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Fig. 1. We introduce an algorithm for the autonomous reconstruction of indoor scenes, based on time-varying tensor fields (a). Given the partially scanned

scene, a 2D tensor field is computed on-the-fly over the floor plane, constrained by the partial reconstruction (b). The robot is guided by the field with smooth

paths, which are locally formed with field advection (red curve in (a)) and globally planned with the help of the field topology (see the curve networks in (b)

and (c), with reconstruction uncertainty color-coded along the curves). The topological structure is well-defined for incomplete scenes (b), suited for guiding

exploratory reconstruction of unknown scenes. The output is a full 3D reconstruction (d), at which the topology of the field reflects the scene layout (c).

Autonomous reconstruction of unknown scenes by a mobile robot inherently

poses the question of balancing between exploration efficacy and reconstruc-

tion quality. We present a navigation-by-reconstruction approach to address

this question, where moving paths of the robot are planned to account for

both global efficiency for fast exploration and local smoothness to obtain

high-quality scans. An RGB-D camera, attached to the robot arm, is dictated

by the desired reconstruction quality as well as the movement of the robot

itself. Our key idea is to harness a time-varying tensor field to guide robot
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movement, and then solve for 3D camera control under the constraint of the

2D robot moving path. The tensor field is updated in real time, conforming

to the progressively reconstructed scene. We show that tensor fields are

well suited for guiding autonomous scanning for two reasons: first, they

contain sparse and controllable singularities that allow generating a locally

smooth robot path, and second, their topological structure can be used for

globally efficient path routing within a partially reconstructed scene. We

have conducted numerous tests with a mobile robot, and demonstrate that

our method leads to a smooth exploration and high-quality reconstruction

of unknown indoor scenes.
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1 INTRODUCTION

With the recent widespread access to commodity RGB-D cameras

and the significant progress achieved in real-time reconstruction
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(e.g., [Chen et al. 2013; Dai et al. 2016; Newcombe et al. 2011; Nießner

et al. 2013; Whelan et al. 2015]), autonomous scene scanning and

dense 3D reconstruction of indoor environments by mobile robots

has drawn increasing attention from robotics and graphics commu-

nities [Charrow et al. 2015; Song et al. 2015; Xu et al. 2015]. Advances

in robot and acquisition technologies facilitate the exploration and

reconstruction of larger and more complex scenes, for a wide spec-

trum of applications ranging from virtual reality, games, movies, to

autonomous service robots.

While the simultaneous exploration and mapping of unknown

scenes is a long-standing problem, exploring an unknown scene

for complete scanning and quality reconstruction poses new chal-

lenges. Conventional exploration of an unknown scene is driven by

global spatial information about the environment. Consequently, it

is designed for quick expansion of the robot’s reach and acquisition

of knowledge about the scene. In contrast, high-quality scanning

for scene reconstruction hinges on local geometric information of

visible surfaces. The robot (and its attached sensor) must movemetic-

ulously to ensure complete and stable capture, as well as sufficient

overlap between adjacent scans, to reduce error in scanning and re-

construction. Achieving a balance between these two aspects (quick

exploration of the environment and high-quality scene reconstruc-

tion) is the main challenge for autonomous scene reconstruction.

We present a navigation-by-reconstruction approach to address

this challenge. In our approach, robot navigation is simultaneously

constrained and guided by the progressive online reconstruction,

accounting for both smoothness in local movement and efficiency in

global exploration. Meanwhile, the control of the attached camera

is dictated not only by the desired reconstruction quality, but also

by the movement of the robot. Our goal is an efficient, as-complete-

as-possible scene scanning with quality reconstruction using an

economical exploration path. The main technical challenge is to

achieve a well-synchronized planning for robot path and camera

trajectory, thus addressing the balance between local reconstruction

quality and global navigation efficacy.

Our key idea is to harness 2D directional fields to guide robot

movement, and then solve for 3D camera control under the con-

straint of 2D robot moving paths. In 2D, we compute and update

a geometry-aware tensor field [Zhang et al. 2007] constrained by

the currently reconstructed scene. More specifically, the 3D scene

geometry (i.e., the known surfaces) is projected to the floor plane. A

set of 2D tangential constraints along the projected boundaries is ex-

tracted and used to compute/update the tensor field. The robot path

is formed by particle advection over the tangential direction field,

which inherently avoids obstacles. In 3D, we compute a smooth cam-

era trajectory along the path to maximize the coverage of unknown

or uncertain regions while satisfying the kinematic constraints be-

tween the robot’s base and the camera.

During online scanning and reconstruction, the tensor field is

updated in real time, conforming to the incrementally reconstructed

scene (Figure 1). To ensure a smooth robot path when advecting

particles over the time-varying field, we propose a space-time opti-

mization of tensor fields via imposing both spatial smoothness and

temporal coherence. There are several important advantages of ten-

sor field guided navigation. First, tensor fields are orientation-free

and thus contain much fewer singularities (degenerate points), as

(a) (b) (c)

Fig. 2. A visual comparison of potential field (a), gradient field (b) and tensor

field (c), computed under the same constraint of a partially observed scene.

The potential field is generated with surface normals as constraint vectors,

while the gradient field is constrained by surface tangents. The two vector

fields suffer from crowded singularities (green and red dots), including sinks

(red dots) which can trap the robot, due to orientation inconsistency. In

contrast, the tensor field contains much fewer singularities and is sink-free.

compared to vector fields which are predominantly used in the liter-

ature (e.g., potential field [Khatib 1986] or gradient fields [Shade and

Newman 2011]). Fewer singularities lead not only to smoother path

advection, which is critical for quality reconstruction, but also to

more efficient navigation due to fewer ambiguities. In addition, ten-

sor fields are sink-free, avoiding the issue of local minima trapping.

Figure 2 shows a visual comparison of these fields. Most importantly,

the topological skeleton of a tensor field, comprised of all degenerate

points and the separatrices connecting them, can be viewed as a

routing graph. Using this global structure, it is possible to achieve

global path planning for efficient scene scanning (Figure 1(b,c)).

In summary, our work makes the following contributions:

• Tensor field guided autonomous scanning of unknown indoor

scenes, supporting both locally smooth path generation and

globally efficient path routing.

• Temporally coherent tensor fields computed and updated

with progressively acquired and online reconstructed scene.

• An efficient method for the path-constrained and scanning-

quality-driven optimization of 3D camera trajectories.

The termination of our autonomous scanning for closed environ-

ments is clearly defined based on tensor field topology, i.e., no more

unknown region can be scanned from any point on the topological

skeleton. We have implemented our method on top of ROS [2014]

and run it on a mobile robot Fetch [2016] holding an RGB-D camera.

We demonstrate that our approach outperforms several state-of-the-

art methods for a variety of indoor scenes, in terms of coverage rate,

as well as reconstruction quality and efficiency.

2 RELATED WORK

Autonomous scene exploration and 3Dmapping. Existing autonomous

scanning systems either employ an articulated robotic arm to per-

form detailed scanning of a single object [Krainin et al. 2011; Kriegel

et al. 2012; Wu et al. 2014], or drive a mobile robot equipped with a

fixed camera for exploratory scene mapping [Charrow et al. 2015].

In contrast to these works, we employ an eye-in-hand setting on a

mobile robot to achieve simultaneous exploration and scanning of

complex scenes, which requires joint optimization of robot paths

and camera trajectories.

