
Efficient data streaming multiway aggregation
through concurrent algorithmic designs and new

abstract data types∗

Vincenzo Gulisano, Yiannis Nikolakopoulos, Daniel Cederman
Marina Papatriantafilou and Philippas Tsigas

{vinmas,ioaniko,cederman,ptrianta,tsigas}@chalmers.se

Abstract

Data streaming relies on continuous queries to process unbounded streams
of data in a real-time fashion. It is commonly demanding in computation
capacity, given that the relevant applications involve very large volumes of
data. Data structures act as articulation points and maintain the state of data
streaming operators, potentially supporting high parallelism and balancing
the work between them. Prompted by this fact, in this work we study and an-
alyze parallelization needs of these articulation points, focusing on the prob-
lem of streaming multiway aggregation, where large data volumes are re-
ceived from multiple input streams. The analysis of the parallelization needs,
as well as of the use and limitations of existing aggregate designs and their
data structures, leads us to identify needs for proper shared objects that can
achieve low-latency and high-throughput multiway aggregation. We present
the requirements of such objects as abstract data types and we provide effi-
cient lock-free linearizable algorithmic implementations of them, along with
new multiway aggregate algorithmic designs that leverage them, supporting
both deterministic order-sensitive and order-insensitive aggregate functions.
Furthermore, we point out future directions that open through these contri-
butions. The paper includes an extensive experimental study, based on a va-
riety of aggregation continuous queries on two large datasets extracted from
SoundCloud, a music social network, and from a Smart Grid network. In all
the experiments, the proposed data structures and the enhanced aggregate op-
erators improved the processing performance significantly, up to one order of
magnitude, in terms of both throughput and latency, over the commonly-used
techniques based on queues.

∗A brief announcement about parts of this work has been accepted at the 26th ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA), 2014 [4]. The research lead-
ing to these results has been partially supported by the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) through the EXCESS Project (www.excess-project.eu) under grant agree-
ment 611183, through the SysSec Project, under grant agreement 257007, through the FP7-SEC-
285477-CRISALIS project, by the collaboration framework of Chalmers Energy Area of Advance
and by the Chalmers Center for E-science.

1

ar
X

iv
:1

60
6.

04
74

6v
1

 [
cs

.D
S]

 1
5

Ju
n

20
16

{vinmas,ioaniko,cederman,ptrianta,tsigas}@chalmers.se

1 Introduction

For data intensive computing that can support continuous complex analysis of large
volumes data, the data streaming processing paradigm emerged as a more appro-
priate alternative to the traditional “store-then-process” one. As emphasized in [7],
the low-latency and high-throughput requirements of such continuous real-time
complex processing of increasingly large data volumes make parallelism a neces-
sity.

In data streaming [28, 1, 6], continuous queries, defined as Directed Acyclic
Graphs (DAGs) of interconnected operators, are executed by Stream Processing
Engines (SPEs) that process incoming data in a real-time fashion, producing re-
sults on an on-going basis. A good portion of the research has so far focused on
leveraging the processing capacity of clusters of nodes and originally centralized
SPEs [1] evolved rapidly to distributed [2] and parallel [10, 16] ones. At the same
time, research has also focused on leveraging multi-core CPUs and GPUs architec-
tures, as discussed in [5, 23, 24]

A parallel data streaming application can be seen as a pipeline where data is
continuously produced, processed and consumed. In a parallel environment the
underlying data structures should provide the means for organizing the data so
that the communication and the work imbalance between the concurrent threads
performing the computation are minimized while the pipeline parallelism is maxi-
mized. Finding the appropriate data structures that fit the needs of an application in
a concurrent environment is a key research issue [25, 19]. Defining and providing
the data structures that meet the needs of concurrent data streaming applications is
a rich issue not addressed in the literature; this is all the more important, given the
high performance demands of the relevant applications.

By shedding light on the data structures, we identify new key challenges to
improve data streaming aggregation, one of the most common and throughput-
demanding monitoring application [9]. In particular, we focus on multiway aggre-
gation, where big volumes of data received from multiple input streams must be
merged and sorted in order to be processed deterministically [10]. Sample applica-
tion scenarios include monitoring applications in the context of social media, where
information could be aggregated to study trends, or in the context of real-time pric-
ing applications in Smart Grids, or in the context of adaptive traffic systems.

Contributions We study data structures as articulation points between pipeline
stages of streaming aggregation. The shared access to the data by the collaborating
threads defines new synchronization needs that can be integrated in the functional-
ity provided by the shared data structures. By studying the use and limitations of
existing aggregate designs and the data structures they use, we motivate the need
for shared data objects appropriate for streaming aggregation. We propose two
types of such objects (T-Gate and W-Hive) and their concurrent and lock-free algo-
rithmic implementations, upon which we build three enhanced multiway aggregate
operators that balance the work among concurrent threads and outperform existing

2

implementations in both order-sensitive and order-insensitive functions. We pro-
vide an extensive study using two large datasets extracted from the SoundCloud1

social media and from a Smart Grid network. For both datasets the enhanced ag-
gregation resulted in large improvements, up to one order of magnitude, both in
terms of processing throughput and latency.

Our contributions open up space for new research questions for the role of
concurrent data structures in parallel data streaming and are expected to influence
significantly the design and implementations of parallel SPEs.

The paper is organized as follows. Section 2 introduces the data streaming pro-
cessing paradigm and the multiway aggregate operator. Section 3 presents the state
of the art implementation of data streaming multiway aggregation and, by rethink-
ing parallelism in this context, discusses how its efficiency can be enhanced by
means of concurrent data structures. Sections 4 and 5 present a detailed overview
of the algorithmic design and implementation of the enhanced operators and data
structures that we propose. In Section 6 we show the liveness and safety proper-
ties, namely lock-freedom and linearizability, of the proposed operators and data
structures implementations. Section 7 presents the experimental evaluation. We
discuss related work in Section 8 and conclude in Section 9.

2 Data Streaming and Multiway Aggregation

A stream is defined as an unbounded sequence of tuples t0,t1, . . . sharing the same
schema composed by attributes 〈ts, A1, . . . ,An〉. Given a tuple t, attribute t.ts rep-
resents its creation timestamp while A1, . . . ,An are application-related attributes.
Following the data streaming literature (e.g., [2, 10]), we assume that each stream
contains timestamp-sorted tuples.

Continuous queries (or simply queries) are defined as DAGs of operators that
consume and produce tuples. Operators are distinguished into stateless or stateful,
depending on whether they keep any state that evolves with the tuples being pro-
cessed. Due to the unbounded nature of streams, stateful operations are computed
over a sliding window, defined by parameters size and advance. Sliding windows
can be time-based (e.g., to group tuples received during periods of 5 minutes every
2 minutes) or tuple-based (e.g., to group the last 10 received tuples every 3 in-
coming tuples). We focus in this paper on time-based sliding windows (or simply
windows). We use POSIX notation2 to specify the periods covered by a window
and assume all windows start at time 0. That is, a window with size and advance
of 10 and 2 seconds, respectively, will cover periods [0,10), [2,12), [4,14), and so
on.

The multiway aggregate operator consumes an arbitrary number of input streams
and is defined by its window’s size and advance, by a function F applied to the
tuples and by an optional group-by parameter K (a subset of the input tuple’s at-

1https://soundcloud.com/
2Defined as the number of seconds elapsed since Thursday, 1 January 1970

3

https://soundcloud.com/

tributes, also referred to as the tuple’s key). Functions F can be order-sensitive
(e.g., forward only the first received tuple) or order-insensitive (e.g., count the
number of tuples) with respect to the processing order of the tuples that contribute
to the same window. If K is defined, function F is computed for each distinct
value of the group-by parameter. In this case, the operator keeps separate windows
not only for different time intervals, but also for different values of K.

We define a winset as the set of windows covering the same time interval for
different values of K. As an example, suppose an aggregate operator consumes
tuples composed by attributes 〈ts, meter, consumption〉 (each referring to the
consumption reported by a meter at time ts) and computes the average consump-
tion for K = meter and for a window with size and advance of 10 and 2 seconds,
respectively. In this case, winsets will hold the windows covering interval [0,10)
for each distinct meter, the windows covering interval [2,12) for each distinct me-
ter, and so on.

Scenarios such as parallel-distributed SPEs [10, 3] and replica-based fault tol-
erant SPEs [2], demand for deterministic aggregation of input tuples. Processing of
a multiway aggregation is deterministic if tuples are processed in timestamp order
(when F is order-sensitive) or if all the tuples contributing to the same window are
processed before producing the result (when F is order-insensitive). To this end, a
parallel execution of a multiway aggregation must ensure that tuples are not simply
processed in the order they are received [10] (i.e., input tuples from different input
streams are not arbitrarily interleaved). To ensure deterministic processing, tuples
from multiple input streams need to be merged into one sequence and sorted in
timestamp order [10], an operation we refer to as S-Merge. We say that a tuple is
ready to be processed if at least one tuple with an equal or higher timestamp has
been received at each input stream (we refer the reader to Section 3 for an example
focusing on the processing of ready tuples).

