N
N

N

HAL

open science

Interactive Example-Based Terrain Authoring with
Conditional Generative Adversarial Networks

Eric Guérin, Julie Digne, Eric Galin, Adrien Peytavie, Christian Wolf, Bedrich

Benes, Benoit Martinez

» To cite this version:

Eric Guérin, Julie Digne, Eric Galin, Adrien Peytavie, Christian Wolf, et al.. Interactive Example-
Based Terrain Authoring with Conditional Generative Adversarial Networks. ACM Transactions on

Graphics, 2017, 36 (6). hal-01583706v3

HAL Id: hal-01583706
https://hal.science/hal-01583706v3
Submitted on 28 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01583706v3
https://hal.archives-ouvertes.fr

Interactive Example-Based Terrain Authoring with Conditional

Generative Adversarial Networks

ERIC GUERIN, Univ Lyon, INSA-Lyon, CNRS, LIRIS
JULIE DIGNE, Univ Lyon, CNRS, LIRIS
ERIC GALIN, Univ Lyon, Université Lyon 1, CNRS, LIRIS

ADRIEN PEYTAVIE, Univ Lyon, Université Lyon 1, CNRS, LIRIS

CHRISTIAN WOLF, Univ Lyon, INSA-Lyon, CNRS, LIRIS
BEDRICH BENES, Purdue University
BENOIT MARTINEZ, Ubisoft Entertainment

Authoring virtual terrains presents a challenge and there is a strong need for
authoring tools able to create realistic terrains with simple user-inputs and
with high user control. We propose an example-based authoring pipeline
that uses a set of terrain synthesizers dedicated to specific tasks. Each ter-
rain synthesizer is a Conditional Generative Adversarial Network trained
by using real-world terrains and their sketched counterparts. The training
sets are built automatically with a view that the terrain synthesizers learn
the generation from features that are easy to sketch. During the authoring
process, the artist first creates a rough sketch of the main terrain features,
such as rivers, valleys and ridges, and the algorithm automatically synthe-
sizes a terrain corresponding to the sketch using the learned features of the
training samples. Moreover, an erosion synthesizer can also generate ter-
rain evolution by erosion at a very low computational cost. Our framework
allows for an easy terrain authoring and provides a high level of realism
for a minimum sketch cost. We show various examples of terrain synthesis
created by experienced as well as inexperienced users who are able to design
a vast variety of complex terrains in a very short time.

CCS Concepts: « Computing methodologies — Shape modeling;

Additional Key Words and Phrases: Procedural modeling, Terrain generation,
Deep Learning

ACM Reference format:

Eric Guérin, Julie Digne, Eric Galin, Adrien Peytavie, Christian Wolf, Bedrich
Benes, and Benoit Martinez. 2017. Interactive Example-Based Terrain Au-
thoring with Conditional Generative Adversarial Networks. ACM Trans.
Graph. 36, 6, Article 228 (November 2017), 13 pages.
https://doi.org/10.1145/3130800.3130804

1 INTRODUCTION

Despite more than thirty years of research in terrain modeling, au-
thoring virtual terrains by using contemporary techniques remains
a demanding task. One reason for this difficulty is the wide vari-
ety of geomorphological processes that control the terrain shape
formation. Terrains are exposed for thousands of years to different
erosion and land-forming agents such as water erosion, varying
temperatures, vegetation, that are difficult to express by simple and
versatile algorithms that could be used as editing tools. This brings

This work is supported by the project PAPAYA P110720-2659260, funded by the Fonds
National pour la Societé Numérique, and the project HWD ANR-16-CE33-0001, sup-
ported by Agence Nationale de la Recherche. We thank Howard Zhou for allowing us
to use the DEM and sketch of Fig. 18.

© 2017 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3130800.3130804.

many important challenges, among them expressing the designer’s
intent and modeling large-scale detailed terrains while allowing
tight user-control. Generating a new terrain is a complex and de-
manding process and it is even more complicated to do it intuitively
and quickly.

Fig. 1. A volcanic terrain generated by our method created by an inexperi-
enced user from a few strokes depicting the crest lines.

A tremendous progress has been achieved in terrain modeling
and the existing techniques can be categorized into procedural,
simulation-based, sketch-based, and example-based. Many terrains
have strong fractal features and while procedural methods allow
for fast terrain generation, they often fail to provide control over
the terrain features. While simulation-based methods (such as ero-
sion and hydrology-based algorithms) generate geologically correct
models, they often lack user control and are computationally expen-
sive. Sketch-based methods provide a high level of control, but they
do not generate geologically correct outputs and editing is tedious
for large terrains. Existing example-based methods can generate
large terrains using small examples but provide low user-control.
Moreover, they replicate the exemplars, but do not easily generate
new features. One important common drawback of the existing al-
gorithms is that they cannot be easily applied to large-scale terrains.

Recent progress in Deep Learning provided solutions to many
hard problems in Computer Graphics and Vision, not only for clas-
sification but also for synthesis. One of the most powerful gen-
erative methods is the so-called Generative Adversarial Network
(GAN) [Goodfellow et al. 2014] and one of its extensions, conditional
GAN (cGAN).

We integrate cGANS in a fast example-based approach to real-
istic terrain synthesis (Fig. 1) that is oblivious to the underlying

ACM Transactions on Graphics, Vol. 36, No. 6, Article 228. Publication date: November 2017.

https://doi.org/10.1145/3130800.3130804
https://doi.org/10.1145/3130800.3130804

228:2 « Guérin, E. et al

Sketch rivers

Add elevation cues

Add crest lines

Fig. 2. Our interactive terrain modeling framework allows the user to quickly, easily, and intuitively author realistic terrain models by using sketches of crest
lines, rivers, or iso contours. Our method consists of a training step and an interactive sketching step. During the training step, we analyze a large number of

terrains and extract geometric features that will serve as sketching elements. The sketches are fed to a set of cGANs which learn various generative processes.
During the authoring step, the pre-trained networks are used to synthesize a terrain model that matches the input sketch and the incremental edits.

geological phenomena. Our method bridges the gap between the
intuitiveness and flexibility of interactive authoring processes, while
providing efficiency and expressive power. We do not attempt to
model the underlying geomorphologic phenomena, but instead we
use construction by example.

The cGAN training requires large training sets and it would not
be feasible to ask artists to provide hundreds of terrain sketches.
Instead, we propose to extract automatically sketches from real-
world terrains. These sketches combine visually important features
such as crests, valleys and river networks that have clear user intu-
ition and can be easily sketched. We then train several cGANs with
examples built from pairs of real terrains and their automatically
generated sketches. Each cGAN yields what we call a terrain syn-
thesizer capable of generating the entire elevation of a terrain from
input data.

Terrains are also shaped by erosion, a geomorphological pro-
cess which is notoriously slow. Although GPU implementations of
erosion algorithm exist, they cannot be efficiently applied to large
terrains. In our work we propose an erosion meta-simulation (simu-
lation of a simulation) by training a dedicated cGAN. This allows to
apply erosion to large terrains time-efficiently.

In our approach, the user starts the interactive editing session by
providing a rough sketch of a terrain and the terrain synthesizer
generates the corresponding large-scale terrain model. The result
can be later modified by editing the sketch, erasing and regenerating
terrain parts, by our eraser synthesizer. A key feature of the entire
process is its efficiency: during the authoring session, every terrain
generation takes only a few milliseconds which allows interactive
feedback to the designer. An example in Fig. 2 shows the usage of
our framework: starting with a river network, adding crests and
elevation cues generates a real-time terrain in each step.

