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Fig. 1. Frying an egg on a hot pan, achieved by enabling the diffusion of phases but disabling the diffusion of concentrations. 

We introduce a unified particle framework which integrates the phase-field 
method with multi-material simulation to allow modeling of both liquids 
and solids, as well as phase transitions between them. A simple elasto- 
plastic model is used to capture the behavior of various kinds of solids, 
including deformable bodies, granular materials, and cohesive soils. States of 
matter or phases, particularly liquids and solids, are modeled using the non- 
conservative Allen-Cahn equation. In contrast, materials—made of different 
substances—are advected by the conservative Cahn-Hilliard equation. The 
distributions of phases and materials are represented by a phase variable and 
a concentration variable, respectively, allowing us to represent commonly 
observed fluid-solid i nteractions. T he d ynamics o f a m ulti-phase, multi- 
material system are governed by a unified Helmholtz free-energy density. 
This framework  provides  the  first method in computer graphics capable 
of modeling a continuous interface between phases. It is versatile and can 
be readily used in many scenarios challenging to simulate. Examples are 
provided to demonstrate the capabilities and effectiveness of this approach. 
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1 INTRODUCTION 
Physically-based simulation of fluids and solids has recently gained 
much attention in computer graphics, as it is central to reproducing 
realistic visual effects for a wide range of real-world phenomena. 
Researchers have developed physically-based modeling techniques 
using various grid- or particle-based frameworks. The smoothed- 
particle hydrodynamics (SPH) method [Monaghan 1992] is widely 
used as a particle-based method due to its mass-conservation prop- 
erty, and its flexibility in handling topological changes. The SPH 
methods have been widely used to simulate fluid flow [Müller et al. 
2003], and it has been further adapted to simulate the dynamics of 
both deformable bodies [Gerszewski et al. 2009; Müller et al. 2004] 
and granular materials [Alduán and Otaduy 2011]. 

Since multiple fluids and solids often co-exist in the real world, 
multi-material methods have also been introduced. Previous work 
can be broadly divided into two categories: methods handling fluid- 
solid interaction, and those only handling multiple fluids. Many 
approaches for fluid-solid interaction have been proposed, covering 
fluid to rigid solid coupling [Akinci et al. 2012], fluids interacting 
with elastoplastic objects [Keiser et al. 2005; Solenthaler et al. 2007], 
fluids interacting with granular materials [Lenaerts and Dutré 2009], 
and fluids in porous materials [Lenaerts et al. 2008]. In other cases, 
the entire system may comprise different miscible or immiscible 
fluids. Solenthaler and Pajarola [2008] simulated fluids using density 
contrast. By adopting the concept of volume fraction [Müller et al. 
2005], Ren et al. [2014] and Yang et al. [2015] managed to capture a 
wide range of multi-fluid flow phenomena with rich visual effects, 
using a mixture model and Helmholtz free energy. They  focused 
on interactions between multiple fluids, and solids were not con- 
sidered. Yan et al. [2016] extended the multi-fluid SPH framework 
to incorporate solids, achieving impressive results. However, their 
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method is based on drift velocity, which requires small time steps, 
and cannot easily or intuitively capture the evolution of phenomena 
based on energy considerations [Yang et al. 2015]. Furthermore, 
it cannot simulate phase-change phenomena such as melting and 
solidification. 

Phase transitions are commonly observed in the physical world, 
such as dissolving, melting and solidification. Previous particle- 
based simulation methods model this process mainly using either a 
concentration criterion [Yan et al. 2016] or a temperature criterion 
[Stomakhin et al. 2014], so that a given particle changes its phase if 
its concentration or temperature exceeds a pre-defined threshold. 
Although this approach is straightforward and easy-to-implement, 
it suffers from two problems. First, the criteria are inconsistent: it  
is problematic to model phase change phenomena involving both 
concentration- and temperature-related variables. Secondly, the 
interfaces between phases are discontinuous, as a given particle can 
only be in a single phase. To address these problems, we represent 
the phase separately using an extra variable to describe it. This 
phase variable is governed by a unified energy density function 
related to both concentration and temperature. 

In computer graphics, the terms ‘fluid’, ‘phase’ and ‘material’ have 
been widely used, but not always consistently or accurately. We 
formally define them here: fluids are substances with zero shear 
modulus; phases are states of substances, and materials are different 
kinds of substances (which may exist in any state or phase). For 
simplicity, we only consider the three most commonly observed 
phases of matter, i.e., solid, liquid and gas, and largely focus on the 
first two for demonstration of concepts in this paper. 

Our approach significantly extends the energy-based multi-fluid 
approach proposed by Yang et al. [2015] to represent ‘solid’ phases, 
enabling modeling of a variety of fluid-solid interactions. We treat 
phases and materials independently, thereby the unified multi-material 
simulation framework can model a much wider range of real-world 
phenomena. It is straightforward to describe the state of a particle 
with a phase variable and a concentration variable. For simplicity, 
we assume that the phase variable acts on the whole particle which 
can be composed of multiple materials. 

In summary, the main contributions of this work are as follows: 
A simple elastoplastic model is introduced to simulate vari- 
ous solids, including deformable objects, granular materials, 
and cohesive soils. It is capable of capturing a variety of 
solid phenomena that have been largely ignored in the lit- 
erature, such as collapsing granular columns with varying 
aspect ratios, landslides, and dry/wet sand. 
By treating materials and phases separately, a much wider 
range of challenging real-world phenomena involving mul- 
tiple materials and phases can be simulated, including com- 
plex fluid-solid interactions, such as dissolving, melting, 
etc. 
Our phase-field method defines the phase boundary using 
a phase variable, providing a continuous interface between 
phases. 
A unified Helmholtz free-energy density for both the non- 
conservative Allen-Cahn equation and the conservative 
Cahn-Hilliard equation is proposed to guide the evolution 
of concentrations and phases, respectively. 

In the rest of the paper, Section 2 discusses related work. We 
present our elastoplastic model in Section 3. We introduce our uni- 
fied multi-phase, multi-material simulation framework in Section 4. 
Some applications of this new unified framework are shown in Sec- 
tion 5, with illustrative examples in Section 6. Finally, limitations 
and future work are discussed in Section 7. 

2 RELATED WORK 
In computer graphics, multi-material fluid simulation has been ex- 
tensively investigated during the last decade. Again, here we classify 
multi-material fluid simulations as those involving only liquids, and 
those involving solids and liquids. We start by introducing particle- 
based solid simulation, then providing an overview of the relevant 
works closest to this paper. 

