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ABSTRACT

Network overlays, running on top of the existing Internet substrate,

are of perennial value to Internet end-users in the context of, e.g.,

real-time applications. Such overlays can employ traffic relays to

yield path latencies lower than the direct paths, a phenomenon

known as Triangle Inequality Violation (TIV). Past studies identify

the opportunities of reducing latency using TIVs.However, they do

not investigate the gains of strategically selecting relays in Coloca-

tion Facilities (Colos). In this work, we answer the following ques-

tions: (i) how Colo-hosted relays compare with other relays as well

as with the direct Internet, in terms of latency (RTT) reductions;

(ii) what are the best locations for placing the relays to yield these

reductions. To this end, we conduct a large-scale one-month mea-

surement of inter-domain paths between RIPE Atlas (RA) nodes as

endpoints, located at eyeball networks. We employ as relays Plan-

etlab nodes, other RA nodes, and machines in Colos. We examine

the RTTs of the overlay paths obtained via the selected relays, as

well as the direct paths.We find that Colo-based relays perform the

best and can achieve latency reductions against direct paths, rang-

ing from a few to 100s of milliseconds, in 76% of the total cases;

∼75% (58% of total cases) of these reductions require only 10 re-

lays in 6 large Colos.
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1 INTRODUCTION

Every millisecond of Internet latency counts. A broker could lose

$4 million with every passing millisecond (ms), if their electronic

trading platform lags 5 ms behind the competition [37].

Overlay networks have historically been used to attach desir-

able properties to the classic best-effort Internet, including lower

latency [29]; reliability [12], security [44], avoidance of certain ar-

eas via “detours” [36], and higher throughput [15] are only some

of them. Operating over a stable IP-based underlay, overlays have

revolutionized the way the Internet is used in the last decades. In

particular, end-users, as well as their overlay application providers,

have much to gain from low-latency overlay paths for real-time

applications such as online gaming [41, 42], VoIP [11, 29], and fi-

nancial transactions [33]. Such end-users typically reside in eyeball

networks, namely access ISPs at the last mile [52].

Two important research questions that cut through most efforts

studying overlay networks (see Section 4) are the following: “What

are the best locations to place overlay TIV relays, in order to improve

performance or resiliency? What are the quantified benefits of choos-

ing these relays instead of others?”. End-hosts in eyeball networks

and dedicated servers in PlanetLab are common relay choices in

real systems (such as p2p networks) and academic studies.

In this work, focusing on the latency-wise improvement of In-

ternet paths, we examine the increasingly popular [17, 22, 24] colo-

cation facilities (Colos) as relay sites. Colos provide space, power,

cooling, and physical security for the server, storage, and network-

ing equipment of colocated companies, connecting them to cloud

/content providers, transit networks and eyeball ISPs, as-a-service,

inmultiple locationsworldwide [4]. Thus, they host layer-2/3 inter-

connections (such as IXPs [24]), ranging from private to publicmul-

tilateral peering setups among different ISPs. The pervasiveness

of Colos on a global level has brought Internet organizations (and

their users) closer to each other, driving Internet flattening [20].

In addition, the ecosystem of colocated companies has evolved in

recent years to include many small and medium cloud providers

that house their equipment (compute servers, storage, etc.) in the

Colo. This change allowed for the first time in Internet’s history

third parties, such as end-users or application service providers, to

easily rent Virtual Machines (VMs) in the largest Colos using the

services of cloud providers [3].

Towards understanding the implications of this change for delay-

sensitive overlay services, such as Skype and Hola, we investigate

how the performance of Colo relays compares with other types of

relays. Colos might be considered quite promising candidate TIV

relays due to their core networking location. However, it is not

straightforward to expect that Colos always perform better; more-

over, their exact benefit should be properly quantified. To inves-

tigate this further, we choose endpoints within eyeball networks,

utilizing 3 different types of relays (see Section 2): Colo relays (in-

terfaces located in facilities [24]), PlanetLab nodes (mainly at re-

search institutes) and RIPE Atlas nodes (at eyeball and other net-

works). We simulate stitching of paths between endpoints through

these relays, based on RTTmeasurements, to form single-relay TIV

paths [25]. We compare the formed overlay paths with each other

as well as with the direct BGP-derived paths, in terms of latency.