Definition 1. Let tji be the i-th tuple received from input j. tji is ready to be pro-
cessed if tji .ts ≤ mergets, where mergets = mink{maxl(t

k
l .ts)} is the minimum

among the latest (over l) tuple timestamps received from every input k.

Thus, we can formalize deterministic aggregate operators for both order sensi-
tive and insensitive functions as follows:

Definition 2. An aggregate operator implementation is deterministic if in every
execution it is guaranteed that the output tuples are computed from ready tuples
and they are processed in the order imposed by the respective aggregate function
F .

4

Two tuples with key SM1 have

been received at timestamps 0

and 2. <0,SM1> contributes to

window [0,3) while <2,SM1>

contributes to windows [0,3)

and [2,5).

Upon reception of tuples <4,SM1> and <6,SM1>

1) Add: Tuples <4,SM1>

and <6,SM1> are fetched

from the inputs streams.

2) S-Merge: mergets = 4.

Tuple <4,SM1> is ready to

be processed.

Initial State

time543210

[0,3)
[2,5)

SM1

A

Aggregate

Smart

Meters

Data

Concentrators

Count #alarms of each meter

Window size=3 time units

Window adv=2 time units

SM1

SM2 DC1

DC2

<4,SM1>

<6,SM1>

Multiway aggregation query

<ts,meter> <ts,meter,#alarms>

SM3

4) Output: Result for window

[0,3) (tuple <0,SM1,2>) is

produced.

3) Update: Tuple <4,SM1>

is added to windows [2,5)

and [4,7).

76543210
time

[0,3)
[2,5)

SM1

[4,7)

765432
time

[2,5)

SM1

[4,7)

Figure 1: Sample query to count the power outages reported by smart meters and
sample execution of the aggregate operator for a sliding window with size and
advance of 3 and 2 time units, respectively.

3 Rethinking aggregation’s parallelism: the role of data
structures

The multiway aggregate operator is composed by four main stages:

1. Add: fetching incoming tuples from each input stream,
2. S-Merge: merging and sorting of input streams’ tuples,
3. Update: updating of the windows a tuple contributes to, and
4. Output: forwarding of output tuples.

Figure 1 presents a sample multiway aggregation query used in a Smart Grid
application to count the number of power outages reported by each meter over a
sliding window with size and advance of 3 and 2 time units, respectively. A mesh
network of Smart Meters (SMs) forwards such alarms to a set of Data Concentra-
tors (DCs) [11], which in turn produce the timestamp sorted input streams. Notice
that, being a mesh network, messages generated by the same SM could be for-
warded by distinct DCs. The input tuples’ schema 〈ts,meter〉 specifies the time
ts at which the alarm forwarded by a given meter has been received by a DC. Tu-
ples produced by A are composed by attributes 〈ts,meter,#alarms〉 and specify
the number of alarms generated by each meter for the window starting at time ts.
In the example, the aggregate operator has two input streams. Input tuple 〈4,SM1〉
is received at the first input stream, while tuple 〈6,SM1〉 is received at the second
input stream. The figure presents the different steps performed by the operator for
a given initial state. Notice that, given Definition 1, tuple 〈4,SM1〉 is ready to be
processed while 〈6,SM1〉 is not.

State of the art Widely used SPEs such as Borealis [2] or StreamCloud [10]
perform multiway aggregation by relying on per-input queues to store incoming
tuples. Distinct threads, which we refer to as input threads It, insert tuples to such
queues while a dedicated output thread Ot processes them. Concurrent accesses
are synchronized with the help of locks. Figure 2a presents this design, which we
refer to as Multi-Queue (MQ). The output thread Ot peeks the first tuple in each

5

queue to determine which one is ready to be processed. The same thread is also
responsible for the Update and Output operations. Since Ot is the only thread
in charge of updating windows, no locking mechanism is required to access the
winsets, usually implemented as hash tables to easily support arbitrary numbers of
windows and to locate them quickly given the group-by parameter K.

Parallelization challenges In existing implementations, S-Merge usually relies
on simple sorting techniques, whose cost is linear to the number of inputs. Exam-
ples include the Input Merger operator [10] or the SUnion operator [2]. In order to
prevent such sorting techniques from becoming a bottleneck and allow for the pro-
cessing of tuples coming from arbitrary number of input streams, the first challenge
relies on the (1) parallelization of the S-Merge operation. It should be noticed that,
an enhanced parallel sorting technique should still ensure correct pick-up of ready
tuples. The second challenge relies on the (2) parallelization of the Update stage.
To guarantee deterministic processing (as discussed in Section 2), Update cannot
be invoked in parallel on tuples contributing to the same window and sharing the
same K value (or when no group-by parameter is defined) for order-sensitive func-
tions. This restriction can be relaxed for order-insensitive functions, since the result
of a window would not be affected by the order in which concurrent threads update
it. Since the aggregate operator defines a single output stream to which tuples are
added in timestamp order, we do not take into account the parallelization of the
Output function.

Utilizing concurrent data structures A core challenge in the parallelization of
the pipeline stages of multiway aggregation is the “balancing act” [19] of maxi-
mizing their concurrency while ensuring consistency and correct synchronization.
To this end, the key-enablers that can address such challenge are the data structures,
seen as articulation points between such stages, as well as their efficient algorith-
mic implementations. Efficient implementations of data structures often employ
fine-grain synchronization that can avoid the use of waiting or locking. Lock-free
data structures have been shown to increase applications’ throughput and are part
of the Java and C# standard libraries. The correctness of such implementations
is commonly shown through linearizability [14], which guarantees that, given a
history of concurrent operations, there exists a sequential ordering of them, con-
sistent with their real-time ordering and with the sequential semantics of the data
structure.

In order to parallelize the S-Merge and Update stages, we first explored which
existing concurrent data structures could be used to sort input tuples at insertion
time. In principle, tree-like data structures could provide concurrent logarithmic-
time insertion operations. The need for easily extracting such tuples in timestamp
order would be better addressed by a concurrent skip list (e.g., the one proposed
by [29]) due to its underlying list-like node structure of sorted elements with short-
cuts allowing for fast insertion (cf. Sec. 5.1 for more details on skip lists). Never-

6

Table 1: Methods supported by the data structures
T-Gate W-Hive
insertTuple(tuple,
input)

Inserts a tuple from input
stream in sorted order.

updateWindows(tuple,
thread)

Updates the windows that
the tuple contributes to.

getNextReadyTuple() Returns (once and only
once) the earliest ready tu-
ple (cf. definition 1).

getNextWinSet() Returns (once and only
once) the earliest winset to
which tuples do not con-
tribute anymore.

Window Merged List WiML (Order Insens.)d)Tuple Merged List – Multiple Cons. TuMLMC (Order Sens./Insens.)c)

Multi-Queue MQ (Order Sens./Insens.)a) Tuple Merged List – Single Cons. TuMLSC (Order Sens./Insens.)b)

Out

Output

In

In

Add
S-Merge
Update

Add
S-Merge
Update

W-Hive

wink1

winkn

...

Lock Free
Winset

...

It

It

Ot

t t t t

t t t t

In

In

Out

...

Queue

Add

Add

S-Merge
Update
Output

Queue

It

It

Ot

List

wink1

winkn

...

Winset

In

In

Out

T-Gate

Add
S-Merge

Add
S-Merge

Update
Output

...

It

It

Ott t t t

List

wink1

winkn

...

Winset

In

In

Out

T-Gate

Add
S-Merge

Add
S-Merge

Update Output

Update
...

W-Hive

...

It

It

Ut

Ot

Ut

t t t t

wink1

winkn

...

Winset

Figure 2: Overview of aggregate designs.

theless, a skip list would not differentiate between tuples that are ready and tuples
that are not. Because of that, checking whether a tuple is ready or not would still
be penalized by a cost that is linear to the number of inputs, as is the case for the
multi-queue implementations. Based on this observation, while leveraging the skip
list’s multi-level shortcuts mechanism (allowing for a logarithmic find of the insert
position in the list), we propose new concurrent shared data object types that better
fit the parallelization challenges proper of multiway aggregation. We complement
the qualitative estimation of the reasons that motivated the design and implemen-
tation of new concurrent data structures by comparing them with a lock-free skip
list in Section 7.

4 New abstract data types and aggregate designs

This section overviews our enhanced aggregate operators. For all of them, one
input thread per stream, It, fetches tuples from its respective input stream while
a single output thread, Ot, forwards output tuples. Figure 2 presents the different
designs and describes how operations are assigned to threads. While presenting
the different designs, we discuss the data structures needed to maintain tuples and
winsets, and introduce our concurrent data structures and their APIs (Table 1), with
the functionality of each method.

7

Tuple Merged List - Single Consumer (TuMLSC) This algorithmic design
(Fig. 2b) addresses the first parallelization challenge by performing both Add and
S-Merge in parallel. TuMLSC relies on the Tuple-Gate (T-Gate), a concurrent data
structure whose API provides two methods, whose definitions are given in Table 1.
Method insertTuple(tuple, input) allows for tuples to be inserted, while be-
ing merged and sorted, by multiple input streams in parallel. Method getNext
ReadyTuple() guarantees that no tuple is returned for processing before it is
ready. The T-Gate stores an ordered list of tuples. By keeping track of the latest
added tuple from each input stream, the method can quickly check if the first tuple
in the list is ready. The output thread reads sorted and ready tuples from the T-Gate
and performs the Update and Output stages.

