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Crowd-centric research is receiving increasingly more attention as datasets on crowd behavior are becoming

readily available. We have come to a point where many of the models on pedestrian analytics introduced in

the last decade, which have mostly not been validated, can now be tested using real-world datasets. In this

survey, we concentrate exclusively on automatically gathering such datasets, which we refer to as sensing the

behavior of pedestrians. We roughly distinguish two approaches: one that requires users to explicitly use local

applications and wearables, and one that scans the presence of handheld devices such as smartphones. We

come to the conclusion that despite the numerous reports in popular media, relatively few groups have been

looking into practical solutions for sensing pedestrian behavior. Moreover, we find that much work is still

needed, in particular when it comes to combining privacy, transparency, scalability, and ease of deployment.

We report on over 90 relevant articles and discuss and compare in detail 30 reports on sensing pedestrian

behavior.
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1 INTRODUCTION

Crowd-centric research has been around for more than a decade and has gradually become an
established interdisciplinary field of its own. With a multitude of stakeholders, a wide range of
applicable scenarios, and many different problems and approaches toward solutions, it has also
become a complex field of research.

For example, crowd-centric research covers indoor and outdoor pedestrian tracking and ranges
from small buildings to large shopping malls to huge festivals. A wealth of models have been devel-
oped for purposes of merely understanding crowd behavior, realistically simulating such behavior
for visualization purposes, or actually predicting future behavior. There are myriad reasons for
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wanting to understand or predict pedestrian behavior: safety, marketing, planning, and general
management to name just a few.

In this era of data-driven research, there is an increasing trend toward developing crowd-
behavior models using real-world data. Unfortunately, as concluded from a recent extensive liter-
ature survey [81], data-driven research for modeling crowd behavior is by far common practice.
This lack of research can be explained by the difficulty of obtaining datasets, especially for very
large crowds. Furthermore, the quality of available datasets is often unclear as cleaning and san-
itizing raw data has its own problems [12]. Yet, the need for high-quality datasets capturing the
behavior of crowds is undisputed.

In this article, we investigate the various methods and techniques for capturing crowd behavior
through physical sensors that record spatiotemporal features such as densities and movements.
We exclusively focus on alternatives to CCTV and other video-based techniques; in particular, we
consider radio-based infrastructures such as WiFi-tracking systems and systems using Bluetooth
beacons. Our goal is to provide an overview of ways to automatically sense the behavior of a
crowd. In particular, we focus on automatically detecting information on positioning, tracking, and
measuring collections of people. This is what we refer to as sensing crowd behavior. This sensing
is not to be confused with crowdsensing, which is a form of urban crowdsourcing, a method of
using a person’s phone as a sensing node that gathers data about surrounding phenomena [25].
Throughout this survey, crowd sensing always refers to sensing a crowd, unless stated otherwise.

Until recently, many sensing solutions relied on custom nodes or networks of devices. The cur-
rent trend is to leverage the sensing capabilities of wearable devices and notably smartphones
using participatory applications. For example, it is now relatively easy to detect the presence of
nearby devices, obtain movement or location data, or acquire all sorts of local environmental data.
Combining such data with information from social media turns a smartphone into an extremely
powerful and versatile multisensing device.

We distinguish three different categories for using a wearable multisensing device. First, in the
case of human-centric (also called people-centric) sensing, the goal is to collect data on personal
traits: movement, activity, stress, and so on. Second, with environment-centric sensing, the goal is
to capture information on the surroundings of a person, such as data on weather, pollution, traffic,
and so forth. Finally, the third category involves crowd-centric sensing, which emphasizes col-
lecting spatiotemporal data on the behavior of groups of people typically aiming at estimating the
size of a crowd, local densities, flows, and so on. In this article, we focus on crowd-centric sensing.

Admittedly, the boundaries between these categories are not always clear, in particular when
considering that in many cases the same sensors are used. Nevertheless, when concentrating on the
purpose of sensing, distinctions arise. For one, in the case of crowd-centric sensing, it is not an indi-
vidual person who is generally the object of study, but rather the crowd as a whole. As a result, there
is generally more emphasis on gathering aggregated statistics, and the tolerance for having to deal
with noisy data is much higher than, for example, with human-centric sensing. Likewise, where
scalability is an inherent design issue for crowd-centric sensing, this is generally much less the case
for environment-centric or human-centric sensing. Scalability can easily lead to radically different
designs if one is targeting the behavior of millions of people. Thus, while some of the challenges
we identify in this survey have a common ground with other sensing domains, the fact that they
are targeted to capturing the behavior of crowds raises many new interesting research questions.

We identify two types of systems for crowd-centric sensing: application-driven and infra-
structure-based systems. Application-driven systems essentially make use of wearable devices for
sensing the behavior of a crowd. A typical example is using smartphones to collect data on the
number and location of neighboring devices. Infrastructure-based systems typically use statically
placed sensors that scan for wearable devices (and no more than that). A well-known example
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is the use of WiFi scanners for detecting the presence and recurrence of WiFi-enabled smart-
phones. Of course, hybrid forms exist as well. Both types of systems can be either participatory or
opportunistic and can be applied to several types of indoor and outdoor environments. Our sur-
vey focuses on the whole spectrum of solutions and identifies their architectural approaches and
challenges.

Social media traces, collected from specific platforms (e.g., Foursquare) or using dedicated ap-
plications, can also provide crowd-related data. This is a different approach than the one we are
focusing on and warrants a separate survey centered more on data analysis. We concentrate only
on minimal-intrusion sensors for detecting the physical presence of devices and do not dwell on
the semantics of social media. Nonetheless, we included application-driven sensing systems that
analyzed social media data in addition to the dataset collected using the mobile devices’ sensors
because they used it to validate their field experiments.

The sensing modalities employed by the systems we surveyed are also used for localization and
tracking of individuals. Although we also mention notable papers on these topics, our target is the
systems that collect spatiotemporal datasets that can describe crowds. The papers that just analyze
crowd data without describing the sensing part (technologies, experiments, methods) are not the
focus of this article.

We reviewed 93 papers on topics related to sensing crowds, falling into the categories described
below. Most of them present sensing systems that collect and analyze mobility data. Although
they rely on field experiments using mobile applications or deployed sensors, none consists of an
operational system used on a daily basis. The sensing solutions that were operational a few years
ago such as the mobile applications CitySense [44], VibN [50], and CoenoSense [83] are no longer
available on current mobile platforms. We distinguish the following types of papers:

• Papers on urban sensing systems, such as pedestrian monitoring using applications or sens-
ing infrastructures. In most cases, analysis focuses on pedestrian flow throughout the city
and on determining popular places.

• Papers on indoor sensing systems. These mostly concern infrastructure-based systems for
tracking people inside buildings. The data can be used for analyzing flows, patterns, and
densities, but usually the authors focus on only one type of pattern. They also present pre-
experiment tests and calibrations.

• Papers on event monitoring, both indoor and outdoor, and at varying scales. These type of
papers focus both on the experiment and on the analysis of the collected data.

• Papers on frameworks for participatory sensing applications.
• Position papers on sensing architectures and related topics such as privacy, evaluation

methodologies, and heterogeneity of sources.

Less than half of the urban and indoor-sensing and event-monitoring papers are completely
focusing on sensing mechanisms for crowds, a subset we will refer to as spot-on papers. These
present real-life deployments and their subsequent analyses. They provide details on the sensing
technologies, methodologies, and implementation, thus representing the main focus of our sur-
vey. These systems are subject to various challenges and tradeoffs particular to sensing crowds.
We have classified them based on how they address these issues. This classification performed in
Section 5 covers the main architectural and nonarchitectural criteria for acquiring crowd mobility
data: security and privacy, ease of deployment, scalability, incentives, transparency, and resource
consumption. Accuracy is another criterion we considered, but it is difficult to quantify in a rating
due to the variety of analysis methods and metrics encountered in the surveyed papers.

We reviewed and classified papers related to crowd sensing following a survey methodology
that consisted of five phases: paper selection, general characteristics classification, crowd-sensing
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characteristics classification, spot-on systems identification, and comparative evaluation of all rep-
resentative papers. The differences between the second and the third phase consist of the type of
information we extracted from the papers. In the second phase, we identified characteristics such
as technologies, experiments, purpose, and beneficiaries. In the third phase, we proposed seven
main features for crowd-sensing systems and evaluation criteria for the sensing architectures.

This methodology influenced the organization of the article. In the following two sections, we
apply our classification criteria on the applications and infrastructures presented in the set of
papers we selected. In Section 5, we discuss the most representative papers and compare them
based on the features presented in Section 2. We conclude in Section 6 by discussing our view
on the current state of crowd sensing and the trends and challenges we noticed in the papers we
surveyed. Further information can be found in Draghici [19].

2 KEY FEATURES OF CROWD-SENSING SYSTEMS

In this survey, we focus on systems that sense the behavior of crowds, in particular those systems
that are an alternative to video-based solutions. We focus on the particularities of crowd-centric
sensing solutions and their similarities and differences with traditional sensing systems. We also
identify the main properties that should be taken into account when designing a system for sensing
the crowd. In Section 5, we discuss such existing systems from the perspective of these properties.

2.1 Architectural Considerations

Both application-driven and infrastructure-based systems are relying on a centralized architec-
ture with devices performing the sensing (or some of the processing) and transmitting the data
to a server for storage, analysis, and presentation. For both types of systems, coping with het-
erogeneity is important. In application-driven systems, the sensing devices are the main source
of heterogeneity: different platforms have different sensing APIs and restricting policies, but also
different sensing, processing, and communication hardware. Blunck et al. [10] also consider the
users as a source of heterogeneity due to demographics and variations in application and device
usage. For the infrastructure-based systems, heterogeneity comes mainly from the sensed devices,
such as differences in signal strength or scanning periods.