The main contributions of our work are threefold: 1) we propose
the first terrain authoring pipeline driven by real world examples
based on Deep Learning, 2) we present an automatic sketches gen-
eration process to build learning datasets, and finally, 3) we show
that our approach can be used to learn complex natural processes,
such as hydraulic erosion. We evaluated our approach by providing
a large variation of landscape types (alpine mountain, volcanic is-
land, canyon) and we also conducted a qualitative user study that
confirms the ease of use of our technique.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 228. Publication date: November 2017.

2 RELATED WORK

Terrain modeling has been a focus of computer graphics for a long
time and the existing body of work can be classified into proce-
dural, simulation-based, and example-based techniques. We refer
the reader to [Natali et al. 2013] for an overview of terrain modeling
representations and to [Smelik et al. 2014] for a survey of proce-
dural terrain modeling. We also briefly review Machine Learning
algorithms and especially Deep Learning algorithms.

Classical procedural methods are computationally efficient, be-
cause they usually use some kind of fractal noise that visually resem-
bles real terrains. Fractals are useful for modeling terrains that are
self-similar and can be observed as fresh and not eroded [Fournier
et al. 1982]. Fractal interpolation was used to complete user-defined
river networks [Kelley et al. 1988] and models generated by L-
systems [Prusinkiewicz and Hammel 1993]. They were later used
to generate fractal terrains constrained by user-prescribed rivers
trajectories [Belhadj and Audibert 2005] and planets featuring pro-
cedurally generated river networks [Derzapf et al. 2011]. A major
limitation of the procedural models is their control. Fractals are
defined by seeding a random number generator and the result is dif-
ficult to predict. User control of fractal methods has been addressed
by several works. In particular by defining terrains from feature
curves such as river networks and ridges [Génevaux et al. 2013;
Hnaidi et al. 2010]. Recently, Génevaux et al. [2015] introduced a
hierarchical distribution tree that models the terrain as a distribu-
tion of primitives that are procedurally blended, carved, and warped
together. Moreover, it was quickly noticed that real terrains do not
always conform to pure fractal description because they are exposed
to various morphogenesis phenomena, among them erosion plays
the most important role.

Simulation-based methods were introduced by the work of Mus-
grave et al. [1989] who used various kinds of erosion to modify
fractal terrains. Erosion algorithms were later extended by hy-
draulic erosion in [Chiba et al. 1998; Nagashima 1998]. Height
fields [Cordonnier et al. 2016] are the most common representations
used for erosion simulation, although layered data structures [Benes
and Forsbach 2001], volumetric data [Benes et al. 2006], and smoothed
particle hydrodynamics [Kristof et al. 2009] were also used. Small-
scale volumetric erosion was also used to simulate cliffs [Peytavie
et al. 2009]. Recently, Cordonnier et al. [2017a] used simulations in

Interactive Example-Based Terrain Authoring with Conditional Generative Adversarial Networks « 228:3

{ Terrain database Jﬂ

J

)

Erosion and eraser
synthesizers £ and R
I
Amplification A

E

~—

Y b]
SN O —
. = QLY ~ N ~
N 8, = . “ 5
heg \\\\ N '%) = [e N
- . @ E N @ 2
2] o= ¢ [N
I o = 7} =
. > = 2 = o
(Analysis] |2 E | = ———— M & g
v < b~ = 2)
O & S =9
> = »n 3]
° = 9 = 51
S Bl | % v
2
. o © E n
- ~s5Z | S
\4 ¢ —
Curves Level sets] |) [

Sketching with Trained synthesizers

)

Fig. 3. Our system is a two stage process. During the training step, we analyze a large input set of example terrains and extract features such as ridge lines,
river networks, levelsets or points of interest. The data and the input terrains are used to train a set of conditional Generative Adversarial Networks that learn

the correlations between the terrains and the sparse data. During the interactive authoring session, the network synthesizes the terrain from the user sketch.

interactive setting to generate large-scale terrains affected by sub-
surface tectonics. Erosion algorithms were brought at interactive
frame rate by using GPUs in [Mei et al. 2007; Vanek et al. 2011].
While simulation-based algorithms generate geologically correct
models, they are difficult to control and they are computationally
demanding. Moreover, it is difficult to express a user intent by using
those methods.

Example-based and user-defined approaches use existing terrains
or user sketches to define terrain models. A typical representative of
the example-based methods is the approach of [Zhou et al. 2007] that
uses the height field patches from a real terrain and combines them
into a user-defined sketch. Various methods use high-level interac-
tive inputs to define terrains. Silhouettes were used to define rough-
ness [Gain et al. 2009, 2015] or to deform an existing terrain to create
a view from a certain viewpoint [Tasse et al. 2014]. Sketch-based
approaches [Gain et al. 2009; Hnaidi et al. 2010; Tasse et al. 2012]
or direct interactive terrain editing [Peytavie et al. 2009] were used
to define terrains with a high level of control, but can generate ter-
rains that are not geologically correct. Hybrid approaches combine
interactive editing with simulations [Vanek et al. 2011; Stava et al.
2008] but they are limited to small scenes. Sketch-based methods
involve manual editing that can be tedious whereas example-based
algorithms are limited by the input exemplars.

Machine learning has been used to generate images and other
high dimensional and structured data similar to a training set for
texture synthesis [Gatys et al. 2015; Kwatra et al. 2003], to generate
images of a given type [Gregor et al. 2015], to predict future video
frames [Mathieu et al. 2016], or to use sketches to complete pro-
cedural buildings [Nishida et al. 2016]. Earlier work was based on
dictionary learning [Rubinstein et al. 2010] or graphical models like
MRFs/CRFs. These models are limited by the required optimization
stage during decoding, resulting in scalar hidden states and low
order interaction between output variables [Kwatra et al. 2003].

Neural networks overcome this limitation by dealing with struc-
tured data differently. In the most widely used formulations, no
optimization is required during decoding, which allows the model to
(i) resort to a rich componential hidden state and to (ii) use complex

interactions between output variables and hidden states. Methods
have been proposed which learn a direct (often convolutional) map-
ping between input and output, e.g. [Dosovitskiy et al. 2015], to
generate images of 3D models given object type, viewpoint and
color. Probabilistic graphical models (and neural networks), such as
Variational Auto-Encoders (VAE), put a strong emphasis on mod-
eling stochastic latent space [Kingma and Welling 2014]. Because
they are capable of modeling highly complex interactions, they can
also be used to generate images [Gregor et al. 2015; Mansimov et al.
2016]. U-nets [Huang et al. 2016; Ronneberger et al. 2015] map input
to output by first decreasing spatial resolution iteratively through a
bottleneck and then restoring spatial resolution with upsampling, U-
nets benefit from additional skip-connections between layers with
the same resolution.

Ulyanov [2016] used generative convolutional networks to pro-
vide textures in multiple resolutions. Li and Wand [2016] used GANs
to generate textures without blending, and [Zhu et al. 2016] showed
how to use GANSs for texturing meaningful manifolds.

The recently proposed Generative Adversarial Networks (GANs)
[Goodfellow et al. 2014] are also of stochastic nature. They train
two competing networks, a generator network G, able to generate
new examples, and a discriminator 9, able to discriminate between
real examples and generated examples. The generator learns to
create realistic looking images which the discriminator is unable
to distinguish from the images of the training set. Although VAE
provides additional control over the latent space which might help
to better enforce constraints on the output, GANs currently pro-
duce data of higher quality, which is due to their adversarial loss.
Conditional GANs can process additional inputs which allows to
learn relationships between pairs of images [Isola et al. 2016]. This
has been successfully applied to digital image generation and com-
pletion [Mirza and Osindero 2014; Pathak et al. 2016]. Our method
also makes use of a conditional GAN to train various terrain synthe-
sizers from carefully designed input samples built from real-world
examples. To the best of our knowledge, deep neural networks were
not used for terrain synthesis before.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 228. Publication date: November 2017.