Tuple Merged List - Multiple Consumer (TuMLMC) TuMLMC (Fig. 2c) ex-
tends the TuMLSC , addressing the second parallelization challenge by performing
also the Update operation in parallel. Multiple update threads, Ut, get ready tu-
ples from T-Gate concurrently by invoking getNextReadyTuple() and update
the windows to which each tuple contributes to. Thus, winsets are now accessed
and updated concurrently by the Ut threads. For managing the winsets and syn-
chronizing such access we introduce a second data structure, that we refer to as
Window-Hive (W-Hive).

As the T-Gate encapsulates the logic to differentiate between tuples that are
ready or not, the W-Hive is able to differentiate between the winsets to which
incoming tuples are still contributing and the ones whose results can be outputted.
It provides two methods: updateWindows(tuple, thread) allows for multiple
threads to synchronize and safely create and update active winsets while getNext
WinSet() returns the earliest winset no longer being updated by any thread. This
method is invoked by the output thread Ot, in charge of forwarding the operator’s
output tuples. W-Hive uses similar techniques as the T-Gate to quickly find the
right location of where to insert a new winset. To preserve the correctness of order-
sensitive functions, each update thread is responsible for a distinct subset of the
group-by parameter values K. For this implementation, the number of update
threads can be chosen by the user.

Window Merged List (WiML) This design (Fig. 2d) further enhances the par-
allelization of the aggregate’s stages for order-insensitive functions. Operations
Add, S-Merge and Update are performed in parallel by the It threads. Since WiML
is designed for order-insensitive functions, input tuples do not need to be sorted
before being processed to update the windows they contribute to. The required
synchronization needed to ensure that output tuples for a given winset are out-
putted only after all its contributing tuples have been processed, is managed by the
getNextWinSet() method provided by the W-Hive.

8

5 Aggregates and data structures implementations

In this section we present in detail the aggregate algorithmic implementations and
their supporting data structures. The pseudocode for the baseline aggregate imple-
mentation can be found in Algorithm 2, while the enhanced implementations in
Algorithms 3 and 6. The supporting data structures are presented in Algorithms 4
and 5. Methods’ names have been chosen according to which of the four main
aggregate’s stages specified in Section 3 they implement. In the following, the
group-by value of each tuple is accessed as tuple.key. If no group-by parame-
ter is defined, it is safe to assume all tuples will refer to the same key value (e.g.,
null).

5.1 Preliminaries

A skip list [22] is a data structure that maintains elements in an ordered list and sup-
ports probabilistically logarithmic search, insertion and deletion operations. Essen-
tially, a skip list can be viewed as a traditional linked list where each node, besides
the usual pointer connecting to the next element, has a tower of several pointers that
shortcut over the next elements and connect to nodes later in the ordered list. The
height of the nodes is randomly distributed so that 50% of the nodes have height
1, 25% of them have height 2 and so on. Thus, the higher the level traversed, the
sparser the links are and more nodes are skipped. The basic search routine for a
key k, is to traverse from the highest level shifting to a lower one every time the
current node’s key is greater than k.

One of the main benefits of skip lists over standard tree like data structures is
that regardless of the data and operation distribution there is no need for rebalanc-
ing. This has made it a good candidate for parallel and concurrent implementations,
as the one by [29], since rebalancing will typically require expensive synchroniza-
tion in tree-based implementations.

5.2 Common components

Algorithm 1: Generic window interface and concrete implementation of a
window that sums the value of attribute Ai.

1 interface Window
2 void processTuple(tuple) // update variables
3 Tuple produceOutTuple() // produce output tuple
4

5 class SumWindow : Window
6 int sum = 0
7 void processTuple(tuple)
8 sum += tuple.Ai

9 Tuple produceOutTuple()
10 return Tuple(sum)

9

The base component of the aggregate operator is the Window. It represents a
time interval and provides functionality to aggregate the tuples that contribute to it.
Algorithm 1 shows the window interface and the implementation of a sample sum
aggregation.

As discussed in Section 3, the winset can be implemented as a hash table to
easily support an arbitrary number of windows and to locate them quickly given
the tuple’s group-by parameter K. In the WiML and TuMLMC implementations,
the winset is accessed by multiple threads concurrently. In data streaming appli-
cations the domain of keys for the group-by parameters are typically known in
advance. Thus, the use of a closed addressing hash table is appropriate; specif-
ically, in our algorithmic implementation we are using the lock-free, linearizable
concurrent hash table by Michael [17], mainly due to its implementation simplic-
ity. Alternatively, open addressing schemes like lock-free cuckoo hashing [21]
can be used. Furthermore, the hash table (winset) is a building a block in another
lock-free and linearizable data structure (W-Hive). Therefore, we avoided designs
based on blocking implementations [13] or explicit hardware support [15]. Shun
and Blelloch [26] present a high performing phase-concurrent hash table. In this
model only operations of the same type proceed concurrently, which is a limitation
in the winset use-case since insert and find operations may be concurrent. For the
MQ and TuMLSC implementations, since the access to the winset is sequential, a
sequential implementation of a hash table is sufficient.

5.3 Baseline implementations - MQ

Algorithm 2: MQ

11 Add(tuple, input) // One thread per input
12 queueinput.enqueue(tuple)
13

14 SMergeUpdateOutput() // One thread
15 if(∃i : queuei.isEmpty()) return
16 input = v:(∀i:queuev.peek().ts≤queuei.peek().ts)
17 tuple = queueinput.dequeue()
18 upout(tuple)
19

20 upout(tuple)
21 windowTSs = getTargetWindowTSs(tuple)
22 while(windowlist.first().ts<windowsTSs.first())
23 winset = windowlist.removeFirst()
24 for (window : winset)
25 forward(window.produceOutTuple()) // See L3
26 for (wts : windowTSs)
27 if(!windowlist.contains(wts))
28 windowlist.insert(wts, new WinSet(wts))
29 win = windowlist.find(wts).find(tuple.key)
30 if (win == null)
31 win = new Window()
32 windowlist.find(wts).put(tuple.key, win)
33 win.processTuple(tuple) // See L2

10

This baseline implementation is based on the one used in SPEs such as Borealis
[2] or StreamCloud [10]. The multi-queue design consists of two main methods
(see Algorithm 2). The Add method is used to deliver tuples to the aggregate and
placing them in their respective input queue (L12). The queues are protected by a
lock to allow concurrent access.

The main work is performed by the second method, SMergeUpdateOutput.
It checks all the queues to make sure a tuple has been received from each input
(L15). It then reads the tuple with the lowest timestamp among the inputs (L16-
17). This guarantees that all tuples will be read in timestamp order.

The currently active winsets are stored in a linked list. The method
getTargetWindowTSs creates a list, windowTSs, of the starting timestamps
of the windows that the tuple contributes to. If the starting timestamp of a winset in
the window list is lower than the earliest timestamp in windowTSs, the aggregated
results of the former can be outputted (L22-25). This is safe since all future tuples
will have an equal or higher timestamp and will not contribute to the winset. If the
new tuple contributes to a time interval that does not have a corresponding winset
yet, the winset is created and added to the list (L27). If the window does not exist
for the tuple’s key, it is also created (L30). Finally, the window processes the tuple
(L33).

Figure 3 presents how stages Add, S-Merge, Update and Output (and their re-
spective code lines) are distributed to threads It and Ot for the MQ implementation
(stages assigned to It and Ot threads are colored in blue and red, respectively).

t t t t

t t t t

In

In

Out

Queue

Queue

It

It

Ot

List

wink1

winkn

...

Winset

t

t

Add

S-Merge Update

Add

Output

Algorithm 2,
Line 12

Algorithm 2,
Lines 15-18

Algorithm 2,
Lines 21,26-33

Algorithm 2,
Lines 21-25

Figure 3: Visual representation of how stages (and their respective code lines) are
distributed to threads for the MQ implementation.

5.4 TuMLSC and TuMLMC

These aggregate designs rely on the T-Gate data structure (API in Table 1 and
further description in Section 5.5). The T-Gate is used to pre-sort all arriving tuples
and merge them into one stream. In contrast with the MQ implementation, the S-
Merge operation is now executed at the first stage in the pipeline.