For the purpose of 3D reconstruction, special consideration must

be taken for view planning and camera movement, in order to enable
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Fig. 3. An overview of our method and system. Our system runs an online scene reconstruction and employs an occupancy map for storing spatial occupancy 
information (a). The progressively reconstructed 30 scene geometry is projected onto the floor plane (trieft), to compute a geometry-aware time-varying 
tensor fields. Robot movement is locally directed by path advection over the fields (b-middle), and globally guided with path finding, based on the field 
topology (b-right). A smooth camera trajectory is computed along the path (c). 

a robust camera localization and scan registration with Simultaneous 
Localization and Mapping (SI.AM). Rabat path planning is achieved 
via jointly minimizing the uncertainty ofboth scene mapping and 
camera localization [Thrun et al. 2002]. Ta enable robust SLAM, 
Ramanagopal and Ny [2016) propose a continuous view plann.ing 
approach where adjacent frames are required to overlap sufficiently 
for the ease of frame-to-frame registration. Newcombe et al. [2011) 
present a technique for real-time reconstruction where sensor data 
is continuously received and fused into a 3D volume. Such fusion­
based reconstructions, however, still suffer from drift issues due to 
ICP registration euor, in particular in larger environments [Nießner 
et al 2013 J. Advancedmethods, such as bunclle adjustment [Agarwal 
et aL 2010), robust optimization (Choi et al. 2015), structure-based 
alignment [Zhang et al. 2014), or feature matching with deep learn­
ing [Zeng et aL 2016] are generally expensive for online use. This 
makes the optimization of smooth sensor trajectories especially 
important for autonomous online reconstruction. 

Field-guided path planning. Using vector fields to guide robot nav­
igation has been practiced for a lang time [Borenstein and Koren 
1989; Khatib 1986). Tue most co=only employed is potential fields, 
which are generated by repulsive forces from known surfaces to 
avoid obstacles, or attractive forces to direct the robot towards a 
target position. Koren and Borenstein [1991] analyze the substan­
tial shortcomings of such methods (e.g„ easy trapping into a local 
minirna or inducing unstable robot movement) and propose Vector 
Field Histograms (VFHs). A VFH is apolar histogram of obstacle 
vectors (viewing vectors from the robot to obstacles) that is locally 
constructed around the current robot position. Therefore, the VFH, 
together with its improved variants, is a statistical (instead of field­
based) representation of a local environrnent. This representation is 
suitable for local obstacle avoidance, but not for global guidance. 

Same works attempt to combine potential fields with a global 
guiding structure that is estimated from a known environment 
to attain global path planning (Ok et aL 2013). Other types of 
fields such as gradient fields of harmonic scalar fields have also 
been studied [Shade and Newman 2011). Information-theoretic ap­
proaches have been widely adopted for action selection during sens­
ing, and achieve the state-of-the-art performance in autonomous 
exploration [Bai et aL 2016; Charrow et al. 2015). Most of these 
works, however, are not designed for smoothpath generation and 
thus the generated robot paths are not suitable for high quality 

scanning. The work ofVallve and Andrade-Cetto [2015] is the most 
related to ours. lt adopts aninformation-theoretic method to esti­
mate guidance constraints, which are used to compute a potential 
field for path planning. Our tensor-based direction field is computed 
with similar guiding constraints, but produces smoother robot paths. 

View selection and trajectory optimization. The proper selection 
of view directions for a sensor is a fundamental problem for au­
tonomous scann.ing. Tue most commonly adopted approach is dis­
crete view selection, which is also referred to as Next Best View 
(NBV) problem Many NBV algorithms have been developed for 
active scanning and!or recognition of single objects [Krainin et al. 
2011; Wu et al. 2014; Xu et al. 2016] and scenes [Low and Lastra 
2006). Relatively few works, however, have studied the problem of 
continuous view planning or camera trajectory optimization, which 
would be a more practical approach for autonomous scene scan­
ning. Reinforcement learning has been utilized to estimate camera 
trajectories for scene exploration [Kollar and Roy 2008), but not 
for quality 3D reconstruction. For scanning multiple objects, Fan et 
al. [2016] select the best views for each object and then optimize the 
entire scanning trajectory by solving a Traveling Salesman Prob­
lem, with a special scanning setup. lt is, however, unclear how this 
method could be extended to a mobile robot setting which requires 
collision avoidance. 

Directional fields and tensor fields. Directional fields, including 
those which are orientation-dependent or orientation-free, have 
many applications in computer graphics [Vaxman et al. 2016], rang­
ing from surface parameterization and remeshing [Ray et al. 2009], 
nonphotorealistic rendering [Hertzmann and Zarin 2000] to street 
and urban modeling [Chen et al. 2008). We are particularly inter­
ested in symmetric tensor fields (also known as 2-direction fields or 
line fields). A tensor field assigns each point in the problem domain 
an orientation-free tensor. A useful feature of such 2-direction fields 
is that they inherently minimize the number of singularities due to 
orientation ambiguities [Zhang et al. 2007). Ta our k.nowledge, our 
work is the first that introduces tensor fields to guide autonomous 
scene scanning, and extends them to leverage temporal coherence 
for smooth path plann.ing in a time-varying setting. The latter has 
only been done with vector fields [Chen et aL 2012). Topological 
control of directional fields has been extensively studied for inter­
active field design [Chen et al. 2008; Zhang et aL 2006). Compared 
to those works, we work in a different problen1 setting where the 



(a) Field interpolation. (b) Path and trajectory computation. 

Fig. 4. Field interpolation and path I trajecotry computation over time. For 
a smooth transition from Tt-l to T1, we interpolate them with K sub­
steps (small grey dots in (a)), and start to evolve the field from the middle 
frame T~,. At each sub-step, a smooth robot path {lower grey curve in (b)) 
is generated by advecting a particle over the current field, along which a 
camera trajectory (upper grey curve) is computed based on the robot path. 

geometric constraints vary constantly over time with progressive 
online reconstruction. 

3 OVERVIEW 

System overview. Our autonomous reconstruction system is com­
posed of a mobile robot that explores an indoor room with an RGB-D 
camera mounted on top ofit or held in its band. We work with indoor 
scenes that can be regarded as a flat layout of walls and furniture, 
without staircases or sunken regions. We maintain and update two 
volumetric representations for the scene geometry, an occupancy 
gcic.l (OG) fur spalial expluraliun aml a lrum.:alec.l signetl c.lislam.:e 

field (TSDF) for surface reconstruction. In particular, we run Oc­
toMap (Hornung et al 2013) for storing complex spatial occupancy 
information, and use VoxelHashing (Nießner et al. 2013) for real­
time reconstruction (Figure 3(a)). Both data structures are updated 
in parallel, and work in a co=on global reference frame. 

Algorithm pipeline. Our algorithm interleaves three major steps 
over time: geometry-aware tensor field update, field guided path 
planning, and path-constrained camera trajectory computing. Fig­
ure 4 shows the computation and interaction of the various com­
ponents over time. At each time step, a key-frame tensor field, de­
noted by Tt, is computed based on the up-to-date scene reconstruc­
tion. To ensure temporal coherence, however, one cannot switch 
to T1 directly. Instead, we conduct a smooth transition from the 
previous key-frame, r 1- 1, to the current one, by interpolating them 
with K sub-steps, resulting in a temporally coherent field sequence 
(T~ = T1

-
1

, ••• , Tk = T1
) . Tue field-evolution, as weil as the path 

/ trajectory computation, then starts from the rniddle frame T/n 
(m = K / 2), until Tf< = T' is reached, at which the above process is 
restarted. Algorithm 1 summarizes the process. 

Based on the smooth transition fields from Tfn to T{. we compute 
a smooth robot path (lower grey cwves in Figure 4(b)) via particle 
advection, and optimize the camera trajectory (upper grey curves) 
constrained by this path. Note although the path advection can be 
done for an arbitrarily lang time, the robot takes only the portion of 
a single sub-step (green part of the curve) and start a new advection 
for every new sub-step. Since the underlying fields transit smoothly, 
the paths across consecutive sub-steps are smoothly connected. 

Tensor field update and guidance. Given the current reconstruc­
tion, we project the occupied 3D volume onto the floor plane and 

Algorithm 1: Tensor field guided autonomous reconstruc­
tion 

lnput : Initial position of robot: Po (init.: Pc ~ Po). 
Output : Reconstructed scene: S (init.: S ~ 0 ). 