228:4 « Guérin, E. et al

3 OVERVIEW

Our method consists of a training pre-processing step and an inter-
active authoring step (Fig. 3). The pre-processing step uses a set of
example data-sets to produce a set of units called Terrain Synthe-
sizers that are at the heart of our pipeline. A Terrain Synthesizer
takes an input sketch or annotated terrain and produces an output
or modified terrain (Section 4).

We introduce four different terrain synthesizers. The sketch-to-
terrain synthesizer S creates a terrain from a sketch containing
ridges, rivers, altitude cues or any combination of the three; the
levelset-to-terrain synthesizer £ turns a binary levelset image into
a terrain; the eraser synthesizer R removes a user-specified part of
the terrain and completes it, and, finally, the erosion synthesizer &
transforms an input terrain into the corresponding eroded terrain.
Because each synthesizer is specialized in a specific task, we need
to build a set of dedicated databases from real-world examples to
learn each synthesis (Section 5). The training step, performed once
and for all, is particularly important since the quality and realism of
the terrain produced in an authoring session is strongly correlated
with the learned synthesis ability. Interestingly, one could easily
add Terrain Synthesizers to the pipeline: for example to consider
other kinds of sketches.

The authoring stage (Section 6) starts by loading the terrain syn-
thesizers that are used during the authoring session. The input to
our framework is a coarse sketch and the output is a 3D model
of a terrain that is created by successive user-edits and optionally
adding erosion to the final result. An artist will start by providing a
coarse sketch features such as rivers, ridges, some altitude cues, or
a combination of them. The input is given to the sketch-to-terrain
synthesizer that generates a plausible terrain from it. If the result
is not satisfactory, the user can re-edit the sketch and rerun the
synthesis or remove parts of the terrain that will then be completed
by the eraser synthesizer. After the coarse sketch is finished, the
user can erode the terrain by running the erosion synthesizer.

Once the user is satisfied with the generated large-scale terrain,
small scale details can be added by using a super-resolution tech-
nique. We have used an algorithm from [Guérin et al. 2016] to add
small-scale details to an existing terrain. We will refer to this method
as terrain amplification as it considers the information in the terrain
in order to amplify it. This method is particularly well suited for
the terrains generated by cGANSs, because they contain coherent
landforms features, but lack small scale details.

4 TERRAIN SYNTHESIZER

A key feature of our approach lies in its ability to synthesize terrains
from various types of inputs. In particular, we can synthesize a
terrain from different kinds of sketches, complete a terrain with
missing data or parts erased during interactive editing, or synthesize
an eroded terrain from another input terrain. All these problems
can be interpreted as learning a way to predict an output B from
an input A. In our setting all terrains are represented as Digital
Elevation Models (DEMs) and sketches are represented as images.
Our approach builds on Conditional Generative Adversarial Net-
works (cGAN) [Isola et al. 2016]. cGANSs are pairs of deep networks,

ACM Transactions on Graphics, Vol. 36, No. 6, Article 228. Publication date: November 2017.

a generative network G able to generate B from A and a discrimina-
tive network O able to discriminate between real pairs (A, B), i.e.,
data from the training set, and fake ones (A, G(A)), data generated
by the network G. The name adversarial training derives from the
fact that G is trained to fool D and that D tries to avoid being fooled
by G. While we are mostly interested in the generative network G,

.)
d e
E g
<
i o :
£ 5 £
3 B 2
Bz i 2
a g A
[
- O D

Positive examples Negative examples

Fig. 4. Overview of the training of a cGAN: The discriminator D learns to
classify between real and synthesized pairs, whereas the generator learns
to fool the discriminator.

D is crucial to the learning stage because its discriminative power
conditions the quality of the generator G. Indeed, the generative
network can only become efficient in producing real examples if D
is efficient at discriminating real and fake examples. Failure to do
so leads to a high error on D’s side for wrong reasons: the discrimi-
nators own abilities vs. the quality of the generator’s output. Thus,
while G maps images to DEMs, D operates patchwise and classifies
the patches (of size 70 x 70) of the test pair as either real (=1) or
fake (=0) and outputs the average over the binary decisions for all
patches. If B is a real-world DEM and A its extracted sketch, the es-
timated classification D(A, B) should be close to 1. Conversely, the
discriminator should learn to recognize a synthesized pair (A, G(A))
and tend to zero in that case. Following [Isola et al. 2016], this is
captured by the following objective function:

E(a,B)[log D(A,B)] + Ea[log(1 — D(A, G(A)))]. ¢Y)

The expectation is taken over the distribution of the data (A, B).
Equation (1) is maximized over the discriminator parameters. The
generator should in turn learn to generate DEMs which minimize the
discriminator objective (for the discriminator’s best effort), which
turns the learning process for the generator parameters into a mini-
max game:

mgin IHBX E(a,p)llog D(A, B)] + Ea[log(1 — D(A, G(A)))].

The above adversarial objective with respect to G does not use
the ground truth image B, but checks (through the discriminator)
whether the generated image lies on the data manifold. In practice,
this does not provide enough supervision for efficient learning. To
alleviate this lack of supervision, it is common to add a regulariza-
tion term involving the ground truth image B to the objective, e.g.
gradient difference loss [Mathieu et al. 2016] or L; regularization
[IB—G(A)l|1, as in [Isola et al. 2016]. We chose the latter formulation.
The additional term only has an impact on the generator training.

Interactive Example-Based Terrain Authoring with Conditional Generative Adversarial Networks « 228:5

gl J

o— le— e

A
J

i
g
4

el

Fig. 5. The same input produces slightly different outputs when executed
several times. While small scale details can be different, we observed that
the main landforms features remain the same.

Contrary to standard GAN formulations, we do not add any noise
input to the generator G, and provide noise (for stochasticity) only
in the form of dropout [Krizhevsky et al. 2012], i.e. switching off
units randomly during training and testing with probability p=0.5.
Thus running the synthesizer twice will yield slightly different
results. In our experiments, we observed that the results only slightly
varied when running the synthesizer on the same input several times
(Fig. 5).

The network architectures have been adapted from [Radford
et al. 2016] and [Isola et al. 2016]. The generator architecture is
an encoder-decoder network with an encoding part composed of a
sequence of fully-convolutional layers (convolutions filters of size
4 X 4) and resolution reductions, and a decoder composed of a se-
quence of deconvolutions/upsampling. In the decoding part, each
layer is thus connected to a layer of lower resolution, and additional
skip-connections connect it to the encoder layer of identical res-
olution (U-net). These additional connections allow to bypass the
encoder-decoder bottleneck by transmitting low-level information
from the input directly to the output. The number of features in
the generator in the successive layers is: 64,128, 256,512,512,512,
and 512. There is a single output channel storing the terrain altitude,
and the number of input channels varies from one (for levelset and
erosion synthesizers) to three (for sketch and eraser synthesizers).

Our training follows the Image-to-Image network training [Isola
et al. 2016]. We use a stochastic gradient descent with mini-batches
of size one, the Adam optimizer [Kingma and Ba 2015], and the
batch normalization [Ioffe and Szegedy 2015]. We alternate between
gradient updates of the generator and gradient updates of the dis-
criminator [Goodfellow et al. 2014]. We use up to 500 epochs, which
produces less artifacts in the output terrain. In order to introduce
more variability to the training data, we randomly use both vertical
and horizontal flipping in addition to the standard cropping area.