2.1 Solid Simulation 
In computer graphics, particle-based methods are commonly used 
to simulate fluids [Monaghan 1992; Müller et al. 2003]; they also 
work well for simulating solid materials, including rigid objects, 
deformable bodies, and granular materials. Gray et al. [2001] simu- 
lated elastic objects using a linear model by defining the artificial 
stress based on the signs of the principal stresses. Although this 
gave plausible results, their model suffers from accumulated nu- 
merical error.  To  capture the dynamics of truly elastic materials   
or large elastic deformations, researchers later developed a variety 
of solutions, such as storing the initial state [Müller et al. 2004], 
calculating the deformation gradient tensor [Gerszewski et al. 2009], 
adopting an implicit framework [Zhou et al. 2013], or use of ‘embed- 
ded space’ [Jones et al. 2014]. Müller et al. [2004] animated elastic, 
plastic, and melting objects using a physical model derived from 
continuum mechanics. This method needs to store the initial state 
in order to calculate stress. Gerszewski et al. [2009] proposed a new 
way to compute the deformation gradient, avoiding the need to 
store the initial rest configuration. Zhou et al. [2013] extended this 
work, using an implicit numerical integrator to achieve more stable 
simulation of elastoplastic materials. Jones et al. [2014] introduced 
embedded space—the least-squares best fit of the material’s rest state 
in 3D—and used it to handle extreme elastic and plastic deforma- 
tions. Jiang et al. [2015a] animated deformable objects, as well as 
collision handling, using an affine particle-in-cell method (APIC) 
with a Lagrangian force model. 

Zhu and Bridson [2005] adopted an existing fluid solver for simu- 
lating granular materials, decomposing the spatial domain according 
to the strain rate tensor. Bell et al. [2005] used non-spherical parti- 
cles to represent discrete elements of simulated materials, such as 
sand and rigid bodies. Narain et al. [2010] solved both the internal 
pressure and frictional stresses in granular materials, achieving two- 
way coupling between granular materials and solid bodies. Using a 
friction and cohesion model, Alduán and Otaduy [2011] simulated 
granular flows in a predictive-corrective incompressible SPH (PCISPH) 
framework; this work was extended by Ihmsen et al. [2012], using 
a two-scale framework to simulate granular materials with high- 
quality visual detail. Recently, the material point method (MPM) 
has gained popularity as a hybrid method to capture a variety of 
fluid and solid phenomena. Klár et al. [2016] recreated a wide range 
of visual sand phenomena by combining Drucker-Prager plastic 
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flow and Hencky-strain-based hyperelasticity. Daviet et al. [2016] 
presented a continuum-based method for simulating non-smooth 
viscoplastic granular rheology using a material point method. 

2.2 Multi-Fluid Simulation 
A multi-fluid system is composed of more than one miscible or im- 
miscible fluids. Particle-based multi-fluid simulations have attracted 
much attention in the last decade. To simulate immiscible fluids, 
Solenthaler and Pajarola [2008] derived a modified density calcula- 
tion method to deal with density contrast more precisely. Peer et 
al. [2015] incorporated this approach into an implicit incompressible 
SPH (IISPH) to model multiphase highly viscous fluids. Macklin 
et al. [2014] simulated immiscible fluids with a density ratio using 
position based dynamics, capturing the Rayleigh-Taylor instability. 
For miscible fluids, the volume fraction [Müller et al. 2005] is widely 
used to represent the spatial distribution of different components. 
Liu et al. [2011] integrated the volume fraction with an SPH solver 
and mixed components using concentration differences. To capture 
the underlying interactions between components due to flow mo- 
tions and force distributions, Ren et al. [2014] took the drift velocity 
into consideration. By doing so, they could simulate a wide range 
of multi-fluid phenomena, including mixing/unmixing of miscible 
and immiscible fluids, and chemical reactions. Park et al. [2008] 
showed that energy can be used to drive multi-fluid simulations, 
and adopted the Cahn-Hilliard equation to handle both miscible and 
immiscible fluids using a lattice Boltzmann method (LBM). Their 
approach was later extended by Yang et al. [2015], who achieved 
impressive results for problems such as extraction (i.e. separating a 
substance from a mixture) and mixing of an egg yolk and egg white. 
All these multi-fluid simulations only consider fluids, but do not 
model fluid-solid interactions. 

2.3 Fluid-Solid Interactions 
Fluid-solid interactions have attracted much attention in computer 
animation. Commonly observed fluid-solid interactions fall into 
four categories: fluid-solid coupling, solid wetting, phase transitions 
between solid and fluid, and dissolving of solids. 

Solenthaler et al. [2007] used a unified particle model to han-  
dle the interactions between fluids and various solids including 
deformable bodies. Ihmsen et al. [2010] focused on rigid-fluid cou- 
plings and showed that adaptive timesteps are required for boundary 
handling in a PCISPH framework. Akinci et al. [2012] proposed a 
versatile SPH-based approach for two-way fluid-solid coupling us- 
ing per-particle volume correction. More recently, Shao et al. [2015] 
combined PCISPH and geometric lattice shape matching to achieve 
two-way fluid-solid coupling with large time steps. 

For solid wetting, previous methods mainly focus on porous ma- 
terials. Lenaerts et al. [2008] succeeded in capturing a fluid flowing 
through a porous deformable material; the porous flow is governed 
by Darcy’s Law. This work was later extended to simulate interac- 
tions between sand and fluids by using a unified SPH framework 
[Lenaerts and Dutré 2009]. Recently, Tampubolon et al. [2017] pre- 
sented a multi-species model to capture the interactions between 

Phase transitions are highly correlated with temperature or inter- 
nal energy. SPH has been widely used to simulate melting objects 
[Becker et al. 2009; Chang et al. 2009; Keiser et al. 2005; Müller et al. 
2004]. Keiser et al. [2005] animated solids and fluids, as well as phase 
transitions, by combining the equations of solid mechanics with  
the Navier-Stokes equations. Stomakin et al. [2014] introduced a 
dilational /deviatoric splitting of the constitutive model for heat 
transport, melting and solidifying materials. However, dissolving of 
solids, which also involves a phase change, is largely overlooked by 
such methods. 

Dissolving of soluble materials is commonly observed in daily life. 
Jiang et al. [2015b] proposed an energy-based method for real-time 
simulation of such phenomena. Yan et al. [2016] extended the work 
of Ren et al. [2014] to model solid phases. The distribution and shapes 
of both fluids and solids are uniformly represented by their volume 
fraction function and are governed by the conservation of mass  
and momentum within different phases. The approach impressively 
captures various fluid-solid interactions, but it cannot capture the 
evolution of phenomena based on energy, or provide flexible fluid 
control. Furthermore, it cannot model phase-change phenomena 
such as melting and solidification. 

