previously been seen less than others. 
Further, the expected change in model 
parameters of the learned model can be 
the basis—if knowing the label would 
not change the model, there is no in-
terest in spending human-labeling ef-
forts. An extension can be to decide on 
how many and which humans to ask 
about a data point. 

As mentioned earlier, emotion is 
often subjective and ambiguous. One 
usually must acquire several opinions. 
However, the machine can gradually 
learn “whom to trust when” and start 
with the most reliable labeler, for ex-
ample, measured by the individual’s 
average agreement with the average 
labeler population. If the label deviates 
from what the machine expects, a next 
opinion can be crowdsourced—ide-
ally from the labeler who in such case 
would be most reliable. Putting these 
two ideas—semi-supervised and active 
learning —together, leads to the par-

vated clustering of word variants may 
be applied, such as by stemming or 
representing morphological variants 
like different tenses. Also, “stopping,” 
or the elimination of entities that do 
not occur sufficiently or frequently or 
seem irrelevant from a linguistic or ex-
pert’s point of view, can be considered. 
However, in the recent years of in-
creasingly big textual and further data 
resources to train from, the represen-
tation type of the word frequencies, as 
well as stemming and stopping, seem 
to have become increasingly irrel-
evant.33 Rather, the retagging by word 
classes, such as part-of-speech tagging, 
for example, by groups such as noun, 
verb, or adjective, semantic word groups 
such as standard linguistic dimensions, 
psychological processes, personal con-
cerns, and spoken categories as in the 
LIWC toolkitd or even the translation to 
affect categories or values by linguistic 
resources such as SenticNete and oth-
ers, or via relationships in ConceptNet,f 
General Inquirer,g WordNet,h and 
alike, can help to add further meaning-
ful representations.

A promising recent trend is to use ei-
ther soft clustering, that is, not assign-
ing an observed word to a single word 
in the vocabulary or more general con-
sideration of embedding words such 
as by word2vec approaches or convo-
lutional neural networks. Alternatively, 
recurrent neural networks—possibly 
enhanced by long short-term memo-
ry33—and other forms of representation 
of longer contexts seem promising.

It should be noted that the tradition-
al field of sentiment analysis is highly 
related to the recognition of emotion 
from text, albeit traditionally rather 
dealing with written and often longer 
passages of text.33 This field offers a 
multiplicity of further approaches. A 
major difference is given by the uncer-
tainty one has to deal with in spoken 
language—ideally, by incorporating 
confidence measures or n-best alterna-
tive hypotheses from the speech recog-
nizer. Also, spoken language naturally 
differs from written text by lower em-
phasis on grammatical correctness, 

d http://liwc.wpengine.com
e http://sentic.net
f http://conceptnet.io
g http://www.wjh.harvard.edu/ inquirer
h http://wordnet.princeton.edu

frequent use of word fragments, and 
so on. In particular, non-verbal vo-
calizations such as laughter, hesita-
tions, consent, breathing, and sighing 
frequently occur, and should best be 
recognized as well, as they are often 
highly informative as to the emotional 
content. Once recognized, they can be 
embedded in a string.

Acoustic and linguistic feature infor-
mation can be fused directly by concat-
enation into one single feature vector 
if both operate on the same time level, 
or by late fusion, that is, after coming 
to predictions per feature stream.23 
The latter also allows for representa-
tion of different acoustic or linguistic 
feature types on different time levels. 
As an example, one can combine bags-
of-phonemes per fixed-length chunk of 
audio with turn-level word histograms 
in a late(r) fusion manner.

Peeking under the engine’s hood. 
Now, let us look under the hood of an 
entire emotion recognition engine 
in Figure 1. There, one can see the 
features described here are the most 
characteristic part of a speech emotion 
recognizer —the rest of the processing 
chain is mainly a conventional pattern 
recognition system, and will thus not 
be further explored here. Some blocks 
in the figure will be mentioned in 
more detail later. Others, such as the 
learning part or, which classifier or re-
gressor is popular in the field, will be 
illustrated by the practical examples 
from research competitions’ results 
shown below.