5 TRAINING

Our framework needs to learn mappings from sketches to real world
terrains from a set of training pairs {(A,B)} that are input to both
networks (Fig. 4). Since we cannot ask an artist to generate a large
database of sketch-terrain pairs, we use an automatic generation of
those pairs which will govern the quality of the output terrain.
Our approach takes a real-world terrain as B, uses a dedicated
algorithm that generates A, and adds the pair (A, B) to the training
set. Notice that the trained synthesizers scales are bound by the
scale of the training terrain datasets. In this section, we describe

our automatic training set generation. The data source and statistics
about the training process are detailed in Section 7.1.

5.1 Sketch-to-terrain Synthesizer Training

Sketches can contain altitude cues, rivers, mountain ridges, or any
combination of these.

River networks are obtained by simulating the water flow on a
terrain and detecting the pixels with high water accumulation. We
generate river networks from the terrain elevation using a modified
river channel network algorithm inspired by [Tarboton et al. 1991].
We seed water over all the grid points of the terrain and simulate
flow using a modified steepest descent D8 algorithm, which routes
all flow to the neighboring point to which there is the steepest
downward slope [O’Callaghan and Mark 1984].

In order to prevent the water from following always the same
path, we use a stochastic direction at every step where the proba-
bility is proportional to the height difference between the current
pixel and the candidate neighbor. The local minima are processed
stochastically: water stuck in a local minimum leaves it with a low
probability, or simply disappears. This process yields very precise
river networks which may be problematic because it does not corre-
spond to a real user sketch of a river network. A user would indeed
provide coarse directions to the river network and would not draw
every single river twist.

To alleviate this effect, the terrain is blurred and down-sampled
before the flow simulation and the resulting water accumulation is
up-sampled to get the rivers at the initial resolution. A final morpho-
logical operation is applied to the result in order to obtain a clean
1-pixel width skeleton. Hence the synthesizer training algorithm is
provided with inputs that are coarse river directions and it learns
to not strictly respect constraints, thus allowing more flexibility in
the generator. Fig. 6 shows examples of terrains and their detected
river network.

i >
/ LTSS 7 - -
BN, T 21 X =
G ek ;
p o N) -
CaE (L Y/ k e - =
i pr Y 2o 7 /
Y > § \ sl %
/ AL =
(. / TN
Vet AL
Rivers Crest lines Altitude cues

Fig. 6. Extracted features from different input terrains.

This pre-processing has a great impact on the training, as illus-
trated in Fig. 8 which shows examples of generated terrains when
the dataset has not been blurred prior to the feature extraction. In
this case, the extracted features that feed the training are more pre-
cise and dense. In this over-constrained context, the synthesizer fails
at reconstructing a terrain when the sketch in not dense enough,
and even with a greater number of strokes, the generated terrain
does not follow the sketch. Using blurred terrains for feature extrac-
tion thus makes the synthesis more robust to imprecise and sparser
sketches.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 228. Publication date: November 2017.

RS

With preprocessing No preprocessing

Fig. 8. Comparison of synthesis results when the network is trained with
features extracted on non-blurred data (top) and blurred data (bottom). In
the first case, the synthesizer needs more input sketches to reconstruct the
terrain (top right). With a small number of strokes, visual artifacts appear
(top left and middle). This can be avoided when blurred terrain data are
used to extract the features (bottom row).

Ridges are detected by inverting the terrain and applying the river
detection algorithm. It is the opposite operation to river detection
and Fig. 6 shows examples of detected ridges.

Altitude cues are computed as a sparse set of peak and basin points
over the terrain with an approximate elevation. Basin points are
defined as points where the previous water flow accumulated above
a chosen threshold. Conversely, peak points can be defined in a
similar way by inverting the elevation of the terrain.

The full example set is generated by providing random combi-
nations of the sketch cues by using different color channels of the
images. We map the detected river layer to the blue channel, the
ridge layer to the red channel, and the altitude to the green channel.
If the sketch does not contain one of these cues, the corresponding
channel is set to zero. Fig. 7 shows examples of our training pairs.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 228. Publication date: November 2017.

5.2 Levelset-to-terrain Synthesizer Training

As an alternative to sketching ridges, river curves, and altitude cues,
the user can provide large areas of constant elevation that we call
levelsets. These are provided as binary images that indicate areas in
the terrain where the altitude should be above a given percentile of
the altitude distribution (60% in our implementation). This levelset
synthesizer serves a different purpose and it cannot be used jointly
with the sketch-to-terrain synthesizer. Although different percentile
choices could be made, we found that 60% yielded the most intuitive
drawing tool. The example set for this training is easily constructed
by blurring the DEMs and thresholding the altitude at the provided
percentile. Fig. 9 shows three examples of the training pairs. Once
again this example generation involves taking a real-world terrain B
and creating the corresponding levelset input A as an entry (A, B)
to the training stage.

Levelset sketches

Terrain

Fig. 9. Levelset examples. The levelset is represented in white.

5.3 Eraser Synthesizer Training

Another useful terrain design tool is an eraser synthesizer work-
ing directly on the DEM, that removes parts of a terrain and infers
its completion. To train this synthesizer, a real-world terrain B is
modified through the addition of a random number of disks with

Interactive Example-Based Terrain Authoring with Conditional Generative Adversarial Networks « 228:7

Fig. 10. Example of an interactive authoring session performed by a professional artist: it took him a only a few minutes to design the structure of a large
terrain by using ridges (left), adjusting the generated terrain to his intent by incrementally adding rivers (middle), and defining some elevation points (right).

random sizes that define the missing parts. We represent the anno-
tated terrain A as a two-channel image Za, where Z denotes the
elevation channel and « the erasure channel. The elevation of the
erased terrain part is set to 0, while the a channel is set to 1. B
is defined as the complete terrain. The pair (A, B) is added to the
training database for the eraser synthesizer (Fig. 11).

Partially erased
terrains
)

Complete terrain
4

Fig. 11. Eraser synthesizer training example pairs.

5.4 Erosion Synthesizer Training

The erosion examples generation proceeds slightly differently from
the previous cases. Recall that sketch-to-terrain, levelset-to-terrain,
and eraser synthesizers used real-terrains as input B and com-
puted A. However, it is difficult to find real-world data for a terrain
and its corresponding eroded version. Instead, we create the erosion
examples by taking a real-world terrain as input A and computing
the corresponding data B = e(A) by simulating erosion e over A
(Fig. 12).

Our approach consists in learning an algorithm that mimics the
behavior of a simulation. Inspired by [Cordonnier et al. 2017b], we
simulate both interleaved large-scale hydraulic and thermal erosion.
Our terrain-erosion model relies on a discrete layered model repre-
senting different materials (bedrock, rocks and fine grain sediments).
Temperature variations and rainfall trigger aging and weathering
events, such as water runoff transporting sediments, or fracture of
the bedrock into rock-slides. The simulation computes the evolution
of the layered model by stochastically applying a large number of
events to the cells of the terrain.

Original terrains

Erosion

Fig. 12. Erosion synthesizer training pair examples.

Although it may appear counter-intuitive to learn a process that
can be simulated, our goal is to take advantage of the efficiency of
synthesizers at run time to provide interactive feedback to the user.
This method is an approximation of complex erosion phenomena
that runs extremely fast as opposed to computationally demanding
simulations. The idea of simulating complex and hard-to-simulate
phenomena using neural network is inspired by learning computa-
tionally expensive iterative processes such as image filters [Xu et al.
2015] and style transfer [Johnson et al. 2016; Ulyanov et al. 2016].

6 AUTHORING

Interactive authoring takes place after the network training pre-
processing step and it is a two-step workflow (Fig. 3). The user
first draws a coarse sketch and incrementally edits it by adding,
modifying, and removing curves or carving level-sets. The user then
refines the terrain by using optional erosion and amplification that
generates the final high resolution model.