TuMLSC uses a single thread to read the sorted tuples from the T-Gate, update
the windows, and output the aggregated results. This is done using the method
UpdateOutput, which shares much functionality with the MQ design (L37).
TuMLMC allows multiple threads to read from the T-Gate and update the windows

11

Algorithm 3: TuMLSC , TuMLMC

34 AddSMerge(tuple, input) // One thread per input
35 tgate.insertTuple(tuple, input) // See L89
36

37 UpdateOutput() // TuMLSC only
38 tuple = tgate.getNextReadyTuple() // See L82
39 windowTSs = getTargetWindowTSs(tuple)
40 // Produce results for windows no longer updated
41 while(windowlist.first().ts<windowsTSs.first())
42 winset = windowlist.removeFirst()
43 for (window : winset)
44 forward(window.produceOutTuple())
45 // Update windows
46 for (wts : windowTSs)
47 if(!windowlist.contains(wts))
48 windowlist.insert(wts, new WinSet(wts))
49 win = windowlist.find(wts).find(tuple.key)
50 if (win == null)
51 win = new Window()
52 windowlist.find(wts).put(tuple.key, win)
53 win.processTuple(tuple)
54

55 Update() // Multiple threads - TuMLMC only
56 tuple = tgate.getNextReadyTuple() // See L82
57 if (tuple == null) return
58 if(¬tuple.hashToThread(threadid)) return
59 whive.updateWindows(tuple) // See L125
60

61 Output() // One thread - TuMLMC only
62 winset = whive.getNextWinSet() // See L117
63 if(winset == null) return
64 for(window : winset)
65 // Output the result of the window
66 forward(window.produceOutTuple())

12

in parallel. This requires support for concurrent handling of the winsets. The W-
Hive (API in Table 1 and further description in Section 5.6) is used to provide
lock-free winset management. If the aggregate opertor’s function is order-sensitive
(e.g., forward only the first received tuple), tuples contributing to the same window
cannot be processed in parallel by multiple threads. Hence, a hash function based
on the group-by attribute is used to assign input tuples to existing threads.

5.5 T-Gate

Algorithm 4: T-Gate

67 Node head, update[maxlevels] // Thread local variables; maxlevels is a
constant parameter

68

69 def Node
70 Node next[maxlevels]
71 Tuple tuple
72 int input
73

74 initializeTGate()
75 tail = new Node()
76 tmp = new Node() // tmp is the temporary head
77 for (i=0 to maxlevels-1) // all levels point to tail
78 tmp.nexti = tail
79 for (i in input ids)
80 insertTuple(new Tuple(), i) //insert one dummy tuple per input
81

82 getNextReadyTuple()
83 next = head.next0
84 if(next 6=tail ∧ writtennext.input 6=next.tuple)
85 head = next
86 return next.tuple
87 return null
88

89 insertTuple(tuple, input)
90 nodeheight = getLevelHeight()
91 newnode = new Node(tuple, input)
92 curnode = updatemaxlevels−1

93 for(i=maxlevels-1 downto 0)
94 next = curnode.nexti
95 while(next 6=tail ∧ next.ts<tuple.ts)
96 curnode = next
97 next = curnode.nexti
98 updatei = curnode
99 for(i=0 to nodeheight)

100 levelinsert(updatei, newnode, tuple.ts, i)
101 writteninput = newnode
102

103 levelinsert(priornode, newnode, ts, level)
104 while(true)
105 next = priornode.nextlevel
106 if(next==tail ∨ next.ts>ts)
107 newnode.nextlevel = next
108 if(CAS(priornode.nextlevel, next, newnode)) break
109 else fromNode = next

13

The T-Gate data structure (see Algorithm 4) maintains a merged, timestamp
ordered list of the tuples coming from the input streams.

The insertTuple method inserts a tuple at its correct position in the list,
given its timestamp. First the number of shortcut levels is decided (L90), according
to the standard skip list distribution [29]. Each thread keeps in the update array a
pointer to the last accessed node in each level (L92). Since all new tuples added by
the same thread will have an equal or higher timestamp than the last inserted one,
this lowers the number of nodes that a thread has to examine.

Once all the levels are searched,the node is inserted on each level it should be
part of with the use of the levelinsert helper method (L100). This method
verifies that the conditions for the prior node in each level still apply, otherwise (in
case some newer node has been inserted in between) it traverses the current level
of the list until the right position is found. The node is then inserted by using the
compare and swap (CAS) atomic instruction. In case of failure, i.e. when another
thread achieves an insertion at the same place, the loop retries the search. When
the node has been inserted, the written array is updated to hold a reference to
the new node (L101). The index into the array is the input stream id. This is done
to make sure a tuple is not read until we have received a new tuple with a higher or
equal timestamp from all the other input streams.

The getNextReadyTuple method traverses the lowest level of the list to
return tuples in timestamp order. Each thread keeps its local head pointer having
its own handle to the list and advances this pointer in each successful call. A tuple
pointed by the head can be returned if it is not the last one added by any input
stream (the latter ensures that if a tuple is returned, it is indeed ready). It is useful
to point out that in the case of just one tuple per input stream being present in
the data structure, according to Definition 1, the tuple with the smallest timestamp
is ready. However, the presented implementation will not return this tuple until
another one with higher timestamp arrives from the same input stream. This is
done for implementation simplicity, since it does not compromise the correctness
according to Def. 1, and does not affect the high input rate scenarios which we
focus in this paper.

Finally, during the initialization of the data structure (L74), one dummy tuple
per input is inserted to ensure the correct semantics of the getNextReadyTuple
are preserved until all input streams start delivering tuples.

Nodes can be freed when they are no longer accessible (directly or indirectly)
from the thread local head and updatemaxlevels−1. For this reason, several mem-
ory reclamation techniques such as hazard pointers can be applied [18, 29], while
also garbage collection can be exploited. In the Java based implementation of our
prototype that is evaluated in Section 7, we rely on the default garbage collector.

5.6 W-Hive

The W-Hive (cf. Algorithm 5) data structure provides lock-free management of
winsets. The updateWindowsmethod adds a tuple to each window it contributes

14

Algorithm 5: W-Hive

110 Node readhead, inserthead, tail
111

112 def Node
113 Node next[maxlevels]
114 Timestamp ts
115 WinSet winset
116

117 getNextWinSet()
118 if(readhead.next0==tail) return null
119 if(readhead.next0.ts∈written) return null
120 readhead = readhead.next0
121 if(readhead.levels==maxlevels)
122 inserthead = readhead
123 return readhead.winset
124

125 updateWindows(tuple, thread)
126 windowTSs = getTargetWindowTSs(tuple)
127 writtenthread = windowTSs.first()
128 for(wints : windowTSs)
129 curnode = inserthead
130 for(i = maxlevels-1 downto 0)
131 next = curnode.nexti
132 while(next!=tail ∧ next.ts ≤ wints)
133 curnode = next
134 next = curnode.nexti
135 updatei = curnode
136 if(curnode.ts != wints)
137 winset = new WinSet(wints)
138 levels = getLevelHeight()
139 newnode = new Node(wints, winset)
140 curnode = levelinsert(update0, newnode, wints, 0)
141 if(curnode == newnode)
142 for(i=1 to levels-1)
143 levelinsert(updatei, newnode, wints, i)
144 win = curnode.winset.find(tuple.key)
145 if(win==null)
146 win = new Window()
147 curnode.winset.put(tuple.key, win)
148 win.processTuple(tuple)
149

150 levelinsert(priornode, newnode, wints, level)
151 while(true)
152 next = priornode.nextlevel
153 if(level == 0 ∧ next.ts == wints) return next
154 if(next == tail ∨ next.ts > wints)
155 newnode.nextlevel = next
156 if(CAS(priornode.nextlevel, next, newnode) break
157 else fromNode = next
158 return newnode

15

to. A reference to the earliest such window is saved in the written array for
each thread (L127). This is used to keep track of when winsets are no longer being
updated (L119). For each window the tuple contributes to, the method traverses
the list to locate the winset with the same timestamp as the window. This is done
in the same manner as when inserting a node into the T-Gate (L130-135). If the
winset is found, it is searched to find the correct window for the tuple’s key (L144).
If there is no window for the key, a new window is inserted into the winset with the
correct key (L147). The tuple is then added to the window. If no winset is found for
the timestamp, a new winset and corresponding node to hold it are created. They
are inserted into the list in a similar manner to the T-Gate. The difference is that
another thread might try to create a winset for the same timestamp concurrently. If
this happens and the other thread manages to insert it, then the insertion must be
canceled and the other winset will be used instead (L153).

The getNextWinSet operation returns the next winset that is no longer be-
ing updated by input tuples. It is assumed that it will only be called by a single
thread. If no thread updated any of the windows in the first winset of the list the
last time it received a tuple, it can be assumed that no more tuples will contribute to
the winset in the future, as each thread receives tuples in timestamp order (L119).
If the new head node for the getNextWinSet operation is part of all shortcut
levels, it is made the new head node for the updateWindows method. Nodes
and winsets with a timestamp lower than the ones referenced by inserthead
and readhead can be safely freed or automatically garbage collected.

Figure 4 presents how stages Add, S-Merge, Update and Output (and their
respective code lines) are distributed to threads It and Ot for the TuMLSC im-
plementation (stages assigned to It and Ot threads are colored in blue and red,
respectively). Similarly, Figure 5 shows how such stages are distributed to threads
It, Ut and Ot for the TuMLMC implementation (stages assigned to It, Ut and Ot

threads are colored in blue, red, and yellow, respectively).

In

In

Out

T-GateIt

It

Ott t t t

List

t

t

Add, S-Merge

Add, S-Merge

Update

Output

Algorithm 3,
Line 35

Algorithm 3,
 Lines 38,39,46-53

wink1

winkn

...

Winset

Algorithm 3,
Lines 38-44

Figure 4: Visual representation of how stages (and their respective code lines) are
distributed to threads for the TuMLSC implementation.