In such work, solid particles are insoluble in fluid-solid coupling 
scenarios. It is also possible to model solid wetting by considering 
wettable solid particles to be slightly soluble while they remain in a 
solid state, rather than by considering them to be porous materials 
[Lenaerts et al. 2008]. To simulate pure phase transitions, particles 
only change their states of matter. When solids dissolve, the solid 
particles change phase in the liquid. 

These four categories cover a wide range of real-world phenom- 
ena, and almost all phenomena modeled by previous research. In 
contrast to the previous work, we adopt a concentration variable 
and a phase variable to describe the separate evolution of materials 
and phases, allowing us to handle all four categories of interaction 
(see Table 1 later) together in a versatile way. While many previous 
works have considered multi-material simulations for solids and 
liquids, none can handle all four types of interaction simultaneously. 

3 SOLID MECHANICS 
As a basis for our approach, we first introduce an elastoplastic 
model for particle-based solid simulation. To solve the problem of 
inconsistent pressure forces when handling interactions, we treat 
the hydrostatic pressure of solids in a similar way to that of fluids. To 
allow realistic simulation of granular materials, we adopt a tension 
cracking treatment and a stress scaling-back procedure to handle 
the numerical errors in computational plasticity. This elastoplastic 
model underpins the solid simulations in our approach, allowing 
modeling of deformable bodies, wet and dry granular materials, 
cohesive soils, and various interactions. 

3.1 Constitutive Model 
The momentum equation for solids can be expressed as: 

=   ∇ · σ + fext, (1) 
porous sand and water, using a continuum mixture theory where Dt ρ 
species individually obey conservative equations and are coupled 
through a momentum exchange term. 

where D/Dt  = ∂/∂t + u is the substantial derivative, u is the 
velocity, ρ is the density, fext is the external force, and σ is the 
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Fig. 2. Particle views of a landslide coloured according to total deviatoric 
plastic strain, for different Young’s modulus and Poisson ratio. These lead 
to different failure patterns. 

Appendix A). For simplicity, we formulate the deviatoric shear rate 
s˙ as in the works of Bui et al. [2008] and Chen et al. [2012]: 

ṡ  = 2G 
(
ė   − λ̇ s    , (5) 

(see the Appendix for the derivation A) where ‘˙’ denotes the deriva- 
tive with respect to time, G is the shear modulus, ϵ̇  = ( u + uT )/2 
denotes the total strain rate tensor, and ė = ϵ̇  Tr(ϵ˙)/3δ is the 
deviatoric shear strain rate tensor. The scalar function λ̇   denotes 
the rate of change of the plastic multiplier λ, and is given by: 

˙ 

 

  1  ( 
√

2G 
s  : ė + 3Kα Tr(ϵ̇ )

\
, f  > 0 

0, f  ≤ 0 

where K is the bulk modulus. The shear and bulk moduli are related 
to the Young’s modulus E and Poisson ratio v by: 

E E 
 

Fig. 3. A particle view demonstrating the benefit of using Jaumann stress 
rate. Left: with it, particles belonging to an elastic cube stay attached during 
rotation. Right: without it, particles at the corner detach as the cube rotates. 

 

 
Fig. 4. Deformable jelly. Left: a purely elastic jelly. Middle and Right: plastic 
jellies, with different degrees of plasticity. 

K = 
3(1 − 2v) 

, G = 
2(1 + v) 

. (7)
 

In our implementations, the deviatoric shear stress s in Equation (2) 
is obtained by integrating its time derivative ṡ in Equation (5). We 
use the leapfrog algorithm for numerical integration; s and S on the 
right-hand side of Equations (5) and (6) are obtained at the half-time 
step. 

In this work, we use a fixed coordinate system and integrate the 
stress rate. As a result, the rotation of a material introduces changes 
in Cauchy stress. To eliminate this consequence, an extra stress rate, 
invariant with respect to material rotation, is employed to describe 
the material response. The Jaumann stress rate is implemented, 
and works well for small strains and large material rotations (see 
Figure 3). 

 
Cauchy stress tensor of the solid, which is normally divided into 
two parts in SPH: hydrostatic pressure p and deviatoric shear stress 
s, i.e., σ = −pδ + s. We rewrite Equation (1) as: 

ṡ J  = ṡ + s · ω̇    − ω̇    · s, (8) 

where ω̇     = (  u uT )/2 denotes the spin rate tensor; subscript J 
denotes the Jaumann rate. 

Jaumann stress rate is a so-called objective stress rate, aiming to 
Du 1 eliminate the mechanical response of a material with respect to the 

Dt = ρ (−∇p + ∇ · s ) + fext. (2) 

For consistency, the hydrostatic pressure is determined for both flu- 
ids and solids using Tait’s equation [Becker and Teschner 2007]. To 
determine s, the Drucker-Prager model is adopted in our work. The 
yield condition f and plastic potential function д are respectively 
given by: 

f = √
2 

S − 3αp − γ , (3) 

д = √
2 

S − 3βp, (4) 

where S = s ; α and γ  are Drucker-Prager’s constants, which 
are related to ϕ (internal friction) and the Coulomb constant kc 
(cohesion); the later can be treated as a function of the accumulated 

frame of reference. It has been previously used in the graphics com- 
munity occasionally, e.g. by Yan et al. [2016]. They simply employ 
such a term, but did not illustrate how it benefits simulation; our 
examples do so. As illustrated in Figure 3 (and the supplementary 
video), the rotation of a deformable cube introduces extra changes 
of the Cauchy stress tensor due to the fixed frame of reference, 
which however should not be part of the mechanical response of a 
material, resulting in particles at the corner detaching. By adopting 
the Jaumann stress rate, this issue could be largely prevented. 

To smoothly approximate the Mohr-Coulomb hexagon on the de- 
viatoric stress plane (π plane), several strategies have been proposed 
to determine the Drucker-Prager cone parameters [Wang and Sitar 
2004] (see the Appendix B). In 3D, the parameters are determined 
by [Chen et al. 2012]: 

plastic strain to handle plastic hardening and softening. For simplic- 2 sin ϕ 2 sin ψ 6kc cos ϕ 
ity, we just set kc to a constant. β has a similar expression to α and 
is related to the dilation angle ψ of materials such as soils. The yield 
condition determines where plastic deformation occurs; the plastic 
potential function is used to obtain the degree of plasticity (see the 

α = √
3(3 − sin ϕ ) 

, β = √
3(3 − sin ψ ) 

, γ = √
3(3 − sin ϕ ) 

.
 