1 repeat 
2 T' ~ UpdateTensorfi el d(S) ; 
3 

4 

5 

6 

7 

8 

9 

(Tci, ... , T{ ) ~ GenSmoothfieldSeq(Tt-t ,Tt) ; 

for s = ~, .. . , K - 1 do 

l 
p(t)lg; ~ PathAdvection (Ti , pc); 
c(t)lg; ~ TrajOptimizati on(p(t)[g;) ; 
S ~ ScanAndReconstruct(p(t)lf;!°;, c(t)lf;!°;); 

Pc ~ Ps+1 ; 
Tt- 1 ~ T' ; 

10 until Stop condition is met; 

perform a point sampling over the projected cells lying on known 
surfaces. A tensor is then assigned to each sampled surface cell, with 
its rnajor direction being tangential to the corresponding surface. A 
key-frame tensor field is computed using these 2D tensors as con­
straints (Figure 3(b)). Between adjacent key frames, we generate a 
smooth field sequence through a space-time optimization. To further 
increase the smoothness and simplify the topology, we introduce 
autornatic topological control for the tensor fields. Specifically, we 
realize two physically meaningful control operations: cancelling of 
a pair of degenerate points and moving a single degenerate point. 
At any time step, the topological skeleton of the tensor field is used 
for global path routing (not reflected in Algorithm 1). 

Camera trajectory optimization. Constrained by the actual ro­
bot path (reachable positions) and scanning guidance (look-at di­
rections), a smooth camera trajectory is computed along the path 
(Figure 3(c)). This optimization is highly non-convex due to the esti­
rnation of base-arm kinematic constraints and scanning quality of a 
view. Therefore, we propose a discrete-continuous method, which 
first conducts a best view selection for each sample point along the 
path and then performs smooth curve fitting for view interpolation. 

4 TENSOR FIELD GUIDED EXPLORATION 

In this section, we first describe our method for computing time­
varying tensor fields. We then introduce tensor field guided path 
planning, including both local path advection for quality reconstruc­
tion and global path finding for efficient scanning. 

4.1 Time-varying tensor fields 

Tensor field basics. A tensor field on a 2D domain D c R2 is a 
smooth tensor-valued function T : lD ~ JR2X2 which assigns to 
every point p E lD a second-order tensor: 

T(p) = ('!'11 (p) 
'l'21(p) 

(1) 

A tensor('Z'JJ) is symmetricifand only if'l'tJ = 'l'JJ (i *j).Wefocus 
only on syrnmetric tensors. A symmetric tensor T can be uniquely 
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Fig. 5. Two basic types of degenerate points, wedge (in two different forms) 
and trisector. The red lines in the top row are separatrix lines. The bottom 
row shows the discontinuous incoming (blue) and outgoing (yellow) paths 
passing through the degenerate points. 

decomposed into an isotropic part S and an anisotropic part A: 

0) (cos 28 
1 + µ sin28 

sin 28 ) 
- cos28 ' 

(2) 

where µ > 0 and 8 E (0, 2rr). Tue major and mi.nor eigenvectors of 
T are perpendicular to each other. In our setting, the robot move­
ment is directed by the major eigenvectors at a given point. A key 
feature of a symmetric tensor field is its orientation (sign) ambiguity 
everywhere, making it equivalent to a line field that does not dis­
tinguish between forward and backward. This avoids the problem 
of vector orientation in computing vector fields under geometric 
constraints [Xu et al. 2009). 

A point p is degenerate if and only ifT(p) = O, and regular oth­
erwise. Degenerate points are of great importance to our problem 
since they may cause discontinuous or ambiguous robot movement. 
A degenerate point of a tensor field is equivalent to a singularity in 
a vector field. However, a vector field usually contains sinks which 
can trap the robot and moreover, can cause oscillating movement 
around them due to numerical stability issue. In contrast, a tensor 
field contains only two types of degenerate points (Figure 5), namely 
wedges and trisectors, but not sinks, thus avoiding the local trapping 
issue. In addition, tensor fields allow flexible topological control via 
manipulating degenerate points (Zhang et aL 2007]; see Section 4.2. 
This justi.fies our choice of tensor field for robot guidance. 

Key-frame tensor field generation. Given the scene geometry at 
the current time step, we compute a key~frame tensor field with 
the geometric constraints. To this end, we first project the grid cells 
corresponding to known surfaces in the OctoMap grid onto the floor 
plane. The surface cells which are higher than the robot height are 
not projected since they would not affect robot movement. On the 
floor plane, we perform farthest point sampling over the centers of 
the projected boundary cells, to select a set of 2D constraint points. 
Tue sampling distance d5 is heuristically set to 0.2m, measured 
by 2D Euclidean distance. We then define a basis tensor field for 
every constraint point, which is a regular tensor field whose major 
eigenvector aligns to the tangent of the 2D boundary at that point. 
Tue final tensor field is formed by combining the basis tensor fields of 
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(b) 

Fig. 6. (a): Illustration of time-varying field computation over space-time 
grid and pathline advection (yellow curve). (b-c): The pathlines generated 
with (b) and without (c) spatial-temporal coherence. The curvature is color­
coded and plotted along the paths. 

all constraint points with the help of Gaussian radial basis function: 

T(p) = 2:: e-llP-Pdl
2
/ u

2
y1(p), 

i 

(3) 

where Ti is a basis field computed around constraint point Pi· Tue 
Gaussian band width a can be used to control the range of influence 
of a basis field. Since geometric constraints are mainly used for local 
path guidance, they do not need to have !arge ranges of influence. 
Thus, we use a srnall value for the band width: a = 2.5d5 • Due to 
the highly dense tangential constraints in our problem setting, we 
opt to compute a field for each constraint separately and then blend 
them with interpolation, rather than solving a densely constrained 
field in one shot which may lead to sub-optimal solution. 

Spatial-temporal field interpolation. Given two adjacent key frames 
of fields, yt- l and T1, our next task is to compute K sul>-step fields 
that vary smoothly over time. A straightforward solution is to con­
duct point-wise linear interpolation between source and target ten­
sors. Such an independent point-wise interpolation, however, can­
not guarantee intra-frame field smoothness. Instead we formulate a 
spatial-temporal interpolation over the scalar fields of ru and r12 
(see their definition in Equation (1)). Specifically, we mi.nimize the 
bi-harmonic energy functional, using the scalar field at time t - 1 

and t as Dirichlet boundary conditions: 

llllsrrll2 + allr(; 0)- r (; t - 1)112 + allr(; n) - r (; t)112, (4) 

where Llsr is the spatial-temporal Laplacian defined on the space­
time grid as shown in Figure 6(a). Let r (v; t) denote the scalar value 
at grid vertex v at timet, and r (; t) the scalar field at timet, where r 
can be any i-11 in Equation (1). a = 5 x 103 is the weight of boundary 
conditions. Tue discretization of the spatial-temporal Laplacian is: 

l<>r(i;j) = I: cusr(k;j) + ~r(i;j - 1) + ~r(i;j + 1), (5) 
keN(I) 

where N( i) is the set of 1-ring neighbors of vertex i in each frame. 
l<>S is the intra-frame (spatial) Laplacian weight and wr the inter­
frame (temporal) weight. l<> = LkeN(I) «>s +2wy is the normalization 
weight. We set «>s = 1 and wr = 2 by default. 

4.2 Field-guided path planning 

Path generation by particle advection. Having obtained the time­
varying tensor fields T(t ), we compute the robot movement path as 
a pathline defined by a particle advected by the fields, starting from 
the current position. Since tensor fields do not distinguish between 
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forward and backward, we need to first disambiguate orientation

by orienting the major eigenvectors of the tensors within a local

region surrounding the current robot position. This is achieved

by letting the major eigenvectors of the tensor field follow the

front direction of the robot (the angle between these directions

should be less than 90◦), to minimize rotation of the robot movement.