5.7 WiML

The WiML design (see Algorithm 6) is suitable only for aggregate operator’s func-
tions F that are order-insensitive, since it does not sort the tuples prior to insert-

16

In

In

Out

T-Gate W-HiveIt

It

Ut

Ot

Ut

t t t t

wink1

winkn

...

Winset

t

Add, S-Merge

t

Add, S-Merge

Algorithm 3,
Line 35

Update

Update

Output

Algorithm 3,
Lines 56-59

Algorithm 3,
Lines 62-66

Figure 5: Visual representation of how stages (and their respective code lines) are
distributed to threads for the TuMLMC implementation.

Algorithm 6: WiML

159 AddSMergeUpdate(tuple, input) // One thread per input
160 whive.updateWindows(tuple, input) // See L125
161

162 void Output() // One thread
163 winset = whive.getNextWinSet() // See L117
164 if(winset == null) return
165 for(window : winset)
166 // Output the result of the window
167 forward(window.produceOutTuple())

ing them into their windows. When a tuple arrives it is immediately processed to
update the windows it contributes to. This is done in the AddSMergeUpdate
method using the W-Hive (L 160). The W-Hive returns the winsets that will no
longer be contributed to, which can then be forwarded (L167).

Figure 6 presents how stages Add, S-Merge, Update and Output (and their re-
spective code lines) are distributed to threads It and Ot for the WiML implementa-
tion (stages assigned to It and Ot threads are colored in blue and red, respectively).

Out

In

In

W-Hive

wink1

winkn

...

Lock Free
Winset

It

It

Ot

t

Add, S-Merge, Update

t

Add, S-Merge, Update

Algorithm 6,
Line 160

Output
Algorithm 6,

Lines 163-167

Figure 6: Visual representation of how stages (and their respective code lines) are
distributed to threads for the WiML implementation.

17

6 Correctness

In this section we outline proofs of liveness and safety properties of the algorith-
mic constructions of the data structures, namely lock-freedom and linearizability.
Lock-freedom guarantees that at least one of the concurrent method call invoca-
tions of the data structure will return in a finite number of its own steps [12]. Lin-
earizability [14] guarantees that every method call appears to take effect at some
point (linearization point) between its invocation and response; more formally, for
a linearizable implementation of a data structure, given a history of concurrent op-
erations, there exists a sequential ordering of them, consistent with their real-time
ordering and with the sequential semantics of the data structure. Furthermore, we
show that the aggregate implementations provide deterministic processing of the
stream tuples.

Theorem 1. The T-Gate implementation presented in algorithm 4 is lock-free and
linearizable.

Proof. The getNextReadyTuple method does not contain any loops and re-
turns in a bounded number of its own steps. The insertTuple method contains
bounded loops except for the levelinsert subroutine. This will fail to termi-
nate only if the CAS instruction on L108 fails, i.e. in the case a concurrent call
of insertTuple from another thread makes progress. Therefore, the T-Gate
implementation is lock-free.

The linearization point of the insertTuple method during concurrent calls
of the same method, is the successful CAS on L108, as this is when the operation
appears to take effect among such calls.

getNextReadyTuple is linearized at the check on L84 when the appropri-
ate cell of the written array is read. In the case of concurrent calls of methods
getNextReadyTuple and insertTuple, the linearization point of the latter
is the update of the written array on L101. Thus there is a linearization point
for all the method calls of the T-Gate implementation.

The W-Hive provides management of winsets and is where the actual aggregate
computation takes place. The processTuple call on L148 is an application-
specific operation. Naturally, the safety and liveness properties of the
processTuplemethod call affect the ones of the higher level updateWindows
method that includes the former. Thus, the following theorems are shown under the
condition that the processTuple call on L148 is linearizable and lock-free (e.g.
local computation in the simplest case).

Theorem 2. The W-Hive implementation presented in algorithm 5 is lock-free and
linearizable.

Proof. By definition there are no concurrent calls of getNextWinSet, each such
call does not modify any shared variables and returns in a bounded number of
its own steps. A call to updateWindows will fail to return only if the CAS

18

instruction on L156 fails (i.e., if a concurrent call from another thread will have
made progress). In the case of concurrent updates of tuples with the same key,
the winsets used are lock-free and linearizable, thus so are all the calls to their
methods. Therefore, the W-Hive implementation is lock-free.

For concurrent calls to the updateWindowsmethod we distinguish two cases:
the ones that successfully add a new winset and the respective holding node to the
W-Hive and the ones that update an existing winset. For the latter, the lineariza-
tion point breaks down to the successful find of the window to be updated in the
winset (L144), or the insertion of the respective window in case this does not exist
(L147). For the former, the linearization point is the successful CAS instruction on
L156. A call to updateWindows concurrent with a call to getNextWinSet is
linearized on L127, as this could affect the result of a subsequent check on L119 of
getNextWinSet. The linearization point of getNextWinSet can be any of
L118 or L119 depending on the successful checks, or L120 otherwise. Thus, there
is a linearization point for all the method calls of the W-Hive implementation.

Lemma 1. A tuple tji returned by the getNextReadyTuple method, satisfies
the ready definition (cf. Def. 1).

Proof. Assume towards a contradiction that tji > mergets. Then tji would be the
tuple with the latest timestamp received by its respective input thread. But then the
check in line 84 would have failed and tji would not have been returned.

Lemma 2. All tuples contributing to a winset returned by the getNextWinSet
satisfy the ready definition (cf. Def. 1).

Proof. Assume there is a tuple that does not. As above, the tuple would be the
one with the latest timestamp received by its respective input thread. In that case
the check in line 119 would have caused null to be returned, as the winset’s
timestamp would belong to the windows in the written array.

Theorem 3. The TuMLSC , TuMLMC and WiML aggregate implementations (Alg.3,6)
are lock-free and provide deterministic processing of tuples.

Proof. All method calls are bounded by a constant and include either local compu-
tations for each thread, or calls to data structure implementations that are lock-free
(T-Gate,W-Hive). Thus, the implementations are lock-free.

Lemmas 1 and 2 show that the output tuples of the aggregate implementations
always consist of ready tuples. Therefore, the aggregate implementations are de-
terministic (cf. Def. 2).

7 Evaluation

In this section, we study the performance of the different aggregate operators pre-
sented in Section 4 in terms of throughput and latency. We also include the evalua-
tion of a lock-free version of the multi-queue implementation, referred to as MQLF

19

and relying on the lock-free queue by Michael and Scott [20], with the sole pur-
pose of showing that MQ’s poor performance does not depend only on the use of
locks. First, we provide evidence of the superiority of the T-Gate with respect to
a lock-free skip list by measuring their maximum throughput and latency. Subse-
quently, we discuss the improvement enabled by TuMLSC and WiML, compared
to MQ and MQLF , for different queries and varying number of inputs. Our goal
is to show how the TuMLSC and WiML implementations can achieve higher per-
formance than MQ and MQLF ones by increasing the computing time over the
synchronization time of their underlying threads. At the same time, we also show
the scalability of the WiML implementation for an increasing number of threads
running the Update stage (assigned to It threads in this case, as discussed in Sec-
tion 5.7). In the last part of the section, we evaluate TuMLMC’s scalability for
increasing number of threads running the Update stage, complementing the scala-
bility evaluation of the WiML implementation. Our experiments take into account
the aggregate’s features that affect throughput and latency: the overall number of
keys, the number of windows to which each tuple contributes and the cost of the
aggregate function. For each feature, we consider 2 stretching points in order to
show how traversing its spectrum (e.g., increasing the overall number of keys) af-
fects the overall performance. All the experiments represent queries that can be
found in real-world applications. We take into account aggregate functions that are
commonly used and also evaluate highly costly variants when studying how their
cost affects the aggregate performance. Our data sets have been collected from
real-world applications.

7.1 Evaluation setup

The evaluation has been conducted with an Intel-based workstation with two sock-
ets of 6-core Xeon E5645 (Nehalem) processors with Hyper Threading (24 logical
cores in total) and 48 GB DDR3 memory at 1366 MHz. The prototype has been
implemented in Java and experiments have been run using the OpenJDK Runtime
Environment (IcedTea 2.3.9) with the default garbage collection settings.

We use two datasets that we refer to as SoundCloud (SC) and Energy Con-
sumption (EC). SC has been collected from the online audio distribution platform
SoundCloud from a subset of approximately 40,000 users exchanging comments
about 250,000 songs between 2007 and 2013. Tuples contain comments sent by
users in relation to songs and are composed by the attributes 〈ts, user, song, cmt〉.
EC contains energy consumption readings collected from a set of 243 smart me-
ters between May 2012 and June 2013. Tuples’ schema is composed by attributes
〈ts,meter, cons〉.

Each experiment starts with a warm-up phase and ends with a cool-down phase.
During the measuring phase (lasting five minutes) tuples are injected at a constant
rate; throughput is measured as the average number of tuples/second (t/s) processed
by the aggregate operator during the measuring phase while latency is measured
as the average timestamp difference between each output tuple and the latest input

20

Table 2: Parameters for queries used in the evaluation. Identifiers ID are com-
posed by 3 letters. The first letter (small or capital, representing smaller or larger
values/computation-demands) represents the aggregate parameter being studied (k
- overall number of keys, w - window size, f - applied function). The last two letters
specify whether F is order-sensitive (OS) or order-insensitive (OI).