6.1 Terrain Sketching

Our system uses the terrain synthesizers to generate terrains corre-
sponding to the user-provided sketch at runtime. The user initially
sketches a river network, a ridge network, elevation cues, or any
combinations of the three and the synthesizer generates a terrain.
The user may add or modify ridges, rivers, elevation cues or remove
some parts of the sketch and see the results in real time as applying

ACM Transactions on Graphics, Vol. 36, No. 6, Article 228. Publication date: November 2017.

228:8 + Guérin, E. et al

Fig. 13. The iterative sketching can be used to generate complex shapes. Here the user sketches the Siggraph logo by adding a disk, carving a part of the
levelset out, and finally adding details. This whole editing sequence is performed using the levelset-to-terrain synthesizer

the terrain synthesizer is very efficient and takes around 50ms per
generation.

An example in Fig. 10 shows an authoring session of an artist
providing initial ridges, then adding rivers, and finally elevation
cues. Another example in Fig. 2 shows an authoring session by a
novice user. The user first defined ridges, then added rivers, and
modified the terrain by providing a set of altitude cues.

Before erasin

Fig. 14. Example of a terrain automatically generated by the eraser synthe-
sizer tool that fills parts removed by the user.

A key feature of our approach is that it allows the user to use
different types of sketching models as input. Instead of sketching
with ridge and river curves, the user can interactively edit a levelset,
and use the corresponding synthesizer to generate the terrain. Fig. 13
shows three consecutive steps of an interactive level set authoring
session: starting from a circular shape, the user erased the center
before adding more details. This drawing tool is fast and easy to use,
however it provides less control than the curve sketches. The eraser
synthesizer can quickly regenerate terrains with missing parts and
produces consistent models (Fig. 14).

6.2 Terrain Refinement
Terrain refinement encompasses the processes of erosion and am-
plification that improve the overall realism of the generated terrain
and increase its resolution.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 228. Publication date: November 2017.

Erosion: Once the coarse sketch terrain is provided, the user can
apply erosion to it. The erosion synthesizer mimics erosion algo-
rithms at a very small computational cost as opposed to numerical
simulations. Fig. 15 illustrates the simulated erosion on real world
terrains and compares it with the learned erosion. The computation
time of our trained erosion-synthesizer is three order of magni-
tude faster (25ms vs 40, 000ms on a terrain of resolution 256 X 256)
compared to a simulated erosion.

Sediment deposition |~ .
Py -\“h‘-\“\i'; =N
U Do (5

\‘?;;»rv\'ﬂi AR T

B W

; ‘S
Fos

N e
Sl 2
8 . R
L ®
S L

Hill carving | ‘
N AR

\

Input terrains Erosion simulation Inferred terrains
Fig. 15. Simulating the erosion of a terrain comes at a very small cost at
runtime.

Terrain amplification: After the large-scale terrain has been gen-
erated and erosion has possibly been applied, the final step is to
add more details by using terrain amplification (see Section 3). We
use the patch-based amplification method proposed in [Guérin et al.
2016] that builds high and low resolution patch dictionaries and
decomposes the terrain onto them. Although it would be possible to
also train a terrain synthesizer for the amplification, this would re-
quire learning several synthesizers for each resolution gain, whereas
the sparse-amplification performs this operation very efficiently. Be-
cause the cGANs generate coherent large-scale terrains, the terrain
amplification is well-suited to match terrain details to large scale
terrain patches (Fig. 16).

6.3 Integration with Large Scale Terrain Modeling

A key feature of our approach is its ability to analyze input DEMs
and generate sketch representations which can be used as input data

Interactive Example-Based Terrain Authoring with Conditional Generative Adversarial Networks

228:9

32332 ki T
Yy

&

4o

PNSY

. .\\' \
R /N
%ﬁk /| <

4x4 km? N N

—— A\ \\
N2
= |
I Syge

\ﬁ\\

A\

B

Initial setup Patch analysis Sketchmg

Generated terrain Final rendering

Fig. 17. Our method can generate terrains from sketches that have vast empty areas. In the initial setup, three small terrain patches of 4 x 4 km? were carefully
authored and located by the designer on the large empty square terrain of size 32 x 32km?. The analysis of the patches produced the initial local set of local
ridges, rivers, and elevation landmarks, which were completed by user-defined sketches over the remainder of the domain. The terrain was automatically
generated by the sketch-synthesizer S, and the patches blended with the terrain.

Synthesizer output 4x amplified terrain

Fig. 16. Comparison between a synthesized terrain before (left) and after
amplification (right). Terrain amplification process introduces details without
breaking the landform features generated by the synthesizer as can be seen
in the image inset.

in the synthesizers S. Our method enables artists to generate large
scale terrains featuring some specific regions that they authored
in full detail in a seamless fashion. The overall process proceeds
in three steps (Fig. 17). First, given several high-resolution input
DEM patches Ay embedded in a larger domain Q, we down-sample
and analyze them to produce their corresponding low-resolution
curve or levelset sketches By.. The user then completes the coarse
sketch over the remainder of the domain Q — (UrAg) to get a new
representation B. Finally, we generate the terrain A from B and
locally smoothly blend it with the prescribed patches Ap.

The analysis of the features of the detailed input patches allows
us to obtain a large scale DEM whose major landform features are
consistent with the prescribed patches’ ones. Therefore, the final
blending, although simple and straightforward, generates a coherent
DEM. Fig. 17 shows an example of our high level and very efficient
authoring approach. The professional artist created the 32 x 32km?
terrain featuring three specific landforms in less than 15 minutes.

7 RESULTS AND DISCUSSION

Generation of the training database has been implemented in Matlab®
and C++ and interfaced with TensorFlow for the Deep Learning part.
We adapted the cGAN code provided by the authors of [Isola et al.
2016] to process DEM data. Training was performed on a NVidia®
Titan X graphics card with 12 Gb of memory clocked at 1.076 Ghz.
Our interactive editing application was implemented in C++ and
uses Qt and OpenGL for rapid previsualization. Interactive editing

performed on a standard desktop computer equipped with an Intel
Core i7 CPU clocked at 3.4 GHz and with a NVidia® GTX 970. For
visualization purposes, we added a procedural texture to our synthe-
sized terrains. The photorealistic landscape images were rendered
with the Vue® software. Unless stated otherwise, all high quality
results use amplification.

7.1 Database and training

Our real-world terrain database includes DEMs extracted from USGS
Earth explorer. We used 35 patches of one square degree at a preci-
sion of one arc-second taken from NASA SRTM. Each patch consists
of'a3,600x3, 600 resolution grid and each cell represents horizontal
area of approximately 30 X 30 meters. We used 16 bits gray-scale in
our implementation with a vertical resolution of 1m. Table 1 reports
statistics for generating the different databases and training the
network.

. Database creation | Training
Synthesizer i
Size Time time
Sketch-to-Terrain 525 0:22 6:25
Levelset-to-Terrain 525 0:01 6:24
Eraser 500 0:01 5:48
Erosion 1400 15:13 6:54

Table 1. Timings (in hours) for the learning of terrain synthesizers.

The structure of the generator network is linked to the input
terrain resolution, therefore all generated terrains will have the
same resolution. Because of the fully-convolutional nature of the
synthesizer, we are able to generate terrains from sketches of arbi-
trary size. While the spatial resolution will remain unchanged (i.e.,
the pixel size will represent the same distance), the total size of the
synthesized terrain can be larger. The only limitation of this process
is the amount of GPU memory. In our implementation, we were
able to synthesize terrains up to a resolution of 1024 X 1024.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 228. Publication date: November 2017.