Note that this local orientation is trivial to determine, and much

easier than globally orienting a vector field. After this orientation

step, the tensor field T (t) becomes a vector (velocity) field V (t) in
which particle advection can be expressed as a differential equation:
dp
dt
= V (p; t). Its solution, given an initial value (p0; t0), is

p(t) = p0 +

∫ t

0
V (p(s); t0 + t)ds,

which defines the pathline starting from position p0 and time t0. As
shown in Figure 4(b), we compute a pathline for a time period of

three times sub-steps. The robot moves for only one sub-step along

the path, to get to the next position and restart path advection.

Figure 6 demonstrates how the smoothness of pathlines is affected

by the underlying time-varying tensor fields. In (b), we show a path-

line generated by advecting over the time-varying fields between

two key frames, computed with spatial-temporal coherence. As a

comparison, we show in (c) the pathline formed by fields computed

via point-wise temporal interpolation, with the same initial value.

The color-coded curvature is plotted along the paths. In Figure 12,

we show the impact of smooth robot paths on the quality of online

reconstruction, justifying our choice of time-varying tensor fields.

Path splitting at degenerate points. Both types of degenerate points,

wedges and trisectors, can introduce discontinuities to the generated

path, due to the discontinuous tensor field at those points. Therefore,

special treatment is needed at degenerate points to avoid potential

problems caused by such discontinuities or ambiguities.

• Stop and split at a wedge. Around a wedge point, the robot

path would make a sharp turn or even a U-turn (Figure 5(a,b)).

To avoid shaking of the camera caused by such sudden turns,

we detect the closest wedge point ahead on the robot path

and reduce the movement speed of the robot until reaching

the wedge. At the wedge, both robot path and camera tra-

jectory are replanned, thus splitting the path and trajectory

at the point. During the stop, the robot computes a smooth

connecting trajectory, to smoothly transit between the two

separate camera trajectories.

• Stop and choose a branch at a trisector.When the robot reaches

a trisector point, it could follow either of the two branches

(separatrices) ahead (Figure 5(c)). We resolve this ambiguity

by choosing the better branch based on reconstruction un-

certainty (see path routing below). Specifically, we choose

the branch along which more unknown or uncertain regions

could be explored. After determining the branch to pursue,

the same path and trajectory splitting process is performed

as for a wedge.

Path routing with field topology. Local path advection cannot guar-

antee an efficient and complete coverage of the entire scene. We

need to exert global path planning, based on the topological skeleton

(a) Topology of partial scene. (b) A minimum spanning tree.

(c) Topology of full scene. (d) Medial axis of scene boundary.

Fig. 7. The topological skeleton of tensor field can be computed for a par-

tially scanned scene (a) and used for guiding the robot scanning. When the

robot (white dot) arrives at a trisector, a minimum cost spanning tree is gen-

erated from the topological graph, to enable branch selection (b). When the

reconstruction is complete, the field topology (c) conforms approximately

to the medial axis of the full scene boundary (d).

of the current tensor field. Given any tensor field, its topological

skeleton can be viewed as an undirected graph with all the degen-

erate points as graph nodes and the separatrices connecting them

as edges (Figure 7(a,c)). Our global guidance takes effect when the

robot reaches a trisector point, at which it needs to determine which

branch to choose. We accomplish this by computing a minimum

cost spanning tree from the topological graph, rooted at the trisector

being visited. The cost of each edge on the graph is defined as:

c(e) =

(
1

�(e)

∫
e
I (e,p)dp

)−1
.

where �(e) is the path length of edge e . I (e,p) is the information gain

of reconstruction at a point p on e . Given a point, the information

gain is defined as themaximum reconstruction uncertainty (entropy)

that can be reduced from among all views at that point. Given the

current reconstruction, the information gain of a specific view point

is measured based on how much unknown region can be observed

from the view, as well as the scanning distance and slope angle of the

view; see details in Appendix in supplemental material. Thus, the

cost measures the reciprocal of the expected information gain along

the path corresponding to edge e . Therefore, by choosing the branch
leading to the minimal cost path, the robot favors shorter paths with

higher information gain. Figure 8 gives an example. Without global

path routing, the robot is easily trapped in the lower area and fails

to scan the top area with missing data. Guided by the field topology

with reconstruction entropy, the robot can immediately move to the

remote area needing more scans.

A notable feature of the topology-based path routing is that it

works well also for partially reconstructed scenes (Figure 7(a)). This

is due to two advantageous characteristics of tensor fields. First,

topological graph is well defined for any tensor fields computed

with any geometric constraint. Second, tensor fields minimize the

number of singularities such that no extraneous singularity appears



Fig. 8. The robot (white dot) is directed by the topological skeleton of the 
tensor field, and moves to the top area with missing data (see the separatrix 
lines with high reconstruction entropy in red color). In (a), the robot is first 
docked onto a trisector when passing through it, thereby launching branch 
selection for global path routing. 

in free space, leacling to a simple and meaningful topological graph 
for the partial scene. 

Terminating condition. Based on the topological structure of the 
tensor field and the definition of information gain, the termination of 
our autonomous scanning for closed environments can be defined 
as: if the expected information gain for all the accessible edges 
in the topological graph is below a threshold (we use 0.01 in our 
experiments), as in Figure 7(c), the robot stops exploring the scene. 
The accessibility of an edge is determined by examining the physical 
accessibility of sample points along that edge, based on a contact test 
of robot body and reconstructed scene geometry. At this time, the 
topological skeleton of the tensor field roughly reflects the topology 
(medial axis) of the closed boundary of the room (Figure 7(d)). Each 
point on the topological skeleton is locally weil supported by the 
projected surfaces of the scene, in the spirit of the maximal inscribed 
disk definition of medial axis of 2D shapes [Blum 1967). 

4.3 Automatie optimization of the guiding field 

Another major benefit of tensor field is that it allows for manipula­
tion of degenerate points, for improving field topology for either 
smoother path generation or simplified path routing. To achieve this, 
we adopt two topological operations which are originally proposed 
for interactive tensor field editing in [Zhang et al. 2007), i.e., moving 
a single degenerate point and cancelling a pair of degenerate points. 
Tue basic idea is to first convert the tensor field into a vector field: 
V = a(T) = µ( cos 28, sin 28) T , based on the definition in Equation 
(2). We then perfonn the corresponding editing operation on V to 
obtain V' , using the method described in [Zhang et al. 2006), and 
then convert it back to a tensor field T' = a-1 (V'). Rather than inter­
active editing, our problem setting demands automatic modification 
to be applicable to robot guidance. Tue automatic modifications 
are invoked after the computation of every key-frame. Note, how­
ever, they are optional and devised only to further improve the 
exploration efficiency of our methocl 

Movement of degenerate points. There are three cases in which we 
would like to move a degenerate point. First, for a wedge point, if the 
angle between its two separatrix lines is less than 90°, meaning that 
the wedge is formed due to a sharp corner, we move it inward to 
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,.__.._[ii ww 
(a) Move a wedge towards inner comei: (b) Move a wedge out of a dead end. 

uu~~ 
(c} Move a trisector away from obstacle. (d) Move a trisector to avoid obstacle. 

Fig. 9. Four cases for moving degenerate points. 

(a) Not cancelable. (b) Before cancelling. (c) After cancelling. 

Fig. 10. Cancelation of degenerate point pairs. The pair in (a) is not can­
cellable since they are detected to be topologically significant. The pair in 
(b) can be cancelled, with the cancellation result shown in (c). 

the corner. This · rudes" the wedge into the corner, thus making the 
turn smoother; see Figure 9(a) for such an exan1ple. Second, a wedge 
point usually represents an end point of the topological skeleton 
of the tensor field. Given such a wedge point, if there is no more 
information that can be gained after a round-trip has been made 
around that point, the robot does not need to re-visit it with a deep 
U-turn. In this case, we again move that wedge point inward along 
its separatrix line for a distance so that the end path is eliminated; 
see Figure 9(b). Tue third case involves obstacle avoidance at a 
trisector. Since the robot would likely move towards a trisector 
along its separatrix line, we need to ensure that the robot does not 
collide into an obstacle when reaching trisector or after turning into 
a branch. This is done by moving the trisector away from obstacle 
until there is no collision detected eithe.r for the trisector point or 
the sample points along its separatrice (Figure 9(c,d)). 