Based on a large-scale, 1-month measurement campaign, and af-

ter verifying eyeball networks (see Section 2.1) and Colo locations
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(see Section 2.2) for accuracy, we identify that the best locations

for placing relays are actually the Colos (see Section 3). To the best

of our knowledge, we are the first to study the impact of Colos

w.r.t. latency at a large scale. We observe that Colo-relayed paths

can yield median latency improvements of >10ms (with a 6% of the

cases gaining >100ms) vs. the direct paths, and in contrast to the

other relays (58% for RIPE Atlas, 43% for PlanetLab), improve 76%

of the total studied cases. Interestingly, a relatively small number

of Colos (∼6) is required to achieve most of these gains (∼75% of

improved cases, 58% of total), while the rest of the studied overlays

need to employ one order of magnitude more relays to reach their

respective top performance. Moreover, relaying through different

countries (compared to the endpoints) helps reduce latency, proba-

bly due to the forced discovery of alternate, non-inflated [51] BGP

paths. We further show that our insights are consistent over time.

2 MEASUREMENT METHODOLOGY

The objective of our measurement methodology is twofold: (i) to

study the path latency obtained by employing relays as interme-

diate nodes of overlay inter-domain TIV paths, and (ii) to assess

the benefits of selecting vantage points at large Colos as Internet

relays, vs. relays placed at the Internet’s eyeball (and other) net-

works. To this end, we employ a real-world, Internet-wide testbed,

comprising:

• Endpoint nodes: a set of globally distributed nodes, act-

ing as source src and destination dst nodes of Internet

inter-domain paths.

• Overlay relays: a set of relay nodes that are employed as

intermediate hops within an inter-domain path between a

src and a dst.

• Inter-domain overlay links: logical links that connect

pairs of nodes (endpoints and/or relays) over the physical

network of one or more intermediary ISPs. The underly-

ing paths are typically derived by BGP.

We next describe how we select src and dst endpoints in eyeball

networks (see Section 2.1), relays at colocation facilities (see Sec-

tion 2.2) and relays at other locations (see Section 2.3). We further

explain a strategy to limit the number of candidate relays based

on their relative position to the endpoints in Section 2.4. Finally,

we unfold our complete measurement framework, including the

applied setup and workflow in Section 2.5.

2.1 Selection of Endpoints at Eyeballs

To perform our measurement campaign, first we select pairs of

endpoints (both in different countries), which communicate either

directly or via relays. For this purpose, we use RIPE Atlas (RA)

[9] nodes (i.e., probes and anchors), a globally distributed measure-

ment infrastructure consisting of end-host devices, capable of con-

ducting different types of data-plane measurements.

Since end-users primarily reside in eyeball networks, we want

to select RA nodes located within eyeballs, hence close to the end-

user. Our aim is not to exhaustively cover all eyeballs, but to find a

set of ASes, with sufficient country/AS-level diversity, qualifying

as such. To find these ASes, we utilize the results of the IPv6 mea-

surement campaign by APNIC [13]. The dataset contains 19857
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Figure 1: Number of covered ASes/countries (log-scale)

worldwide vs. the cutoff Internet user coverage (coverage for

each AS in its respective country of operation).