En Vogue: The Ongoing Trends
Here, I outline a number of promis-
ing avenues that have recently seen 
increasing interest by the community. 
Obviously, this selection can only rep-
resent a subset, and many others exist.

Holistic speaker modeling. An im-
portant aspect of increased robust-
ness is to consider other states and 
traits that temporarily impact on the 
voice production. In other words, one 
is not only emotional, but also poten-
tially tired, having a cold, is alcohol 
intoxicated, or, sounds differently be-
cause being in a certain mood. Like-
wise, modern emotion recognition en-
gines should see the larger picture of a 
speaker’s states and traits beyond the 
emotion of interest to best recognize 
it independent of such co-influencing 
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ticularly efficient cooperative learning 
of machines with human help.24 In this 
approach, the machine decides based 
upon its confidence in its estimate 
whether it can label the data itself, 
such as in case of high confidence. If 
it is not sufficiently confident, it evalu-
ates whether asking a human for aid 
is worth it. The overall process can be 
executed iteratively, that is, once newly 
labeled data either by the machine or a 
human is obtained, the model can be 
retrained, which will mostly increase 
its reliability and confidence. Then, the 
data that had not been labeled in a pre-
vious iteration might now be labeled 
by the machine or considered as worth 
labeling by a human. Monitoring im-
provements on test data is mandatory 
to avoid decreasing reliability.

If no initial data exists to start the 
iterative loop of weakly supervised 
learning, but similar related data is 
at hand, transfer learning may be an 
option.11 To give an example, one may 
want to recognize the emotion of child 
speakers, but has only adult emotional 
speech data at hand. In such case, the 
features, the trained model, or even 
the representation, and further aspects 
can be transferred by learning from the 
data to the new domain. A broad num-
ber of transfer learning and domain 
adaptation algorithms exists and have 
been applied in this field, such as in 
Abdelwahab and Busso.1 An interest-
ing option of data enrichment can be 
to include other non-speech audio: as 
perception of certain emotional as-
pects such as arousal or valence seem 
to hold across audio types including 
music and general sound, one can 
seemingly train a speech emotion rec-
ognizer even on music or sound, as 
long as it is labeled accordingly.40 

Obviously, transfer learning can 
help to make the types of signal more 
reusable to train emotion recognition 
engines across these audio types. Even 
image pretrained deep networks have 
recently been used to classify emotion 
in speech based on spectral repre-
sentations at very impressive perfor-
mance by the auDeep toolkit.i Should 
collecting and/or labeling of speech 
data not be an option, also synthesized 
speech can be considered for training 
of acoustic emotion models—either 

i https://github.com/auDeep/auDeep

using synthesis of emotional speech, 
or simply to enrich the model of neu-
tral speech by using non-emotional 
synthesized speech.26 This can be ben-
eficial, as one can generate arbitrary 
amounts of speech material at little ex-
tra cost varying the phonetic content, 
the speaker characteristics, and alike. 
Ideally, one could even ad-hoc render 
a phonetically matched speech sam-
ple in different emotions to find the 
closest match. A similar thought is fol-
lowed by the recent use of generative 
adversarial network topologies, where 
a first neural network learns to synthe-
size training material, and another to 
recognize real from synthesized mate-
rial and the task of interest.5 Obvious-
ly, transfer learning can bridge the gap 
between artificial and real speech. In 
future efforts, a closer and immediate 
coupling between synthesis and analy-
sis of emotional speech could help ren-
der this process more efficient.

