
A Core Calculus for Provenance Inspection∗†

Wilmer Ricciotti
Laboratory for Foundations of Computer Science

University of Edinburgh
Edinburgh, Scotland

research@wilmer-ricciotti.net

ABSTRACT
Recent research has been devoting increasing attention to prove-
nance, or information describing the origin, derivation, and his-
tory of data, due to its relevance to critical issues including trans-
parency, privacy, and security. Engineering a software system to
make it provenance-aware by means of ad-hoc instrumentation
requires a substantial effort: the development of general-purpose
infrastructure is thus very important to achieve the goal of mak-
ing provenance widely available. In this article we describe a core
functional language equipped with a provenance-aware semantics
that is sufficiently generic to accomodate many notions of prove-
nance proposed in the literature. While existing proposals typically
treat provenance views and provenance extraction as second-class,
extralinguistic mechanisms, in our work provenance views are ex-
pressed as standard programs and provenance data can be reflected
into the language, allowing for programs that inspect their own
provenance.

CCS CONCEPTS
• Theory of computation → Rewrite systems; • Software and
its engineering → Functional languages; Semantics;

KEYWORDS
provenance, semantics, auditing
ACM Reference Format:
Wilmer Ricciotti. 2017. A Core Calculus for Provenance Inspection. In Pro-
ceedings of PPDP’17, Namur, Belgium, October 9–11, 2017, 12 pages.
https://doi.org/10.1145/3131851.3131871

1 INTRODUCTION
Not all information can be trusted: we know from experience that
some sources are unreliable; but even trustworthy sources canmake
mistakes, which is why, to decide whether some information can
∗An extended version of this paper can be found at http://www.wilmer-ricciotti.net/
†Effort sponsored by the Air Force Office of Scientific Research, Air Force Material
Command, USAF, under grant number FA8655-13-1-3006. The U.S. Government and
University of Edinburgh are authorised to reproduce and distribute reprints for their
purposes notwithstanding any copyright notation thereon.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PPDP’17, October 9–11, 2017, Namur, Belgium
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5291-8/17/10. . . $15.00
https://doi.org/10.1145/3131851.3131871

be believed, we need to consider how it was processed. This shows
the importance of an accurate description of the origin, history, and
derivation of some information, which has been known for decades
as provenance [3, 22], but has clearly been studied by epistemologists
for a much longer time. Provenance is essential to the development
of scientific knowledge: raw experimental data is useless without a
thorough explanation of how it was obtained, allowing the public
to reproduce the experiment (at least in principle) and confirm it
or contradict it. Data collection and processing was originally a
human activity (and scientists had to keep an accurate record of it);
by means of computer systems, it is now possible to process much
greater quantities of data in an efficient way.

Computer systems do not, however, provide the provenance
of the data they process for free: propagating it from the input
to the output, while logging all intermediate operations, requires
additional code; and more code means not only more effort, but
also more occasions to introduce bugs. For these reasons, a line
of research has devoted its attention to automated techniques to
record provenance. Many of these techniques are designed to be
employed in interesting but restricted settings (especially scientific
workflow computation [5, 12, 19, 23] and databases [4, 7, 11, 14, 15]).

In a 2013 paper [1], Acar et al. have laid the basis for track-
ing provenance in a general-purpose programming language, by
proposing a core functional calculus (Transparent ML, or TML)
equipped with a provenance extraction framework. They provide
a tracing big-step semantics, which records the history (or trace)
of computation; by analysing this trace, the extraction framework
is able to “replay” the computation, while at the same time propa-
gating provenance annotations from the source expression to the
final value. They show that TML and its provenance framework are
expressive enough to extract many forms of provenance.

Despite this, in TML provenance remains a second class citizen:
the extraction framework is an external layer combining several
user-provided functions (provenance views) to process annotations
and an execution trace and return the provenance; neither the
views, nor the annotations, nor the execution trace are expressed as
TML terms. Secondly, traces appear as an unneeded intermediate
step, as the extraction framework is required to replay them, es-
sentially executing the program a second time. Furthermore, TML
traces closely reflect the big-step semantics of the language, lim-
iting implementations to a call-by-value strategy and essentially
requiring provenance inspection to take place after the execution
of the program, and making self-inspecting programs impossible.

1.1 Summary
We take inspiration from TML and develop a more tightly inte-
grated provenance inspection calculus (PIC), in which provenance is

187

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3131851.3131871&domain=pdf&date_stamp=2017-10-09

PPDP’17, October 9–11, 2017, Namur, Belgium Wilmer Ricciotti

expressed as, and manipulated by first-class terms of the language.
In this paper, we provide the following contributions:
• a core functional calculus with special constructs to manipu-
late syntactic locations (represented as lists of integers)
• language types for provenance labellings and provenance
transducers together with a rich set of combinators
• a small-step, traceless semantics associating to each compu-
tation step the corresponding provenance transducer
• a simplified framework to define provenance views as lan-
guage expressions
• an inspection construct allowing reflective reasoning on prove-
nance

Outline. Section 2 introduces some basic notions about prove-
nance. The syntax and semantics of PIC is introduced in Section 3,
along with the provenance combinators. In Section 4 we provide a
framework for the simplified definition of provenance views. Sec-
tion 5 integrates PIC with an inspection construct and discusses
the full language with an extensive example. Finally in Section 6
we draw conclusions and discuss future work.

2 BACKGROUND
Provenance is most easily defined informally, as a form of meta-
data describing the origin or history of an artifact, or the process
by which it has been constructed. As soon as we try to make this
concept more formal, we realize that it depends on choices which
are, to a certain degree, arbitrary: the origin of data can include
an identifier of the person or organization that provided it; a de-
scription of the technical equipment that produced it, along with its
accuracy; a timestamp; localization information from a GPS sensor;
etc. Likewise, the computational process manipulating data can be
described with various levels of precision. We thus do not expect a
single, universally acceptable notion of provenance. It is however
clear that to mechanize provenance, we need facilities to annotate
input and output data with metadata, along with a way to analyze
the execution history of a software system.