ASes from 225 countries. Besides IPv6 adoption and statistics re-

lated specifically to IPv6 users, APNIC estimates Internet user pop-

ulation percentages (i.e., user coverage) per AS per country for

both IPv4 and IPv6 combined. These percentages drive the eye-

ball selection process as follows. The measured ASes face Inter-

net users—browsing the web—but in order to characterize them as

actual “eyeball” ISPs (and not e.g., enterprise networks), we also re-

quire a sufficient percentage of user population per country served

by the ASes (i.e., a “cutoff” coverage). Note that a large cutoff cov-

erage may support the eyeball characterization, but can exclude

countries with fragmented eyeball ISP ecosystems (e.g., the US). In

Fig. 1, we show the number of covered countries and ASes world-

wide versus the cutoff threshold. If there is an AS present in a

certain country, with a given coverage level, then the country is

considered covered at this level. Almost all countries (223/225) as

reported in APNIC’s dataset, host at least one AS serving more

than 10% of the respective country’s user population; 494 ASes sat-

isfy this threshold, offering relative diversity. Above ∼30%, the 2

lines (see Fig. 1) converge, indicating that only 1 AS per country

is present, yielding a low AS-level diversity. We validate if the 10%

threshold is an appropriate lower bound for ASes to be considered

as eyeballs (within their respective countries). We successfully ver-

ify all 494 ASes bymanually examining their official websites, and

discovering Internet services provided to end-users (e.g., last-mile

access).

We then select as endpoints RA nodes which belong to the veri-

fied (ASN ,CC) tuples (CC = country code of AS; a single eyeball AS

may be present in multiple countries). We consider only RA nodes

that are: (i) running the latest RA firmware version to minimize in-

terference across measurements, affecting older versions [27], (ii)

publicly available, (iii) connected and pingable, (iv) tagged with

their geolocation coordinates, and (v) stable, connectivity-wise, dur-

ing the last 30 days. This filtering yields ∼1190 probes, associated

with 141 ASes at 82 countries (where RA is present). For each mea-

surement round (cf. Section 2.5) we perform sampling on this popu-

lation by selecting randomly: (i) one eyeball AS per country, and (ii)

one node from this AS as RA endpoint (RAE). This 2-step sampling

limits the number of endpoints per round to a reasonable number

of 82 RAEs on average, while preserving endpoint diversity and

not incurring the bias of eyeballs with dense probe deployments.

While this strategy may represent smaller vs. larger countries with
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the same number of RAEs, our goal is to achieve country-level in-

stead of complete geographical/population diversity.

2.2 Selection of Relays at Colos

For this study, our objective is to use relays located at multiple

Colos around the globe. We require pingable IPs, located at Colos,

to use as ping targets. Root or user access e.g., to VMs hosted in

colocated clouds is not necessary for the purposes of this latency-

oriented study; sizable pools of colocated IPs, belonging either to

routers or servers, remaining stable over time, suffice1.

To generate such a pool of IPs, we use the publicly available

dataset produced by Giotsas et al. [23, 24] in 2015. The authors

identified facility crossings by applying their constrained facility

search algorithm on extensive traceroutemeasurements, achieving

an accuracy of over 90%, outperforming heuristics based on nam-

ing schemes and IP geolocation. The data provide IP addresses that

belong to facility members and are present at a candidate set of fa-

cilities, together with their respective ASN and neighboring IXPs.

However, due to the age of the dataset, we need to exclude stale

information by applying, in-order, the following filters.

Single-facility & active PeeringDB presence. Preserve only

the IP addresses for which the set of candidate facilities contains

exactly one facility that is still present in PeeringDB [6] today2.

1008 out of the initial 2675 IP addresses pass this rule.

Pingability. Preserve only the IP addresses that are still pingable

(after a period of almost two years). 764 out of the previous 1008

IP addresses pass this rule.

Same IP-ownership. Preserve only the IP addresses whoseASN

is the same as given in the initial dataset [23], since the IP-to-ASN

mapping needs to be consistent. We also check that this IP is not

simultaneously advertised by multiple ASes (MOAS) to increase

confidence in the dataset. To verify this, we use CAIDA’s AS-to-

Prefix dataset [16] to map IPv4 prefixes to ASNs. 725 out of the

previous 764 IP addresses pass this rule.

Active Facilitypresence ofASN.We preserve the IP addresses

whose verified ASN owner is still present at the candidate facility,

according to PeeringDB data [6]. 725 out of the previous 725 IP

addresses pass this rule.