ψ is set to 0 in our examples. The implementation is given in Algo- 
rithm 1 later. 

, (6) 
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Fig. 5. Comparison with an MPM-based solution by revisiting [Zhu and 
Bridson 2005]’s column collapse. The friction angle is 20◦; 8000 particles 
were used in both cases. Our SPH-based approach is about 4 times faster 
than the MPM-based one. Left: MPM solution achieves 22 fps. Right: SPH- 
solution achieves 80 fps. Without treating tension cracking or using stress 
scaling-back, the collapse of the sand pile exhibits cohesive behavior. 

However, due to numerical errors during computation, the stress 
state may leave the elastic region as shown in Figure 6. In this case, a 
return mapping algorithm is usually used to numerically return the 
stress state to the yield surface [Bui et al. 2008; Chen and Mizuno 
1990]. We consider two kinds of errors. 

Tension cracking treatment: if the stress state moves beyond 
the apex of the yield surface (point E in Figure 6), a numerical error 
known as tension cracking occurs [Chen and Mizuno 1990]. This 
error shares some similarities with SPH tensile instability, resulting 
in unrealistic fracturing or particle clumps. Following Chen and 
Mizuno [1990], if the stress state exceeds the apex of the yield 
surface, it should satisfy the condition below: 

3αp + γ < 0. (9) 

To avoid tension cracking, it is crucial to shift the hydrostatic pres- 
sure to the apex of the yield surface, so the treatment is as follows: 

σ̃yy  = σyy  + (p + γ 
), (10) 

where y 1, 2, 3 . If the cohesion coefficient kc is set to 0, γ equals 
0. In this case, the condition in Equation (9) is satisfied only if the 
hydrostatic pressure p is negative. The treatment in Equation (10) 
ensures the pressure is non-negative, which also solves the SPH 
tensile instability problem. 

Stress-scaling back procedure: when plastic deformation oc- 
curs, numerical errors during computation may lead to a stress state 
far from the yield surface (the path AB in Figure 6). In such circum- 
stances, a stress rescaling procedure may be used with the help of 
a scaling factor r [Bui et al. 2008]. For the Drucker-Prager yield 
criterion, this scaling factor is given by: 

r = 
√

2 
3αp + γ . (11) 

S 
Accordingly, using the Drucker-Prager yield criterion, when the 
stress state exceeds the yield surface, it corresponds to the following 
condition: 

3αp + γ  <  1 
S . (12) 

2 
 
 

Fig. 6. 2D illustration of the Drucker-Prager yield criterion and numerical 
errors in computational plasticity. 

 
 

3.2 Granular Materials 
The proposed elastoplastic model can be used to capture the dynam- 
ics of purely elastic objects or plastic ones, depending on whether 
or not the Drucker-Prager yield criterion is satisfied (see Figure 4). 
This model is also capable of simulating granular materials [Bui et al. 
2008; Chen et al. 2012]. However, the granular materials directly 
simulated by this model are cohesive (even if the cohesion kc is set 
to 0), acting like wet sands (see Figure 5). We have implemented 
this model using SPH and MPM [Sulsky et al. 1995], using CUDA; 
our observation is that an SPH-based approach is around 4 times 
faster than the MPM-based one. See Figure 5. 

We have introduced an elastic-perfectly plastic model. Theoret- 
ically, the stress state should not lie outside the yield surface (the 
inaccessible region in Figure 6) when plastic deformation occurs. 

The scaling factor r acts on the deviatoric shear stress components 
and the hydrostatic pressure is left unchanged, so: 

s̃ = rs. (13) 

We have discussed two kinds of errors as well as their return map- 
ping algorithms (Equations (10) and (13)). Since the leapfrog algo- 
rithm is used in this work, the above return mapping algorithms 
are applied during the half-time step. 

We have modelled granular materials using the proposed elasto- 
plastic model in conjunction with the return mapping algorithms, 
achieving plausible visual results. Our model can simulate the col- 
lapses of dry granular columns with different friction angles; see 
Figures 7b–7d. It can further capture the varying patterns when gran- 
ular columns with different aspect ratios collapse. When H /R = 2.0, 
the entire column starts to flow immediately. At first, the upper free 
surface of the column remains undeformed and horizontal, but later, 
the top deforms to form a dome: see Figure 7d. When H /R = 0.9, 
a circular area in the upper surface of the column is preserved 
undis- turbed: see Figure 7g. Figure 7 shows collapsing granular 
columns with varying friction angles and aspect ratios. We also 
demonstrate 
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Fig. 7. Sand collapses. (a) initial dry granular column with aspect ratio H /R = 2.0, for (b)–(e). (b)–(d) final states of collapse for friction angles ϕ of 20◦, 30◦, 
and 40◦. (e) final states of collapse without tension cracking treatment for a friction angle ϕ  of 40◦. (f) initial dry granular column for (g) with aspect ratio   
H /R = 0.9. (g) final state of the collapse with friction angle of 40◦. 

 

the benefit of incorporating the tension cracking treatment: see 
Figure 7e. Without this term, the sand forms clumps and exhibits 
cohesive behavior. 

4 PHASE-FIELD MULTI-MATERIAL SIMULATION 
In this section, we first review the energy-driven multi-fluid 
simula-tion proposed by Yang et al. [2015], and then show how to 
extend this framework to handle other phases. 

4.1 Phase-Field Method 
The phase-field model was established mainly for solving interface 

where LAC is the mobility. For simplicity, we adopt the same ξ as 
in the Cahn-Hilliard equation. This is known as the Allen-Cahn 
equation [Allen and Cahn 1972], which appears to have not been 
previously used in computer graphics. 

4.2 Governing Equations 
We make use of the momentum equation for motion, the Cahn- 
Hilliard equation for the evolution of the concentration variable, 
and the Allen-Cahn equation for the evolution of the phase variable. 
We assume the system has M materials with N possible phases. 