The core calculus TML [1] provides a big-step tracing semantics,
with evaluation judgments in the following form:1

M ⇓ V , t
The judgment evaluates M and produces a result V and a trace t ,
which is a data structure describing the computation that produced
V (with a slight approximation, t can be considered a linearized
version of the evaluation tree). In this setting, the evaluation of an
arithmetic expression N1 + N2 takes the following form:

N1 ⇓ 2, t1 N2 ⇓ 3, t2 +̂(2, 3) = 5
N1 + N2 ⇓ 5, t1 + t2

where t1 + t2 is the trace expressing the evaluation of a sum whose
two arguments have histories described, respectively, by t1 and t2,
and +̂ is the meta-language sum. The evaluation of a larger term
yields a more complex trace:

N1 ⇓ 2, t1 N2 ⇓ 3, t2 +̂(2, 3) = 5
N1 + N2 ⇓ 5, t1 + t2 N3 ⇓ 1, t3

⟨N1 + N2,N3⟩ ⇓ ⟨5, 1⟩, ⟨t1 + t2, t3⟩
fst(⟨N1 + N2,N3⟩) ⇓ 5, fst(⟨t1 + t2, t3⟩)

1For simplicity, we omit evaluation environments.

TML provides a framework to extract various forms of prove-
nance from traces: the user annotates the source termwith primitive
provenance information and passes it, along with the execution
trace, to a provenance view which, basically, replays the computa-
tion while at the same time propagating the annotations. Views are
TML’s way of allowing a user to define several notions of prove-
nance: if we annotate the original term as fst(⟨N a1

1 + N
a2
2 ,N

a3
3 ⟩a4),

and we want the provenance of the final value to reflect that of all
the portions of the input on which it depends (dependency prove-
nance [10]), it is possible to define, by structural recursion on the
execution trace, a view that will return 5a1∪a2∪a4 . Notice that the
framework is an external facility: annotations do not have to be
TML terms, and views are defined as set-theoretic functions (al-
though it is implied that they should be computable). Other forms
of provenance that can be expressed in TML include:
• where-provenance [8], whose labels identify the input loca-
tion from which each portion of an expression was copied;
• expression provenance [1], whose labels are expression
graphs or trees describing how a value was computed in
terms of primitive operations.

Motivated by the limitations of TML, we set out to embed the
extraction framework into the language itself: as we started investi-
gating the issue of allowing provenance extraction within programs,
we realized that evaluating a sub-program to obtain its trace and
then processing its trace with a provenance view, essentially eval-
uating it a second time, made little sense; it should be possible to
compute the provenance applying a view immediately, without
materializing the execution trace as an intermediate step. To ac-
complish this task, we decided to replace traces with transducers,
or functions that transform provenance according to a certain exe-
cution history. A major obstacle in defining transducers is the need
to undo the substitutions created by the evaluation of functions
or pattern matching: to address it, we equip the language with a
special relocation operator. One property of transducers is that they
can be combined by functional composition to express a transitivity
rule. This allows us to adopt a small-step semantics, which can be
used to reason on the provenance of non-terminating programs.2

3 A PROVENANCE-AWARE CALCULUS
We define the provenance inspection calculus PIC, a pure functional
language equipped with a reduction semantics and extended with
facilities to annotate expressions with provenance and propagate
it during the computation. Its syntax, shown in Fig. 1, includes a
standard type system, with primitive types B (e.g. the singleton
type 1, booleans B, and natural numbers N), pairs, functions, and
lists and optional values on a base type σ (respectively [σ] and ∼σ).

The definition of expressions is standard. We parametrize the
syntax and semantics over primitive constants c and primitive oper-
ations ⊕, whose arguments must be of primitive types. We assume
constants and primitive operations including booleans tt and ff,
and natural numbers 0, 1, 2 . . ., along with standard arithmetic op-
erations and the equality test on natural numbers ?

=.

2A small-step semantics of TML was originally considered for this precise reason, but
left for future work. In the words of its proponents, “moving to a small-step semantics
[seems] likely to complicate the trace semantics (and subsequent analysis) considerably”.

188

A Core Calculus for Provenance Inspection PPDP’17, October 9–11, 2017, Namur, Belgium

Prim. types B ::= 1 | B | N | . . .
Types σ ,τ ::= B | σ × τ | σ ⊃ τ | [σ] | ∼σ
Contexts Γ ::= [x1 : τ1, . . . ,xn : τn]
Expressions L,M,N ::= c | x | M N | f (x).M | ⊕(−→M)

| • |∼M | ϵ | M # N | caseM of π
|fst(M) | snd(M) | ⟨M,N ⟩ | ρ(−→x .M)

Patterns π ::= {tt 7→ M ; ff 7→ N }
|{• 7→ M ;∼x 7→ N } | {ϵ 7→ M ;x # y 7→ N }

Views F ::= ⟨Mβ ,Mfst,Msnd,M•,M∼,
Mϵ ,M#,Mtt,Mff,M⊕⟩

Values U ,V ::= c | x | • | ∼U | ϵ | U #V | ⟨U ,V ⟩
| f (x).M | ρ(−→x .M)

Figure 1: Syntax of the language

We fix a multi-sorted signature Σ, containing type declarations
for constants (e.g.: c : σ) and primitive operations (⊕ : −→τm ⊃ τ ′,
where −→τm is a sequence of m types τ1, . . . ,τm). Each operation
symbol ⊕ is associated to a metalanguage function ⊕̂ from values
to values, expressing its semantics, thus defining an algebra for Σ.

Expressions f (x).M represent recursive functions f with formal
argument x and body M , where both f and x are bound in M ;
non-recursive lambda-expressions λx .M are treated as recursive
functions _(x).M , under the condition that the irrelevant function
name _ is free inM .

For optional values and lists, we use the following notation: an
expression of type ∼σ can be obtained either by encapsulating
someM of type σ using the syntax ∼M , or by means of the “none”
constructor represented by •; list constructors include the empty
list ϵ and the cons operationM#N . For explicit lists, we will use the
notation [M1; . . . ;Mk], which is syntactic sugar forM1 # . . .#Mk #ϵ .