Cancellation of degenerate pairs. Tue pair cancellation operation 
allows the elimination of unwanted wedge-trisector (W-T) pairs, 
leading to a geometrically smoother and topologically simpler fielcl 
Unfortunately, not every W-T pair can be canceled since the wedge 
and/ or trisector may indicate important topological features of the 
tensor field which might be destroyecl Therefore, the identification 
of cancelable degenerate pairs is critical for automatic cancellation. 
Edelsbrunner et al. [ 2002) propose a persistence-based identification 
process which is applicable only to scalar fields. In [Nieser et al. 
2012), an intuition was made that a pair of degenerate points can be 
canceled only if they are close enough to each other, thus minimizing 
the alteration to field topology due to cancellation. Similarly, we 
detect cancelable pairs based on their shortest distance over the 
topological skeleton of the field. Tue remaining issue is how to set 
a proper threshold for this distance. 

In defining the thresholcl, we consider the significance of a topo­
logical point on the medial axis of a shape (in parallel to a degenerate 
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point on topological skeleton in our case), measured by the local fea­
ture size, the distance from that point to the shape boundary (Dey 
2006]. With the intention of preserving topologically signi.ficant 
degenerate pairs, we come to a heuristic condition for a W-T pair 
(ps,PT) tobe cancelable: 

ds(pw, !Ir) < lfs(pw) + lfs(PT ), (6) 

where d5(., · ) is the shortestdistance between two points and lfs(·) is 
the local feature size of a point; see Figure lO(a). We found through 
experiments that this distance threshold is quite usefulin practice, 
and we 1eave the rigorous verification and/or proof for future work. 
Once detected a W-T pair tobe canceled, we find a small neigh­
borhood surrounding them, within which we iteratively smooth 
the tensor field locally until each point inside the region becomes 
regular (Figure lO(c)). In practice, we perform Laplacian smoothing 
over the scalar fields of ru and r 12· 

5 CAMERA CONTROL FOR QUALITY SCANNING 

Having obtained the robot path within the next time interval, we 
need to compute a carnera trajectory to scan the scene along this 
path segment. Camera control has received extensive researched in 
the past decades. Our problem, however, is unique since the trajec­
tory is not only driven by scanning efficiency and reconstruction 
quality but also constrained by the robot path. 

5. 1 Constrained optimization ofthe camera trajectory 

Our goal is to compute a smooth 6DoF camera trajectory satisfying 
the following requirements. First, in order to scan the scene effi­
ciently, camera views along the trajectory should obtain maximal 
coverage of unknown or uncertain regions, according to the current 
reconstruction. To ensure a proper reconstruction quality, however, 
coverage alone is not enough. A good view should look at its target 
regions from a close distance (within the valid scanning range), and 
point as orthogonally as possible to the target surfaces. Second, to 
facilitate frame-to-frame registration during online reconstruction, 
linear and angular speed of the camera should be as constant as 
possible, without exceeding a maximum threshold. Third, given the 
movement path of the robot base, every point on the trajectory 
must be reachable by the robot arm, according to the kinematic 
constraints between the base and the arm. 

Surnmarizing the requirements above, we reach the following 
energy function for the camera trajectory: 

E = 11 

(- liJVV(q(t ), a (t )) + G>I,q'' (t) + "'Aa"(t ))dt, 

with q(t ) E 'l'(p(t )), q'(t ) < VnJ , a'(t ) < am. t E (0, 1], 

(7) 

where p : (0, 1] ---+ JR3 is a parametric curve representing the robot 
path, and q : (0, 1) ---+ R3 a parametric curve for the camera tra­
jectory. For each point on the trajectory, the 6-DoF camera view 
includes a position q(t ) and a viewing angle a (t) (using the first 
view as the reference). V (q, a) measures the quality of a camera 
view, based on the information gain of the view in reducing the 
uncertainty in scene reconstruction (see details in Appendix). 'I'(p) 
is the reachable space (workspace) of the robot arm, when the robot 
stands at a point p (The specification of Fetch arm workspace is 

(a) (b) 

Fig. 11. (a): Il lustration of our optimization of the camera trajectory (green 
curve) under the constraint of the robot path (red curve). (b): Areal example 
of the trajectory optimization, where the reconstruction ent ropy is color­
coded (blue is small and red is large) over the occupancy grid. 

given in (Wise et al 2016]). Vm and am are the maximum thresholds 
for linear and angular speed, respectively. 

To solve Equation (7), our optimization samples the path p and 
minimizes the discretized energy: 

mininlize E = - lily L V (q5 , a5 ) 

s 

+ G>L L (qs- 1 - 2qs + qs+l) 
s 

+"'AL (as-1 - 2as + as+1), 
s 

subject to q5 E 'l'(p5 ), q5+1 - qs- 1 < 2Vm, 

as+1 - as- 1 < 2am,s = 1, . .. ,S - 1. 

(8) 

This objective function is highly non-convex due to the estimation 
of view quality and robot arm workspace. We therefore simplify the 
problem by further discretizing the feasible view space at a given 
base position into a discrete set of candidate views, and solve the 
problem with linear integer programming. 

5.2 Discrete-continuous t rajectory optimizat ion 

Discrete view selection. For each path sample p5 , we sample C 
points within itsreachable space {q! E 'l'(p5)}~1 . For eachreach­
able point q!, we compute the best viewing angle a! based on the 
view quality, which leads us to a set of candidate views {(q!, a!)} 
(Figure 1 l(a)). Thus, the optim.ization in (Equation 8) can be reduced 
to a 0-1 integer linear programming problem, by associating each 
candidate with a binary decision variable x; E { 0, 1}, where x~ = 1 
if the i-th candidate of Ps is selected and x~ = 0 otherwise: 

minimize E = - lily L: L V(q!. a!)x! 
s 1 

+ "'L L L (q!- 1 - zifs + ls+1 )x!-1~x~+1 
s l,j ,k 

"'" i 1 k j l k +"'AL_; L_; (as- 1 - 2115 + as+1 )xs- 1XSXs+1• 
s l,j,k (9) 

subject to (q!+t - cfs_ 1)x!+l~-l < 2vm. 

(a~+l - ~_1)x~+l~-l < 2am, 

x! E {O, l }, LkX~ = 1, 

s = l, ... , S - 1, i,j = l , ... , C. 
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We stipulate that exactly one candidate is selected at each path sam-

ple by imposing
∑
k x

k
s = 1. The Gurobi Solver [2016] is employed

to solve the optimization efficiently.

Continuous view interpolation. The next step is to connect the

selected best views {(q∗s ,a
∗
s )}

S
s=1 to form a smooth trajectory. We

use cubic Hermite splines to interpolate the positions and tangents

at all views. The tangent at a view point is computed as the cross

product of the look-at vector and the y-axis. We then interpolate

viewing angles along the trajectory based on rotation minimiz-

ing frames [Wang et al. 2008], which minimizes the total angular

speed using two adjacent selected views as boundary conditions.

Figure 11(b) shows an example of computed trajectory (green curve)

along a robot path (red curve), given the reconstruction entropy.

6 IMPLEMENTATION

System setup. Our Fetch robot has a built-in computer with an

Intel I5-4570S CPU (2.9GHz×4) and 16GB RAM, running ROS on

a Linux system. On this computer, we run OctoMap, tensor field

update, path generation, and camera trajectory optimization. The

computed guiding instructions (moves and poses) are directly sent

to ROS to drive the robot base and arm. The robot holds a Kinect

(version 1) in its single arm. The online reconstruction runs on a

mobile workstation with an Intel I7-6700HQ CPU (2.6GHz×4), 16GB

RAM, and an Nvidia Quadro M3000M graphics card. The mobile

workstation is carried by Fetch, and the Kinect sensor is powered by

the battery of Fetch, making the whole system self-contained and

cable-less. Note that we do not use the pre-installed depth camera

mounted on the head of Fetch.