If no annotated data is available, 
and no emotional speech synthesizer 
is at hand, unsupervised learning could 
help if the knowledge of the emotion 
is not needed explicitly and in human-
interpretable ways. An example is the 
integration of information on emotion 
in a spoken dialogue system: if features 
that bear information on the emotional 
content are used during unsupervised 
clustering of emotionally unlabeled 
speech material, one may expect the 
clusters to represent information re-
lated to emotion. The dialogue system 
could then learn—best reinforced—
how to use the information on the cur-
rent cluster in a dialogue situation to 
decide on its reaction based on obser-
vations of human-to-human dialogue. 
Likewise, at no point would someone 
know exactly what the clusters repre-
sent beyond designing the initial fea-
ture set for clustering to reflect, say, 
emotion; yet, the information could be 
used. Should no speech data be avail-
able, rule-based approaches could be 
used, which exploit the knowledge ex-
isting in the literature. A basis will usu-
ally be a speaker normalization. Then, 
one measures if the speech should, 
for example, be faster, higher pitched, 
or louder to assume a joyful state. Yet, 
given the oversimplification of a high-
dimensional non-linear mapping 
problem, such an approach would, un-
fortunately, have limits.

An important 
aspect of increased 
robustness is to 
consider other 
states and traits 
that temporarily 
impact on voice 
production. 
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textual word handling, or speech com-
ponent audio words by executing non-
negative matrix factorization or alike, 
and creating audio words from compo-
nents of audio. 

The “neuro”-naissance or renais-
sance of neural networks has not 
stopped at revolutionizing auto-
matic speech recognition. Since the 
first publications on deep learning 
for speech emotion recognition (in 
Wöllmer et al.,42 a long-short term 
memory recurrent neural network 
(LSTM RNN) is used, and in Stuhlsatz 
et al.35 a restricted Boltzman machines-
based feed-forward deep net learns 
features), several authors followed this 
idea to learn the feature representa-
tion with a deep neural network, for 
example, Cibau7 and Kim et al.19 Con-
volutional neural networks (CNN) were 
also successfully employed to learn 
emotional feature representations.27 
The first end-to-end learning system 
for speech emotion recognition was 
recently presented by a sequence of 
two CNN layers operating at differ-
ent time resolutions: 5ms first, then 
500ms followed by a LSTM RNN at 
highly impressive performance.37,k In 
future topologies, one may consider 
stacking neural layers with different 
purposes such as speech denoising, 
feature extraction, feature enhance-
ment, feature bundling, for example, 
by use of a bottleneck layer, and clas-
sification/regression with memory.33

Confidence measures. Given the 
higher degree of subjectivity of the task 
and imperfect recognition results, the 
provision of confidence measures of an 
emotion estimate seems mandatory 
in any application context.17 However, 
the estimation of meaningful inde-
pendent confidence measures beyond 
direct measures coming from the 
machine-learning algorithm, for ex-
ample, distance to the hyperplane in 
kernel machines, softmax functions 
at the output layer of neural networks, 
or alike, has hardly been researched 
in SER.17 Four main directions seem 
promising: 1) Automatic estimation of 
human labelers’ agreement on unseen 
data: instead of training the emotion 
as a target, one can train a classifier 
on the number of raters that agreed on 

k A recent toolkit is found at https://github.com/
end2you/end2you.

Data-learned features. As the quest 
for the optimal features has dominated 
the field similarly as the ever-lacking 
large and naturalistic databases, it 
is not surprising that with increased 
availability of the latter the first can 
be targeted in a whole new way, that 
is, learn features from data. This bears 
the charm that features should be opti-
mally fitted to the data. Further, high-
er-level features could be learned. On 
the downside, one may wonder about 
potentially decreased generalization 
ability across databases. Below, two 
currently popular ways of learning fea-
ture representations are introduced.

The idea to cluster chunks of au-
dio into words to then be able to treat 
these just like textual words during 
further feature extraction, for example, 
by histogram representation as “bag of 
audio words” was first used in sound 
recognition, but has found its way into 
recognition of emotion in speech.31 
Interestingly, these form some kind 
of modeling in between acoustic and 
linguistic representation depending 
on the low-level features that are used 
as basis.31 As an example, one may use 
wavelet or cepstral coefficients and 
cluster these to obtain the audio words 
and the vocabulary built up by all found 
audio words. An even simpler, yet of-
ten similarly effective way is random 
sampling k vectors as audio words, that 
is, executing only the initialization of 
k-means. Then, the actual feature could 
be frequency of occurrence per audio 
word in a larger time window such as a 
second, a turn, or alike, for example, by 
the openXBOW tool.j 