Two case analysis constructs are used to decompose lists and
optional values; similarly, case analysis also supports reasoning on
booleans. We will allow ourselves to use an extended case analysis
notation, which should be considered syntactic sugar:

caseM of
{ϵ 7→ N1
; 1 # l1 7→ N2
; 2 # 1 # l2 7→ N3
; _ 7→ N4}

caseM of
{ϵ 7→ N1

;h1 # l1 7→ case h1
?
= 1 of

{tt 7→ N2

; ff 7→ case h1
?
= 2 of

{tt 7→ case l1 of
{ϵ 7→ N4

;h2 # l2 7→ case h2
?
= 2 of

{tt 7→ N3; ff 7→ N4}
}

; ff 7→ N4}
}
}

As an example, we can use recursion and case analysis to define
a list map function of type (N ⊃ N) ⊃ [N] ⊃ [N] as follows:

map := λf .mapf (l).case l of
{ϵ 7→ ϵ ;h#t 7→ (f h)#(mapf t)}

The main feature of PIC is that its semantics is expressed by
reduction judgments in the following form:

F ⊢ M T
↪−→ N

The intended reading is that M reduces to N ; additionally, F is a
parameter describing a provenance view, or a set of rules that express
how the initial provenance data contributes to the final provenance,
and T is a provenance transducer, a normal language expression
that, given provenance data forM , returns the provenance for N .

The reduct N does not depend on the view F , therefore we will
writeM ↪→ N whenwe evaluate an expression, but have no interest
in its provenance; on the other hand, T is constructed based on the
content of F : thus different views will produce different transducers.

One last expression kind, which we introduce in this calculus,
is the relocation ρ(−→x .M), of type [N] ⊃ [N]. This operation, which
expresses a mapping from locations in a (simultaneously) substi-
tuted termM[−→N /−→x] to locations in its componentsM,−→N , cannot be
defined in terms of other language constructs and is thus taken as
primitive. Notice that, since this mapping depends on the syntactic
structure ofM , no evaluation can take place within ρ.

3.1 Locations
To explain how relocations work, we need to formally describe
what locations are and how they are manipulated in our language.
A syntactic location is an entity that can be used to denote a specific
subexpression within a larger language expression. We want to
express provenance as a labelling, i.e. a function assigning a label
to each location in an expression; it should also be possible to
represent such labellings as language expressions, thus we need to
provide a representation for locations as well.

We choose to represent syntactic locations by means of lists of
natural numbers: given M , a list [n1, . . . ,nk] identifies one of its
subexpressions N by means of the abstract syntax tree path leading
to N from the root ofM ; each number ni in the list means that the
next node in the path is the ni -th child of the current node; the root
location is represented by the empty list ϵ . For better clarity, we
will write Loc rather than [N] when lists of natural numbers are
used as locations: this is just a presentational choice, and the two
notations express the same type.

locs(c) = locs(x) = locs(•) = locs(ϵ) = locs(ρ(−→x .M)) = {ϵ}
locs(f (x).M) = locs(fst(M)) = locs(snd(M)) = locs(∼M)
= {ϵ} ∪ (1 # locs(M))

locs(M N) = locs(⟨M,N ⟩) = locs(M # N)
= {ϵ} ∪ (1 # locs(M)) ∪ (2 # locs(N))

locs(caseM1 of {_ 7→ M2; _ 7→ M3}))
= {ϵ} ∪ (⋃i=1...3 i # locs(Mi))

locs(⊕(−−→Mn)) = {ϵ} ∪ (
⋃
i=1...n i # locs(Mi))

where we have abused the cons notation to apply it to sets of
terms S as follows:

n # S ≜ {n # M : M ∈ S}
A lookup meta-operation M

��
ℓ computes the subterm of M to

which the location ℓ points; if, while scanning M , the operation
reaches a variable before consuming the whole location, it returns

189

PPDP’17, October 9–11, 2017, Namur, Belgium Wilmer Ricciotti

the variable together with the remaining, unconsumed part of the
location. The location lookup operation is defined in Fig. 2.

In all other cases, the location is inconsistent with the term being
scanned and lookup is undefined.

Given a location ℓN valid forN , we can obtain the corresponding
location ℓ valid for ⟨M,N ⟩ as ℓ = 2 # ℓN . More generally, given a
composite n-ary expression k(M1, . . . ,Mn) = k(−−→Mn), we can map
locations forMi into locations for k(−−→Mn) by means of a location in-
jection ILocn .i = λℓ. i#ℓ. Dually, a location for k(−−→Mn) can be processed
by case analysis as follows: we map the root location ϵ to a given N
of type τ ; moreover, for each i = 1, . . . ,n, we provide a function pi
from Loc to a fixed type τ which is used to map locations i # ℓ for
the i-th subexpressions to pi ℓ. This case analysis, which we call
location elimination, can be expressed as a term of the language,
which we will refer to as ELocn .

3.2 Labels and provenance labellings
A provenance labelling for an expressionM is a function that maps
all locations valid forM to expressions of an arbitrary option type
∼τ , where • is taken to represent a default, non-informative label.
Wewill denote the type of τ -valued labellings by Provτ = Loc ⊃ ∼τ ;
we will also allow ourselves to write Prov when the intended τ is
obvious. We will use the metavariables a and ã, possibly decorated
with subscripts or superscripts, to denote base labels and optional
labels respectively. In general, we will define provenance labellings
only for the locations in locs(M), even though our type system
does not guarantee that labellings will be applied consistently: we
assume that if a labelling is not explicitly defined for a location, it
returns •. The default labelling λ_.• will be denoted by ⊥.

The labelling for a composite n-ary expression k(−−→Mn) can be
obtained by putting together labellings pi for every sub-expression
Mi , and providing an additional label a for the root. The correspond-
ing n-ary labelling injection operator IProvn has the same definition
of the location elimination ELocn . Dually, a labelling for a composite
expression k(−−→Mn) induces a projection labelling for each of its sub-
expressionsMi . The labelling projectionsEProvn .i defined as λp.p◦ILocn .i

compose a labelling for k(−−→Mn) with the i-th injection.