228:10 « Guérin, E. et al

7.2 Comparisons

In this section, we compare our method to other sketching tools, and
evaluate the performance of our erosion synthesizer with respect
to physically-based simulations

Several terrain sketching algorithms have been proposed in com-
puter graphics. Zhou et al. [2007] proposed an example-based ter-
rain authoring method based on texture synthesis techniques that
generates terrains by combining patches from an input sketch and
mountain range style image. Here we reproduce the lambda-shaped
mountain range from their work that was sketched as a ridge with-
out any additional information (Fig. 18). We used the sketch-to-
terrain synthesizer on the sketch to generate the final terrain. It
is important to note that our cGAN-based method allows for an
interactive editing and does not require any input patches from
the terrain. The features obtained by [Zhou et al. 2007] are slightly
sharper than ours. We obtain similar small-scale sharp ridges and
faults when completing our deep-learning-based terrain generation
with amplification.

Example—based Our method
Fig. 18. Comparison between the example-based method of [Zhou et al.
2007] and our method.

Hnaidi et al. [2010] proposed a terrain sketching approach that
also uses sketches of ridges and rivers networks to synthesize a
terrain using diffusion. An important limitation of this method
lies in the amount of information that is required to generate the
terrain: rivers and ridges should be precisely sketched and their
elevations should be prescribed (Fig. 19). In contrast, our approach
generates realistic terrains even from coarse sketches, because the
synthesizers learned to generate more details from less input infor-
mation. Without any derivative constraints on the ridges, Hnaidi
et al.[2010] amounts to a simple heat diffusion yielding unrealistic
smooth plateaus (Fig. 19).

Diffusion

Sketch synthesizer

Fig. 19. Comparison between the diffusion method of [Hnaidi et al. 2010]
(left) and our sketch synthesizer (right). Without additional gradient in-
formation and noise parameters, the diffusion-based method produces
unnatural smooth terrains.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 228. Publication date: November 2017.

We further compare with the work [Guérin et al. 2016] (Fig. 20).
The input is a levelset binary image that is fed to the leveset-to-
terrain synthesizer for our method, while it is first smoothed then
processed by the sparse terrain approach since this method requires
a smooth sketch as input. Our approach manages to synthesize
plausible terrains even at large scales, whereas the sparse modeling
approach yields an unrealistic result because it does not take into
account large scale features.

Sparse method Our method

Fig. 20. Comparison between the sparse method from [Guérin et al. 2016]
and our levelset synthesizer. Our method produces a vast variety of land-
forms features whereas sparse modeling reproduces similar details.

We also compared our results with baseline patch-based method
based on the PatchMatch algorithm [Barnes et al. 2009] that finds
approximate image patch correspondences. The input was first
sketched by using heat diffusion and then matched to an 901 x 901
exemplar terrain; a large terrain tile used in our dataset. To allow
for better correspondences, the terrain exemplar was blurred for the
matching step and used in its full resolution for the reconstruction
step. Two synthesis examples are shown in Fig. 21. The first is the
traditional reconstruction minimizing the bidirectional similarity
(BDS) metric defined in [Barnes et al. 2009] by copying pixel val-
ues from the terrain exemplar. The second one matches gradient
values instead of pixel values followed by BDS minimization and
Poisson solving. While direct PatchMatch reconstruction exhibits
strong patch artifacts, the gradient-based reconstruction generates
fewer artifacts, but fails at recovering smaller-scale structures pro-
vided by the exemplar terrain. Our method quickly shows large and
medium-scale features but fails at generating small-scale features.

To show the efficiency of our example-based approach, we also
compare the results of our trained erosion synthesizer with erosion
simulation. Our algorithm generates a terrain that looks eroded, but

|

‘\Wl 4 >

B -

Ny

—~ ﬁ:') \ ‘,‘,‘ "
PatchMatch Gradient PatchMatch ~ Our method

Fig. 21. Comparisons with baseline patch-based methods: left image shows
the direct reconstruction (10s), middle shows gradient-based reconstruction
(15s), right shows the terrain generated by our method (25ms). Our method
quickly shows large and medium scale features but needs further processing
to generate small-scale features.

Interactive Example-Based Terrain Authoring with Conditional Generative Adversarial Networks « 228:11

Process Terrain Size | Time (ms)

256 X 256 25

Synthesizers £ and S 512 X 512 55

1024 x 1024 190

Optional erosion & or eraser R | 1024 X 1024 190

Interactive feedback 512 X 512 310

. T 2562 — 1024? 800
Optional amplification (x4)

5122 — 20482 3250

Table 2. Statistics for interactive authoring: terrain size and processing time
(in ms). The levelset £, curve sketch S, erosion & and eraser R synthesizers
perform in a few milliseconds and allow for interactive editing. The whole
interactive feedback includes all the processes that are necessary to obtain
the final shaded terrain in the interface after a user stroke. Amplification
slows down the overall process and is usually disabled during interactive
editing.

it may contain some geologically incorrect features as compared
to the real erosion phenomenon. However this approximation is
sufficient for many applications that only need plausible terrains
(Fig. 22). Our implementation of the cGAN-based method performs
4, 000X faster than erosion simulations.

Input DEM Synthesized erosion

Fig. 22. Large scale terrain erosion (left) and erosion synthesizer output
(right) on a 1024 X 1024 terrain. Erosion simulation took 741.0 s whereas
our method took 0.7 s.

7.3 Performance, User Control, and Experience

Our approach provides the user with an intuitive and simple control
and allows inexperienced users to create plausible terrains with a
few strokes as illustrated in Fig. 23. The speed of the generation pro-
cess allows for interactive modeling and the sketches can be quickly
modified by adding and removing features or by using the eraser (see
Table 2). Moreover, amplification can be enabled or disabled inde-
pendently of the sketching process. The conformity between the
user sketch and the generated terrain is high as illustrated in Fig. 23,
where a real-world terrain is reproduced by iterative sketching. Al-
though the overall dynamic of the terrain is easy to reproduce, it
takes many more strokes to get closer to the target.

Novice and expert artists tested our interactive system. We ob-
served that the usability was simple because all participants were
able to express their intent after only a few (2 — 3) short interactive
sessions. All users (novice and expert) were particularly satisfied
with the simplicity of the interface (see the accompanying video),
the interactive feedback, and the variety of terrain models they could
design (Fig. 24, 27). The ridges, rivers, and altitude cues sketching

Reference 2 strokes

i A

26 strokes 42 strokes

Fig. 23. Reproducing a real terrain. Although the overall dynamic of the
terrain can be captured in a few strokes, it takes a denser sketch to reproduce
both large-scale and medium-scale features of the terrain.

tools were considered helpful and satisfactory to the requirements
expected by expert artists.

Moreover, we conducted a qualitative user-study with five users.
We first explained the interface and the users were invited to prac-
tice during a few minutes. Then we asked the users to draw three
different scenes described textually as follows: a centered high moun-
tain with small mountains around it, a mountain range traversing the
scene diagonally, and a volcano. At the end of the experiment, the
participants were asked to evaluate the system on a 1 to 4 Likert
scale according to three criteria: 1) Does the generated terrain follow
the sketch? 2) Is the system reactive? 3) Is it easy to express ones
intent? We also let the users express their remarks about the system.

On the criteria 1) and 2), all the participants answered 1 or 2
(strong agree and agree). On the criterion 3), the participants an-
swered also 1 or 2 except for one who answered 3 (disagree). Some
users pointed out that they would have liked an additional tool to
produce smoother and more regular slopes. They also noticed that
using multiple strokes was useful to strengthen a ridge, but had a
side effect of lowering the influence of the other strokes.