Zooming in on the architecture, we encounter several processing, storage, and communication
models. Processing is performed either locally on the device, remote on the server, or both. For
application-driven systems, the policies dictating this choice are generally driven by energy con-
sumption requirements. How the collected data is stored depends on the storage capabilities of the
device but also on the privacy policies of the application. While the processing model is fixed, the
storage model can generally be customized by the user. We encounter these models also in other
sensing systems, but there are subtle differences. For instance, in a participatory sensing applica-
tion for fitness, the user may opt to store the data only locally and never transmit it to a server for
further processing. This is obviously not an option in the face of building a global view on crowd
behavior.

Awareness of energy and resource consumption also influences the communication mode and
sensing strategies. Sensing can either be performed continuously in the background or triggered
by an input from the user. Energy-aware applications adjust the sampling rate or even the sensors
used in order to reduce the consumption.

Typically, sensing devices are assumed to always have Internet connectivity and to almost in-
stantly transmit data to the server. When continuous connectivity cannot be guaranteed, data is
gathered after an event from local storage, as in [70]. A drawback is that participants can then not
receive real-time feedback on global crowd behavior.
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Table 1. Common Crowd-sensing Technologies from a Sample of 67 Systems
(27 Application-driven, 40 Infrastructure-based), Together with the Number
(and Fraction) of Surveyed Solutions Employing them. Some of the Systems

Use Multiple Technologies
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Application 10 (0.37) 5 (0.19) 16 (0.59) 7 (0.25) 3 (0.11) 11 (0.41)
Infrastructure 17 (0.42) 21 (0.53) 3 (0.07) 0 (0.00) 0 (0.00) 8 (0.20)

Mobile applications for sensing the crowd present more diverse communication strategies than
the infrastructure-based systems. They are usually closely connected with the sensing model and
can be triggered either by the device, by the server, or in some cases even by another device. A
device may wait for tasks from the server, start the data collection, and return the results, or may
simply publish data, without a specific request, whenever a WiFi connection is available.

2.2 Sensing Modalities

The sensing literature offers comprehensive surveys [25, 45, 73] on the technologies used for ac-
quiring data on human and environment traits. The systems for sensing the crowd leverage some
of these technologies to obtain data about the presence, the count, and the movement of people.
We identified several sensing modalities and their corresponding technologies. Table 1 presents
the technologies behind these modalities and the number of surveyed solutions for each of them.

Choosing the right modality is important, if only for reasons of energy consumption, costs of
resources, data granularity, and implementation and deployment restrictions. Some, such as energy
impact and implementation restrictions, are more relevant to application-driven solutions. The
energy consumption is dependent on the type of sensors, the hardware platform and the operating
system, the API of the mobile device, and the collection method.

Some crowd-sensing solutions based on participatory applications enhance their analysis by
combining data from several modalities with social media information. CrowdSense@Place [14]
crowdsources the gathering of data about the urban environment, and while it is not strictly a
system for sensing the crowds, with a significant user base it can provide information on crowd
densities and movement patterns. In Chon et al. [14], this system was used in an experiment with
just 85 participants, yet they managed to gather data about visit counts and app usage. Note that
this kind of information cannot offer any global indication about a crowd. This hybrid approach
can be applied to sensing crowds especially in the case of city-scale events or for determining
popular places, but we have not yet encountered crowd-sensing frameworks and applications that
support it.

2.3 Maturity of Crowd-Centric Sensing Solutions

Crowd-centric sensing handles large numbers of participants, heterogeneous devices, and various
types of environments, imposing challenges on the testing and evaluation processes. Some of
the sensing technologies described above have been employed, tested, and optimized on tracking
and localization of individuals. For handling crowds, the collected data must be representative
and valid for more than just an individual. The systems for sensing a crowd relying on outdoor
experiments outnumber the ones analyzing datasets collected through small-scale lab experiments
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and simulations. In the papers we surveyed, the testing and evaluation mostly depended on
the purpose of the presented solution. Some were built just as a basis for a particular type of
analysis, and some for demonstrating the feasibility of a particular technology or for comparing
technologies (such as by Abedi et al. [1] and Schauer et al. [66], who compare Bluetooth and
WiFi). Others have been developed for monitoring for only a certain amount of time, such as
during specific events of various scales, from indoor exhibitions or conferences to city-scale
festivals.

Usually, crowd-centric solutions consist of the following stages: pre-experiment calibration, de-
ployment (i.e., actual sensing), and finally data analysis. Most papers do not address the first stage,
with a few exceptions in case of infrastructure-based systems using radio-based modalities.

The deployment stage consists of one or more field experiments, either instrumented or not.
In the former case, the experiment consists of the monitoring of a few volunteers (usually less
than 20) equipped with phones or other sensing devices, sometimes following a specific script.
In noninstrumented cases, either an application is made available to any user or sensing devices
are deployed to monitor any person passing by. While the latter deployment usually produces the
largest datasets, these datasets are also more problematic to analyze and validate. Moreover, such
experiments, especially those covering a large area or with a large number of users (typically over
1,000), are more prone to data quality problems and unexpected events.

One of the challenging parts of the validation process is collecting ground-truth data necessary
for evaluating the accuracy of the experiment. For instrumented approaches with a few dozen par-
ticipants, it is relatively easy to determine the ground truth, even by using human observers. For
more complex experiments, ground-truth data is collected either by video monitoring (e.g., [38,
83]), manual observations [14, 28, 32, 46, 55, 57, 59], additional sensing modalities such as GPS [53,
80], motion detectors [24], location-specific modalities (such as turnstiles [20] or boarding-pass
scans [66]), or social media check-ins [13, 14]. Almost half of what we termed spot-on solutions

on sensing crowds do not even present a ground-truth strategy, comparing their results with vari-
ous statistics (e.g., known distributions on cell phone usage) or identifying relevant patterns (rush
hours, diurnal patterns).

Despite the staging costs (devices, rewards for participants), the instrumented experiments seem
to be the common method for demonstrating the feasibility of a certain crowd analysis method or
the collection accuracy of a certain sensing modality. The question remains, though, whether these
sensing mechanisms scale. For infrastructure-based systems, we have the problem of coverage
and deployment costs. For application-driven approaches, we have nontechnical challenges such
as attracting users, or additional technical challenges regarding privacy, security, and resource
consumption.

2.4 Features for Evaluation

Security and privacy. The idea of a system that continuously collects data on pedestrians raises
ethical, privacy, and security concerns. Threats can be both internal and external and can target
the sensing, the data collection (task communication and results reporting), the local and remote
storage, and even the presentation (e.g., when querying for statistics of currently “hot” places).
The Privacy criterion in our classification encompasses anonymization, security, and access and
sharing policies.

In participatory sensing applications, privacy guarantees that users have control over their data.
Their collected and inferred information is protected and not available to other users or parties.
For such applications, anonymization is not always a requirement, especially for localization and
tracking applications, but is preferable in case of collecting data on crowds.
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In infrastructure-based crowd-sensing systems, people have much less control over their par-
ticipation. In this case, anonymization is often a requirement and consists of stripping the datasets
of context and demographic information. Some of the systems we reviewed used address hashing,
a technique that is possible to de-anonymize unless it is coupled with other privacy-preserving
schemes [13].

Incentives. Sensing the behavior of a crowd generally requires participation of many people.
When this participation has to be solicited, incentives become important.

The incentives mechanisms for application-driven systems are the ones usually employed in
participatory systems. Restuccia et al. [62] provide a recent survey and Lee [41] an in-depth study
of the economic models. Arakawa and Matsuda [3] present a study of gamification mechanisms for
urban participatory sensing as an alternative to monetary incentives. Crowd-centric application-
driven systems usually rely on non-auction-based mechanisms and provide monetary incentives
or application-specific ones, which include gamification, integration with social media, access to
certain content, or analysis results (e.g., the user sees how crowded a specific place is only if he
or she agrees to share his or her location). The incentives, while closely coupled with the privacy
concerns, are also important when talking about the deployment or how the application is made
available to the users. Embedding solutions into an existing app [9] can make a huge difference in
comparison to a separate app [71].

Ease of deployment. We also consider the way the system is deployed and its maintenance re-
quirements, distribution, and marketing efforts. The sensing systems we reviewed presented very
briefly the server-side deployment or costs, with the deployment discussions focusing on the sens-
ing devices. Mobile-driven solutions need to make the application available through official chan-
nels, such as Google Play on Android and rent server resources in the cloud. The amount of effort
shifts from the deployment to the implementation and maintenance side. For infrastructure-based
systems, the deployment is more costly since most cases require custom sensing devices covering a
large area but need less marketing and implementation effort and, if properly placed, can produce
large datasets immediately, while application-driven systems require time to build the user base.

Scalability. We consider a sensing system scalable if it can be easily adapted and without signifi-
cant costs to support larger areas, more users, and extended periods of time. This aspect considers
the impact that scaling has both on sensing infrastructure costs and on processing and storage
resources. Some of the sensing systems we analyzed were also designed for a small number of
participants or low densities, the analysis becoming less accurate when this number increased.
Also, for mobile-driven systems, the analysis and filtering need to account for similar reporting
from persons close by. The stress on the server-side systems due to an increase of data that needs
to be received, stored, and processed is not discussed in the reviewed sensing solutions.