To demonstrate the generality of our method, we also imple-

mented and tested our system on a Turtlebot, amobile robotmounted

with a fixed (forward-looking) RGB-D camera (Kinect v1). The

Turtlebot carries a laptop computer with an Intel i7-6500U CPU

(2.5GHz×4) and 8GB RAM, running all computations except online

reconstruction, and driving the robot with ROS. The online recon-

struction runs on the same mobile workstation as that used by Fetch,

except that it is remotely connected by wireless LAN rather than

carried on the robot. This, again, makes the system self-contained.

Please refer to the accompanying video for the two systems at work.

Online reconstruction algorithm. WeemployVoxelHashing [Nießner

et al. 2013] for online surface reconstruction, which uses both RGB

and depth information for frame-to-frame registration (camera pose

estimation). For the Fetch setup, we utilized the (filtered) inertial

measurement unit (IMU) data provided with the robot arm to ini-

tialize the registration, which leads to an improved reconstruction

quality. Note that, however, the registration between frames that

undergo large transformations is still difficult, even assisted by IMU

data. This makes the optimization of robot path and camera trajec-

tory still essential to guarantee a high-quality surface reconstruction,

as demonstrated in Figure 12.

Parameters. When computing the tensor field, we employ a 2D

spatial grid with a resolution of 0.05m. The time step in computing

time-varying fields is chosen to be 4 seconds, with 10 sub-steps.

Thus, the duration of each sub-step is 0.4 seconds. With a moving

speed of 0.3m/s, the robot moves about 1.2m per time step. Figure 15

evaluates the impact of different choices for time step and sub-steps

on obstacle avoidance and path smoothness. The maximum limits

for linear and angular speed are set to vm =0.5m/s and vm =40 de-
gree/s, respectively. During the discrete optimization of the camera

trajectory, we sample 10 candidate views for each path sample.

Handling of collisions. Our tensor fields are formed with con-

straints of surface tangents, making the path advection inherently

obstacle avoiding. There are, however, still two cases that require

special treatment. First, if the initial position of the robot is close to a

wall, the robot may keep close to walls, given that there is only tan-

gential moves. This may cause collisions due to the non-neglectable

robot volume. Therefore, once the robot is detected to be too close

to a known wall (< 0.3m), it moves away from the wall along its

normal direction, if that is allowed by the known space. Second,

due to incomplete scanning, a path may stretch into an unknown

region in which an obstacle could block the path. If such a case

is detected, we add a look-at view pointing towards the unknown

region, to the path samples near that region (< 2m), during the

camera trajectory optimization. This ensures that the robot looks

into that region before rushing into it.

Collision avoidance for the robot arm can be incorporated into the

candidate view selection (Section 5.2), by removing those candidates

which lies in occupied cells in OctoMap. Although this does not

guarantee the entire camera trajectory is collision-free, due to the

discrete view sampling and data incompleteness in OctoMap, we

found the solution to be sufficient in our setting since the robot

rarely approaches a part of the scene too close, unlike in object-

targeted scanning.

Extraction and utility of field topology. To extract the topology

of a tensor field, we first detect degenerate points, by examining

the tensor index of every 2D grid point, and then compute for each

degenerate point the directions (angles) of its separatrices [Delmar-

celle and Hesselink 1994]. Starting from a degenerate point, we trace

separatrices along its separatrix directions via particle advection,

which stops at another degenerate point. The numerical instability

in path tracing, however, may miss connections between degener-

ate points. To mitigate this, we first pair the degenerate points by

tracing 2D shortest distance paths between them, and then force

each two paired degenerate points to be connected by a separatrix,

following the method used in [Palacios and Zhang 2007].

The trisector points in the topological skeleton serve as “gate-

ways” in global path routing, at which the robot performs branch

selection. The robot, however, does not necessarily move along a

separatrix so it rarely hits a trisector exactly. To allow path rout-

ing, we need a mechanism to detect whether the robot is passing

by, though not exactly hitting on, a trisector, and then “dock” it

to that trisector. To this end, we examine whether the robot path

first approaches and then leaves away a trisector, with the minimal

distance to the trisector less than a given threshold (0.5m). Once

a docking trisector is detected, the robot moves to that trisector

when reaching a position of minimal distance, and then launches

the branch selection. Figure 7(a) shows an example of this case.
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(a) Potential field path, fixed camera. (b) Tensor field path, fixed camera.

(c) Non-smooth camera trajectory. (d) Optimized camera trajectory.

Fig. 12. Comparing the reconstruction quality obtained by scanning the same scene corner along a path generated by tensor fields (a) v.s. that by potential

fields (b), with a fixed camera. Given the same path (generated by tensor fields), we compare the results along camera trajectories with (c) and without (d) the

smooth terms in the trajectory optimization.

7 RESULTS AND EVALUATION

Results of autonomous reconstruction. We have tested our system

(Fetch robot) with seven real indoor scenes; see the results from

Figure 1, 19 and 22. For all these scenes, our method achieved rea-

sonable scene coverage with high-quality 3D reconstruction. Table 1

reports some timings and statistics on these scenes. Overall, our

robot moves at an average speed of 0.3m/s and finishes rooms of

tens of square meters in less than 5 minutes. Here we also report the

total scanning time and travel distance, with and without topology-

based global path routing. It can be observed that global planning

saves significant scanning effort. Table 2 lists the average and maxi-

mum running time for the various algorithmic components in each

time step. The major part of the computation time is spent on the

updating of tensor fields.

Figure 12 demonstrates how smooth robot paths and camera tra-

jectories affect the quality of online reconstruction. We visually

compare the reconstruction of the same corner of a room, scanned

with a fixed camera pointing to the wall, along a path segment gen-

erated by our tensor field and by potential field, respectively. Our

method leads to a more accurate depth fusion, due to the smoother

robot path and frame-to-frame transition. To demonstrate the effect

of camera trajectory optimization, we compare the reconstruction

along the same robot path (generated by our method), with and

without the smoothness constraint on linear and angular speed in

trajectory optimization. It can be seen that our method, with smooth

robot path and camera trajectory, results in the best reconstruction

quality with higher coverage. Please also see the quantitative evalu-

ations and comparisons in the next two subsections.

7.1 Quantitative evaluation

We conducted a series of evaluations mainly concerning two as-

pects, reconstruction quality and scanning efficiency, with both

synthetic and real scenes. Reconstruction quality is measured by the

root-mean-square error (RMSE) of the ICP-based frame-to-model

Table 1. Timings and statistics for seven real scenes. The total scanning

time and travel distance are compared for the cases with and without

topology-based global path planning.

Scene Area
w/ topo. planning w/o topo. planning

Time Travel Time Travel

Fig. 1 60 m2 4.8 min. 58.3 m 11.8 min. 88.1 m

Fig. 19(a) 24 m2 2.7 min. 19.7 m 4.5 min. 35.2 m

Fig. 19(b) 22 m2 2.1 min. 13.3 m 3.4 min. 28.7 m

Fig. 22(a) 70 m2 4.1 min. 67.2 m 6.7 min. 87.5 m

Fig. 22(b) 35 m2 3.6 min. 40.5 m 10.2 min. 79.8 m

Fig. 22(c) 25 m2 3.3 min. 28.2 m 9.6 min. 66.3 m

Fig. 22(d) 50 m2 4.4 min. 52.1 m 9.7 min. 83.7 m

Table 2. Average andmaximum running time (in sec.) of the four algorithmic

components (tensor field update, path advection, trajectory optimization,

and others including topology control etc.), within each time step.

Scene
Field Path Trajectory Other

Avg. Max. Avg. Max. Avg. Max. Avg. Max.