Split-vector quantization allows you 
to group the basis features to derive 
several histograms, for example, one 
for prosodic features and one for spec-
tral features. The construction of this 
vocabulary is the actual data-injection 
step during feature learning, as speech 
data will be needed to reasonably build 
it up. There exists a huge potential of 
unexploited, more elaborate forms of 
audio words, such as variable length 
audio-words by clustering with dynam-
ic time warping, soft-assignments of 
words during histogram calculation, 
audio-word embeddings, audio-word 
retagging or hierarchical clustering, 
such as the part-of-speech tagging in 

j https://github.com/openXBOW/openXBOW

The “neuro”-
naissance or 
renaissance of 
neural networks 
has not stopped 
at revolutionizing 
automatic speech 
recognition. 
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the label or, the standard deviation or 
alike in case of a regression task. Then, 
by automatically estimating human 
agreement on novel data, one obtains 
an impression on the difficulty of the 
current emotion prediction. In other 
words, one learns to estimate for new 
data if humans would agree or likely 
disagree on its emotion. Ideally, this 
can be targeted as a multitask problem 
learning the emotion and human agree-
ment in parallel. 2) One can train a sec-
ond learning algorithm to predict errors 
of the emotion recognition engine. To 
this end, one needs to run the trained 
emotion recognizer versus the develop-
ment data to then train the confidence 
estimator on the errors or non-errors of 

the SER engine observed on that data. 
In case of a regression task, the linear 
error or other suited measures can be 
used as target. 3) Estimating the simi-
larity of the data to the training data can 
be another option. A possible solution 
is training a compression autoencoder 
(a neural network that maps the feature 
space input onto itself to learn for ex-
ample a compact representation of the 
data) on the data the emotion recogni-
tion was trained upon. Then, the new 
data to be handled can be run through 
the autoencoder. If the deviation be-
tween input and output of the autoen-
coder is high, for example, measured by 
Euclidean distance, one can assume low 
confidence in the emotion recognition 

results as the data is likely to be highly 
dissimilar. 4) Estimating acoustic deg-
radation or word error rate. On a final 
note, reliable confidence measures are 
also the heart-piece of efficient weakly 
supervised learning.

Coming Clean: The Benchmarks
But how reliable are SER engines? This 
can partially be answered looking at the 
research challenges held in the field up 
to now. While the first official competi-
tion event with properly defined train 
and test sets and labels unknown to 
the participants—the Interspeech 2009 
Emotion Challengel—dates back nine 

l http://compare.openaudio.eu.

Benchmark results of the SER challenge events. 

Databases = the basis of data used in the competitions. Note that sometimes only subsets 
have been used. Only challenges are listed that provided audio only results (thus excluding, for 
example, AVEC 2014 and EmotiW since 2015). Some abbreviations here are obvious, others 
include lng=language (by country code ISO 3166 ALPHA-2 where “–” indicates an artificial lan-
guage). hrs/spks/# = hours/speakers/number of data points. Task gives the number of classes 

or the dimensions =(A)rousal, (V)alence, (P)ower, (E)xpectation. “·2”= a binary classification 
per dimension. oS = openSMILE (feature extractor with standardized feature sets). EC = Inter-
speech Emotion Challenge. CRNN = CNN followed by a recurrent neural network with LSTM. RF 
= Random Forests. SVM/R = Support Vector Machines/Regression. BoAW = Bag-of-Audio-Words. 
UA = Unweighted Accuracy. WA = Weighted Accuracy. MAP = Macro Average Precision. PCC = 
Pearson’s Correlation Coefficient. CCC = Concordance Correlation Coefficient. Baseline results 
follow the order under each “task.”