Du 1 

problems. The method has been used to describe solidification pro- 
cesses, as well as microstructure evolution at the interfaces of solids 
and liquids. Yang et al. [2015] used the Cahn-Hilliard equation [Cahn 

Dt = ρ (−∇p + ∇ · s ) + fext, (17) 

Dcm = ∇ · (LC H ∇µm ), (18) 
and Hilliard 1958] to calculate the changes in the fraction of each 
material. The rate of change of each material is given by: 

∂F 
µm = ∂cm 

− ξ 2∆cm , (19) 

Dt = ∇ · (LC H ∇µ ), (14) Dηk = L 
Dt (ξ 2∆ηk − ∂ηk 

), (20) 

where c represents the concentration of the material (we use mass 
fraction like Yang et al.), LC H denotes its degenerate mobility, and µ 
is its chemical potential, related to the Ginzburg-Landau free energy 
density. The latter is composed of a bulk part and an interface part, 
and can be expressed as: 

µ = ∂F 
ξ 2∆c, (15) 

∂c 
where F is the Helmholtz free energy density, and ξ is associated 
with diffuse interfaces; it introduces an internal length scale (inter- 
face thickness). Yang et al. [2015] integrated their model into the 
position-based fluids approach, achieving real-time performance. 

As explained in Section 1, we introduce an extra phase variable η 
to handle multiple phases consistently and continuously. η  is  used 

where s is the deviatoric stress for a solid (see Section 3) or the 
viscosity tensor for a fluid (when Equation (17) becomes the Navier- 
Stokes equation). cm and ηk are respectively the m-th material’s 
concentration and the k-th phase of a given particle. For simplicity, 
we set ξ = 0.01 regardless of the type of the material or the state 
of phase. LC H , LAC are both material dependent. However, unlike 
density and viscosity, the values of LC H , LAC are set constant during 
simulation for simplicity. The external force fext includes gravity, 
as well as interactive forces between materials [Yang et al. 2015], 
etc. For a consistent labeling convention, we use subscripts k, l to 
represent phases, m for materials, and i, j for particles. 

The concentrations of the materials and the phase variables must 
satisfy the constraints: 

to describe the current state of each particle in a continuous manner. 
For example, we may take the value one to mean solid and zero for 
liquid; across an interface, the value varies smoothly from one to 

M −1 

m=
0 

 
cm = 1, 

N −1 

k =0 
ηk = 1, cm , ηk ∈ [0, 1]. (21) 

zero. The introduced phase variable η is considered as the proportion 
of a state. Unlike the concentrations of materials, the phase-field 
variables are not conserved. Real-world phenomena evolve from 
high-energy states to low-energy states. We assume the system 
locally tends to minimize energy and to conserve concentrations of 
materials at the same time. Therefore, we represent the evolution 
of the phase variable using: 

Dη = LAC (ξ 2∆η − ∂F 
), (16) 

To meet the constraints, we adopt a post-correction process, as 
do Ren et al. [2014], Yang et al. [2015] and Yan et al. [2016]. For 
simplicity, we use c, η to represent the vector of materials and 
phases of a given particle in the rest of this paper. It is a vector 
of three elements, whose entries with indices 0, 1, 2 represent the 
proportions of solid, liquid and gas respectively. Since we focus on 
the first two phases, η2 is always 0 in this work. 

Temperature is important when simulating phenomena involv- 
ing phase change. To model heat flow, we use a similar evolution 

AC 
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k 
∈ { } 

− 

� 

∇ 

˜ 

− 

k 2 

(T̃  

+ T cm ln(cm ) 
VM 

equation to that used by Stomakhin et al. [2014], adding an extra 
source term for the phase transition: 

VM is taken to be a constant. RG is the gas constant. If cm is smaller 
than a threshold (10−4 in our examples), the particle is considered 

dT dη to be free of the m-th material. q is a monotone function on [0, 1] 
CH dt + Z dt = ∇ · (CT ∇T ), (22) 

where CH is the heat capacity per unit volume, Z  is  the  latent 
heat per unit volume, and CT is the thermal conductivity. For each 
particle at a given time, the phase change is considered to occur 
between two phases, e.g., phase k, l (in this work, solid and liquid); 
the η in Equation (22) can be either ηk or ηl , while Z should change 
its sign accordingly. 

Every particle is considered to (potentially) be composed of mul- 
tiple materials and multiple phases, but unlike Ren et al. [2014] and 
Yan et al. [2016], we simply take it as a whole. We thus compute 
aggregate values for every particle at the beginning of each time 
step, for each of the required quantities: density, viscosity, heat ca- 
pacity per unit volume, latent heat per unit volume, and thermal 
conductivity. For simplicity, we use weighted averages: 

M�−1 

used for interpolation, satisfying q(0) = 0 and q(1) = 1; it is chosen 
according to the situation. For example, if we use q(ηk ) = η2 (3  
2ηk ), k 0, 1, 2 , it satisfies q′(0) = q′(1) = 0, which ensures that 
the minima of the free energy are at ηk = 0 and ηk = 1 (i.e. 
pure phase states) regardless of the temperature. However, when 
simulating a single material’s phase transition, the phase-change 
process will not be triggered if only one phase exists in the initial 
stage. We then instead use q(ηk ) = ηk . 

The proposed model can be used to capture simulations with 
multiple phases including solid, liquid and gas. In this paper, we 
simply focus on two phase examples involving solid and liquid. 
If additional constraint are introduced [Macklin et al. 2014], our 
approach can be extended to consider gaseous phase, which is not 
the main focus of this work. Thus, N in Equation (25) is set to 2 in our 
examples. Then only (Z0, 1 )m and (T0, 1 )m appear in Equation (25), 

A = 
m=0 

N −1 
B = 

k =0 

cmAm , (23) 

 
ηk Bk , (24) 

to model phase change between liquid and solid. 
 

4.4 Continuous Interfaces between Phases 
Materials in different phases obey different physical laws. For in- 
stance, in Equation (17), s denotes the deviatoric stress for solids, but 

where m and k are respectively the material and phase indices. A 
and B are continuous variables; the former is mainly influenced by 
the type of the material, and the latter by the state of the phase, 
respectively. In this paper, only the deviatoric stress is of the latter 
type. 