RTT-basedgeolocation. First, we extract the facility’s city from

PeeringDB [6]. Our 725 candidate IP addresses are associated with

103 facilities present at 67 cities around the globe. We want to en-

sure that these IPs are located at the respective city of the candidate

facility. Current IP-based geolocation services do not provide city-

level accuracy [5, 45, 49], thus, to determine each IP location we

use Periscope, a tool that utilizes available Looking Glass servers

(LGs) [21] (1818 LGs at 526 cities at the time of measurement, i.e.,

between 1-6 April 2017). For each candidate IP, and for each set

of LGs residing in the same city as this IP’s facility, we measure

the RTT from the LGs towards the IP address. Since Periscope cur-

rently supports only traceroute probes from LGs, we calculate the

RTT as the one yielded on the last hop to the IP. We keep the min-

imum RTT for each IP as the primary indicator, to avoid RTT in-

flation effects affecting other LGs. We consider only IPs for which

1However, relay implementations could be hosted on colocated clouds (cf. Table 1).
2 The facility mapping algorithm of [24] may yield more than one facility for a single
IP, due to inability to converge; therefore we select only active single-facility map-
pings to eliminate the possibility of using the wrong facility.

Periscope measurements are available and for which the minimum

RTT does not exceed a threshold of 1ms [50].

The rule-checking process yields 356 IP addresses mapped to

58 facilities in 36 cities around the world (US, Europe, SE Asia and

Australia). During each measurement round we select randomly 1

to 3 IPs per facility to both cover all available facilities and account

for variance within facilities, thus working with a sampled popu-

lation of 129 IP addresses on average, used as Colo relays (COR).

2.3 Selection of Relays at Other Locations

Except for overlay relays residing at Colos, we consider relay nodes

hosted at other locations as alternative Internet vantage points. To

this end, we use publicly available nodes from PlanetLab [18] (see

Section 2.3.1) and RIPE Atlas [9] (see Section 2.3.2).

2.3.1 PlanetLab Relays. We extract the first set of relays from

PlanetLab [18], a global research network that numbers∼1.4k nodes

(at 717 sites), mostly located in research and academic institutions.

Having allocated 500 nodes from 62 sites as candidate relays out

of this set, we select randomly 1 to 2 nodes per site that are con-

sistently accessible and pingable before each measurement round,

thusworkingwith an average sample of∼59PlanetLab relays (PLR)3.

2.3.2 RIPE Atlas Relays. We employ two independent sets of

RA relays (RAR), the one fromnodes at eyeball networks (RAR_eye)

and the other from nodes at networks that have not been verified

as such (RAR_other ), potentially in core locations [10].

Eyeball Networks. To generate the eyeball relay set, we fol-

low the methodology of Section 2.1. We then sample 82 relays (as

many as the available countries) on average for each measurement

round.

Other Networks. For the other relays, we use all the rest of

the available (ASN ,CC) tuples. Out of ∼2500 remaining relays, we

randomly select one relay per country, gathering 102 relays on av-

erage per measurement round.

2.4 Choosing Feasible Relays

Not all available relays are useful for a certain pair of endpoints.

Some of them, even if used under ideal conditions within a “speed-

of-light” Internet [14], still yield larger latency than the observed

direct path. Thus, to exclude such relays, we follow a simple ap-

proach based on the geolocation information of the involved nodes.

Given a certain pair of endpoints (n1, n2), we compute the geo-

graphical distance d(n1,n2) between them and then the propaga-

tion delay t(n1,n2) = d(n1,n2)/(c ∗
2
3 , for the speed of light in an

optical fiber [50]). If RTT (n1,n2) is the measured RTT between the

two endpoints, we keep only the feasible relays f that satisfy:

2 ∗ [t(n1, f ) + t(f ,n2)] ≤ RTT (n1,n2)

2.5 Measurement Framework

Wemeasure RTT as themetric for inter-domain path latency, using

pings between the following pairs of nodes.

Endpoint-to-endpoint.Pairs of RAE nodes tomeasure latency

of direct, BGP-derived, Internet paths.

3 Despite the number of sampled PLR being smaller than the corresponding COR

samples due to issues with the availability of functional PlanetLab nodes, both relay
sets have geo-presence at a comparable number of sites (∼60).
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Endpoint-to-relay. Pairs of RAE and relay nodes to measure

latency on overlay links, which may be stitched to form alterna-

tive paths from/to endpoints traversing a relay (i.e., relayed paths).

Relays can be CORs, PLRs, and RARs.