This topic is addressed in a few papers only. For example, Kannan et al. [33] include a formal
discussion on the scalability of the tone-based crowd-counting system they propose. They also
discuss the ease of deployment and energy efficiency criteria.

Transparency. What is the level of awareness of the user about the sensing campaign and data
collection? Sensing infrastructures that just monitor passing-by devices are considered to be al-
most entirely transparent to the users, in contrast to mobile applications that constantly require
interaction with the user. Transparency is particularly challenging in application-driven systems
in which usability comes into play while ensuring a minimal effect on other applications and re-
sources. Transparency is also affected by the sensing modalities used in the smartphone app. Due
to security reasons, the mobile platforms’ APIs impose restrictions on accessing and enabling these
modalities, which affect the transparency by requesting user input.
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Resource consumption. A serious research challenge in many sensing systems, and also in
those for sensing crowds, is controlling resource usage. This holds not only for devices but
also for server-side resources, being closely connected to scalability, transparency, and accuracy.
Application-driven systems usually tackle energy efficiency by implementing policies for mini-
mizing the consumption, for example, dynamically adapting the rate for acquiring the location
based on the user’s movements [7, 30].

Related is the system’s complexity: a good application that needs resources for collecting fine-
grained mobility data, provides incentives, and presents results is preferred to a simple application
that collects less accurate datasets and does little to attract the users.

Accuracy. For systems on localization and tracking of individuals, positioning accuracy is a main
concern. On the other hand, in crowd-centric systems, we see a large spectrum of characteristics
considered by their researchers and developers (as discussed in Section 4.3), and the metrics are
more varied. Most of the spot-on papers we surveyed presented their analysis results but in various
degrees, some just presenting counts or simple statistics about the device vendors. This criterion
encompasses the types of analysis, the filtering needed to clean up the data, the metrics, and (if
any) the validation mechanism. In addition to the evaluation results, we consider whether or not
their choice of technology and deployment is capable of providing representative datasets. For
instance, we have seen significant changes for radio-based modalities due to rapid changes in
mobile platforms. We discuss accuracy throughout the next sections applied to the systems we
surveyed, but due to its variance, we do not employ a rating system as for the rest of criteria.

3 APPLICATION-DRIVEN SENSING

3.1 Architecture

In this section, we first introduce a complete architecture for application-driven crowd-centric
systems, which encompasses building blocks for both the device and back end, as illustrated in
Figure 2 in the appendix. We then provide examples of existing systems that successfully imple-
mented similar architectures.

3.1.1 Components of the Client. A mobile application generally consists of background compo-
nents and UI components. A few solutions provided only the background components, as services
that can be used by various applications. Decoupled and modular architectures are more versatile
and can be integrated with multiple applications. For instance, a service that provides sensing and
communication can be used by applications designed for different events or festivals, or various
applications created for the same event [71].

Sensing. Most important is the sensing component, since it is the one collecting the raw data
from the sensors or communication interfaces (for proximity detection). The application can addi-
tionally include energy-aware policies such as dynamically adjusted sampling rates based on the
movement type or context, or merely sampling on demand. Applications using multiple sensing
modalities can also perform sensor selection in order to alternate the sensors having a low energy
cost with the high-power radio or location providers, possibly trading energy for accuracy.

Processing. The processing component is optional, some solutions preferring to do the process-
ing only at the server in order to have a lower impact on the device’s resources. Others perform
some basic filtering and anonymization of the data before sending it. We also encountered systems
performing a significant amount of processing on the device, for instance, Miluzzo et al. [49], which
executes audio classification and activity recognition based on motion sensors. Their approach is
driven by privacy considerations, the raw data being stored only temporarily while processed and
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the server receiving only the results of the processing for further analysis and integration with
other data streams.

Privacy enforcement. The optional privacy enforcement component generally consists of a series
of mechanisms for implementing privacy policies during the sensing, processing, or communica-
tion. Typical examples include constraints on the area in which sensing is active or on how a
certain modality is used. When applications use several sensing modalities, they often implement
an on-demand policy for obvious privacy-sensitive modalities (such as camera and microphone)
and a continuous collection policy for motion sensors or location providers.

Data storage policies are usually driven by the privacy settings of the system, settings that are
either established by the application logic or configurable by the user. Storage policies are often
coupled with processing, especially in applications that collect audio streams, filter them of any
identification content, and then remove the raw samples, storing just the processed data.

The communication component may also strip the reported data of identification features, the
most common procedure being to hash the addresses involved or to not send details about the user
and its device. How effective such policies are is questionable (see, e.g., Vanhoef et al. [74]). This
anonymization step, employed by most infrastructure-based systems for sensing the crowds, is not
that often encountered in participatory applications. The fact that they use social media integration
as an incentive makes their users share their identity with the back-end services. In these cases, the
server needs to protect the stored data and to guarantee not sharing the information to third parties
without the user’s authorization. In fact, some studies suggest that users are not that concerned
with sharing their location history or other sensor data when they are in public places [8, 14, 49].

Communication. The communication component is responsible for reporting data to the server
and receiving tasks or other information related to the collection campaign. Depending on the
implementation, the sensing component may use some of this component’s functionalities, for
example, when it needs to use communication interfaces to detect neighboring devices. Likewise,
some systems use short-range communication not just for detection but also for enabling collab-
oration between devices.

There are a few infrastructure-based systems that lack a communication component, saving
collected data on local storage in order to be accessed only after the event [70]. Also, several
participatory applications designed for sensing personal traits may not include a communication
component. However, the nature of the crowd-related data requires collecting and aggregating
samples from multiple users and locations. Even when the system is completely decentralized
and the mobile device collects data in an ad hoc manner from the devices it encounters, it will
eventually need to communicate its findings to a logically centralized service.

Presentation and user-controlled settings. The design of the user interface is mostly driven by
transparency, usability, and incentive requirements. Interestingly, most applications do not provide
information on current crowd conditions and instead focus more on gathering input (including
gamification) and provide only general event information [9, 71, 83].

Even when users do not have access to the sensing campaign results, they must be informed of
the collection for reasons of imposed resource usage and invasiveness on privacy. A user should
have the option to opt out entirely of the collection process and be offered support for configuring
issues like sampling rate, turning on and off the sensing, deciding how long the data is locally
stored, or if the communication is performed only when connected to open networks, to name a
few. Most applications in our survey offer such capabilities.

Incentives. Incentivizing users remains a challenging area, notably in participatory systems [62].
For sensing crowds, incentivizing tactics generally encourage participation in data collection by
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engaging the users either with application-specific features or with gamification mechanisms. Out
of the app-driven solutions we have surveyed, just one application had incentives as a primary
design feature [8, 9], offering a virtual-trophy-collecting game. The authors also show a high
interest in studying incentivizing mechanisms and even surveyed the users about the gamifica-
tion elements they included.

A few applications used incentives as a means just to reward volunteers in a field experiment.
Monetary incentives are a viable option as well, but we have not seen them be integrated into real
deployments of mobile crowd-sensing applications.

External services and applications. Many systems for crowd sensing can be integrated with other
services or applications for presentation purposes, storage, sharing, or authentication. For exam-
ple, applications that offer real-time information on crowd densities are often linked to the Google
APIs for map integration and location awareness. The application may also offer options for syn-
chronizing data with services such as Dropbox or to share information via social media.

3.2 Components at the Server

Crowd management solutions can be logically split into four major subsystems [81]: sensing, min-
ing, prediction, and intervention selection. Many of the solutions that we have included in our
survey also address elements of subsystems other than the one for sensing. However, in this arti-
cle, we confine ourselves exclusively to the sensing subsystem. In this section, we zoom into this
subsystem’s organization at the server side.

Communication. The communication component is primarily responsible for asynchronously
receiving data from the devices. Depending on the design tactics, the server may send requests
(tasks) for triggering data collection or for obtaining collected data. It can also answer requests for
processed or aggregated data. This is the case with applications that provide information on crowd
conditions (e.g., the densities in a given area during the last week) or use the user’s server-side
stored data in their local processing (e.g., for pedestrian dead-reckoning techniques).

Privacy enforcement. Privacy policies can be enforced at both the client side and the server side.
For crowd-centric sensing, we generally do not need the identities of participants. At the client side,
data can be stripped of identification before being sent to the server. Otherwise, hashing methods
can be applied on the server. When the system is designed to know a user’s identity, it can enforce
access policies for the user’s data. When querying for crowd conditions, the client receives just
aggregates (e.g., visit counts in a certain area in a given timeframe) and never information on
specific people.

Clearly, to what extent privacy enforcement at the server is effective remains an open question,
certainly in light of potential security attacks. None of the surveyed sensing systems had by far an
adequate solution.

Control, storage, and processing. The control component is the one responsible for the system’s
logic tier. It sends tasks to the application through the communication component, it interprets
the requests from the application, and it controls the processing stages: filtering, data mining, and
visualizations. In general, it forms the core of the crowd management system.

Presentation and external services. The system can also offer a presentation component, which
provides statistics and visualizations of the collected data via a web interface. These can be publicly
available or just private to the users, crowd operators, and developers. Similar to the mobile ap-
plication, the presentation component can be integrated with external services for maps, location
information, or even graph plotting tools.

ACM Computing Surveys, Vol. 51, No. 1, Article 21. Publication date: February 2018.



A Survey of Techniques for Automatically Sensing the Behavior of a Crowd 21:11

Fig. 1. Sensing modalities.