ID DS WS WA K F Description
Order-sensitive (OS) functions (MQ, MQLF , TuMLSC)
k-OS EC 30 3 meter first() Forward the first consumption read-

ing, group by meter (243 distinct
keys)

K-OS SC 30 3 song first() Forward the first comment, group
by song (40,000 distinct keys)

w-OS EC 20 2 meter first() Forward the first consumption read-
ing, group by meter (each tuple
contributes to 10 windows)

W-OS EC 40 2 meter first() Forward the first consumption read-
ing, group by meter (each tuple
contributes to 20 windows)

f-OS SC 20 2 song first-mail(cmt) Forward the first comment contain-
ing a mail address, group by song

F-OS SC 20 2 song first-mail/IP(cmt) Forward the first comment contain-
ing a mail or an IP address, group
by song

Order-insensitive (OI) functions (MQ, MQLF , WiML)
k-OI EC 30 3 meter count() Count the number of consumption

readings, group by meter (243 dis-
tinct keys)

K-OI SC 30 3 song count() Count the number of comments,
group by song (40,000 distinct
keys)

w-OI EC 20 2 meter avg(cons) Compute the average consumption,
group by meter (each tuple con-
tributes to 10 windows)

W-OI EC 40 2 meter avg(cons) Compute the average consumption,
group by meter (each tuple con-
tributes to 20 windows)

f-OI SC 20 2 song count-mail(cmt) Count the number of comments
containing a mail address, group by
song

F-OI SC 20 2 song count-mail/IP(cmt) Count the number of comments
containing a mail or an IP address,
group by song

tuple that produced it during the measuring phase. Finally, presented results are av-
eraged over 10 runs. In each experiment, we deploy one instance of the aggregate,
together with injectors, running at dedicated threads and maintaining per-second
throughput statistics, and a sink running at a dedicated thread, collecting output
tuples and maintaining per-second latency statistics. When running experiments
with different input rates, we process data from the EC and SC datasets, mod-
ifying only the rate at which tuples are injected. In order to find the maximum
throughput and the corresponding latency of a given setup, several experiments
(for increasing input rates) are run, as long as results do not indicate the setup can-
not sustain the injected rate. Table 2 presents the parameters of the queries used

21

in the evaluation: identifier ID, dataset DS, window size WS, window advance WA,
group-by parameter K and aggregate function F. For the T-Gate and W-Hive, the
maximum possible height of a node (maxlevels) is set to 3 in all experiments.

7.2 Skip list and T-Gate comparison

In this experiment, we evaluate the performance of a lock-free skip list and the
T-Gate, measuring the maximum throughput with which EC tuples coming from
multiple input streams can be sorted. For this comparison we used the
ConcurrentSkipListMap from Java’s java.util.concurrent pack-
age, an implementation based also on [29].

Results for 5, 10, 15 and 20 input streams are presented in Fig. 7. It can be
noted that, when using a skip list, checking for ready tuples (done explicitly since
the skip list does not differentiates between tuples that are ready or not) results
in a cost linear to the number of input streams. Thus, the skip list’s throughput
degrades while T-Gate throughput grows. For 20 input streams, the skip list is able
to sort approximately 1.5 million t/s while the T-Gate reaches approximately 2.2
million t/s (1.5 times better). The T-Gate also achieves a lower sorting latency,
approximately 1 ms for 20 input streams against the 1.6 ms latency of the skip list.

1

2

3

Th
ro

ug
hp

ut
 (1

06 t/
s)

5 10 15 20
10−1

100

101

of Inputs

La
te

nc
y

(m
s)

T-Gate
Skip List

Figure 7: T-Gate and Skip List comparison.

7.3 Baseline and new designs comparison

In this set of experiments, we measure the maximum throughput and the latency of
the MQ, MQLF , TuMLSC and WiML implementations, quantifying the improve-
ment enabled by the use of concurrent data structures while using the same number
of input and output threads.

Parallelization benefit We first focus on the average duration of the main oper-
ations performed by It and Ot threads for queries K-OS and K-OI and 20 input
streams. Results for the query K-OS are presented in Fig. 8 (we use logarithmic
scale to better appreciate the different orders of magnitude). Both It’s and Ot’s
operations are faster for MQLF compared to MQ since the former relies on lock-
free queues. It’s duration increases while Ot’s decreases for TuMLSC since the
S-Merge operation is performed by It. Ot threads, which constitute the bottle-
neck, will reach 100,000, 130,000 and 160,000 t/s for MQ, MQLF and TuMLSC ,

22

1 2 3
10

−2

10
−1

10
0

10
1

10
2

D
ur

at
io

n
(μ

s)

MQ MQLF TuMLSC

0.2
0.1

0.7

10.1
7.9 6.3

I
t

O
t

Figure 8: K-OS It’s
and Ot’s durations.

0 50 100 150
10

1

10
2

10
3

La
te

nc
y

(m
s)

Input rate (103 t/s)

 MQ

MQLF

TuMLSC

1.3x
1.6x

Figure 9: K-OS la-
tency evolution.

1 2 3
10

−2

10
−1

10
0

10
1

10
2

D
ur

at
io

n
(μ

s)

MQ MQLF WiML

0.2
0.1

47.2

11.4
8.9

0.5

I
t

O
t

Figure 10: K-OI
It’s and Ot’s dura-
tions.

0 100 200 300 400

10
0

10
1

10
2

10
3

La
te

nc
y

(m
s)

Input rate (103 t/s)

 MQ

MQLF

WiML

1.3x
4.7x

Figure 11: K-OI la-
tency evolution.

Figure 12: Throughput and latency improvements enabled by T-Gate and W-Hive
in TuMLSC and WiML implementations.

respectively. Figure 9 compares the latency evolution of the different implementa-
tions for an increasing input rate. In all experiments, the latency initially decreases
with the increasing rate (lower inter-arrival times at the inputs result in shorter
queuing times for input tuples) while it explodes upon saturation of the operator
(that is, when the injected load exceeds its maximum throughput). The through-
put achieved by each implementation is close to the expected one (from Fig. 8).
TuMLSC achieves a throughput 1.6 times higher than MQ. Average durations for
query K-OI are shown in Fig. 10. It can be noticed that It’s duration increase is
greater for WiML than TuMLSC since both S-Merge and Update operations are
performed by the It thread. With WiML, each It thread is able to process 22,000
t/s in parallel. The highest throughput that can be achieved by WiML is in this
case given by Ot, since the latter can only produce up to 2 million t/s. As shown
in Fig. 11, WiML achieves a higher throughput and a lower latency compared to
MQLF and MQ (approximately 400,000 t/s), independently of the input rate (tu-
ples are processed independently by each It thread).

In the remaining of this section, we study the performance of TuMLSC and
WiML with respect to MQ and MQLF for the different queries presented in Table 2.
In all experiments, we experience the same performance behavior when comparing
MQ, MQLF , TuMLSC and WiML implementations, as explained in the following.
As the number of inputs increases, the latency of multi-queue implementations
(MQ and MQLF) increases while their throughput decreases linearly. This pattern
is broken by the TuMLSC , whose throughput is rather stable as the number of
inputs increases. The pattern is even reversed by the WiML, whose throughput
actually increases as the number of inputs increases (since stage Update is run in
parallel by each It thread) while achieving the lowest and almost constant latency.

Varying number of keys The overall number of keys in the data affects both the
operator’s throughput and latency since the higher the number of keys, the higher
the number of tuples produced for all windows starting at the same timestamp. Re-
sults highlight that TuMLSC and WiML perform better than both MQ and MQLF ,

23

whose throughput decreases linearly with the increasing number of inputs.
With respect to order-sensitive functions, we compare queries k-OS (Fig. 13)

and K-OS (Fig. 14). The query k-OS uses the EC dataset (243 distinct keys) while
the query K-OS uses the SC dataset (40,000 distinct keys). The upper part of
each figure presents the throughput while the bottom part presents the latency (in
logarithmic scale). For 20 inputs, TuMLSC provides the highest throughput (2.9
times better than MQ’s for query k-OS) and the lowest latency.

200

400

T
hr

ou
gh

pu
t (

10
3 t/

s)

5 10 15 20
10

0

10
1

of Inputs

La
te

nc
y

(m
s)

MQ

MQLF

TuMLSC

Figure 13: k-OS

100

200

T
hr

ou
gh

pu
t (

10
3 t/

s)

5 10 15 20
10

0

10
1

10
2

of Inputs

La
te

nc
y

(m
s)

MQ

MQLF

TuMLSC

Figure 14: K-OS

1

2

3

T
hr

ou
gh

pu
t (

10
6 t/

s)

5 10 15 20

10
0

10
2

of Inputs

La
te

nc
y

(m
s)

MQ

MQLF

WiML

Figure 15: k-OI

200

400

T
hr

ou
gh

pu
t (

10
3 t/

s)

5 10 15 20
10

0

10
1

10
2

of Inputs

La
te

nc
y

(m
s)

MQ

MQLF

WiML

Figure 16: K-OI

Figure 17: Varying number of keys - evaluation.