First, measuring the RTTs via pings between each pair of nodes

for both directions, we observed that the direction of the ping does

not affect the RTT. For example, for ∼80% of the RAE2RAE cases,

the difference between initiating the ping from one node instead

of its counterpart does not exceed 5%, while it is averaged out to

∼0% due to our randomized pair selection strategy.

We base our measurements on the following principles: (i) work

under the RA measurement constraints [7], (ii) amortize timing

differences between pseudo-parallel measurements, due to self or

external interference [27] and lack of synchrony, via randomized

setups, use of median4 values, and long repeated experiments. We

thus schedule measurements between endpoints as well as end-

points and feasible relays, via the RIPE Atlas API [8], repeating a

4-step workflow (round) every 12 hours (20 April - 17 May 2017)

to account for diurnal patterns. The basic measurement pattern

lasts 30 minutes; this window was chosen large enough to account

for RTT variability, and small enough to encapsulate a sufficiently

correlated batch of measurements. During this window, pings in

5-minute intervals are sent between each pair of nodes, generat-

ing an adequate number of measurements (6 per pair) to properly

evaluate the associated median RTTs. The workflow steps are:

(1) Select the RAE set (see Section 2.1).

(2) For each possible RAE pair, measure the RTT on the di-

rect path via single-packet pings. We repeat this process 6

times as mentioned above, and calculate the median RTT

per RAE pair. In a time slot of 30 minutes, we send 6 con-

sequent ping packets per pair with a time interval of 5

minutes.

(3) Select a set of feasible relays per type. We apply the selec-

tion methodology of Section 2.2 for COR, 2.3.1 for PLR,

and Section 2.3.2 for RAR. To find only the feasible re-

lays per (RAE1,RAE2) pair we use the methodology of Sec-

tion 2.4, based on the median RTTs on the (RAE1,RAE2)

paths calculated during Step (2).

(4) For each (RAE1,RAE2) pair extracted from the RAE set

of Step (1), and using the relays from Step (3), we mea-

sure the RTT between (RAE1,RAE2)
5, (RAE1,Relay), and

(RAE2,Relay)pairs, via single-packet pings.We repeat this

process 6 times, with a time interval of 5 minutes, and cal-

culate the median RTT per pair, based on at least 3 valid

RTTs within a measurement window; thus allowing for

meaningful median values. To infer the median RTT of a

relayed path (RAE1,Relay,RAE2) we stitch the associated

median RTTs of (RAE1,Relay) and (RAE2,Relay).
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Figure 2: CDF of latency differences (RTT) vs. direct paths

for the best relays (inducing minimal latency) per type per

RAE pair. Improvements between 1 and 200ms are shown

(83% of total cases). A few cases can reach up to 660ms.

3 MEASUREMENT RESULTS

We ran the measurement workflow of Section 2.5 for 45 rounds

(20/4-17/5/2017), sending ∼8.7M pings in total. We found ∼84% of

the destinations of the involved node pairs to be responsive with

≥3 ping replies per round. Next, we describe themost important in-

sights related to the latency-wise performance of ∼29 million stud-

ied relayed paths vs. ∼90K direct paths.

Latency Improvements per Type. Fig. 2 displays the CDF of

the latency differences (in ms) of the best-performing (i.e., induc-

ing the least latency) relays per type, vs. the direct paths over the

entire set of measurements. We show the improved cases (83% of

total), where the relays yield lower-latency paths. We note that

COR paths perform better than direct in 76% of the total cases,

RAR_other in 58%, PLR in 43% and RAR_eye in 35%. The latency im-

provements range from 1 to 200ms. A few outliers, such as commu-

nications involving very distant countries can witness even larger

improvements6 . Median improvements range between 12 and 14ms

for all types. COR and RAR_other yield improvements >100ms

(which are critical for e.g., application service providers [37]) in

6% of the improved cases (5% of total). These gains stem solely

from the discovery of fast TIV-enabled paths, and do not consider

other sources of latency that cut through the network stack [14].

Note that RAR_eye and PLR have very similar (low) performance,

while RAR_eye and RAR_other differ significantly; the latter sup-

ports our intuition of differentiating between the two RAR types.