3.3 Provenance transducers
The way a labelling is transformed by evaluation allows us to ex-
press different kinds of provenance, including where-provenance,
dependency provenance, and expression provenance: whenever an
expression M reduces to N , there should be a way to transform

x
��
ℓ = x , ℓ M

��
ϵ = M, ϵ ⊕(−−→Mn)

��
i#ℓ = Mi

��
ℓ

(f (x).M)
��
1#ℓ = M

��
ℓ (M1 M2)

��
i#ℓ = Mi

��
ℓ ⟨M1,M2⟩

��
i#ℓ = Mi

��
ℓ

fst(M)
��
1#ℓ = M

��
ℓ snd(M)

��
1#ℓ = M

��
ℓ (∼M)

��
1#ℓ = M

��
ℓ

(M1 # M2)
��
i#ℓ = Mi

��
ℓ

caseM1 of {_ 7→ M2; _ 7→ M3}
��
i#ℓ = Mi

��
ℓ

Figure 2: Location lookup

any labelling forM into a labelling for N . This transformation will
be expressed intra-linguistically, by means of functions of type
Provτ ⊃ Provτ which we call provenance transducers; this type will
also be written Transτ for short. Rather than defining an ad-hoc
transducer for each possible reduction, which would be of little use,
we will give rules to synthesize transducers based on the reduction
rules of the language: for example, we will have a transducer for
the reduction of function application, two transducers for the two
reductions of case analysis over option types, and similarly two
transducers for case analysis over lists, etc.

In the special case of congruence rules, the corresponding trans-
ducer will not be provided by the user: the language provides default
transducers that reflect the administrative nature of these rules. For
example, given a transducer T for the reduction M ↪→ M ′, the
transducer for the congruence reduction M N ↪→ M ′ N can and
should be obtained by lifting T .

In general, given a reduction Mi ↪→ M ′i and a corresponding
transducer T , the transducer for the congruence
k(M1, . . . ,Mi , . . . ,Mn) ↪→ k(M1, . . . ,M ′i , . . . ,Mn) must perform
the following actions:

(1) obtain a labelling p for the full unreduced expression;
(2) apply labelling projections to obtain the labellings p1, . . . ,pn

for each of the sub-expressionsM1, . . . ,Mn ;
(3) apply T to pi to obtain a labelling forM ′i ;
(4) use the labelling injectionIProvn to compose the new labelling

forM ′i with the old labellings for the unchangedMj (j , i).
The above actions are expressed by the operator In .i (i-th trans-

ducer congruence of order n), defined in terms of IProvn and EProvn .j .
Fig. 3 summarizes the definition of location injections and elimi-

nation, labelling injection and projections, and transducer congru-
ences. We will refer to these operations, collectively, by the name
of provenance combinators.

3.4 Semantics
We now use the notions introduced in the previous sections to
formally define a provenance-aware small-step semantics: its rules
are shown in Fig. 4. The reduction judgment F ⊢ M

T
↪−→ N of

provenance-aware semantics involves a provenance transducer T ,
which has type Transτ for some τ , and relates the provenance ofM
to that of N . As anticipated, some of the reduction rules make use
of the relocation operator ρ(. . .): to understand why, it is sufficient
to see that a transducer ultimately needs to translate every location
in the reduct into a location in the redex. Sometimes this translation
can be expressed as an elementary program: for instance, when
reducing a pair projection

fst ⟨R, S⟩ ↪→ R

a location ℓ for R corresponds to 1 # 1 # ℓ in fst ⟨R, S⟩. However,
for reduction rules involving substitutions, the correspondence is
not so simple. In the case of a function application reduction

(f (x).M) N ↪→ M[f (x).M,N /f ,x]
the only way to map locations in the reduct to locations in the redex
is by means of a structural analysis of the expressions involved in
the reduction, which is not allowed by standard language constructs.
We thus extend the language with relocation expressions ρ(−→x .M)

190

A Core Calculus for Provenance Inspection PPDP’17, October 9–11, 2017, Namur, Belgium

Location injection: Loc ⊃ Loc
ILocn .i := λℓ. i # ℓ (n is irrelevant)

Location elimination: (Loc ⊃ τ) ⊃ · · · ⊃ (Loc ⊃ τ) ⊃ τ ⊃ Loc ⊃ τ

ELocn := λp1, . . . ,pn ,a, ℓ. case ℓ of {ϵ 7→ a; 1 # ℓ′ 7→ p1 ℓ′; . . . ;n # ℓ′ 7→ pn ℓ
′}

Provenance injection: Provτ ⊃ · · · ⊃ Provτ ⊃ ∼τ ⊃ Provτ
IProvn := ELocn

Provenance projection: Provτ ⊃ Provτ
EProvn .i := λp. p ◦ ILocn .i

Transducer congruence: Transτ ⊃ Transτ
In .i := λt ,p. IProvn (EProvn .1 p) · · · (EProvn .(i−1) p) (t (EProvn .i p)) (EProvn .(i+1) p) · · · (EProvn .n p) (p ϵ)

Figure 3: Definition of the provenance combinators

which allow us to map redex locations to unreduced locations
by essentially “undoing” the substitution. Relocation operations
are functions with type Loc ⊃ Loc: when ρ(−→xn .M) is applied to a
location ℓ in locs(M[−→Nn/−→xn]), it first computes the lookupM

��
ℓ : if

the lookup yields xi , ℓ′, for i = 1, . . . ,n – i.e. one of the variables
declared by the relocation, together with an unconsumed location
– then ℓ′ represents the path to the subexpression of Ni which
corresponds to location ℓ in the substituted expression; in this case,
the relocation maps ℓ to i # ℓ′. If instead the lookup M

��
ℓ returns

another subterm of M together with ϵ , the relocation maps ℓ to
(n+1)#ℓ; in all the other cases, ℓ is an invalid location forM[−→Nn/−→xn],
and we return a (meaningless) default location ϵ .