With respect to order-insensitive functions, we compare queries k-OI (Fig. 15)
and K-OI (Fig. 16). As for order-sensitive functions, both MQ’s and MQLF ’s
throughput decreases for increasing number of inputs. On the other hand, WiML
throughput increases accordingly to the number of inputs, achieving a maximum
throughput of 2.6 million t/s and 430,000 t/s, respectively. MQ’s and MQLF ’s
latencies increase with the number of inputs while WiML’s one remains approxi-
mately constant.

Varying number of windows to which tuples contribute The rationale for this
experiment is that the higher the number of windows to which each input tuple
contributes, the higher the duration of the Update operation. Also in this case,
our enhanced implementations outperform both MQ and MQLF . An increasing
number of windows to which tuples contribute results in an overall throughput
breakdown and latency increase.

We first focus on order-sensitive functions with queries w-OS (Fig. 18) and W-
OS (Figure 19). For query w-OS, each tuple contributes to 10 windows. For query
W-OS, each tuple contributes to 20 windows.

With respect to order-insensitive functions, we compare queries w-OI (Fig. 20)
and W-OI (Fig. 21). Also in this case, WiML outperforms MQ and MQLF . For
queries w-OI and W-OI, WiML’s maximum throughput is of approximately 2.4
and 1.4 million t/s, 19 and 16 times better than MQ, respectively.

Varying function cost In this set of experiments, we study how throughput and
latency evolve with respect to different function costs. We expect the throughput to
decrease and the latency to increase accordingly to the increasing cost of the aggre-
gation function. As observed before, TuMLSC performs better than multi-queue

24

200

400

T
hr

ou
gh

pu
t (

10
3 t/

s)

5 10 15 20
10

0

10
1

10
2

of Inputs

La
te

nc
y

(m
s)

MQ

MQLF

TuMLSC

Figure 18: w-OS

100

200

T
hr

ou
gh

pu
t (

10
3 t/

s)

5 10 15 20
10

0

10
1

10
2

of Inputs

La
te

nc
y

(m
s)

MQ

MQLF

TuMLSC

Figure 19: W-OS

1

2

3

T
hr

ou
gh

pu
t (

10
6 t/

s)

5 10 15 20

10
0

10
2

of Inputs

La
te

nc
y

(m
s)

MQ

MQLF

WiML

Figure 20: w-OI

1

2

T
hr

ou
gh

pu
t (

10
6 t/

s)

5 10 15 20

10
0

10
2

of Inputs

La
te

nc
y

(m
s)

MQ

MQLF

WiML

Figure 21: W-OI

Figure 22: Varying number of windows to which tuples contribute - evaluation.

implementations, although this improvement becomes smaller when running very
expensive aggregate functions. The reason for this smaller improvement is due to
the dominance of the heavy aggregate function computations over other computa-
tions performed by the operator (e.g., the sorting ones) given that both TuMLSC

and multi-queue implementations define a single thread dedicated to the former.
WiML outperforms multi-queue implementations both in terms of throughput and
latency independently of the aggregate function cost (in this case, despite relying
on the same overall number of threads, the expensive aggregate function is run in
parallel by each It thread).

With respect to order-sensitive functions, we compare queries f-OS (Fig. 23)
and F-OS (Fig. 24). When increasing the function cost (query F-OS), TuMLSC’s
throughput and latency become really close to MQ’s and MQLF ’s ones. Throughput

50

100

T
hr

ou
gh

pu
t (

10
3 t/

s)

5 10 15 20
10

1

10
2

of Inputs

La
te

nc
y

(m
s)

MQ

MQLF

TuMLSC

Figure 23: f-OS

10

20

30

T
hr

ou
gh

pu
t (

10
3 t/

s)

5 10 15 20
10

1

10
2

of Inputs

La
te

nc
y

(m
s)

MQ

MQLF

TuMLSC

Figure 24: F-OS

200

400

600

T
hr

ou
gh

pu
t (

10
3 t/

s)

5 10 15 20

10
0

10
2

of Inputs

La
te

nc
y

(m
s)

MQ

MQLF

WiML

Figure 25: f-OI

100

200

T
hr

ou
gh

pu
t (

10
3 t/

s)

5 10 15 20
10

0

10
1

10
2

of Inputs

La
te

nc
y

(m
s)

MQ

MQLF

WiML

Figure 26: F-OI

Figure 27: Varying function cost - evaluation.

and latency evolution for order-insensitive functions are evaluated for queries f-OI
(25) and F-OI (26). For both experiments, WiML achieves a throughput of approx-
imately 615,000 t/s, 9 times better than MQ.

7.4 TuMLMC scalability evaluation

In this section, we focus on the scalability of the TuMLMC implementation. We
execute all the previous queries for order-sensitive functions using the TuMLMC

implementation for an increasing number of threads (up to 12, the physical number
of cores of the machine used in the evaluation). For each query, we present how
the throughput and the latency evolve when considering 5 and 20 inputs streams.

25

1 2 3 4 5 6 7 8 9 10 11 12
10

−1

10
0

10
1

of Threads

La
te

nc
y

(m
s)

0.5

1

T
hr

ou
gh

pu
t (

10
6 t/

s)

5 inputs

20 inputs

Figure 28: k-OS

1 2 3 4 5 6 7 8 9 10 11 12

10
0

10
2

of Threads

La
te

nc
y

(m
s)

0.5

1

T
hr

ou
gh

pu
t (

10
6 t/

s)

5 inputs
20 inputs

Figure 29: w-OS

1 2 3 4 5 6 7 8 9 10 11 12
10

0

10
1

10
2

of Threads

La
te

nc
y

(m
s)

200

400

600

T
hr

ou
gh

pu
t (

10
3 t/

s)

5 inputs
20 inputs

Figure 30: f-OS

1 2 3 4 5 6 7 8 9 10 11 12

10
0

10
2

of Threads

La
te

nc
y

(m
s)

0.5

1

T
hr

ou
gh

pu
t (

10
6 t/

s)

5 inputs

20 inputs

Figure 31: K-OS

1 2 3 4 5 6 7 8 9 10 11 12

10
0

10
2

of Threads

La
te

nc
y

(m
s)

200

400

600

T
hr

ou
gh

pu
t (

10
3 t/

s)

5 inputs

20 inputs

Figure 32: W-OS

1 2 3 4 5 6 7 8 9 10 11 12
10

0

10
1

10
2

of Threads

La
te

nc
y

(m
s)

100

200

T
hr

ou
gh

pu
t (

10
3 t/

s)

5 inputs

20 inputs

Figure 33: F-OS

Figure 34: TuMLMC scaling for increasing number of threads.

Figures 28 and 31 present the throughput and latency evolution for queries k-
OS and K-OS. It can be noticed that K-OS scales better than k-OS for an increasing
number of threads due to the increase of Ot operations’ duration caused by the
higher number of keys. Figures 29 and 32 present the throughput and latency
evolution for queries w-OS and W-OS. In this experiment, throughput and latency
behave similarly despite the increased duration of Ot operations. This is because
the increased Ot operations’ duration is actually caused by an higher number of
windows updated by each tuple, resulting in an higher contention in the underlying
W-Hive. Finally, Figures 30 and 33 present the throughput and latency evolution
for queries f-OS and F-OS.

7.5 Summary of results

Comparing the implementations that rely on one It thread per input and a single
output thread Ot, both TuMLSC and WiML perform better than MQ and MQLF ,
enabling coping with streams of higher speed. The improvement enabled by TuMLSC

is more sensitive to the aggregate parameters than WiML, which clearly outper-
forms MQ and MQLF . When increasing the number of processing threads, TuMLMC’s
performance increases both in terms of throughput and latency. Moreover, its scal-
ing does not degrade when increasing the number of threads above the number for
which the highest rate is achieved.

8 Related Work

Parallel execution of data streaming operators has been addressed mainly by means
of partitioned parallelism [10, 3], where multiple instances of an operator are as-
signed to distinct partitions of a given stream. The way tuples are routed to in-

26

stances (round-robin, hash-based [10] or pane-based [3]) depends on the opera-
tor’s semantics. It should be noticed that partitioned parallelism is orthogonal to
our parallelization technique since we focus on the performance improvement of
individual instances of an operator. The work presented in [23] discusses a multi-
threaded elastic streaming protocol that adjusts the number of processing threads
depending on the system load. Similarly to our TuMLMC implementation, the
protocol defines a single work queue from which multiple worker threads consume
tuples. Nevertheless, that does not take into account sorting of input tuples, which
is one of the key challenges addressed in our work. Moreover, the authors do not
discuss improvements enabled by concurrent data structures in the multithreaded
environment. With respect to parallel data streaming in the context of multi-core
CPUs and GPUs, [24] present a parallel implementation of the aggregate operator
and study how it performs on distinct parallel architectures. The aggregate model
discussed by the authors differs from ours since windows are tuple-based and the
overall number of distinct group-by values is known before-hand and does not vary
over time. Moreover, no discussion is provided about deterministic processing in
the context of multiple input sources. Parallel processing in multi-core CPUs and
GPUs is also discussed by [5] but, differently from us, the authors focus on pat-
tern detection rather than data aggregation and rely on automata-based incremental
processing.