3.3 Sensing Modalities

The applications designed for sensing crowd characteristics use mostly one or two sensing modal-
ities, with location providers being the easiest and straightforward option. As seen in Figure 1, out
of the 27 application-driven systems we have surveyed, most of them use GPS or motion sensors.
For energy considerations, some combine the location acquisition with the data from motion sen-
sors (mostly accelerometer and compass) in order to dynamically adjust the location provider’s
collection rate. The strategies for adjusting the sampling rate consider the user’s speed (type of
movement), traveled distance, and heading.

While in theory these strategies should work, the implementation of such policies needs to adapt
to the restrictions of the current mobile platforms. The mobile market is extremely dynamic and
heterogeneous, and the available APIs constantly add more restrictive policies to protect privacy
or reduce energy consumption. One such restriction is available on Android, where the sensor data
can be continuously collected but is not transmitted to any server when the screen is off. This is an
impediment for the applications that need to acquire the location after a certain number of steps
or traveled distance. The four systems that considered such strategies [7, 30, 37, 50] either used
an older, less restrictive platform [37, 49] or implemented a prototype used in a small-scale instru-
mented experiment. Höpfner and Schirmer [30] propose several workarounds, even one based on
static movement profiles, and show promising results in the evaluation against the SDK’s default
policy. Their implementation requires almost half of the number of SDK requests but has lower
positioning accuracy (e.g., 11m instead of 4.5m or 7.5m). The latest version of EnTracked [7] has a
more in-depth analysis of this tradeoff between reducing the energy consumption and giving up
some of the positioning accuracy.

3.4 Frameworks

In our study, we have encountered mostly frameworks that are only indirectly linked to sensing
crowd behavior. These frameworks are built primarily for participatory sensing. They address
energy efficiency, privacy, and participant recruitment. We have also encountered papers offering
frameworks and at a conceptual level [26, 29], or valuable insight on architectural tactics for mobile
sensing [36].

One of the most relevant examples for our study is Medusa [60], which allows developers to
define tasks that can be used for sensing characteristics of a crowd. This framework supports all
the sensing modalities we have presented in Section 2 and its authors also discuss place-centric
applications using them. Since it all amounts to scripting the collection tasks, it also eases the
development of a crowd-centric application that uses location providers and network sensors to
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detect densities and flows, or audio samples to estimate congestions. By default, the framework
preserves the anonymity of the users and devices involved in the collection campaign, but the
users can choose to reveal their identity, and in these cases we can collect social traits of the
crowds such as gender and age distributions. Unlike most app-driven solutions we have analyzed,
Medusa is a standalone, open-source, and ready-to-use framework with both client-side and cloud
components.

The sensing application developed and employed by Wirz et al. [83] is integrated with a back-
end framework for storing and processing collected data. This framework, Coenosense [82], re-
ceives location updates from the application, and was actually designed and employed for sensing
crowds. It supports only the location-provider-sensing modality and functions in a straightforward
way, without initiating sensing tasks or participant recruitment. The sensing application is respon-
sible for enforcing the collection and privacy policies, while the framework receives anonymized
samples for storage and real-time processing. The latter includes visualization, providing heat
maps on crowd pressure (available only to the event managers). The processing and visualization
mechanisms work only with aggregated location updates, restricting its usage to applications that
collect these. Unlike Medusa, Coenosense is not open source and not freely available for download.

Rachuri et al. [61] propose METIS, an adaptive platform that offers support for offloading the
sensing tasks of social-sensing applications. In METIS, sensing offloading is made possible by the
existence of a sensing infrastructure in addition to the mobile application. The system is designed
for detecting interactions between its users by combining audio recordings, Bluetooth-based prox-
imity detections, and motion sensor data. Since some sensing modalities are more energy consum-
ing than others, the system can distribute some of the sensing tasks to the sensors already placed
in the environment. The overall goal of this platform is to reduce energy consumption and make
the application as light as possible. To illustrate, the authors show that energy consumption can be
very close to that with just using the phone without sensing and the WiFi on. Even though METIS
provides a significant optimization of the energy consumption, the fact that it relies on networks
of external sensors poses a major disadvantage.

The nature of the applications for which METIS is designed requires privacy controls and poli-
cies both on the client and at the back end, but the authors do not address the privacy issues. Their
research goal goes beyond mere indoor detection of crowd patterns (groups, interactions between
groups) by analyzing the data based on user profile and membership to certain teams and com-
munities. In their field experiment, they use METIS as a surveillance platform to determine how
often the users interact within their group and with colleagues from other projects.

Mori et al. [51] provide a more generic approach for sensing applications, inspired from their
work with wireless sensor networks. They offer both client-side and server-side support for cre-
ating and managing sensing tasks. One of the key ideas of its design is the collaboration between
the nodes, which makes it very suitable to crowd-centric sensing. Like Medusa, it offers a descrip-
tion language for creating sensing queries (tasks) but with a different distribution model. While its
design is promising, especially its support for interdevice communication using radio modalities,
large-scale testing and deployment have not yet taken place.

The reason we consider crowdsourcing frameworks in our discussion is their support for various
sensing modalities and device discovery. Using the former, we can aggregate data such as locations
and use them for analyzing crowd properties instead of individuals. The latter, when supported,
enhances the role of the devices: obtaining data about the presence of other proximal devices.

A framework primarily focused on discovering and managing devices is Crowdwatch [40]. It
combines high-power radio and low-power radio in a hierarchical architecture for discovering
participant devices and selecting them for the data collection process. The framework has so far
been evaluated just in simulation but never deployed. The authors do not properly evaluate crowd
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dynamics, but only briefly mention the discovery latencies. By and large, the system seems de-
signed for wireless sensor networks rather than for a system using smartphones. It is debat-
able whether this approach truly offers advantages. For wireless sensor networks, it is relatively
straightforward to estimate the energy savings of the devices when using this hierarchical commu-
nication scheme, especially when they run only this application. For mobile devices, these savings
are much harder to assess, considering the fact that other applications may need Internet con-
nectivity, so it is already enabled, or the user has the habit of having the WiFi always turned on.
Moreover, the authors do not consider the side effects of their discovery protocols, the fact that
switching off the WiFi or Bluetooth interfaces would affect the other applications using them.

Bakht et al. [5] propose CQuest, another solution that combines low-power and high-power
radios for opportunistic discovery and cooperation between nodes, focused on energy efficiency.
Unlike Crowdwatch, it was not only tested in simulation but also deployed on a small testbed of
rooted Android phones, which revealed several challenges. In the implementation, they needed to
adapt the scheme to the Bluetooth interface’s restrictions, such as the lack of support for broadcast.

Diverging from the centralized model of the previous frameworks, Xiao et al. [86] claim that the
current approaches for sensing applications that harness the power of crowds do not scale well
with thousands or more participants. Under the assumption that the heterogeneities of mobile
platforms place great stress on the development and deployment phases, the authors propose a
system relying on virtualization. They use a proxy virtual machine for each device, which handles
the data processing and the communication with the virtual machines of each application (one per
user), all residing in the cloud. Such an approach has advantages in terms of usability and privacy,
the users installing only one crowd-sensing service instead of multiple applications and having
their data processed and stored in their own virtual machines. The authors do not discuss how
well the system performs and deals with privacy when it comes to aggregating data from all its
users. Like Crowdwatch, this system is not yet implemented.

3.5 Applications

Cenceme [49] is one of the first participatory applications specifically designed to support multiple
sensing modalities. While the platform on which it was implemented is obsolete, its features and
the entire design and evaluation approach are still relevant. They perform extensive tests not only
on power and resource consumption but also on the impact of various factors on the sensing
results. The integration of five sensing modalities and the modular design are the strong points of
this system. Privacy and scalability are not very clearly addressed, although privacy is considered
in its storage policies. Raw audio and acceleration samples are stored locally first until they are
processed, after which results are uploaded to the server, together with the device’s locations and
Bluetooth addresses of discovered devices. It is not clear whether communication is secured or
if scanned addresses are hashed. Scalability both on the client side and at the back end is not
discussed.

A follow-up, VibN [50], was designed for sensing crowd densities and presenting in real time
the available hot spots. This Live Points of Interest feature is the main incentive for users to share
not only their location but also audio samples.

Crowdsense@place [14] is a more recent system, similar to VibN in terms of purpose and use
of modalities. It also provides crowd density information on points of interest, but has a different
data collection and processing approach. VibN aimed at collecting some user demographics and
basic daily usage patterns. In contrast, Crowdsense@place collected much more data, aiming at
identification of popular places, visit patterns, the way the application was used, and in which
contexts the data was collected and shared.
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Citysense [44] analyzes in real time information about points of interest, in particular nightlife
attractions such as restaurants and clubs, and presents the users a map of busy places. Both the
application (Citysense) and the platform used for collecting and aggregating location data (Sense
Networks Macrosense) are no longer available, and accompanying research appears to have been
discontinued. Density analyses and privacy policies were their distinguishing points. Its clear focus
and tight integration of functionalities presumably contributed to its popularity and the little need
for built-in incentives.

Early on, Kjærgaard et al. [37] proposed EnTracked, a system designed to manage several sens-
ing modalities in an energy-efficient manner in order to track individuals. While the purpose of
this system is not directly connected to crowd sensing, its sensor management mechanisms and
application logic are still relevant. Entracked’s design was closely coupled to the mobile platform
used in experiments, a platform no longer available today. A new EnTrackedRT version was also
implemented in Android and used in [7]. The newer system has more sensor management strate-
gies and performs better (more energy efficient and robust) than the previous one on both the
Android platform and the older Nokia one.