Thanks to relocations, we canmap the locations of a beta-reduced
expression back to the original function application. For instance, if
ℓ ∈ locs(M[f (x).M,N /f ,x]), ρ(f ,x .M) ℓ will reduce to one among
1#ℓ1 (where ℓ1 ∈ locs(f (x).M)), 2#ℓ2 (where ℓ2 ∈ locs(N), or 3#ℓ3
(where ℓ3 ∈ locs(M)). Mapping these locations to locs((f (x).M) N)
is then a matter of a simple case analysis, which we provide as a
relocation helper β (with type (Loc ⊃ Loc) ⊃ Loc ⊃ Loc):

β := λr , ℓ.case r ℓ of {3 # ℓ3 7→ 1 # 1 # ℓ3; _ 7→ ℓ}
Then for all N , the expression β ρ(f ,x .M) maps locations in
locs(M[f (x).M,N /f ,x]) to locations in locs((f (x).M) N).

Non-recursive function applications (λx .M) N ↪→ M[x 7→ N]
are a special case of recursive functions, thus the same operator
can be used to express their relocation function as well.

The view F is, in essence, a collection of basic transducers that
correspond to the basic reduction rules. This is especially clear in
the rules for the contraction of pair projections and the simpler
forms of case reductions, which simply return the transducers Ffst,
Fsnd, F•, Fϵ , Ftt, and Fff. The reduction of primitive operations is
similar, save for the fact that we allow a transducer F⊕ to receive
the actual arguments of ⊕ as parameters; furthermore, notice that
primitive operations only reduce when applied to values.

The rule for function application must express the propaga-
tion of provenance under substitution; this requires us to pro-
duce a transducer capable of mapping locations in the substitution
M[f (x).M,N /f ,x] back to their label in the unreduced application

(f (x).M) N . To accomplish this task, Fβ will receive the reloca-
tion function β ρ(f ,x .M) as a parameter. Case analysis can reduce
to substituted expressions as well, which explains why F∼ and F#
receive relocations β∼ ρ(x .N) and β# ρ(h, t .N) as parameters; the
concrete definition of β∼ and β# should not be too surprising:

β∼ := λr , ℓ.case r ℓ of

{1 # ℓ1 7→ 1 # 1 # ℓ1; 2 # ℓ2 7→ 3 # ℓ2; _ 7→ ℓ}
β# := λr , ℓ.case r ℓ of

{1 # ℓ1 7→ 1 # 1 # ℓ1; 2 # ℓ2 7→ 1 # 2 # ℓ2; _ 7→ ℓ}
(notice that in β∼ the last branch of the case analysis can only be
reached when ℓ is ϵ or an invalid location).

Finally, three rules define the computational behaviour of the re-
locator ρ. The first rule applies to locations ℓ that, withinM[−→Nn/−→xn],
reference a proper subterm of M that is not one of the substituted
variables: this is converted to the location (n + 1) # ℓ. The second
one explains what to do when the lookup of location ℓ withinM ref-
erences the i-th substituted variable, possibly with an unconsumed
ℓ′ (which is a right-hand sublist of the original ℓ): the reduced ex-
pression is ℓ′, prepended by the natural number i . Finally, the third
rule provides the evaluation of a relocation applied to an invalid
location: this situation is meaningless, but we reduce to ϵ , with no
special meaning other than it being a canonical location.

Since relocations are usually tools to extract provenance, and
not expressions whose provenance should be extracted, for both
reduction rules involving ρ we provide a forgetful transducer λ_.⊥.

Congruence rules use the transducer congruences from Fig. 3.
The generic form of a congruence is that of an n-ary composite ex-
pression k(M1, . . . ,Mi , . . . ,Mn), which reduces to
k(M1, . . . ,M ′i , . . . ,Mn) wheneverMi reduces toM ′i . Given a trans-
ducer T fromMi toM ′i we can obtain the congruence transducer
by means of the combinator In .i .

3.5 Type system
The type system of PIC (Fig. 5) is defined in a standard way. Aside
from mentioning that it is parametric on the signature Σ used to
type constants and primitive operations, the only rule that deserves

191

PPDP’17, October 9–11, 2017, Namur, Belgium Wilmer Ricciotti

Reduction rules

F ⊢ (f (x).M) N
Fβ (β ρ(f ,x .M))
↪−−−−−−−−−−−−−−→ M[f (x).M,N /f ,x] F ⊢ ⊕(−→Vn)

F⊕
−→
Vn

↪−−−−−→ ⊕̂(−→Vn)

F ⊢ fst(⟨M,N ⟩) Ffst
↪−−−→ M F ⊢ snd(⟨M,N ⟩) Fsnd

↪−−−→ N

(tt 7→ N) ∈m
F ⊢ case ff ofm Ftt

↪−−→ N

(ff 7→ N) ∈m
F ⊢ case ff ofm Fff

↪−−→ N

(• 7→ N) ∈m
F ⊢ case • ofm F•

↪−→ N

(∼x 7→ N) ∈m

F ⊢ case ∼M ofm
F∼ (β∼ ρ(x .N))
↪−−−−−−−−−−−−−→ N [M/x]

(ϵ 7→ N) ∈m
F ⊢ case ϵ ofm

Fϵ
↪−−→ N

(h # t 7→ N) ∈m

F ⊢ caseM1 # M2 ofm
F# (β# ρ(h,t .N))
↪−−−−−−−−−−−−−−→ N [M1,M2/h, t]

M
��
ℓ = M ′, ϵ M ′ < −→xn

F ⊢ ρ(−→xn .M) ℓ
λ_.⊥
↪−−−−→ (n + 1) # ℓ

M
��
ℓ = xi , ℓ

′ 1 ≤ i ≤ n

F ⊢ ρ(−→xn .M) ℓ
λ_.⊥
↪−−−−→ i # ℓ′

M
��
ℓ = N , ℓ′ ℓ′ , ϵ for all i s.t. 1 ≤ i ≤ n : N , xi

F ⊢ ρ(−→xn .M) ℓ
λ_.⊥
↪−−−−→ ϵ

Congruence rules

F ⊢ Mi
T
↪−→ M ′i

F ⊢ ⊕(−−→Mn)
In .i T
↪−−−−−→ ⊕(M1, . . . ,M ′i , . . . ,Mn)