The difference between the best (COR) and the second-best over-

lay (RAR_other ) does not surpass 5-10ms, for the cases where both

performbetter than the direct paths. Therefore, themost important

difference w.r.t. performance is the percentage of cases where re-

lays actually yield better-than-direct paths, while the improvement

itself does not vary significantly across types. We further calculate

a median of 8COR, 3 PLR, 2 RAR_other and 2 RAR_eye relays that

4Since RA is a best-effort measurement infrastructure w.r.t. synchrony and concur-
rency [27], we use batches of measurements and search for representative pairwise
RTTs. To avoid distorting the results with heavy outliers (which exist), we use the
median, instead of the average, as a robust metric to represent each batch.
5The latency measurement for direct and relayed paths should be in sync. Thus, for
each (RAE1, RAE2) pair we recalculate the RTT on the corresponding direct path.
6E.g., a path involving Colombia and Slovakia, observed reductions of 660ms when
relayed through large European Colos.
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Figure 3: % of total cases (pairwise communications) where

relayed paths improve latency against direct paths, vs. num-

ber of top relays (cut at top-100 relays for clarity).

yield improvements for each (RAE1,RAE2) pair, indicating a high

redundancy of COR relays.

How Many Relays are Enough? We next show what is the

maximum benefit we can achieve per relay type, for a given num-

ber of relays. Fig. 3 shows the percentage of improved (RAE1,RAE2)

pairs (out of the total cases) vs. the number of top relays (ranked

according to their frequency of improvement) employed to achieve

those improvements. The number of improved pairs increases rapidly

with the first fewCOR and PLR relays; in particular, the topCOR re-

lays are extremely beneficial (heavy hitters). In contrast, the num-

ber of improved pairs increases more smoothly for RAR relays,

which require >>100 relays to yield their top improvements (58%

of total cases, beyond x-axis bounds of Fig. 3). Overall, COR im-

prove many more pairs with fewer relays. Specifically, 10 COR

relays (in 6 Colos) with latency improvement in ∼75% of the im-

proved cases (58% of total) match the second-best performance

(58% of total cases for RAR_other ), which requires though >>100

RAR_other . After the first 10 relays, the incremental benefit of ad-

ditional COR is decreasing fast. Fig. 4 shows the percentages of

improved pairs (out of the total cases) vs. the threshold of latency

reduction that they surpass, when employing the top-10 and all re-

lays of each type, respectively. The best performance of each relay

set is considered per case. We see that the top-10COR perform bet-

ter than the top-10 relays of all the other types, and follow closely

the performance of allRAR_other relays (second-best performance

after all COR). The gaps between top-10 and all relays differ per

type; e.g., for PLR, this gap is minimal (∼5%), indicating very few

well-performing relays among the relay set. Interestingly, using

only the top-10 COR relays, ∼20% of all pairs witness latency re-

ductions larger than 20ms; the cost of this limited selection is only

30% less –relative to all COR– pairs surpassing 20ms (10% being

the exact percentage of “missing” total pairs). We next examine

the features of the top COR relays.

Features of Top Facility Relays. Table 1 shows the facilities

hosting the 20 top-appearing COR relays, i.e., the ones with the

highest frequency of improvement vs. direct paths. We augmented

the facility data using information from PeeringDB [6]. Interest-

ingly, we note that only 10 facilities actually contain the top-20 re-

lays, and 4 of them are in the top-10 of PeeringDB w.r.t. the number

of colocated networks they host. All of them are colocated with at
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Figure 4: % of total cases (pairwise communications) where

relayed paths improve latency against direct paths (top-

10/all relays), vs. improvement threshold (cut at 100ms). The

best performance of each relay set is considered per case.

least 2 IXPs, with one facility (Equinix Frankfurt) connected with

11 IXPs. At least 22 networks (ISPs, content/cloud providers, etc.)

are colocated at each facility, with one (Telehouse North London)

hosting 361 networks. All top facilities are either offering cloud

services themselves, or are colocated with cloud providers; these

data centers could be used e.g., to host VM-based relays [15, 43]. In

addition, the top facility relays reside in large metropolitan centers

(and Internet hubs), mainly inWestern Europe and North America.