7.4 Limitations and Failure Cases

The main limitation of our method is that each synthesizer is dedi-
cated to a single task. If one wants to use a different kind of sketch,
anew synthesizer should be added and trained. Thus, the user must
learn to draw a certain type of sketch that is captured by the synthe-
sizers. However, as stated above, the sketch adaptation is intuitive
and was quickly understood by the users who were able to obtain
satisfactory terrains matching their ideas. Future work could tar-
get online adaptation of terrain synthesizers to users, and let them
specify definitions of sketch elements.

There are several situations when our algorithm fails to produce
realistic results. First, if the sketch is sparse, a strong repetition
effect will appear as shown in Fig. 25. This artifact can be alleviated
by adding more strokes. Second, in planar areas or when no sketch
cues is available the synthesized terrain may exhibit some regular
pattern. This is an artifact of the cGAN training, which can be
alleviated in a post-processing step by applying a simple 5 X 5-
median filter as shown in Fig. 26. This can be further improved by
our terrain amplification. Finally, a limitation of our interface design

ACM Transactions on Graphics, Vol. 36, No. 6, Article 228. Publication date: November 2017.

228:12 « Guérin, E. et al

Altitude cue Ridge River

Fig. 25. Failure case: sometimes when the input sketch is too sparse, our
method generates repeated terrain patches and grid artifacts.

is that levelset and curve sketches cannot be used simultaneously.
Combining both would make the editing more demanding, since
the levelset structure should be coherent with the altitude cues, the
ridges, and the river network.

8 CONCLUSION

We introduced a novel framework for modeling terrains from input
sketches. Our approach enables users to create large scale realistic
models quickly and easily, without the need of writing procedural
rules or defining the parameters of physically-based simulations.
Given a large set of terrain examples, we automatically extract ridge
and river network curves, eroded terrain models and other charac-
teristics data that are used for training cGAN networks. During the
interactive authoring session, the user sketches important features
corresponding to his intent, and the cGAN generates a realistic
terrain. This process is very efficient: each terrain generation takes
only a few milliseconds which allows interactive feedback to the
designer. Our approach merges procedural modeling and interac-
tive sketching in a unified framework, bridging the gap between
the intuitiveness and flexibility of interactive authoring processes,
while using the expressive power of examples that can be either
real-world or procedural.

At the heart of our method lies the possibility of learning cor-
respondences between the characteristic features of a terrain and
its elevation data. An interesting extension of our work would be
to bind a procedural model to our system, such as the procedural
primitive-based terrain representation proposed in [Génevaux et al.
2015] and learn the parameters so as to obtain a complete inverse
procedural modeling system. Another promising future work is to
generalize our approach to model terrains with different material
layers such as bedrock, rock, sand or humus, and vegetation.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 228. Publication date: November 2017.

518 M g 1, B

Synthesizer output Median filtering Amplified

Fig. 26. Failure case: a regular grid pattern appears when the terrain is flat
due to a lack of input cues. This can be alleviated by using a median filter:
the pattern is removed and after amplification no trace of it can be seen.

REFERENCES

Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B. Goldman. 2009. Patch-
Match: A Randomized Correspondence Algorithm for Structural Image Editing.
ACM Transactions on Graphics (Proc. SSGGRAPH) 28, 3 (Aug. 2009).

Fares Belhadj and Pierre Audibert. 2005. Modeling landscapes with ridges and rivers:
bottom up approach. In GRAPHITE. 447-450.

Bedrich Benes and Rafael Forsbach. 2001. Layered Data Representation for Visual Sim-
ulation of Terrain Erosion. In Proceedings of the 17th Spring conference on Computer
graphics. 80-85.

Bedrich Benes, Vaclav Tésinsky, Jan Hornys, and Sanjiv K. Bhatia. 2006. Hydraulic
erosion. Comput. Animat. Virtual Worlds 17, 2 (2006), 99-108.

Norishige Chiba, Kazunobu Muraoka, and Kunihiko Fujita. 1998. An erosion model
based on velocity fields for the visual simulation of mountain scenery. Journal of
Visualization and Computer Animation 9, 4 (1998), 185-194.

Guillaume Cordonnier, Jean Braun, Marie-Paule Cani, Bedrich Benes, Eric Galin, Adrien
Peytavie, and Eric Guérin. 2016. Large Scale Terrain Generation from Tectonic Uplift
and Fluvial Erosion. Computer Graphics Forum 35, 2 (2016), 165-175.

Guillaume Cordonnier, Marie-Paule Cani, Bedrich Benes, Jean Braun, and Eric Galin.
2017a. Sculpting Mountains: Interactive Terrain Modeling Based on Subsurface
Geology. IEEE Transactions on Visualization and Computer Graphics PP, 99 (2017),
1-1.

Guillaume Cordonnier, Eric Galin, James Gain, Bedrich Benes, Eric Guérin, Adrien Pey-
tavie, and Marie-Paule Cani. 2017b. Authoring Landscapes by Combining Ecosystem
and Terrain Erosion Simulation. ACM Transactions on Graphics 36, 4 (2017).

Evgenij Derzapf, Bjorn Ganster, Michael Guthe, and Reinhard Klein. 2011. River
Networks for Instant Procedural Planets. Computer Graphics Forum 30, 7 (2011),
2031-2040.

Alexey Dosovitskiy, Jost Tobias Springenberg, and Thomas Brox. 2015. Learning to
Generate Chairs with Convolutional Neural Networks. In CVPR.

Alain Fournier, Don Fussell, and Loren Carpenter. 1982. Computer rendering of sto-
chastic models. Commun. ACM 25, 6 (1982), 371-384.

James Gain, Patrick Marais, and Wolfgang Strasser. 2009. Terrain sketching. In Proc.
Symposium on Interactive 3D Graphics and Games — I3D. ACM, 31-38.

James E. Gain, Bruce Merry, and Patrick Marais. 2015. Parallel, Realistic and Controllable
Terrain Synthesis. Computer Graphics Forum 34, 2 (2015), 105-116.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. 2015. Texture synthesis and
the controlled generation of natural stimuli using convolutional neural networks.
CoRR abs/1505.07376 (2015).

Jean-David Génevaux, Eric Galin, Eric Guérin, Adrien Peytavie, and Bedrich Benes.
2013. Terrain Generation Using Procedural Models Based on Hydrology. ACM
Transaction on Graphics 32, 4 (2013), 143:1-143:13.

Interactive Example-Based Terrain Authoring with Conditional Generative Adversarial Networks « 228:13

Fig. 27. The canyon was authored by a novice user in less than two minutes. The riverbed was carved using river primitives [Génevaux et al. 2015] created
from the user-defined input curve.

Jean-David Génevaux, Eric Galin, Adrien Peytavie, Eric Guérin, Cyril Briquet, Frangois
Grosbellet, and Bedrich Benes. 2015. Terrain Modelling from Feature Primitives.
Computer Graphics Forum 34, 6 (2015), 198-210.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014. Generative Adversarial
Nets. In Proc. Annual Conference on Neural Information Processing Systems (NIPS)
2014. 2672-2680.

Karol Gregor, Ivo Danihelka, Alex Graves, and Daan Wierstra. 2015. DRAW: A Recurrent
Neural Network For Image Generation. In ICML.

Eric Guérin, Julie Digne, Eric Galin, and Adrien Peytavie. 2016. Sparse representation
of terrains for procedural modeling. Computer Graphics Forum (Proceedings of
Eurographics) 35, 2 (2016), 177-187.

Houssam Hnaidi, Eric Guérin, Samir Akkouche, Adrien Peytavie, and Eric Galin. 2010.
Feature based terrain generation using diffusion equation. Computer Graphics Forum
(Proceedings of Pacific Graphics) 29, 7 (2010), 2179-2186.