F ⊢ M T
↪−→ M ′

F ⊢ M N
I2.1 T
↪−−−−−→ M ′ N

F ⊢ N T
↪−→ N ′

F ⊢ M N
I2.2 T
↪−−−−−→ M N ′

F ⊢ M T
↪−→ M ′

F ⊢ ⟨M,N ⟩
I2.1 T
↪−−−−−→ ⟨M ′,N ⟩

F ⊢ N T
↪−→ N ′

F ⊢ ⟨M,N ⟩
I2.2 T
↪−−−−−→ ⟨M,N ′⟩

F ⊢ M T
↪−→ M ′

F ⊢ fst(M)
I1.1 T
↪−−−−−→ fst(M ′)

F ⊢ M T
↪−→ M ′

F ⊢ snd(M)
I1.1 T
↪−−−−−→ snd(M ′)

F ⊢ M T
↪−→ M ′

F ⊢ caseM ofm
I3.1 T
↪−−−−−→ caseM ′ ofm

Figure 4: Provenance-carrying semantics

to be mentioned here is the one concerning relocations. Relocations,
which are functions from Loc to Loc, are well typed provided that
their argument is well-typed in a properly extended context.

Even though provenance views as such are not PIC-expressions,
they are used in reductions andmust be well-typed to function prop-
erly. To typecheck a view, we use an auxiliary definition Tσ (Fig. 6):
each of the transducers Fκ within a view F must have type Tσ (κ),
where σ is a type of provenance labels and κ identifies one of the
basic reduction rules. Each Tσ (κ) returns a provenance transducer
of type Transσ , which may be parametrized by a relocation (for
κ = β ,∼, #) or by the actual arguments of the primitive operation
being reduced (for κ = ⊕). Type-safety for PIC follows immediately.

Theorem 3.1 (Preservation and progress). (1) If Γ ⊢ M :
σ , Γ ⊢ F : Tτ , and F ⊢ M

T
↪−→ M ′, then Γ ⊢ M ′ : σ and

Γ ⊢ T : Transτ .
(2) If ⊢ M : σ andM is not a value, then for all F ,τ s.t. ⊢ F : Tτ ,

there exist T ,M ′ such that F ⊢ M T
↪−→ M ′.

4 PROVENANCE VIEWS
The provenance-carrying semantics we defined allows us to choose
a view F with great flexibility. Consider for example the reduction:

F ⊢ fst(⟨M,N ⟩) Ffst
↪−−−→ M

192

A Core Calculus for Provenance Inspection PPDP’17, October 9–11, 2017, Namur, Belgium

Expression typing

c : τ ∈ Σ
Γ ⊢ c : τ

x : τ ∈ Γ
Γ ⊢ x : τ

Γ ⊢ −→M : −→σ ⊕ : −→σ ⊃ τ ∈ Σ
Γ ⊢ ⊕(−→M) : τ

Γ,−→x : −→σ ⊢ M : τ
Γ ⊢ ρ(−→x .M) : Loc ⊃ Loc

Γ ⊢ M : σ Γ ⊢ N : τ
Γ ⊢ ⟨M,N ⟩ : σ × τ

Γ ⊢ M : σ × τ
Γ ⊢ fst(M) : σ

Γ ⊢ M : σ × τ
Γ ⊢ snd(M) : τ

Γ, f : σ ⊃ τ ,x : σ ⊢ M : τ
Γ ⊢ f (x).M : σ ⊃ τ

Γ ⊢ M : σ ⊃ τ Γ ⊢ N : σ
Γ ⊢ M N : τ

Γ ⊢ M : B Γ ⊢ N : τ Γ ⊢ R : τ
Γ ⊢ caseM of {tt 7→ N ; ff 7→ R} : τ

Γ ⊢ • : ∼σ
Γ ⊢ M : σ

Γ ⊢ ∼M : ∼σ
Γ ⊢ M : ∼σ Γ ⊢ N : τ Γ,x : σ ⊢ R : τ

Γ ⊢ caseM of {• 7→ N ;∼x 7→ R} : τ

Γ ⊢ ϵ : [σ]
Γ ⊢ M : σ Γ ⊢ N : [σ]

Γ ⊢ M # N : [σ]
Γ ⊢ M : [σ] Γ ⊢ N : τ Γ,h : σ , t : [σ] ⊢ R : τ

Γ ⊢ caseM of {ϵ 7→ N ;h # t 7→ R} : τ

Provenance view typing
for all κ: Γ ⊢ Fκ : Tσ (κ)

Γ ⊢ F : Tσ

Figure 5: Typing rules

Tσ (β) = (Loc ⊃ Loc) ⊃ Transσ
Tσ (∼) = (Loc ⊃ Loc) ⊃ Transσ
Tσ (#) = (Loc ⊃ Loc) ⊃ Transσ

Tσ (⊕) = −→τ ⊃ Transσ (if ⊕ : −→τ ⊃ τ ′ ∈ Σ)
Tσ (_) = Transσ

Figure 6: The type of views

Here, the transducer Ffst is allowed to transform the input labelling
without any restriction: the most obvious choice would be to prop-
agate the labels of the first element of the source pair, but other
choices are possible. F could erase all labels, or add a static label to
arbitrary subterms ofM ; it could even provide a new labelling of
M using labels from N , even though N is not part of the reduced
term: the only limitation is that Ffst be expressible as a language
function. The generality with which provenance views can be de-
fined is one of the strengths of our approach, but it comes at a cost:
views will usually be defined by pattern matching on locations,
and the transducers for function applications and case analysis will
often have to use a relocation function explicitly, which is rather
cumbersome. For many notions of provenance such a generality is
not needed and is only an element of confusion. Consider, for exam-
ple, a fst-projection labelled with three distinguished provenance
annotations in the form fst(⟨M ã1 ,N ⟩ã2)ã3 (for better readability,
we represent provenance annotations as superscripts, rather than
providing an explicit function expression from locations to annota-
tions). When reducing the projection, we might want the outermost
label of the reduced M to depend only on those ãi (ignoring the
annotations of N) and the inner subexpressions ofM to keep the
same labels that they had before the reduction. In other words, we
would like the labelling to be transformed as follows:

fst(⟨M ã1 ,N ⟩ã2)ã3 { Mvfst ã3 ã1 ã2

where vfst is some expression with type ∼τ ⊃ ∼τ ⊃ ∼τ ⊃ ∼τ , for
an annotation type ∼τ .