4 INFRASTRUCTURE-BASED SENSING

In addition to using essentially on-body sensors such as mobile phones, systems for sensing a
crowd can also consist of sensors placed external to crowd members. We refer to these systems as
being infrastructure based. They rely mostly on statically placed sensors that vary from custom
devices to WiFi routers or standard computers. As we have discussed in the previous section, for
application-driven systems, it is challenging to come to a user base that can gather enough relevant
and sufficiently accurate data. In contrast, for infrastructure-based systems, participants have little
to no interaction with the sensors or knowledge of the sensing campaign. Nonetheless, they have
their own challenges regarding the quality and relevance of acquired data.

In the discussions and classifications performed in this section, we consider several types of
papers:

• Spot-on: the papers describing systems specifically designed for collecting data about
crowds. They present both the collection mechanism and resulting datasets but also sta-
tistics and visualizations for describing a crowd’s state.

• Hybrid: they are spot-on for crowdsensing but rely on both an infrastructure of nodes
(usually WiFi access points) and a mobile application. Jamil et al. [31], Kjærgaard et al. [35],
Kjærgaard et al. [38], Kjærgaard et al. [39], and Kjærgaard and Blunck [34] present such
systems.

• Related: similar sensing mechanisms as the spot-on papers, having the potential of being
used for crowd sensing, but having a slightly different target domain.

We also consider systems related in terms of architecture but that focused more on other aspects.
For example, some papers consider proof of concepts for radio-based capabilities. Others focus
on novel localization and tracking techniques. In one case, a Bluetooth-based system designed for
urban traffic monitoring with sensors placed on traffic lights and lamp posts was also able to collect
data about the crowds of pedestrians [58].

O’Neill et al. [57] and Nicolai and Kenn [55] are among the first using Bluetooth for crowd
sensing, in particular measuring the fraction of detectable devices. This type of measurement is
of interest also for systems dedicated to indoor commercial venues, such as that of Phua et al.
[59]. The latter study the feasibility of Bluetooth for acquiring data on shopping behavior. They
detected that over 30% of all devices had Bluetooth enabled and were able to determine the average
visit duration and even correlate demographics to having Bluetooth enabled or not. Takafuji et al.
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[72], Wada et al. [76], and Zhao and Shibasaki [87] use laser-range scanners for indoor tracking
and localization. The first system using WiFi signal-strength measurements for indoor tracking
was proposed by Bahl and Padmanabhan [4]. Their positioning accuracy was further improved by
studies such as Evennou and Marx [21]. Rouveyrol et al. [64] demonstrate the ease by which WiFi
routers can be infected to track individuals in a stealthy and light way.

Roggen et al. [63] and Wirz et al. [84] used on-body sensing devices equipped with accelerom-
eters in order to study behavioral properties of a crowd. They used movement classifiers for de-
tecting both individual activities and collective behavior: group formation detection and group
detection. Although these systems are built for determining some characteristics of the crowd,
their contributions lie more in the analysis part than in the sensing. The experiments were per-
formed in small indoor areas using a few volunteers equipped with sensors. While the ground truth
is easier to obtain in such scenarios, they are far from a wide, outdoor area deployment scenario.
Moreover, it would be easier to appeal to a larger user base by using smartphones or wearables
such as smartwatches instead of their custom sensing devices placed on a participant’s leg.

4.1 Architecture

Infrastructure-based sensing systems, like most application-driven systems, have a centralized de-
sign. However, key design issues for application-based solutions are less relevant when an in-
frastructure is in place. For example, application-driven systems offer various types of policies
for data collection, storage, processing, and communication, driven by energy efficiency, resource
consumption, and privacy considerations. In infrastructures with static sensing devices connected
to a power source, energy efficiency is no longer an issue. Likewise, ensuring privacy becomes
generally easier for the simple reason that there is no application on the smartphone that needs
to be trusted when it comes to crowd sensing. (Nevertheless, it is still surprising to see how much
sensitive information is being leaked even by standard protocols [6].)

Most of the systems discussed in this section rely on static nodes that detect devices in their
proximity. We also considered as infrastructure based the systems that employed mobile phones
carried by volunteers. The solutions that fit into this category are those that do not concentrate
on the application but on the collection process, and they provided very little information about
the software running on the devices [54, 78, 79]. On the other hand, we consider solutions such as
Chon et al. [13] to be application driven as they focused on the application’s implementation, its
functionalities, and its user interface and then tested it using volunteers.

Two of the systems also relied on badges, Bluetooth LE ones in Jamil et al. [31] and WiFi ones in
Acer et al. [2]. For the latter, the choice of using badges was motivated by event-specific analysis
purposes. The system used fixed WiFi scanners and collected two datasets, one with the mobile
devices they detected and one with the badges provided to certain categories of participants.

The majority of the infrastructure-based systems in our survey use the sensing devices just for
collecting data and uploading it to the server. We observe little variety in their policies. Sensing

is enabled at deployment time and generally performed at fixed sampling rates, without the need
for triggering tactics regarding sensing or communication: context enabled or demand driven (the
server issues collection tasks or relays tasks provided by other users). Note that when relying on
mobile phones for sensing behaviors, the system is dependent on the messages that are sent by
the phones, which may be done at highly irregular intervals. Processing is performed at the server,
mostly after a sensing campaign. Communication between the server and sensors is performed
continuously, and generally data is stored at the server. In application-driven systems, the client-
side storage aspect has a significant role mostly due to privacy issues. Depending on the applica-
tion’s features, the use of local storage can minimize the interactions with the server, for instance,
when users visualize a track of their locations in the last 2 hours. In infrastructure-based systems,
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storage policies are usually dictated by the hardware design and software implementation choices
of the sensing devices. Moreover, the device’s main role is to merely sense the presence of the
crowd and not to provide feedback to its owner.

4.2 Sensing Modalities

In Section 2, we presented the main sensing modalities used for collecting data about crowds.
Mobile phones generally use the location provider, but also other modalities when energy con-
sumption is at stake. In infrastructure-based systems, all spot-on solutions use only proximity
detectors.

Unlike ranging sensors such as lasers or external motion detection sensors, the radio-based
sensors do not actually detect a person’s presence but rather his or her devices. Bluetooth was the
most common technology employed before the growth of the smartphone market share. Currently,
due to the limitations imposed on the Bluetooth interface by the phone manufacturers, the increase
in WiFi usage and the widespread availability of hotspots in outdoor environments, we see a strong
shift toward using WiFi signals for detecting devices. It is unclear whether this trend will persist,
yet combining Bluetooth and WiFi systems seems a viable solution.

Many sensing infrastructures are designed for indoor environments. Indoor sensing systems
are less related to crowds: they focus mainly on positioning and counting users. However, we
identified some solutions [23, 24, 32, 65] designed for larger indoor venues and for detecting crowd
movements and patterns. Regarding sensing modalities, indoor solutions prefer Bluetooth, laser
ranging, or RFID, while only WiFi and Bluetooth are used outdoor. Indoor solutions can also be
application driven or hybrid, detecting the hotspots placed in the building [35, 38, 61].

4.3 Crowd Properties

We observed that the surveyed systems approach the sensing layer both in a top-down and in
a bottom-up fashion. With top-down approaches, which crowd properties need to be obtained
are generally well defined, and appropriate choices for the employed technologies are made. In
the bottom-up approaches, the sensing modalities and overall infrastructure are put to test. The
system is evaluated based on the crowd properties it can sense. Regardless of the approaches,
all surveyed systems describe the crowd’s state through spatiotemporal characteristics. Some also
infer behavioral primitives and social information. We look for dimensional properties (count, size,
density), movement properties (flow, routes, speed), and social properties (behaviors, activities).

Some systems also look into individual tracks, a property not related to the crowd state, but
which can be easily extracted from the dataset collected by the proximity detectors. Most of the
systems (28 out of 34) detect counts, while less than half detect densities (13) or flow (11). Routes
and speed are rarely addressed (just three and five, respectively). In Table 4, to be found in the ap-
pendix, we have marked with a t in the routes column the systems that are limited just to individual
tracks and do not further analyze their aggregates.

While dynamics are the first properties that come to mind when describing or analyzing crowds,
social aspects might be of interest as well, such as demographics, grouping, and other relationships.
The social relations and demographic data can be deduced either in a privacy-intrusive way, as in
Barbera et al. [6], or by employing noncomputational means such as questionnaires or purpose-
fully selecting the participants in the sensing experiment as in Jamil et al. [31]. Out of the surveyed
systems, 14 addressed social characteristics, most of them identifying stay durations and commut-
ing patterns.

The system presented by Barbera et al. [6] sniffs probe requests and retrieves not only the MAC
addresses but also the preferred network lists (PNLs), allowing one to derive social structures. It
is possible to infer relationships between people based on the networks they shared and the types
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of those networks. The latter is deduced from the name of a network (e.g., revealing that it is a
workplace, a public place, a cafe, etc.). The authors also analyzed the social influence of the vendor
adoption by correlating the distribution of mobile-phone vendors with social relationships. This
collection campaign raises privacy concerns since the authors placed laptops in certain locations
and sniffed packets without removing the information that can identify and track individuals. The
sensing mechanism employed by Jamil et al. [31] raises fewer privacy concerns. During a large
outdoor festival, over 700 Bluetooth Low-Energy (BLE) tags and 24 smartphones were handed out
to volunteers from various social groups. The authors achieved 80% accuracy in detecting groups,
and performed group analysis by looking at routes, visit durations for certain attractions and cross-
interactions, flows, and cohesion. They also mined community-related demographic data using the
gender and age information collected from the volunteers.