4.3 Unified Helmholtz Free Energy Density 
We use c and η respectively to describe the concentrations of ma- 
terials and the states of phases. As explained in Section 4.2, the 
evolutions of c and η are driven by the Helmholtz free energy den- 
sity F . In contrast to the work of Yang et al. [2015], our Helmholtz 
free energy density works on both c and η. We thus call it the uni- 
fied Helmholtz free energy density. It plays a key role in guiding 
phase-field multi-material simulations. 

the viscosity tensor for fluids. To obtain this value, the velocity gra- 
dient is needed. When calculating the velocity gradient in standard 
SPH, only neighboring particles in the same state are taken into 
consideration. This is problematic if particles have mixed phase. To 
calculate the aggregate deviatoric stress, deviatoric stresses for both 
liquid and solid phases are needed. Each depends on its own veloc- 
ity gradient, while the particle only has a bulk velocity. To address 
this issue, previous works simply set each particle to a particular 
phase according to its concentration fraction, temperature and so 
on. However, we adopt a continuous phase interface: a particle at 
the interface can be in multiple phases. We resolve this issue by 
computing the velocity gradient for phase k of particle i as follows: 

(∇ui )   = 
�

Vj 
(ηk )i  + (ηk )j (uj  − ui )∇Wi j , (26) 

 

both the concentration fraction c and phase fraction η. Since phase 
change typically depends on temperature, it must be taken into 
consideration. Garcke et al. [2004] defined the bulk free energies for 
individual phases. Since our simulations involve multiple phases, 
with the help of the interpolating function q, we define the final free 
energy function for phase-field multi-material simulation to be: 

 

where Wi j is a symmetric kernel function; we use a spiky kernel  
for gradient calculation following the work by Müller et al. [2003]. 
Vj is the volume of the neighboring particle j. (ηk )i denotes the 
k-th phase variable for particle i. As we only consider solids  and 
liquids, we use (   ui  )k  to calculate the appropriate tensor for  phase 
k.  Finally,  as  we  assume  that  the  deviatoric  stress  is  mainly 

N�−1 
 

M�−1 ( T − (Tk,l )m ( 
 

 

 

\ influenced by phase, we use Equation (24) to obtain the aggregate 

k,l =0,k <l 
m=0 M�−1 ( 
RG

 

 

 

k,l m 

\ ( 

 
(25) The use of continuous interfaces is of benefit in the implementa- 

tion of a multi-phase, multi-material framework, as no extra param- 

 

 
where (Zk,l )m  and (T̃k,l )m  are respectively the latent heat per unit 
volume and the phase transition temperature of the pure material m 
when a phase transition occurs from phase k to phase l . (Zk,l )m = 
(Zl,k )m , (T̃k,l )m  = (T̃l,k )m  for simplicity. CV  is the specific heat, 
which is assumed to be independent of c and η. The molar volume 

The phases of particles can be mixed, thereby closer to real physical 
behavior. Although existing methods can produce similar visual ef- 
fects, our method offers a unified treatment to seamlessly and easily 
handle multi-phase, multi-material simulations including transitions 
between phases. 

m=
 

m=
 

) 
F 

 

j 
j The unified Helmholtz free energy density must be related to 

cm (Zk,l )m 

q(ηk ) − q(ηl ) 

deviatoric stress. The whole process is summarised in Algorithm 1. 

− CV T ln(T ) − 1 , eter is needed to label the phase (solid, liquid or gas). This feature 
also avoids the computational effort needed to update such labels. 
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Algorithm 1: Aggregate Deviatoric Stress Computation 
 

 

Input: η, u , s from the last step 
Output:  s  for the current step 
1: for all particles do 

2: for all phases k do 
3: compute ( u )k according to Equation (26) 
4: compute sk using ( u )k : if phase k is solid, use Equation (5), if 

liquid, use the standard viscosity tensor 
5: end for 
6: compute aggregate s using Equation (24) 
7: end for 

 
 

 
Algorithm 2: Simulation Loop for Multi-Phase, Multi-Material Modelling 
Framework 

 

1: for all particles do 
2: compute aggregate values using Equation (23) 
3: end for 
4:  for all particles do 
5: compute thermal diffusion according to Equation (22), and update 

the temperature 
6: compute pressure using Tait’s equation 
7: end for 
8: for all particles do 
9:  update c and η using the Cahn-Hillard Equation (18) and the 

Allen-Cahn Equation (20) respectively 
10: end for 
11: for all particles do 
12: compute pressure force using standard SPH approach 
13: compute deviatoric stress using Algorithm 1 
14: compute artificial viscosity using Equation (27) and stress 

following [Monaghan 2000] 
15: compute external forces 
16: end for 
17: for all particles do 
18: advance the particle 
19: end for 

 
 

 
4.5 Artificial Viscosity and Stress 
When simulating solids including deformable bodies and granular 
materials using particle-based methods, physical oscillations are 

 

 
 

Fig. 8. Concentration and phase evolution. Water is poured onto two piles of 
soluble and insoluble grains. The water particles are invisible. Left: diffusion 
state of concentration at some given time (colors: blue: water, red: soluble 
granular material, white: insoluble but wettable granular material). Right: 
diffusion state of phase at the same time (color: blue: liquid, red: solid). 

 

Table 1. Controlling concentration and phase evolution for various phenom- 
ena. 

 
Phenomena Concentration Evolution Phase Evolution 

Solid-Fluid Coupling ✗ ✗ 

Phase Transition ✗ ✓ 

Wetting ✓ ✗ 

Dissolving ✓ ✓ 

 
 

speed of sound, and νi j , ρi j are respectively the average viscosity 
coefficient and density of particles i and j. We precompute the 
aggregate viscosity and density of every particle at the beginning 
of every step, to avoid treating miscible and immiscible particles in 
different ways [Ren et al. 2014; Yan et al. 2016]. 

Tensile instability is commonly observed in SPH simulations for 
both liquids and solids. We overcome this problem by using the 
artificial stress term derived by Monaghan [2000]. 

The final SPH formulation for the momentum equation in con- 
junction with the artificial viscosity and stress of particle i is given 
by: 

Dui   = 
� ( σi  + 

σj  − Πi j + (Ri + Rj )
\
∇Wi j + ( fext )i , (28) 

 

appear mostly in the initial stages of simulation, particularly if the 
Courant–Friedrichs–Lewy (CFL) condition is not satisfied (e.g., a 
particle travels more than a certain fraction of its support radius 
in one time step). To improve numerical stability and to damp out 
undesirable oscillations, a dissipative term may be introduced into 
the pressure term, as suggested by Yan et al. [2016], who pointed 
out that viscosity plays an important role in preventing particle 
penetration. We therefore also apply an artificial viscosity term to 
handle fluid-solid coupling. This term is given by: 

 
where Ri is the artificial stress of particle i. We adopt the approx- 
imations of spatial derivatives for SPH simulations suggested by 
Ihmsen et al. [2014]. 

4.6 Overall Algorithm 
Pulling all of the above ideas together, the main loop of our simula- 
tion approach is as given in Algorithm 2. 