Similarly, when reducing ((f (x).M ã1)ã2 N ã3)ã4 , we often expect
the reduced term to be, essentially,M ã1 where free occurrences of f
and x have been replaced by (f (x).M ã1)ã2 and N ã3 ; the outermost
label of the reduced term could additionally depend on ã2 and ã4
(which annotate AST nodes that are destroyed by the reduction). A
transducer Fβ satisfying these conditions could be defined as:
λr ,p, ℓ. case ℓ of {ϵ 7→ vβ (p ϵ) (p [1]) (p (r ϵ)); _ 7→ p (r ℓ)}

wherevβ is an arbitrary term combining three annotations into one,
(p ϵ) and (p [1]) return the annotations corresponding to ã4 and ã2
in the example. The argument r receives a relocation function in the
form β ρ(f ,x .M), provided by the standard provenance-carrying
semantics, which is used to retrieve the “natural” annotation arising
from the substitution of a labelled term into another labelled term.

These examples show that while manipulating raw provenance
labellings is tricky, we can keep things simple by providing func-
tions like vfst and vβ , which combine a few distinguished annota-
tions and propagate all the others. Based on such considerations,
we provide the following lifting framework that lifts functions vκ
provenance annotations to provenance transducers Fκ :

Fβ (vβ) := λr ,p, ℓ. case ℓ of

{ϵ 7→ vβ (p ϵ) (p [1]) (p (r ϵ)); _ 7→ p (r ℓ)}
Ffst(vfst) := λp, ℓ. case ℓ of

{ϵ 7→ vfst (p ϵ) (p [1]) (p [1; 1]); _ 7→ p (1 # 1 # ℓ)}
Fsnd(vsnd) := λp, ℓ. case ℓ of

{ϵ 7→ vsnd (p ϵ) (p [1]) (p [1; 2]); _ 7→ p (1 # 2 # ℓ)}
Ftt(vtt) := λp, ℓ. case ℓ of

{ϵ 7→ vtt (p ϵ) (p [1]) (p [2]); _ 7→ p (2 # ℓ)}
Fff(vff) := λp, ℓ. case ℓ of

{ϵ 7→ vtt (p ϵ) (p [1]) (p [3]); _ 7→ p (3 # ℓ)}

193

PPDP’17, October 9–11, 2017, Namur, Belgium Wilmer Ricciotti

F•(v•) := λp, ℓ. case ℓ of

{ϵ 7→ v• (p ϵ) (p [1]) (p [2]); _ 7→ p (2 # ℓ)}
F∼(v∼) := λr ,p, ℓ. case ℓ of

{ϵ 7→ v∼ (p ϵ) (p [1]) (p (r ϵ)); _ 7→ p (r ℓ)}
Fϵ (vϵ) := λp, ℓ. case ℓ of

{ϵ 7→ vϵ (p ϵ) (p [1]) (p [2]); _ 7→ p (2 # ℓ)}
F#(v#) := λr ,p, ℓ. case ℓ of

{ϵ 7→ v# (p ϵ) (p [1]) (p (r ϵ)); _ 7→ p (r ℓ)}
F⊕(v⊕) := λ−→xn ,p, ℓ. case ℓ of

{ϵ 7→ v⊕ −→xn (p ϵ) (p [1]) (p [2]) · · · (p [n])
; _ 7→ ϵ}

F (v) := ⟨Fβ (vβ), . . . , F⊕(v⊕)⟩
We will now use the lifting framework to define where-provenance,
expression provenance, and dependecy provenance views. We will
also state their correctness properties, whose proofs can be found
in the extended version of this paper.

4.1 Where-provenance
The where-provenance viewW uses label-propagating transducers;
any optional type of labels ∼τ is allowed. When a reduction copies
certain data, the corresponding transducer will propagate the la-
bels along with the data; when a reduction transforms the term
beyond recognizability (for example, when reducing primitive oper-
ations), there is no label to propagate, therefore the corresponding
transducer will produce the default, uninformative label •.

w⊕ := λ−→xn , ã,
−→̃
an .•

wκ := λ_, _, ã.ã (κ , ⊕)
W := F (w)

Example 4.1. Let f := λx ,y.casex
?
=y of {tt 7→ x ; ff 7→ y + 1}.

We map f 2 to a list [1; 2; 3]:

map (f 2)[1; 2; 3] ∗↪→ [2; 2; 4]
Now consider the following provenance labelling L assigning an-
notations ã, ã1, ã2, ã3 as follows:

map (f 2ã) [1ã1 ; 2ã2 ; 3ã3]
(subexpressions without an annotation are considered to labelled
by •). A where-provenance reduction acts as follows:

map (f 2ã) [1ã1 ; 2ã2 ; 3ã3] ∗↪→ [2; 2ã ; 4]
In the output list, only the second element is annotated with a,
meaning that it was copied from the argument of f ; the other two
elements were not copied, but obtained by incrementing previous
values in the same position, and thus receive the • annotation.