4.4 Privacy

As discussed in Section 2, one of the functional features we look for in crowd-sensing systems is
privacy policies. Most application-driven systems offer a form of privacy control through either
user settings, secure communication, or anonymous data collection. The topic of privacy is also
thoroughly covered in participatory sensing studies [15, 16, 67–69].

The proximity-based systems mode of operation raises more ethical concerns than those using
other modalities (e.g., location-based applications) since participants are generally not aware of the
collection campaign. One may consider that the tracking risk is an issue just in infrastructure-based
crowd-sensing systems, but it is also in application-driven systems. Chon et al. [13] observed this
by using just 25 users walking around Seoul for 7 weeks. They used an application that detected
packets from surrounding phones and they were able to track a few devices for more than 8 hours
a day.

The papers we surveyed describing infrastructure-based systems for sensing the crowds address
privacy issues only briefly. The privacy requirements we consider for these systems are to not leak
personal data and to prevent identification and tracking of individual users. These led to functional
requirements such as secure transmissions, secure server-side storage, data collection restrictions
(collect the minimum amount of data necessary for extracting characteristics about the crowds),
and anonymization of device information.

The systems we surveyed use proximity-driven modalities for detecting mobile devices. The
minimal information needed is a device identifier (typically its MAC address) and a detection
timestamp. Less than half of the solutions we surveyed performed anonymization of the address.
Others [75] considered that not using the device’s name is enough for preserving privacy. Another
concerning case is the WiFiPi experiment [11], in which the event organizers had access in real
time to a web dashboard with the list of all detected addresses and the devices’ manufacturers.
Some systems [6, 57, 59] had no concerns about privacy, using the device names, addresses, or
their SSID lists to extract social characteristics of the crowd (relationships, demographics, vendor
distribution).

In Table 5, to be found in the appendix, we summarize the security measures applied in the
collection, communication, and storage phases. We also include some architectural policies.

Some systems store data just locally to be extracted afterward. We observed that few systems
used secure transmissions for data uploads to the server. Those that performed hashes, either on
the sensing devices or on the server, did not discuss any other security issues or if their measures
are enough to protect privacy.

Demir et al. [17] have analyzed the privacy policies of commercial WiFi tracking solutions
from 15 major companies. They looked into their policies for data collection, data transfer, data
anonymization, storage, data retention, and opt-out; only two of the solutions covered all these
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policies. Most of the companies employed some form of hashing for the MAC addresses they col-
lected, but their methods were too weak and could be broken in a few minutes using just one
high-end GPU. Just five companies used secure connections and had data retention policies. An
option we have not seen in the academic projects we have surveyed is the opt-out. This permits the
users to enter their MAC addresses if they are not willing to be tracked. Most of the commercial
solutions had support for this option.

Recently, the OS vendors, including those for mobile devices, have included MAC address ran-
domization support in order to prevent tracking. Windows 10, for instance, uses a random MAC
address for each new network it connects to and reuses it when it connects again. Even though
crowd-sensing systems do not intend to track individuals, they rely on the unique IDs of the de-
vices in order to analyze the flow between certain locations. If the addresses are randomized, even
just for the scanning phase, it affects the density and count analysis, and hinders the overall flow
analysis, finding the popular routes and so on. A recent study by Vanhoef et al. [74] shows that
tracking is possible even with these randomization mechanisms in place by leveraging the contents
of the probe requests.

4.5 WiFi-Based Systems

Many proximity-based modalities employ WiFi technology. The IEEE 802.11 standard defines two
scanning modes, to which we refer as passive and active scanning. In the former, the access points
periodically announce their presence and the devices listen to them. These beacons are sent ap-
proximately every 100ms on only one channel, so devices must listen to different channels. Such
a scanning technique is not very adequate for high-mobility scenarios like monitoring pedestrian
traffic in urban areas. In active mode, it is the device that periodically scans for access points. This
mode is more appropriate for crowd sensing, and all solutions we surveyed rely on it. IEEE 802.11
defines three types of frames: control, management, and data. Active scanning relies on manage-
ment frames, called probe requests, transmitted by the client devices to discover access points (APs).
Probe requests are sent regularly, at intervals up to 120 seconds, depending on factors such as ven-
dor or power state. Bonné et al. [11], Maier et al. [47], and Musa and Eriksson [53] provide a more
detailed overview of this detection mechanism. Surveyed papers refer to sensing devices as WiFi
scanners, monitors, or detectors, and we will use these terms interchangeably.

This scanning process and its threats to user privacy is an active research topic. Recent experi-
mental studies such as those conducted by Freudiger [22] quantify the privacy risk and assess the
address randomization effectiveness. The probe requests contain the MAC address of the sender
and, optionally, the SSID of the AP he or she wants to associate with. The sensing devices just
receive these messages and retrieve the address. In addition to the MAC address, some systems
also collect signal-strength measurements for better localization of the devices. While only one of
our surveyed solutions also retrieves the SSID information, the fact that the probe requests contain
this information raises serious privacy concerns, as explained by Lindqvist et al. [43].

Two of the spot-on systems conducted experiments utilizing both WiFi and Bluetooth, and also
provided a comprehensive description of the scanning strategies. Schauer et al. [66] compared
the accuracy and detection rate of both technologies in an airport, having access to ground-truth
data from the boarding-pass scans. Their evaluation shows that WiFi is superior to Bluetooth for
approximating the densities and the flow of the crowd, and has a considerably higher detection
rate (4% Bluetooth/WiFi ratio). Abedi et al. [1] had a different approach, focusing more on the
characteristics of these technologies. They tested the discovery time, detection range, and signal
strength in various conditions, varying the environmental interference, the antennas they used,
and the scanners’ placement in overlapping regions. Their experiments were conducted at a
smaller scale than Schauer’s and the analysis was limited to counting detected devices and
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classifying people based on their movement speed (cyclist, runner, walker). Nonetheless, the
observed detection rate between the two technologies was similar.

Several factors influence the quality of the collected dataset and its suitability for dimension and
movement properties: antenna range, device transmission power, environment interference (ob-
jects, walls, number of people), probe request transmission rate and subsequently the discovery
time, and scanner and device placement. Some of them can be addressed in the pre-experiment
phases through either simulations or small-scale empirical tests. An example of the latter is the
probe-request transmission rate, which varies between 1s and 120s. This rate depends on the mon-
itored area [27], vendors, power states, screen status, or if the device is already connected to an
AP.

Discovering the transmission rate is not as easy as it would seem. One experiment conducted by
Li et al. [42] showed that iOS devices have a 70s to 1,200s interval, depending on the device’s state,
Windows devices varied between 10s and 1,200s, and devices running Android between 1s and 2s.
In contrast, Fukuzaki et al. [23] conducted similar tests and found an approximate period of 480s
for iOS and values between 15s and 250s for Android. On the other hand, Schauer et al. [66] had
observed in their tests that iOS devices send probe requests more frequently than Android devices.
These inconsistencies may be attributed to differences in the API versions of the tested devices.
We stress the fact that we have a heterogeneity not only in the devices’ underlying hardware
but also in the API versions they use, especially for Android devices. Pre-experiment tests should
be performed for evaluating the sensing characteristics (discoverability, detection range) using
various device models and software versions.

One of the criteria in any infrastructure-based sensing system is the efficient placement of scan-
ners and sensors for covering an area. For the systems designed for sensing movement properties
such as flow or routes, this task is particularly challenging. In an urban environment, having the
sensors placed too sparsely considerably diminishes the accuracy for determining routes, since
pedestrians may take several paths to get from one point of interest to another. Even though it has
lower deployment and maintenance costs, spatial sparsity is not a viable option when systems also
collect signal-strength measurements for performing localization using triangularization. On the
other hand, having a denser network of sensors generates overlaps, which means that the device
is detected by two or more scanners at the same time. Abedi et al. [1] see this as an opportunity
to assess the movement type based on the time passed in the overlapping region, while Musa and
Eriksson [53] consider it as a negative factor influencing the system’s tracking accuracy.

The dataset can be affected by temporal factors; for instance, the person may pass the monitored
area without the device transmitting any probe requests, or the device’s state and placement at that
time reduce its transmission power. Also, the WiFi scanners and monitors may suffer unpredictable
downtime, an issue rarely discussed in our surveyed papers and which notably affects the short-
term and medium-term deployments. Bonné et al. [11] mentioned the technical difficulties they
encountered during their experiments, which included even power failures.

Musa and Eriksson [53] offer one of the most relevant papers on the challenges regarding track-
ing and also provide the only infrastructure-based system that considers a form of incentives. Their
three experiments were well tailored to the type of analysis they wanted to conduct. In order to
enhance the chance of detections, they considered three methods, two of them using AP emula-
tion and one using RTS injections. The first two increase the number of detected devices and the
latter the number of packets received from each of them. We see these as incentive mechanisms
transparent to the monitored participants, since they encourage the devices to associate with their
monitors. They advertise their monitors either as popular SSIDs or as SSIDs with which the de-
vices have connected in the past. All three techniques were tested, with AP emulation giving the
best results.
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The hybrid systems of Kjærgaard et al. [35, 38, 39] and Kjærgaard and Blunck [34] rely on a
WiFi infrastructure for positioning. The mobile applications detect the APs in their proximity
and record the signal strength and send the data to a centralized server. A WiFi fingerprinting
step must be performed prior to the experiments, which highly affects the scalability of these
systems. In the case of Kjærgaard et al. [35, 38], the applications also collect motion sensor data
for a multimodal analysis. They apply classification algorithms for detecting flocking behavior [38,
39] and leadership and following patterns [34, 35]. The systems performed very well, having good
detection accuracy, but the tests were conducted at a smaller scale, in indoor environments with
only a few volunteers (10 to 19).