Challenge Database lng Quality hrs/spks/# task unit # feat model baseline

EC 09 FAU AEC DE lab 9.1/51/18216 2/5 chunk 384 oS SVM .677/.382 UA

ComParE 13 GEMEP – lab ~.6/10/1260 AV·2/12 turn 6373 oS SVM .750/.616/.409 UA

AVEC 11 SEMAINE UK lab 3.7/24/50350 AVPE·2 word 1941 oS SVM .412/.558/.527/.592 WA

AVEC 12 SEMAINE UK lab 3.7/24/50350 AVPE word 1841 oS SVR .014/.040/.016/.038 PCC

AVEC 13 AViD DE lab 240/292/864k* AV sgmt 2268 oS SVR .090/.089 PCC

AVEC 15 RECOLA FR VoIP 2.3/27/202527 AV sgmt 102 oS SVR .228/.068 CCC

AVEC 16 RECOLA FR VoIP 2.3/27/202527 AV sgmt 88 oS SVR .648/.375 CCC

– CRNN .686/.261 CCC

BoAW SVR .753/.430 CCC

AVEC 17 SEWA DE VoIP 3/64/106896 AV sgmt BoAW SVR .225/.244 CCC

EmotiW 13 AFEW 3.0 US film ~.8/315/1088 7 clip 1582 oS SVM .2244 WA

EmotiW 14 AFEW 4.0 US film ~1.0/428/1368 7 clip 1582 oS SVM .2678 WA

MEC 16 CHEAVD CN film/TV 2.3/238/2852 8 clip 88 oS RF .2402 MAP/.2436 WA

MEC 17 CHEAVD 2.0 CN film/TV 7.9/527/7030 8 clip 88 oS SVM .392 MAP/.405 WA
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question would be how these results 
relate to acceptable rates for human-
machine applications. Such numbers 
are unfortunately also largely missing 
and would need to be provided by ap-
plication developers stemming from 
according usability studies. To provide 
a statement non-the-less, the technol-
ogy can already be used in a range of 
applications as outlined above, and 
seems to improve over time, reaching 
closer to human performance.

Moonshot Challenges?
Seeing the ongoing trends in the field, 
one may wonder what is left as high 
hanging fruit, grand challenge, or even 
a moonshot challenge. Certainly, sev-
eral further steps must be taken before 
SER can be considered ready for broad 
consumer usage “in the wild.” These 
include robustness across cultures 
and languages as one of the major 
white spots in the literature. A num-
ber of studies show the downgrades 
one may expect when going cross-
language in terms of acoustic emotion 
recognition.3 As to cross-cultural stud-
ies, these are still particularly sparse, 
and there exists practically no engine 
that is adaptive to cultural differenc-
es at the time. Beyond cross-cultural 
robustness, such against atypicality 
must be further investigated. For ex-
ample, a few studies deal with emotion 
portrayal of individuals on the autism 
spectrum.30 Further, the assessment of 
emotion of speaker groups has hardly 
been targeted. In a first step, this re-
quires dealing with far-field acoustics, 
but it also must ideally isolate speakers’ 
voices to analyze overlapping speech 
in search of emotional cues to then 
come to a conclusion regarding 
a groups’ emotion. A potentially 
more challenging task may then be 
the recognition of irony or sarcasm as 
well as regulation of emotion. Differ-
ences between the acoustic and the 
linguistic channels may be indica-
tive, but the research up to this point 
is limited. Next, there is little work to 
be found on speaker long-term adap-
tation, albeit being highly promising. 

A genuine moonshot challenge, 
however, may be to target the actual 
emotion of an individual sensed by 
speech analysis. Up to this point, the 
gold standard is to use other human 
raters’ assessment, that is, ratings or 

years by now, several further followed. 
In 2011, the first AudioVisual Emo-
tion Challenge (AVEC 2011) took place, 
which also featured a speech-only track. 
By now, seven annual AVEC challenges 
took placem—in 2015 physiological sig-
nal information was added for the first 
time. The Interspeech Computational 
Paralinguistics challengE (Interspeech 
ComParE) series revisited SER as task 
in 2013. Meanwhile, challenges con-
sidering media-material such as clips 
of films appeared, namely the annual 
(since 2013) Emotion in the Wild Chal-
lenge (EmotiW14) run, and the new 
Multimodal Emotion Challenge (MEC 
2016 and MEC 2017n). A loser relation 
to emotion in speech is given in further 
challenges such as MediaEvalo (“affec-
tive (2015) /emotional (2016) impact of 
movies” task). 