Haibin Huang, Evangelos Kalogerakis, Ersin Yumer, and Radomir Mech. 2016. Shape
Synthesis from Sketches via Procedural Models and Convolutional Networks. IEEE
Transactions on Visualization and Computer Graphics PP, 99 (2016), 1-1.

Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. ICML.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. 2016. Image-to-Image
Translation with Conditional Adversarial Networks. arxiv (2016).

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual Losses for Real-Time
Style Transfer and Super-Resolution. Springer, Cham, 694-711.

Alex Kelley, Michael Malin, and Gregory Nielson. 1988. Terrain simulation using a
model of stream erosion. In Proceedings of SIGGRAPH. 263-268.

Diederik P. Kingma and Jimmy L. Ba. 2015. Adam: A Method for Stochastic Optimization.
ICLR.

Diederik P Kingma and Max Welling. 2014. Auto-encoding variational bayes. In ICLR.

Peter Kristof, Bedrich Benes, Jaroslav Ktivanek, and Ondfej Stava. 2009. Hydraulic
Erosion Using Smoothed Particle Hydrodynamics. Computer Graphics Forum (Pro-
ceedings of Eurographics) 28, 2 (2009), 219-228.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classification
with Deep Convolutional Neural Networks. In Advances in Neural Information
Processing Systems 25. Curran Associates, Inc., 1097-1105.

Vivek Kwatra, Arno Schédl, Irfan Essa, Greg Turk, and Aaron Bobick. 2003. Graphcut
Textures: Image and Video Synthesis Using Graph Cuts. ACM Transactions on
Graphics, SSGGRAPH 2003 22, 3 (2003), 277-286.

Chuan Li and Michael Wand. 2016. Precomputed Real-Time Texture Synthesis with
Markovian Generative Adversarial Networks. Springer International Publishing,
Cham, 702-716.

Elman Mansimov, Emilio Parisotto, Jimmy L. Ba, and Ruslan Salakhutdinov. 2016.
Generating Images from Captions with Attention. In ICLR.

Michaél Mathieu, Camille Couprie, and Yann LeCun. 2016. Deep multi-scale video
prediction beyond mean square error. In ICLR.

Xing Mei, Philippe Decaudin, and Baogang Hu. 2007. Fast Hydraulic Erosion Simulation
and Visualization on GPU. In Pacific Graphics. IEEE, 47-56.

Mehdi Mirza and Simon Osindero. 2014. Conditional Generative Adversarial Nets.
CoRR abs/1411.1784 (2014).

Forest K. Musgrave, Craig E. Kolb, and Robert S. Mace. 1989. The synthesis and
rendering of eroded fractal terrains. In Proceedings of SGGRAPH. 41-50.

Kenji Nagashima. 1998. Computer generation of eroded valley and mountain terrains.
The Visual Computer 13, 9-10 (1998), 456—-464.

Mattia Natali, Endre M. Lidal, Julius Parulek, Ivan Viola, and Daniel Patel. 2013. Model-
ing Terrains and Subsurface Geology. In EuroGraphics 2013 State of the Art Reports
(STARs). 155-173.

Gen Nishida, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes, and Adrien
Bousseau. 2016. Interactive Sketching of Urban Procedural Models. ACM Trans.
Graph. 35, 4 (2016), 130:1-130:11.

John O’Callaghan and David Mark. 1984. The extraction of drainage networks from
digital elevation data. Comput. Vis. Graph. Image Process 28, 3 (1984), 323-344.
Deepak Pathak, Philipp Krihenbiihl, Jeff Donahue, Trevor Darrell, and Alexei Efros.

2016. Context Encoders: Feature Learning by Inpainting. In CVPR.

Adrien Peytavie, Eric Galin, Stephane Merillou, and Jerome Grosjean. 2009. Arches: a
Framework for Modeling Complex Terrains. Computer Graphics Forum (Proceedings
of Eurographics) 28, 2 (2009), 457-467.

Przemyslaw Prusinkiewicz and Marc Hammel. 1993. A fractal model of mountains
with rivers. In Graphics Interface. 174-180.

Alec Radford, Luke Metz, and Soumith Chintala. 2016. Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. Springer International Publishing,
234-241.

Ron Rubinstein, Alfred M. Bruckstein, and Michael Elad. 2010. Dictionaries for Sparse
Representation Modeling. Proc. IEEE 98, 6 (June 2010), 1045-1057.

Ruben M. Smelik, Tim Tutenel, Rafael Bidarra, and Bedrich Benes. 2014. A Survey on
Procedural Modelling for Virtual Worlds. Computer Graphics Forum 33, 6 (2014),
31-50.

David G. Tarboton, Rafael L. Bras, and Ignacio Rodriguez-Iturbe. 1991. On Extraction
of Channel Networks From Digital Elevation Data. Hydrological Processes 5, 3 (1991),
81-100.

Flora Ponjou Tasse, Arnaud Emilien, Marie-Paule Cani, Stefanie Hahmann, and Adrien
Bernhardt. 2014. First Person Sketch-based Terrain Editing. In Proceedings of Graph-
ics Interface. 217-224.

Flora Ponjou Tasse, James Gain, and Patrick Marais. 2012. Enhanced Texture-Based
Terrain Synthesis on Graphics Hardware. Computer Graphics Forum 31, 6 (2012),
1959-1972.

Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor S. Lempitsky. 2016. Texture
Networks: Feed-forward Synthesis of Textures and Stylized Images. (2016).

Juraj Vanek, Bedrich Benes, Adam Herout, and Ondfej Stava. 2011. Large-Scale Physics-
Based Terrain Editing Using Adaptive Tiles on the GPU. Computer Graphics and
Applications 31, 6 (2011), 35-44.

Ondfej Stava, Bedrich Benes, Matthew Brisbin, and Jaroslav K¥ivanek. 2008. Interac-
tive Terrain Modeling Using Hydraulic Erosion. In ACM Siggraph /Eurographics
Symposium on Computer Animation. 201-210.

Li Xu, Jimmy Ren, Qiong Yan, Renjie Liao, and Jiaya Jia. 2015. Deep Edge-Aware Filters.
In Proceedings of the 32nd International Conference on Machine Learning (Proceedings
of Machine Learning Research), Francis Bach and David Blei (Eds.), Vol. 37. PMLR,
1669-1678.

Howard Zhou, Jie Sun, Greg Turk, and James M. Rehg. 2007. Terrain Synthesis from
Digital Elevation Models. IEEE Transactions on Visualization and Computer Graphics
13, 4 (2007), 834-848.

Jun-Yan Zhu, Philipp Krahenbiihl, Eli Shechtman, and Alexei A. Efros. 2016. Generative
Visual Manipulation on the Natural Image Manifold. In Proceedings of European
Conference on Computer Vision (ECCV).

ACM Transactions on Graphics, Vol. 36, No. 6, Article 228. Publication date: November 2017.

	Abstract
	1 Introduction
	2 Related work
	3 Overview
	4 Terrain Synthesizer
	5 Training
	5.1 Sketch-to-terrain Synthesizer Training
	5.2 Levelset-to-terrain Synthesizer Training
	5.3 Eraser Synthesizer Training
	5.4 Erosion Synthesizer Training

	6 Authoring
	6.1 Terrain Sketching
	6.2 Terrain Refinement
	6.3 Integration with Large Scale Terrain Modeling

	7 Results and discussion
	7.1 Database and training
	7.2 Comparisons
	7.3 Performance, User Control, and Experience
	7.4 Limitations and Failure Cases

	8 Conclusion
	References