In Table 6, to be found in the appendix, we have summarized the experiments of the WiFi-
based solutions we surveyed, which, with the exception of Rouveyrol et al. [64] and Bahl and
Padmanabhan [4], are all spot-on when it comes to sensing crowds. We classified the duration of
the experiments and the size of the monitored areas based on the observations for all the systems
we surveyed, including the participatory ones. Although for the app-driven experiments we also
had applications publicly deployed for many months, for the rest of them, the time intervals and the
area types had similar variations. None of the surveyed sensing infrastructures was a permanent
one, even though we suspect that some [52, 65] remained in place even after the period covered
in the analyzed dataset. The duration of the experiment can be short term (ST) if it lasts less than
24 hours, medium term (MT) when lasting between 24 hours and 7 days, and long term when
lasting for more than 7 days. Few deployments lasted for more than 1 month. The environment is
classified as being small indoor (SI) for less than 100m2, medium indoor (MI) when dealing with a
floor or a small shopping area, and large indoor (LI) for several floors or even buildings, exhibition
halls, and shopping malls. For outdoor events, we distinguish between small outdoor (SO), such as
a playground; medium outdoor (MO), for example, when dealing with a relatively small campus;
and large outdoor (LO) for mass events and entire city centers.

Although no information is given in the papers in terms of deployment and maintenance costs,
we have observed that they employed low-cost customized solutions based on either Raspberry Pi
or low-end access points [53].

4.6 Bluetooth-Based Systems

Bluetooth is a well-established standard for proximity-sensing systems. The broad use of Bluetooth
in consumer electronics, notably personal devices, makes it ideal for applications that sense or
track human presence. Since in our survey we focus on sensing crowds, we looked more into
Bluetooth-based systems for large, crowded, outdoor areas than for indoor venues or building
surveillance.

In order to communicate, Bluetooth devices pass through several steps, but for sensing pur-
poses, we need just the inquiry phase. In this step, a device referred to as master sends inquiry
requests and all nearby listening devices respond. The response contains the MAC address and
some additional information such as the name and class of the device. The class can be used in
filtering the nonmobile devices. Master devices deployed in the sensing infrastructure just detect
passing devices through the inquiry phase and do not establish connections with them.

The problem with this sensing mechanism is that the phones reply to inquiry requests only
when they are in discoverable mode; it is not sufficient to just have the Bluetooth interface en-
abled. Due to security concerns, the mobile OS vendors have imposed certain restrictions, and
current smartphones have a limited discoverability window (less than 5 minutes) and users must
explicitly consent to it. The latest Bluetooth experiments in crowd sensing, performed in 2014,
show a very low percentage of discoverable devices (under 10%) as opposed to WiFi devices. What
is interesting, though, is that we do not see a significant drop between older studies and newer
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ones for this percentage. To what extent wearables are going to change this situation remains to
be seen (wearables generally require a Bluetooth connection to a smartphone).

Bluetooth devices can communicate at a range between 10m and 100m, usually 10m for mobile
devices, more for laptops. With a lower range than WiFi, Bluetooth-based infrastructures must
rely on a higher density of sensing devices, which can increase the deployment and maintenance
costs. As in the case of WiFi, the sensors must be connected to a power source, and preferably to
an Internet connection for uploading the collected data. When covering large areas without wired
Internet connectivity, WiFi-based systems rely on mobile data connections, as in the case of Bonné
et al. [11], in which a phone was attached to every sensing node, 15 in total. Such an approach may
not scale well in terms of price for Bluetooth infrastructures. Some Bluetooth-based systems log
data locally on sensors and do not upload it in real time to a server (see Table 5 in the appendix).

The first Bluetooth-based crowd-sensing systems focused on its suitability for detecting people,
notably the rate of discovered devices. Nicolai and Kenn [55] performed a field study in crowded
commercial areas and measured rates between 2% and 6%. Unfortunately, they do not discuss the
results in respect to the phone-market penetration at that time, in 2006.

The trend of transitioning from Bluetooth to WiFi for crowd sensing can be observed in the
conclusions of several Bluetooth-based papers, not only in the comparative studies of Abedi
et al. [1] and Schauer et al. [66]. Phua et al. [59] conducted a questionnaire asking the partici-
pants whether or not they have both Bluetooth and WiFi enabled and whether they would use a
free WiFi public hotspot provided in the venue. The responses were in favor of WiFi.

We can also see a transition to Bluetooth in the experiments conducted by some researchers, for
example, in the case of Weppener et al. They relied on Bluetooth-based systems [78–80] and in [77]
they deployed a WiFi-sensing infrastructure during a 2015 mass event. In their latest approach,
they refer to WiFi and Bluetooth together in the first part of the paper, while the sensing campaign
focuses solely on WiFi. Even though the data is collected in a similar fashion, they seem to ignore
the differences between these interfaces when it comes to being able to discover devices. It seems
improbable that using only Bluetooth, they would have been able to detect two-thirds of the event
participants, like they did in their WiFi experiment.

BLE is another technology for proximity sensing, but due to its novelty, it is still less prevalent in
crowd-sensing systems. Jamil et al. [31] discuss the only surveyed system that uses it. The authors
obtained high accuracy in discovering tags given to hundreds of participants. BLE has a range
similar to classic Bluetooth but a different mechanism for discovery and communication, leading
to lower latencies and better discoverability.

Since many of the surveyed Bluetooth papers focused on the detection rate, they also provide
clear statistics about it. In contrast, only three of the WiFi papers offered this information: Bonné
et al. [11] (29.3%), Fukuzaki et al. [23] (30%), and Musa and Eriksson [53] (68%). Details can be
found in Table 7 in the appendix.

4.7 A Few Notes on Ground Truth and Visualizations

The infrastructure-based papers we surveyed present instrumented or noninstrumented experi-
ments. In the first case, we have small-scale lab experiments, usually indoor, with volunteers fol-
lowing certain scenarios. They have the benefit of providing ground-truth data in an easy manner,
sometimes just by manual observations. Such experiments are also suitable for the predeploy-
ment phases we discussed earlier or for testing certain analysis methods. Unfortunately, nonin-
strumented experiments, especially those conducted at a larger scale, are hard to validate in the
absence of another source of data (e.g., CCTV video streams). In some cases, the researchers can
leverage venue-specific information, such as airport security data [20, 66] or turnstiles (as done by
Ellersiek et al. [20]).
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For large areas, some systems relied on short-term data acquisition for validation purposes. For
instance, Versichele et al. [75] computed the detection ratio during 10 video-based experiments,
each lasting up to 15 minutes. The systems relying on volunteers for observing the participants also
collected validation data during a limited period of time. Kalogianni et al. [32] designed a people-
counting application and also surveyed random participants. Musa and Eriksson [53] traveled in
the monitored area, recorded the GPS traces of their devices, and determined the tracking accuracy
for those devices. In other cases, such as Mueller et al. [52], validation was performed using data
from other similar deployments.

The process of acquiring ground truth can be particularly labor intensive, as in the case of Wepp-
ner et al. [77]. Over 40,000 annotations needed to be manually processed from 71 ground-truth im-
ages collected from a camera covering almost the whole monitored area during the entire duration
of the event.

It may be questioned to what extent some ground-truth collection methods are actually valid.
Naini et al. [54] validate their population-size estimations using data collected at the entrances and
exits of the event premises. Since their choice of technology was Bluetooth, they placed phones
that count the number of Bluetooth discoverable devices. The problem is that a phone visible at
the entrance may not be visible 2 minutes later or the other way around.

Real-time visualizations and analysis were less addressed in the infrastructure-based systems
than in the application-driven ones. Only three spot-on systems included it [11, 24, 42], and a few
others had a design that could support it. None of these systems mentioned real-time feedback to
the public through websites or dedicated applications. In other sensing domains, such as pollution
tracking, sharing the results with the community and attracting the interest of the public is one of
the priorities [18].

5 CROWD-CENTRIC SENSING SYSTEMS

Thirty of the application-driven and infrastructure-based sensing systems we have discussed in
the previous sections are very relevant for sensing the crowds due to the quality of their collec-
tion campaigns and the relevance of the dataset. With few exceptions [2, 11], they also include
the analysis of the crowd dynamics. We consider them spot-on to the purpose of our survey, as
previously argued in Section 2.

We organized these solutions based on their purpose and employment and their underlying
architecture.

• Monitoring crowds during mass events usually taking place in a short period of time, having
tens of thousands of participants and covering a large area. The majority of systems were
designed for this purpose (six application-driven and 12 infrastructure-driven solutions).

• Monitoring crowds of pedestrians in cities (usually city centers or pedestrian areas) during
larger periods of time (four application-driven and seven infrastructure-based solutions). In
two of the cases [6, 12], mass events took place during the monitoring period.

• Infrastructure systems deployed for monitoring crowds in large indoor areas (seven solu-
tions, four of them during mass events).