5 APPLICATIONS 

Πi j  = 

 νi j 

−acs Ωi j + b 
Ω2 

 
 

ρi j 

 
, (27) 

We have proposed use of a concentration variable c and a phase 
variable η to describe how concentration and phase evolve sep- 
arately. Table 1 shows how these may be controlled to simulate 

0, vi j · xi j ≥ 0 

where i, j are particle indices, Ωi j   = hvi j  · xi j /(|xi j |2  + 0.01h2 ), 
xi j = xi − xj , vi j = vi − vj , a, b are viscosity coefficients, cs is the 

various challenging real-world phenomena. For instance, to capture 
phase transitions such as melting and solidification, we enable the 
evolution of phase, while not allowing concentrations to evolve (i.e. 

j 
j often observed due to instability of the numerical solutions. They 
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q(η  ) η   (    −   η 
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Table 2. Performance; particle numbers change in some examples as water 
is added; our method is about 3 times faster than [Yan et al. 2016] 

 
Example materials phases particles ms/step 

Deformable Jelly 1 1 50k 9.6 

Dry Sand (H /R = 0.9) 1 1 48k 10.2 

Dry Sand (H /R = 2.0) 1 1 100k 15.0 

Butter Bunny 1 2 276k 24.1 

Egg 2 2 180k 20.8 

Dissolving Bunny (our method) 2 2 110k–260k 36.2 

Dissolving Bunny ([Yan et al. 2016]) 2 2 110k–260k 96.4 

Soluble/wettable Granules 3 2 200k–400k 46.4 

Bubble Tea 4 2 320k–600k 61.0 

 
 

we set the mobility to 0). We enable both concentration and phase 
to evolve when simulating solid dissolution. 

To simulate phase-change phenomena, we set the original phase 
to 0, and the target phase to 1. The temperature T in Equation (25) 
triggers the evolution of phase. For cases including solid wetting 
and dissolution, the temperature does not play a key role, so we set 
it to a constant. The evolution of concentration occurs at interfaces 
according to the Cahn-Hillard equation (18). We set the monotone 
function in Equation (25)  to   2   3     2     , so the evolution 

of phase starts at the interfaces of ph
k
ases thanks to the Laplacian 

term in Equation (20) (The SPH formulation of the Laplacian op- 
erator contains a gradient term [Ihmsen et al. 2014]). To capture 
phenomena like dissolution of solids, the evolution of concentration 
interacts with the evolution of phase, and both only occur at inter- 
faces. Figure 8 shows a snapshot of the differences in concentration 
and phase evolution in the same scenario as Figure 11 at a given 
time. 

Decoupling the concentration and the phase leads to a straight- 
forward and flexible approach to capture a variety of multi-material 
and multi-phase interactions as illustrated in Table 1. 

6 RESULTS 
6.1 Examples 
In this section, we present various examples to demonstrate the 
range of simulations that our method can handle; supplementary 
videos are also provided. Key parameters used in the simulations 
are given here; further details of parameters can be found in the 
supplementary material. 

Deformable Jelly: the proposed elastoplastic model can simulate 
both purely elastic and plastic object behavior, as shown in Figure 4. 
An elastic jelly (left) and two plastic jellies (middle and right) are 
dropped onto a plane. The elastic jelly rebounds and recovers its 
shape, while the plastic jellies deform irreversibly with different 
degrees of plasticity. 

Dry and Wet Sand: Figures 5 and 7 shows that our elastoplastic 
model is capable of simulating both dry, non-cohesive sand, and 
cohesive, wet sand by choosing whether to use return mapping 
algorithms or not. Our SPH-based approach is about 4 times faster 
than the MPM-based one. Our method can simulate the collapses 

of dry granular columns with different angles (see Figures 7b–7d). 
We also demonstrate that the behavior of the collapse of an initially 
vertical cylinder of granular materials depends on the  aspect ratio 
H /R, where H and R are its initial height and radius respectively 
[Lube et al. 2004] (see Figures 7d and 7g). 

Melting and Solidification: our multi-phase, multi-material 
model can be used to capture a wide range of phase-changing phe- 
nomena including melting and solidification. Figure 10 presents the 
melting of a butter bunny on a hot pan. The simulation involves 
one material (butter) with two phases (solid and liquid). We cap- 
ture melting by enabling diffusion of the phase variable. Since the 
initial conditions are single-phase, we set the monotone function 
q(ηk ) = ηk . Figure 1 demonstrates the frying of an egg. This is 
a two-material (egg white and egg yolk) system with two phases 
(solid and liquid). The egg white and egg yolk do not mix in this 
case, so any given particle contains only one material. We initialize 
the egg white and the egg yolk with different values of thermal 
conductivity [Yang et al. 2016] to ensure different speeds of spread 
of phase change. 

Dissolving Bunny: Figure 9 demonstrates the dissolution pro- 
cess of a bunny. We also provides a comparison with results by Yan 
et al. [2016] (see the supplementary video). Our method achieve 
comparable results and is about 3 times faster (see Table 2), as we 
avoid the use of computationally expensive drift velocity and an 
hypoplastic model. 

Soluble and Wettable Granular Materials: Figure 11 show 
advantages of our model over previous methods. Two piles of soluble 
coffee granules and sands interact with water from above poured 
onto them. To simulate soluble coffee granules, we enable diffusion 
of both concentration and phase variables, but to simulate insoluble 
sand grains, we disable the diffusion of the phase variable. (The 
density ratio of granular material to water is 2 : 1 in each case). 
Here, we assume the wettable sand and water slightly mix with each 
other until reaching a saturation point: we assume a sand particle 
can contain at most 5% water. 

Bubble Tea: to demonstrate challenging real-world phenom- 
ena with multiple materials and phases, as shown in Figure 12, we 
simulate the making of bubble tea, a drink that contains soluble 
coffee granules, wettable elastoplastic tapioca pearls, and two liq- 
uids (water and milk). Our method can capture a variety of complex 
interactions in a versatile way. (The density ratios of coffee granules 
vs. tapioca pearls vs. water vs. milk are 2 : 1.5 : 1 : 1). In this 
scenario, we use particle boundary; to prevent particle penetration, 
larger viscosity and artificial viscosity are adopted. We add vorticity 
confinement [Fedkiw et al. 2001; Macklin and Müller 2013] to make 
the fluid less viscous. 

We implemented our algorithm using CUDA on an NVIDIA 
GeForce GTX1080 11GB GPU and 8 Intel Core i7-3770 CPUs; the 
CPUs are relatively unimportant. Performance for the examples 
described above is given in Table 2. The particle numbers shown 
include both fluid and boundary particles. Timing presented are 
averaged running time over the entire simulation. The time step is 
set to around 10−3 s, which is sufficient to achieve stable simulation 
and prevent particle penetration. 
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Fig. 9. Soluble bunny. A deformable bunny dissolves in the water pouring from the pipe, coloring the water red. 