Synthetic 0.35 0.49 0.01 0.013 0.14 0.17 0.16 0.22

Fig. 1 0.55 1.02 0.01 0.022 0.23 0.33 0.26 0.38

Fig. 19(a) 0.39 0.75 0.01 0.013 0.15 0.19 0.16 0.27

Fig. 19(b) 0.35 0.77 0.01 0.014 0.12 0.16 0.16 0.23

Fig. 22(a) 0.49 0.95 0.01 0.019 0.21 0.29 0.23 0.34

Fig. 22(b) 0.42 0.81 0.01 0.017 0.17 0.25 0.19 0.31

Fig. 22(c) 0.37 0.75 0.01 0.015 0.13 0.21 0.15 0.23

Fig. 22(d) 0.47 0.87 0.01 0.019 0.19 0.26 0.21 0.34

registration during depth fusion [Choi et al. 2015]. For scanning

efficiency, we evaluate how fast our method could achieve a full cov-

erage of an unknown scene. Scene coverage rate is estimated against

the ground-truth geometry of synthetic or real scenes (see below),

based on the boundary voxels in the reconstructed occupancy map.

Synthetic evaluation is performed on Gazebo, a robot simulator

provided by ROS. Gazebo supports simulation of robot dynamics

and Kinect scanning. We collected 135 3D models of indoor scene
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Synthetic scenes. Real scenes.

Fig. 13. Comparison of smoothness of pathlines generated by tensor fields

(TF), potential fields (PF), and gradient fields (GF), measured by average (ab-

solute) angular acceleration (top row), as well as the topological conformity

of the three types of fields, measured against the medial axis of full scene

boundaries (bottom row). The results were obtained and averaged over 135

synthetic (left column) and 7 real (right column) scenes.

and organized them into a ROS-friendly format, forming a bench-

mark of autonomous virtual exploration and reconstruction (see the

supplemental material). The benchmark will be released, together

with the source code of our method running on top of Gazebo.

For the seven real scenes, we build pseudo-ground-truth reconstruc-

tion by careful human scanning with a hand-held RGB-D camera.

We used markers to facilitate offline refinement of scan registration.

The markers were removed when performing robot scanning. Scene

parts that are higher than the robot height (including the ceilings)

are excluded from scanning in all tests, by setting the corresponding

occupancy grid cells to be known (zero reconstruction entropy).

Alternative guiding fields. In order to verify the advantage of

tensor fields (TF), over vector fields such as potential fields (PF)

or gradient fields (GF), we conducted a number of comparisons.

The main problem with vector fields is that they contain more

singularities, which on a local scale sacrifices the smoothness of the

generated paths. On a global scale, the topological structures induced

by vector fields are usually too complex, making them not suitable

for path routing. To compare with potential fields, we obtained a

standard implementation based on the method in [Khatib 1986]. For

gradient fields, we used the method by Shade and Newman [2011].

Default parameter settings were employed for the two methods. We

conduct comparisons on the following two aspects:

• Smoothness of generated paths. We compare the smoothness

of paths generated from the three kinds of fields during the

autonomous exploration and scanning of both synthetic and

real scenes. The initial positions of the robot in all three fields

are the same. For all three methods, a fixed, forward-looking

virtual camera is used. We plot in Figure 13(top row) the

average (absolute) angular acceleration over the coverage rate

of the scene. In general, paths become less smooth (with larger

angular changes) as the scanning gets more complete, due to

the increasing geometric constraints. Tensor fields generally

Synthetic scenes. Real scenes.

Fig. 14. Temporally coherent tensor fields lead to smoother paths (top row)

and lower registration error in depth fusion (bottom row).

Synthetic scenes. Synthetic scenes.

Fig. 15. The impact of different choices for time step and number of sub-

steps on obstacle avoidance (percentage of advected paths being blocked)

and path smoothness, respectively, both evaluated on the synthetic dataset.

incur the least angular speed change of the generated paths,

among all the three types.

• Meaningfulness of topological structure. For the purpose of

global path routing, it is desirable that the topology of the

guiding field reflects the floor structure of the scene being

scanned. On both synthetic and real scenes, we compute the

topological skeletons of the three types of fields, with different

levels of scene completeness, and measure their conformity

against the medial axis of the full scene boundary. The con-

formity between two skeletons is measured by the skeleton

path similarity proposed in [Bai and Latecki 2008]. In general,

the topological skeletons should approximate the scene topol-

ogy better when scene geometry becomes more complete.

Figure 13(bottom row) shows that the tensor fields always

produce skeletons that best match the structural layout of

the scenes.

Temporal coherence of tensor fields. We tested the smoothness of

the pathlines generated by advection in tensor fields with and with-

out temporal coherence. The plots in Figure 14(top row) show the

average angular acceleration of the robot paths over coverage rate,

for both cases. It can be observed that temporally coherent fields

lead to much smoother robot paths. This in turn affects the recon-

struction quality over coverage rate. As shown in the bottom row,

the reconstruction error, measured by RMSE of ICP, is significantly

lower when the guiding fields are temporally coherent.
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Synthetic scenes. Real scenes.

Fig. 16. Using global path planning, the scanning coverage is increased (top

row) and the reconstruction entropy is reduced (bottom row) more quickly,

especially in the later stages of scanning.

Synthetic scenes. Real scenes.

Fig. 17. Effect of topological control over field simplicity, measured by

number of degenerate points.

Impact of time step during field updating. The length of time step

suggests the updating frequency of the tensor fields, which is critical

to obstacle avoidance. The lower the updating frequency, the more

probable it is that the generated robot paths would be blocked

by obstacles, because the guiding field may not reflect the so far

acquired scene geometry. Meanwhile, a high updating frequency is

computationally expensive. Within a time step, the number of sub-

steps would affect the smoothness of tensor field interpolation: finer

sub-steps produce temporally smoother fields, while demanding

more computational time.

We evaluate the above effects using the synthetic dataset. To

observe the impact of time step duration on obstacle avoidance, we

plot in Figure 15(left) the percentage of the advected paths being

blocked by obstacles, over different choices of time step. Given a

robot moving speed of 0.3m/s, the maximum length of a time step

which is collision-free is about 4s. In Figure 15(right), we show how

the number of sub-steps affects the smoothness of the advected

paths over time, with a fixed time step of 4s. The path smoothness,

measured again by average angular acceleration, converges to the

optimum when the number of sub-steps is 10.

Effect of global path planning. In Figure 16, we plot the coverage

rate (top row) and reconstruction entropy (bottom row) during scene

scanning, with and without global path planning. This experiment

was conducted on the synthetic and real datasets. Coverage rate

is estimated against the (pseudo) ground-truth reconstruction. As

Synthetic scenes. Real scenes.

Fig. 18. Effect of optimizing the camera trajectory on coverage rate (top

row) and reconstruction quality (bottom row).

shown by the plots in the top row, global planning results in a faster

scene coverage. The bottom row plots the reconstruction entropy

over coverage rate: when the scene coverage is low (in the early

stages), the benefit of global planning is not prominent, due to the

incomplete topological structure. When the scanning becomes more

complete, however, global planning starts to take effect, leading to a

faster convergence towards a complete and quality reconstruction.

This verifies the benefits of our global path planning.

Topological control of tensor fields. We investigate the effect of the

two automatic topological control mechanisms on field simplicity,

both on the synthetic and real datasets. Figure 17 shows the numbers

of degenerate points of tensor fields over coverage rate, with and

without topological control. The results show that our topological

control schemes lead to topologically simpler fields.

Optimization of the camera trajectory. In Figure 12, we show that

optimized camera trajectories lead to higher reconstruction quality.

Figure 18 verifies this effect quantitatively. In the top row, we show

the effect of different terms in our optimization on reconstruction

quality, plotted over the number of time steps. Here we compare

our full method to a version without a camera control (with fixed,

forward-looking camera), and that without linear or angular speed

smoothing. In the bottom row, we show a comparison of scene

coverage rate of the four methods above. These comparisons were

conducted both on the synthetic and real datasets. The results show

that our full optimization balances well between coverage efficiency

and reconstruction quality.