As discussed in section 2, one of the challenges in providing deterministic
processing is the merging of multiple timestamp sorted input streams. This has
been discussed in the context of parallel-distributed SPEs [27, 10] and replica-
based fault tolerance protocols for data streaming [2]. Existing approaches for
streaming aggregation rely on separated input queues (similar to the MQ protocol).
As shown in our evaluation, this merging is not efficient and implementations such
as TuMLSC can drastically improve the overall operator’s performance.

9 Conclusions and Future Work

Providing the appropriate data structures that best fit the needs of a concurrent
application is a key research issue, as emphasized by [25, 19] and also seen in
examples such as [8, 30]. In this paper, we study data structures as articulation
points in the context of streaming aggregation, analysing the concurrency needs
and proposing methods to meet them. We propose proper data structures for man-
aging tuples and windows (T-Gate and W-Hive). Their operations and their lock-
free implementations enable better interleaving and hence improve the balancing
and the parallelism of the aggregate operator’s processing stages. As shown in the
extensive evaluation based on real-world datasets, our enhanced aggregate imple-
mentations outperform existing ones both in terms of throughput and latency, and
are able to handle heavier streams, increasing the processing capacity up to one
order of magnitude.

These results and the analysis of the role of data structures as articulation points

27

to facilitate concurrency and balancing of the work among streaming operators,
open up new venues in the broader context of data streaming, including the en-
hancement of other operators and the enhancement of SPEs architectures.

References

[1] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Chris-
tian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan
Zdonik. Aurora: A new model and architecture for data stream management.
The VLDB Journal, 12(2):120–139, August 2003.

[2] Magdalena Balazinska, Hari Balakrishnan, Samuel R Madden, and Michael
Stonebraker. Fault-tolerance in the Borealis distributed stream processing
system. ACM Transactions on Database Systems (TODS), 33(1):3, 2008.

[3] Cagri Balkesen, Nesime Tatbul, and M. Tamer Özsu. Adaptive input admis-
sion and management for parallel stream processing. In Proceedings of the
7th ACM international conference on Distributed event-based systems, DEBS
’13, pages 15–26, New York, NY, USA, 2013. ACM.

[4] Daniel Cederman, Vincenzo Gulisano, Yiannis Nikolakopoulos, Marina Pa-
patriantafilou, and Philippas Tsigas. Brief announcement: concurrent data
structures for efficient streaming aggregation. In Proceedings of the 26th
ACM Symposium on Parallelism in Algorithms and Architectures, pages 76–
78. ACM, 2014.

[5] Gianpaolo Cugola and Alessandro Margara. Low latency complex event
processing on parallel hardware. J. of Parallel and Distributed Computing,
72(2):205–218, 2012.

[6] Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. Pro-
cessing complex aggregate queries over data streams. In Proceedings of
the 2002 ACM SIGMOD International Conference on Management of Data,
pages 61–72, New York, NY, USA, 2002. ACM.

[7] Buğra Gedik, Rajesh R Bordawekar, and S Yu Philip. Celljoin: a parallel
stream join operator for the cell processor. The VLDB Journal, 18(2):501–
519, 2009.

[8] Anders Gidenstam, Marina Papatriantafilou, and Philippas Tsigas. Nbmal-
loc: Allocating memory in a lock-free manner. Algorithmica, 58(2):304–338,
2010.

[9] Shenoda Guirguis, Mohamed A Sharaf, Panos K Chrysanthis, and Alexan-
dros Labrinidis. Three-level processing of multiple aggregate continuous
queries. In Data Engineering (ICDE), 2012 IEEE 28th International Con-
ference on, pages 929–940. IEEE, 2012.

[10] Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez, Claudio
Soriente, and Patrick Valduriez. Streamcloud: An elastic and scalable data
streaming system. IEEE Transactions on Parallel and Distributed Systems,
23(12):2351–2365, 2012.

28

[11] Vehbi C Gungor, Dilan Sahin, Taskin Kocak, Salih Ergut, Concettina Buc-
cella, Carlo Cecati, and Gerhard P Hancke. Smart grid technologies: com-
munication technologies and standards. Industrial informatics, IEEE trans-
actions on, 7(4):529–539, 2011.

[12] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming,
Revised Reprint. Elsevier, 2012.

[13] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. Hopscotch Hashing. In
Proceedings of the 22Nd International Symposium on Distributed Computing,
DISC ’08, pages 350–364, Berlin, Heidelberg, 2008. Springer-Verlag.

[14] Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness con-
dition for concurrent objects. ACM Transactions on Programming Languages
and Systems (TOPLAS), 12(3):463–492, 1990.

[15] Xiaozhou Li, David G. Andersen, Michael Kaminsky, and Michael J. Freed-
man. Algorithmic Improvements for Fast Concurrent Cuckoo Hashing. In
Proceedings of the Ninth European Conference on Computer Systems, Eu-
roSys ’14, pages 27:1–27:14, New York, NY, USA, 2014. ACM.

[16] Simon Loesing, Martin Hentschel, Tim Kraska, and Donald Kossmann.
Stormy: an elastic and highly available streaming service in the cloud. In
Proceedings of the 2012 Joint EDBT/ICDT Workshops, pages 55–60, New
York, NY, USA, 2012. ACM.

[17] Maged M. Michael. High performance dynamic lock-free hash tables and
list-based sets. In Proceedings of the fourteenth annual ACM symposium on
Parallel algorithms and architectures, pages 73–82, New York, NY, USA,
2002. ACM.

[18] Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-free
objects. IEEE Trans. Parallel Distrib. Syst., 15(6):491504, June 2004.

[19] Maged M. Michael. The balancing act of choosing nonblocking features.
Commun. ACM, 56(9):46–53, 2013.

[20] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In Proceedings of the fif-
teenth annual ACM symposium on Principles of distributed computing, pages
267–275, New York, NY, USA, 1996. ACM.

[21] Nhan Nguyen and Philippas Tsigas. Lock-Free Cuckoo Hashing. In Proceed-
ings of the 2014 IEEE 34th International Conference on Distributed Comput-
ing Systems, ICDCS ’14, pages 627–636, Washington, DC, USA, 2014. IEEE
Computer Society.

[22] William Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees.
Commun. ACM, 33(6):668–676, June 1990.

[23] Scott Schneider, Henrique Andrade, Bugra Gedik, Alain Biem, and Kun-
Lung Wu. Elastic scaling of data parallel operators in stream processing. In
IEEE International Symposium on Parallel & Distributed Processing, pages
1–12, Washington, DC, USA, 2009. IEEE Computer Society.

[24] Scott Schneider, Henrique Andrade, Bura Gedik, Kun-Lung Wu, and Dim-
itrios S Nikolopoulos. Evaluation of streaming aggregation on parallel hard-

29

ware architectures. In Proceedings of the Fourth ACM International Confer-
ence on Distributed Event-Based Systems, pages 248–257, New York, NY,
USA, 2010. ACM.

[25] Nir Shavit. Data structures in the multicore age. Commun. ACM, 54(3):76–
84, March 2011.

[26] Julian Shun and Guy E. Blelloch. Phase-concurrent Hash Tables for Deter-
minism. In Proceedings of the 26th ACM Symposium on Parallelism in Al-
gorithms and Architectures, SPAA ’14, pages 96–107, New York, NY, USA,
2014. ACM.

[27] Utkarsh Srivastava and Jennifer Widom. Flexible time management in data
stream systems. In Proceedings of the twenty-third ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 263–274, New
York, NY, USA, 2004. ACM.

[28] Michael Stonebraker, Uur Çetintemel, and Stan Zdonik. The 8 requirements
of real-time stream processing. ACM SIGMOD Record, 34(4):42–47, 2005.

[29] Håkan Sundell and Philippas Tsigas. Fast and lock-free concurrent priority
queues for multi-thread systems. Journal of Parallel and Distributed Com-
puting, 65(5):609–627, 2005.

[30] Martin Wimmer, Francesco Versaci, Jesper Larsson Träff, Daniel Cederman,
and Philippas Tsigas. Data structures for task-based priority scheduling. In
Proceedings of the 19th ACM SIGPLAN symposium on Principles and prac-
tice of parallel programming, pages 379–380. ACM, 2014.

30

	1 Introduction
	2 Data Streaming and Multiway Aggregation
	3 Rethinking aggregation's parallelism: the role of data structures
	4 New abstract data types and aggregate designs
	5 Aggregates and data structures implementations
	5.1 Preliminaries
	5.2 Common components
	5.3 Baseline implementations - MQ
	5.4 TuMLSC and TuMLMC
	5.5 T-Gate
	5.6 W-Hive
	5.7 WiML

	6 Correctness
	7 Evaluation
	7.1 Evaluation setup
	7.2 Skip list and T-Gate comparison
	7.3 Baseline and new designs comparison
	7.4 TuMLMC scalability evaluation
	7.5 Summary of results

	8 Related Work
	9 Conclusions and Future Work