 

 

Fig. 10. Melting a butter bunny on a hotplate. Phenomena such as wave-like spread and free sliding behavior of the unmelted butter can be observed. 

 

 

Fig. 11. Soluble and wettable granular materials. Piles of coffee granules (brown) and sands (yellow) interact with water poured from above onto them. Left: the 
sand is merely wettable if phase evolution is disabled. Right: the coffee granules dissolve, achieved by enabling the evolution of both phase and concentration. 

 

 

Fig. 12. Making of Bubble Tea. A granular coffee column collapses in the goblet, then dissolves in water (pouring from right) and milk (pouring from left). 
 

6.2 Discussion 
Yang et al. [2015] also adopted Cahn-Hilliard equation. Their work 
focused on interactions among multiple fluids; no solids are con- 
sidered. Furthermore, they proposed a user-defined Helmholtz free 
energy density function to artistically control the interactions; while in 
this paper, a unified Helmholtz free energy density function is 
introduced to drive the evolutions of both concerntration and phase. 

Although our examples show some similarities with those of Yan 
et al. [2016], the methods used to produce the results are completely 
different. Yan et al. use drift velocity to capture the diffusion of 
con-centration; thus, in every particle, each concentration has its 
own velocity. Our method however uses a unified energy to drive 
the dif-fusion of both concentration and phase. Every particle is 
considered as a whole; each concentration within a single particle 
shares the 
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same velocity. Our method is much simpler to implement and is also 
more efficient, overall being about 3 times faster than Yan et al.’s 
method (see Table 2). Furthermore, Yan et al. use an elastoplastic 
model to simulate deformable bodies and a hydroplastic model for 
granular materials, which adds complexity. By improving the elasto- 
plastic model to make it capable of modeling granular materials,  
we are able to use a single general formulation for both cases. The 
proposed method models landslides with different failure patterns 
as well as collapsing granular columns with varying aspect ratios, 
which have been largely overlooked in the graphics community. All 
the multi-material, multi-phase examples presented could not pre- 
viously be achieved in such a straightforward, easy-to-implement, 
fast and unified way. 

 

7 CONCLUSION AND FUTURE WORK 
We have extended the energy-based multi-fluid model [Yang et al. 
2015] to simulate a wider range of multi-phase, multi-material sys- 
tem including both liquids and solids, by incorporating the phase- 
field method. Our proposed method can distinguish between phases 
and materials, and treats them independently. By doing so, it be- 
comes simpler to capture challenging real-world phenomena involv- 
ing multiple materials and multiple phases. Our examples demon- 
strate the effectiveness of the proposed unified simulation frame- 
work. 

We use a linear elastoplastic model, as it is simple and versatile, 
and enables modeling of a large variety of solid behavior, including 
deformable bodies, granular materials, and cohesive soils. How- 
ever, when animating purely elastic objects, this model is unstable 
to capture large elastic deformation using SPH, due to numerical 
error of stress-rate accumulation, as simulation continues. In our 
experiments, smaller time steps can ensure longer time of stable 
simulations, but it cannot solve the problem. More investigation is 
needed to address this issue. 

The proposed model is in principle capable of capturing gaseous 
phenomena. However, special techniques are needed for smoke sim- 
ulation in current SPH based solvers [Macklin et al. 2014; Ren et al. 
2014], and these are not compatible with the governing equations 
for liquids or solids, making it tricky to incorporate smoke within 
our new framework. Since only two phases, e.g., liquid and solid 
are considered in this work, it is possible to use a single value of η 
(see explanations in Section 4.1) rather than a vector η to represent 
the state of materials. We use the vector of phase η to leave room 
for future extensions. 

In this work, we have adopted the simplifying assumption that 
the phase variable acts on the whole particle. For instance, suppose 
a given particle is determined as 50% material A and 50% material B, 
and as 50% solid and 50% liquid; we do not distinguish how much 
of A or B is solid or liquid, but just describe this mixed particle as 
50% solid and 50% liquid overall. Our experiments show that this 
simplification (compared to strictly using a separate phase variable 
for each material) does not prevent us from capturing many com- 
monly observed real-world phenomena. However, phenomena with 
multiple phases and multiple materials are actually more complex. 
For instance, the given particle above could be that all material A is 

solid and all material B is liquid, or vice versa, or various combina- 
tions in between. In the future, we hope to investigate the degree to 
which it is beneficial to use a more precise representation. 

Crystallization is also commonly observed in daily life, e.g. in 
ice formation on a window. The process of crystal growth involves 
both concentration and phase evolution, so in principle, is within 
the scope of our model. Further effort is needed in future to capture 
this phenomenon. 

We use the weakly compressible SPH (WCSPH) in our work, as 
it can readily integrate into our method. However, it suffers from 
compressibility compared with the MPM solver (see Figure 5 and 
the supplementary video). The position based fluids (PBF) [Mack- 
lin and Müller 2013] and MPM have gained popularity in recent 
years. It would be promising to integrate our method to these two 
frameworks. 
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and thus: Table 3. Model parameter determination. 
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B DRUCKER-PRAGER APPROXIMATIONS 

 

 
Fig. 13. Drucker-Prager approximations. 

 

The Drucker-Prager yield criterion is a pressure-dependent model 
to estimate the stress state for determining whether a material has 
failed or undergone irreversible plastic deformation. The Drucker- 
Prager yield surface is a smooth version of the Mohr-Coulomb yield 
surface. A variety of Drucker-Prager approximations have been 
proposed to match the Mohr-Coulomb yield surface as shown in 
Figure 13. 

Compression cone: matching Mohr-Coulomb yield sur- 
face in triaxial compression; 
Extension cone: matching Mohr-Coulomb yield surface 
in triaxial extension; 
Internal cone: inscribed inside Mohr-Coulomb yield sur- 
face; 
Compromise cone: an average between extension and 
compression approximations. 

Table 3 summarizes determination of model parameters with 
respect to friction angle ϕ, cohesive coefficient kc , and dilatancy 
angle ψ [Wang and Sitar 2004]. 

Experiments show that different failure patterns arise using dif- 
ferent approximations [Schwiger 1994]. The appropriate choice of 
approximation is application-dependent. When using an elastoplas- 
tic model, elastic and plastic deformations often co-occur. In this 

 
   

 
 

work, we use the compression cone model, as small elastic deforma- 
tion can be ignored in comparison with plastic deformation when 
simulating granular materials. 

• 

• 
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