Table 8 lists them based on their purpose and design. An ideal system for sensing crowds pro-
vides data and communication privacy to the monitored participants and incentives to attract a
large user base. It also scales in both area size and density of participants without a considerable
increase in development, deployment, and maintenance costs. The analysis methods support vari-
ous density scenarios. The sensing application does not have a considerable impact on the device’s
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Table 2. Criteria for Comparing the Spot-On Papers

battery or affect other running apps. The users are aware of the data collection performed by the
application and are in control of its sensing settings and permissions. Moreover, the usability of
the application is not hindered by frequent requests for user input. All these traits are present in
various degrees in the spot-on systems. Real systems need to trade some characteristics for others
based on the crowd properties they want to assess, the level of accuracy, the sensing technologies,
and the desired interaction with the users.

We use a rating system for six features relevant to crowd-sensing systems: privacy, incentives,
scalability, ease of deployment, resource consumption, and transparency. The diagrams in this
section depict the tradeoffs between the six features. Other characteristics such as the quality of
the dataset, the coverage, the accuracy of the detections, or the usability of the applications either
are not discussed in the papers or vary too much to have a common comparison ground for numeric
ratings.

The ratings vary between 0 and 3 and are scaled to the worst and the best implementations we
have seen in the surveyed systems. When distinguishing between the ratings, we also consider the
concern of the authors for that particular topic. Table 2 summarizes the meaning of these ratings.
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For transparency, resource consumption, and ease of deployment, the middle ratings depend on
each system’s implementation.

For infrastructure-based systems, resource consumption refers only to the scanned devices, and
with only one exception [53], all the surveyed systems have the higher rating. Musa and Eriksson
[53] employ mechanisms for increasing the packets sent by the devices, thus enhancing the number
of detections.

The applications employed for events and urban sensing have more varied ratings for resource
consumption. The system with the highest rating is proposed by Kannan et al. [33]. It is designed
for counting and density, and achieves good accuracy with a very low power consumption. This
system is the only one of the spot-on systems that employs a tone-counting mechanism. Unfortu-
nately, the solution does not seem to scale to thousands of users.

Transparency refers to the interaction between the monitored participants and the system. We
do not include data transparency since most of the papers do not discuss it or share any results
or information on the collection campaign (only 14 out of over 90 systems we surveyed actually
share any data with the participants).

We grouped the systems based on their purpose, modalities, and the monitored environment
(indoor/outdoor) as reflected in Table 8. The application-driven ones had more diverse ratings,
while for infrastructure and hybrid ones some of the criteria were constant. For indoors, all the
spot-on systems relied on an infrastructure-based or hybrid architecture, and with no incentives
and less interest in privacy, as shown in Figure 5 in the appendix.

For mass events, which consist of thousands of participants and cover large areas or have high
densities, the applications were fairly easy to deploy, being less cumbersome to market as official
apps than to make them available through official app stores. The latter often form a hindrance
due to their various regulations (Weppner et al. [80] discuss some of these restrictions). On the
other hand, the infrastructure-based systems were considerably more difficult to deploy as we
show in Figures 3 and 4 in the appendix. They have lower ratings especially for events rather than
for urban monitoring, mostly due to the monitored areas’ limitations. Also, the lack of Internet
connectivity forced the use of local storage, making deployment and data collection less scalable.
The easiest deployment for infrastructure-based systems was in the case of the building monitoring
performed by Ruiz-Ruiz et al. [65], in which they leveraged the existing and already dense Wi-Fi
infrastructure.

The applications provided a more consistent enforcement of privacy than their infrastructure-
based counterparts. Out of the 13 event-related infrastructure systems (both indoor and outdoor),
only five had the highest rating, while the rest had 0 or 1, depending on their discussions on this
subject.

Some of the spot-on solutions also collected ground-truth data, which permitted them to vali-
date the datasets using relative error [80], correlation coefficient [83], tracking accuracy [42], or
detection rate [31].

The spot-on systems with notable good accuracy, in-depth experiments (varied scenarios, multi-
ple types of mobile devices), and complex analysis (e.g., considering energy consumption, scalabil-
ity) are Kannan et al. [33] for crowd counting, Weppner and Lukowicz [79] for density estimation,
Nishimura et al. [56] for congestion classification, and Kjærgaard et al. [38] for flock detection. Re-
garding the latter, the flocks and other patterns such as leadership and following are the topic of the
systems described by Kjaergaard et al. in [34, 35, 38, 39]. Due to their similarities in the sensing sys-
tem and the emphasis on the processing part, we included only one of these papers in the spot-on
papers category. They provide high detection accuracy, especially when combining modalities—
WiFi AP detections with motion sensors [39]. Also on flocks analysis, Wirz et al. [85] provide
algorithms based on GPS traces to detect them with a high accuracy of around 78%. The dataset
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was collected using an instrumented experiment with volunteers carrying smartphones with ded-
icated sensor logging software, thus not making the focus of our spot-on papers classification.

In the absence of ground truth, the validation of the dataset is tricky and its quality is deduced
based on the crowd properties it can describe, for instance, counts and densities. A notable mention
is Blanke et al. [9], who capture the density and flows during a large festival with hundred of
thousands of participants. Using the same dataset, the authors also obtain high map reconstruction
accuracy in Blanke et al. [8], an analysis-oriented paper. Their experiment owes its success to the
use of incentives and providing the official application of the event.

In some cases, the dataset is not enough and the researchers also rely on simulations. For in-
stance, the application-driven system deployed by Stopczynski et al. [71] did not manage to attract
enough users and they extrapolated the coverage through simulations. The authors discuss vital
points regarding the challenges of their chosen technology (Bluetooth), compare the application-
driven and infrastructure-based approaches, and are optimistic about Bluetooth’s potential for
crowd mobility sensing despite their aforementioned disadvantages. In the case of Mallah et al.
[48], the spatiotemporal data was used just for checking the battery consumption, and the anal-
ysis part (group detection) relies on simulations for comparing clustering algorithms. This is also
one of the papers that offers incomplete details on the sensing part, such as how they computed
the positioning accuracy and what exactly were the incentives.

6 DISCUSSION AND CONCLUSIONS

Counting pedestrians has almost become commonplace, and using techniques such as WiFi scan-
ning or Bluetooth tracking is gaining widespread popularity. However, we have been able to find
only relatively few groups that report on real-world experiments with automatically sensing the
behavior of crowds. This is somewhat surprising considering the open-ended issues that our study
reveals. For one thing, we have not been able to identify any solution that adequately addresses
all aspects of transparency, incentives, privacy, scalability, ease of deployment, and resource con-
sumption. For example, while app-driven solutions are generally best at preserving privacy, they
do require that users actually install a solution on their phone, in turn hindering practical scaling
and requiring incentive mechanisms. Likewise, infrastructure-based systems have the advantage
of transparency and scalability, but one may consider it troublesome to see how little attention is
paid to handling privacy.

In practice, we see that large-scale solutions are being applied for gathering data from crowds.
For example, many modern festivals use electronic bracelets that combine the function of a ticket,
wallet, and tracking device. In many cases, tracking is limited due to the use of passive RFID
technology, which requires readers that operate at relatively close distance. However, applying
alternative technologies such as UHF RFID and active RFID allows reading at larger distances.
Also, connecting RFID wristbands to smartphones opens up paths for tracking users, notably in
combination with social media scanning. Unfortunately, up to this day there are no detailed reports
on how these or other techniques are actually being deployed. Based on this survey, we can only
suspect that even in these cases there is still much to improve, notably concerning privacy, but
also technical issues such as accuracy, transparency, and resource consumption.

When it comes to accuracy, we have seen very mixed reports to the extent that we were not able
to include it as a criterion for evaluation in Section 5. A major problem is acquiring ground truth.
We have seen only few studies paying explicit attention to decently validating their results, which
is in line with conclusions drawn by Wijermans et al. [81]. Despite the difficulties, we believe it
is necessary to pay attention to this issue, if only using additional, independent measurements to
identify anomalies in the original dataset.
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It seems that only by combining app-driven and infrastructure-based solutions will we be able
to come to decent solutions for sensing crowds. In essence, such solutions would combine the
power of local measurements (i.e., by end-users) and global ones (through traditional scanning
techniques). Privacy would be much in the hands of the user, although unintrusive scanning tech-
niques do require that data is anonymized or even immediately processed to a sufficient aggre-
gation level so that the original measurement can be subsequently discarded. Transparency in a
hybrid solution can be addressed through techniques that are bundled upfront into the smartphone
without requiring a special application to be downloaded. Instead, the user would simply need to
configure his or her phone by switching certain services on or off. Furthermore, with further ex-
pansion of WiFi and Bluetooth in public and private places, the ease of deploying infrastructure-
based solutions is certainly expected to improve, making a hybrid solution scenario even more
plausible.

By and large, we conclude that automatically sensing crowds has already come a long way,
but that there are significant challenges to be addressed before we can speak of satisfactory
solutions.

APPENDIX

Fig. 2. General architecture for application-driven crowd-centric systems.
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Table 3. Notable Frameworks, Applications, and Middleware Systems for Sensing Using the Crowds
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Table 4. Crowd State Properties Analyzed by the Papers Discussed in this Section
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Table 5. Summary of the Measures Employed for Preserving Privacy in Infrastructure-Based Systems. For
the Systems Marked “–” We have no Information about the Respective Aspects
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Table 6. Details about the Experiments of WiFi-Based Infrastructure Sensing Systems
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Table 6. Continued

Table 7. Details about the Experiments of Bluetooth-Based Infrastructure Sensing Systems
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Table 7. Continued
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Table 8. Spot-On Papers
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Fig. 3. App-driven systems used in mass events.
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Fig. 4. Infrastructure-based systems in mass events.

Fig. 5. Infrastructure-based systems for indoor events.
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Fig. 6. Urban crowd-centric systems.
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