The accompanying table presents an 
overview on the challenges and their re-
sults to date that focused on SER. Inter-
estingly, all challenges used the same 
feature extractor for the baselines. For 
comparison, the AVEC 2016 results 
for end-to-end learning37 and Bags-of-
Audio-Words31 are further given, which 
are no official baselines. At press time, 
the series MEC is rerun, and the series 
ComParE is calling for participation 
for their 2018 reinstantiations offering 

m http://sspnet.eu/avec201x, with x ∈[1–7]
n http://www.chineseldc.org/htdocsEn/ 

emotion.html
o http://multimediaeval.org

novel affect tasks on atypical and self-
assessed affect. 

One would wish to compare these 
challenges in terms of technical or 
chronological improvements over the 
years. However, as the table indicates, 
the same database was used only once 
in two challenges with the same task 
definition (AVEC 15/16). There, one 
notices a striking improvement in 
the baseline of this challenge in the 
more recent edition. It seems desir-
able to rerun former tasks more often 
for a better comparability across years 
rather than having a mere provision of 
snapshots. However, the table shows 
that the task attempted was becoming 
increasingly challenging, going from 
lab to voice over IP to material from 
films with potential audio overlay. 

Further, one would want to see the 
results of these events set into rela-
tion with human emotion percep-
tion benchmarks. Again, this is not 
straightforward for the following rea-
sons: the ground truth does not exist in 
a reliable way—the data was labeled by 
a small number of humans in the first 
place. Comparing it to the perception 
of other humans on the test data would 
thus not be entirely fair, as they would 
likely have a different perception from 
those who labeled the training and 
test data. Further, there simply is no 
perception study available on these 
sets, indicating another white spot in 
the tradition of challenge culture in 
the field. Perhaps the more important 

Figure 2. A modern speech emotion recognition engine. 

Ideally, this engine experiences life-long learning 24/7 to analyze and 
synthesize emotion across languages and cultures. It gains feedback from 
the crowd in cooperative, gamified, and reinforced ways learning end-to-
end and transferring gained knowledge. For a holistic understanding, it 
integrates contextual knowledge such as other speaker states and traits.
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annotations, as an “outer emotion”, as 
perceived by others, as learning target. 
Obviously, this can be highly different 
from the “inner emotion” of an indi-
vidual. To assess it, one will first need 
a ground truth measurement method, 
for example, by deeper insight into 
the cognitive processes as measured 
by EEG or other suited means. Then, 
one will also have to develop models 
that are robust against differences 
between expressed emotion and the 
experienced one—potentially by de-
riving further information from the 
voice which is usually not accessible 
to humans such as the heart rate, skin 
conductance, current facial expres-
sion, body posture, or eye contact,32 
and many further bio-signals.

Obviously, one can think of many 
further interesting challenges such 
as emotion recognition “from a chips 
bag” by high-speed camera capture of 
the vibrations induced by the acoustic 
waves,9 in space, under water, and, of 
course, in animal vocalizations.

Conclusion
In this article, I elaborated on making 
machines hear our emotions from 
end to end—from the early studies on 
acoustic correlates of emotion8,16,21,34 
to the first patent41 in 1978, the first 
seminal paper in the field,10 to the first 
end-to-end learning system.37 We are 
still learning. Based on this evolution, 
an abstracted summary is shown in 
Figure 2 presenting the main features 
of a modern engine. Hopefully, cur-
rent dead-ends, such as the lack of rich 
amounts of spontaneous data that al-
low for coping with speaker variation, 
can be overcome. After more than 20 
years into automatic recognition of 
emotion in the speech signal, we are 
currently witnessing exciting times of 
change: data learned features, synthe-
sized training material, holistic archi-
tectures, and learning in an increas-
ingly autonomous way—all of which 
can be expected to soon lead to the 
rise of broad day-to-day usage in many 
health, retrieval, security, and further 
beneficial use-cases alongside—after 
years of waiting36—the advent of emo-
tionally intelligent speech interfaces.
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