Changing Countries and Paths. Path inflation [51], induced

by BGP policies, can lead to increased inter-domain latency be-

tween remote endpoints (residing, e.g., in different countries). We

expect that this effect may prevent relays that are located close

to the endpoints (e.g., same country) from using alternate, non-

inflated paths. To verify this assumption, we compare relayed paths

when the relay changes (and does not change) country w.r.t. the

endpoints; we consider the min-latency relays per case. We ob-

served that when the relay is in a different country than both end-

points7, latency is lower than the direct path in 75% of the cases

for COR. In contrast, this number drops to 50% if the relay is in

the same country as one of the endpoints. Similar remarks apply

for the other types, albeit with lower percentages. Also, out of the

totally studied (∼90K) RAE pairs (and related direct paths), 74% are

inter-continental, indicating a set conducive to path inflation. In-

deed, a significant fraction (19%) of the total direct paths, turn up

with RTTs that exceed 320ms (considered as threshold for poor

VoIP performance [19, 28]). These values are in line with the work

of Jiang et al. [29]. By employing only COR relays, the fraction of

paths over 320ms falls to 11%.

Stability over Time. Regarding the evolution of the results in

time, we observed a consistent pattern, with COR finding lower-

latency paths in >75%of the cases,RAR_other in >50%, andRAR_eye

and PLR having a positive impact in less than 50% of the cases

in every measurement round. In general, in ∼50% of the cases we

found a 1-20ms improvement for COR. The cumulative insights

from Fig. 2 seem to apply consistently in time. In fact, to further in-

vestigate the temporal stability of our observations, we calculated

the Coefficient of Variation (CV) for all the direct and relayed pairs

7 Endpoints are located in different countries based on the selection of Section 2.1.
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Table 1: Facilities of top-20 Colo relays (ranked according to

their frequency of presence in improved paths), and their

location and connectivity characteristics.

Facility Name (PDB ID)
% of Improved

City (Country) #Nets #IXPs
Cloud PDB

Cases Services top-10

1) Telehouse North (34) 47 London (GB) 361 6 ✓ ✓

2) Equinix-AM7 (62) 46 Amsterdam (NL) 184 4 ✓ ✓

3) Nikhef (18) 34 Amsterdam (NL) 151 6 ✓ ✗

4) Equinix-FR5 (60) 30 Frankfurt (DE) 235 11 ✓ ✓

5) Telehouse West (835) 29 London (GB) 89 5 ✓ ✗

6) Digital Realty Telx (125) 29 Atlanta (US) 125 2 ✓ ✗

7) Incolocate (105) 29 Hamburg (DE) 22 3 ✓ ✗

8) Interxion (68) 27 Brussels (BE) 58 3 ✓ ✗

9) Digital Realty Telx (10) 22 New York (US) 112 5 ✓ ✗

10) Equinix-LD8 (45) 21 London (GB) 208 4 ✓ ✓

for all measurements, as the standard deviation of themedian RTTs

of each pair divided by the pair’s average of medians over time. We

observed that the CV ranges from 0% to 40%, and is less than 10%

in 90% of the cases. This indicates stable, usable overlays.

4 RELATED WORK

Researchers have tinkered with the idea of exploiting TIVs to im-

prove inter-domain routing for the last two decades. After the early

pioneers with the Detour Framework [47, 48], Andersen et al. [12]

introduce Resilient Overlay Network (RON) to form resilient and—

potentially faster—paths compared to the default BGP paths. Simi-

lar insights remain timely [26], albeit by exploiting inter-continental

cloud-terminated paths.

VIA [29] aims at improving Internet telephony by employing

classic overlay techniques to relay calls. They show that an oracle-

based overlay can potentially improve up to 53% of calls whose

quality is impacted by poor network performance. Their relay se-

lection strategy uses call history information, and is based on the

empirical observation that even though a prediction-based approach

may not identify the optimal relay, it is likely to exist in the top few

predicted relays.