Termination criteria. Our autonomous scene scanning terminates

if no information can be gained any more from any point of the

topological skeleton of the tensor field. The validity of this termi-

nation criteria can be verified by the relation between the total

reconstruction entropy for the entire topological skeleton and the

scene coverage rate, as shown in Figure 16 (brown curves in the

bottom row). The results suggest that the convergence of the total

entropy reduction (information gain) largely conforms to the maxi-

mal scene coverage, for both synthetic and real scenes. This verifies

the effectiveness of our method and its termination criteria.
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Fig. 19. Visual comparisons of reconstruction quality, depicted as color­
coded RMSE plot on the reconstructed surfaces, obtained by our method 
and the four alternatives (red indicates large error and blue means small). 
Our method leads to the least amount of error. 

7.2 Comparison 

We also provide a quantitative comparison between our method and 
four state-of-the-art methods: (Shade and Newman 2011], [Vallve 
and Andrade-Cetto 2015], (Charrow et al 2015) and (Bai et al. 2016). 
Tue first method adopts gradient fields of harmonic guiding fields, 
while the second one employs potential fields. Tue latter three 
methods are all information-theory based. among which only the 
first is field-guided. Since the source code of the first three methods 
are unavailable, we use our re-implementation for the comparison, 
with the default parameter settings provided by the original works. 

Under the same robot setting, i.e„ a mobile robot mounted with 
a fixed and forward-looking camera, we run the four methods on 
the synthetic and real datasets. We evaluate their performance on 
coverage rate, reconstruction quality, path smoothness, as weil as 
the reduction of reconstruction entropy. Tue former two results 
are shown in Figure 20, while the latter two can be found in the 
supplemental material. 

In terms of the efficiency of exploration and scanning, information­
theory based methods generally perform better, as reflected by the 
fast growth of the coverage rate of the latter three methods. Our 
method is inherently driven by the information gain of reconstruc­
tion during global path routing, thus achieving a comparable perfor­
mance with those methods. This is also reflected in Table 3, which 
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Fig. 20. Comparison of coverage rate and reconstruction quality obtained 
by our method and four alternative methods. 

Table 3. Comparison of total scanning time and travel distance between 
our method and four alternatives. 

Method 
Synthetic scenes Real scenes 
Time Travel Time Travel 

[Shade and Newman 2011] 9.6 min. 127m 15.2 min. 149m 
[Vallve and Andrade-Cetto 2015] 7.3 min. 82m 9.4 min. 97m 
[Charrow et al. 2015] 8.5 min. 104m 13.7 min. 123m 
[Bai et al. 2016] 6.1 min. 65m 8.8 min. 99m 
Uurs 3.0min. 46m 4.1 min. 52m 

compares the total scanning time and travel distance of the five 
methods, averaged over the tested synthetic and real scenes. 

Meanwhile, our method results in a high reconstruction qual­
ity due to its special design choices made for quality scanning, 
i.e„ smooth robot paths and carnera trajectories. In Figure 19, we 
provide a visual comparison of reconstruction results obtained by 
our method and the four alternatives, on two real scenes. For each 
method, we show the reconstructed surfaces shaded with the color­
coded RMSE, with respect to the corresponding pseudo-ground­
truth reconstruction. 

8 DISCUSSION AND CONCLUSIONS 

We have presented a method for autonomous scanning of unknown 
indoor scenes, guided by time-varying and geometry-aware tensor 
fields. Our method attains the following key features: (i) lt achieves 
both locally smooth path generation and globally efficient path find­
ing, through exploiting the particle advection and topology-based 
guidance of tensor fields. (ii) lt computes time-varying tensor fields 
that adapt to the time-evolving scene geometry and enhance spatial­
temporal smoothness. (iii) In contrast to fixed-camera settings used 
by most robot navigation systerns, our method pursues independent 
planning of robot and camera movement, thus achieving flexible 
exploration and scanning of indoor scenes. 

Limitations. Our current solution has severallimitations: 

(1) Our ruethod does not jointly optimize robot path and cam­
era trajectory. Tue path planning accounts for neither the 
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scanning scope of the sensor nor the inverse kinematic con-

straints of the robot arm. A joint optimization with mutually-

informed path and camera planning could potentially achieve

a more efficient scanning and higher quality reconstruction.

Such a joint planning, however, could also be extremely diffi-

cult and costly to optimize.

(2) Our navigation-by-reconstruction strategy computes smooth

movement for both robot and camera. Nevertheless, one draw-

back of our strategy is that the robot can only perform pass-

through scanning along with the robot movement rather than

a detailed scanning towards a specific region or object while

standing at a point. Therefore, our method cannot obtain a

complete scanning coverage with a single pass navigation.

These are two complementary scanning strategies, which

would be useful for different scenarios.

In a scenario with high efficiency requirement, the smooth-

ness and fluency of robot path and camera trajectory are vital

for online reconstruction, since non-smooth camera move-

ments can lead to unacceptable reconstructions due to the

accumulation of drift; see Figure 12. Moreover, our solution

addresses the local trapping issue, thanks to our topology-

based guidance. Based on the results, we believe that our

method achieves an essential and valid balance between ex-

ploration efficiency and reconstruction quality.

(3) The geometry-aware tensor fields can either be over- or

under-constrained by the scene geometry, rendering them

fail to guide the robot move as expected. Figure 21 shows

two examples for the two cases above, respectively. The first

demonstrates how an advected path passes through a narrow

passage between two diagonally displaced blocks. Although

the path always succeeds to pass through, no matter how

narrow the passage is, it becomes too close to the wall after

crossing the gap. The second shows how a path would fail to

enter a “door” in a wall which is too thin, due to insufficient

perpendicular constraint.

(4) In the initial stage of scanning, the reconstructed geometry

may not be quite useful for computing an informative guiding

field. This may cause collision if the robot moves too fast. A

heuristic solution to this is to start with a small time step and

gradually increase it as the scanning proceeds.

(5) When the time step is large, field interpolation could intro-

duce new singularities. Although this is quite rare, topological

smoothing [Zhang et al. 2007] could be invoked if needed. In

any case, the main singularities with meaningful topology

would persist from time step to time step.

(6) From a high-level perspective, our approach is purely geomet-

ric. We do not learn or infer high-level structure or semantics

of the scene during scanning. Therefore, it does not offer

higher level guidance to the robot such as anticipation of

accessibility or safety, other than local avoidance of obstacles

and greedy maximization of information gain.

Future work. We see several interesting directions to pursue and

explore in the future. First, several technical components of our

method, such as global guidance by field topology, are currently

studied and realized as a proof-of-concept. We hope our work will

(a) (b)

Fig. 21. Path advection in tensor fields which are either over- or under-

constrained. (a): Although the field can always direct the particle through

the narrow passage, the path becomes too close to the wall after crossing

the gap. (b): A path would fail to enter a “door” in a wall which is too thin.

inspire more in-depth and theoretical future study on those prob-

lems. Second, we would like to investigate the use of 3D tensor fields

for a joint planning of robot and camera movement in 3D space.

The main difficulty here is that the smoothness and degenerate

behavior of 3D tensor fields may not be easy to control. Moreover,

an efficient GPU implementation may be needed to accommodate

the highly intensive computation. Third, it is worth considering

online analysis and learning within our framework of tensor field

guidance, to achieve a more intelligent exploration and scanning in

highly complex environments. Fourth, our navigation method could

be extended to non-planar ground surfaces, such as terrains, which

can be approximately regarded as 2D manifolds on which tensor

fields are well defined [Zhang et al. 2007]. Lastly, an interesting

direction would be applying 3D tensor fields for a more versatile

robot guidance, with applications ranging from drone exploration

and scanning to robot-hand grasping and manipulation.
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