Regarding the number of relays per relayed path, useful insights

are provided by Han et al. [25] and Le et al. [34]. Both works sup-

port our approach to consider only 1-relay paths as adequate to

reduce latency, compared to N -relay paths (N ≥ 2).

ARROW [44], an inter-domain routing approach based on way-

points (i.e., relay routers within ISPs), allows users to set up reli-

able and secure e2e tunnels. While for about 20% of the ARROW

cases, the e2e latency increases (up to 20%), the performance of

most paths may actually be improved when routed via ARROW

waypoints. On the other hand, Lumezanu et al. [39, 40] analyze

TIVs, concluding that even though faster inter-domain paths exist,

their utilization can be prevented by business drivers of the ISPs

themselves.

MeTRO [43] aims to offer QoS between endpoints, using virtual

routers hosted in Amazon EC2 [1] and Bright Box [2] data centers

as cloud relays. Latency improvements exist for 58% of the cases,

while the best performing relays are close to large IXPs. In con-

trast to our work, no extensive comparison of overlay positioning

is performed, to understand the location impact on the relay se-

lection strategy. Similarly to MeTRO, Cai et al. [15] propose cloud-

routed overlay networks (CRONets), to maximize throughput. Re-

sults show that CRONets consistently help for 78% of the cases.

While MeTRO and CRONets relays are cloud-hosted, one of our

goals is to suggest a large-scale methodology for measuring inter-

domain paths passing through diverse relay types. To this end, we

exploit pingable IP addresses of interfaces located in Colos, and

we concatenate the latency of individual hops (endpoint to relay

to endpoint). Since these interfaces do not have to be under our ad-

ministrative control, they are not associated with any costs, there-

fore our methodology can scale seamlessly.

In summary, we identify a tendency towards inter-domain over-

lay networks, using relays in data centers [15, 29, 34, 43], ISPs [25,

44], or at the last mile [12, 26]. By exploiting TIVs [39, 40] to reduce

inter-domain latency, results show an improvement of latencymet-

rics when overlay paths are employed, as compared to direct BGP-

based paths. It is worth mentioning that the use of overlays re-

quires a delicate balance between overlay-based optimization and

policy-driven TE (e.g., on the enterprise level [35]), to avoid poten-

tial policy conflicts [31, 38, 46] with monetary impact. However,

our work focuses on strategically constructing and evaluating re-

layed paths for end-users and application providers; in particular,

employing relays at Colos, not explored in previous works.

5 CONCLUSIONS & FUTUREWORK

The Internet is changing. Requirements for low-latency video dis-

tribution have driven the flattening of the Internet topology in re-

cent years, resulting in short distances and dense fabrics at inter-

connection facilities [32]. This effect coupled with the emergence

of numerous cloud providers, residing at Colos, is opening up the

largest Colos of the Internet to end-users and application service

providers, who can now easily host their services there. In this pa-

per, we ask how this democratization of large Colos affects latency

for services that use relays. We performed an Internet-wide mea-

surement study, spanning 1 month, employing different types of

relays which serve endpoints located at the last mile. We showed

that Colos are useful locations to host relays, taking advantage of

their high connectivity and core locations to discover low-latency

TIV paths that are faster than the direct ones. A few Colo-based re-

lays are found to improve many more (>20%) of the studied cases

than one order of magnitude more PlanetLab or eyeball relays.

Future Work. We plan to investigate the following:

(i) The key factor(s) due to which Colos perform so well as re-

lays. Even though a preliminary analysis has already been con-

ducted in this work, the exact root-causes remain subject to further

research.

(ii) The underlying reasons for the relatively good performance

of RAR_other relays. RIPE Atlas is known to have a significant de-

ployment even in commercial (core) networks. We plan to further

examine the networks where these nodes are present.

(iii) Regional effects uncovered via traceroute measurements.

For example, we intend to investigate potential correlations be-

tween the characteristics of the countries traversed by relayed paths

and the achieved latency, as well as between the latency and the

proximity of endpoints/relays to submarine cable landing points [53].

Software and Datasets. The software used to run, analyze and

visualize themeasurements presented in this paper is publicly avail-

able, together with the collected measurement data [30].
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