As a general rule, after each execution step we expect subex-
pressions labelled with ∼a to be copied from parts of the original
expression having the same label. The actual well-behavedness

property of where-provenance, in our setting, is less naïve than
that: consider the reduction

(λx .(λy.(x y)a)) N ↪→ λy.(N y)a

The subexpression (N y) is indeed derived from the similarly la-
belled (x y), but the two are only equal up to the substitution [N /x].
The relation between the two expressions can be made formal:

Definition 4.2. M ⊑ N ⇐⇒ ∃s .M[s] ∗↪→ N , where s is a
substitution.

Lemma 4.3. (1) ⊑ is an order relation;
(2) ifM ⊑ N and N

∗
↪→ R, thenM ⊑ R.

We can then prove thatW satisfies the followingwell-behavedness
property of where-provenance:

Theorem 4.4 (well-behavedness ofW). SupposeW ⊢ M T
↪−→ N :

then for all labellings L and ℓ ∈ locs(N), if T L ℓ { ∼a, there exists
ℓ′ ∈ locs(M) such that L ℓ′ { ∼a andM

��
ℓ′ ⊑ N

��
ℓ .

4.2 Expression provenance
To define expression provenance, we allow provenance labels to
be simplified syntax trees with constants or primitive annotations
as leaves and primitive operation symbols as inner nodes. More
formally, we assume a type of labels τ containing the following
elements:

a ::= b̄ | kc | k⊕(−→an)
where b belongs to a type of basic annotations τb , and kc and k⊕ ,
defined for all constants c and all n-ary basic operations ⊕, are
reified representations of language expressions. As usual, τ will be
wrapped in an optional type ∼τ .

Accordingly, a numeric value, say 2, could have several possible
labels: a label ∼b̄ means that 2 was copied from a part of the input
with the same label; a label ∼k+(a1,a2) means it was obtained by
adding together two values originally labelled with ∼a1 and ∼a2;
the label •, as usual, provides no information; finally the label ∼k2,
merely indicates a literal 2, but does not specify its provenance
otherwise, therefore it can be considered a variant of •.

The expression provenance view can be defined by means of a
simple variation on where-provenance. The only transducer that
needs a different definition, unsurprisingly, is the one associated
with the evaluation of primitive operations (e⊕):

e⊕ := λ−→xn , ã,
−→̃
an .k⊕(

−−−−−−→
ãn ∗ xn)

eκ := λ_, _, ã.ã (κ , ⊕)

E := F (e)
In the definition, we use the following ∗ operation:

(ã) ∗ x =
{ ∼kx if ã = •
ã else

where kx is the label corresponding to the constant x (remember
that primitive operations are reduced when applied to constants,
thus we must have x = c for some c). This allows us to conjure an
informative annotation for constants that have not been given a
provenance.

194

A Core Calculus for Provenance Inspection PPDP’17, October 9–11, 2017, Namur, Belgium

Example 4.5. We start with the same labelling as in the where-
provenance example:

map (f 2ã) [1ã1 ; 2ã2 ; 3ã3]
If we evaluate the term according to expression provenance, we
obtain the following labelled value:

[2k+(ã1,k1); 2ã ; 4k+(ã3,k1)]
Just like in where-provenance, 2ã indicates a term that was copied
from the input; the term 2k+(ã1,k1), instead, has been obtained by
adding together 1ã1 and an unannotated literal 1.

Expression provenance annotations should allow us to recom-
pute the annotated expression. To make this formal, let us consider
metalanguage functions h mapping basic annotation values in τb
to arbitrary language values. We then define the extension of such
an h to full annotations as the metalanguage function ĥ mapping
values in τ to arbitrary language values, as follows:

ĥ(b̄) = h(b)
ĥ(kc) = c

ĥ(k⊕(ã1, . . . , ãn)) = ⊕̂(ĥ(ã1), . . . , ĥ(ãn))
We then introduce consistent mappings (a modified version of

the analogous concept used in [1]) as those functions h which agree
with a certain annotated expression.

Definition 4.6. LetM be a term, and L a provenance labelling for
M of type Provτ . We say that h is a consistent mapping for L ▷ M
(and write h ⊩ L ▷ M) if and only if for all ℓ ∈ locs(M) there exist an
annotation ã such that L ℓ { ã and, if ã = ∼a′, then ĥ(a′) ⊑ M

��
ℓ .

Finally, we prove that reduction under the view E preserves
consistent mappings.

Theorem 4.7 (well-behavedness of E). If h ⊩ L ▷ M and

E ⊢ M T
↪−→ N , then h ⊩ T L ▷ N .

4.3 Dependency provenance
Dependency provenance associates to each expression location an
annotation containing a set of labels. A full definition of dependency
provenance would therefore require us to encode sets as a type
of the language, providing at the same time an implementation of
standard set operations. We could for example use the list encoding
of sets, which is a simple programming exercise; for the purposes of
this paper, we will abstract from the actual definition of the type of
dependency annotations, assuming that a sound implementation of
set operations like union and membership test exists. In particular,
we assume that the default annotation • be interpreted as the empty
set of labels ∅ rather than the “none” optional value.

The dependency view then merely amounts to taking the union
of all the dependency sets involved in a reduction:

d⊕ := λ−→xn ,
−−−→
ãn+1.

⋃−−−→
ãn+1

dκ := λã1, ã2, ã3.ã1 ∪ ã2 ∪ ã3 (κ , ⊕)

D := F (d)

Example 4.8. We adapt our example to dependency provenance
by extending the language of provenance labels to accept sets of
annotations:

map ⟨f 2{a }, [1{a1 } ; 2{a2 } ; 3{a3 }]⟩
(where subexpressions without an annotation are considered to
labelled by ∅). After evaluation, we get the following dependency
provenance labelling:

[2{a1,a } ; 2{a2,a } ; 4{a3,a }]
The new labelling reflects the fact that each element of the list
depends upon both the corresponding element in the source list,
and the argument to the function f .

To state the well-behavedness property for the view D we use
a relation L ▷ M ≈a L′ ▷ M ′ that holds when the annotated terms
L ▷ M and L′ ▷ M ′ are quasi-equal, up to subterms annotated with
a label a (e.g. ⟨1, 2S⟩ ≈a ⟨1, 3S′⟩ provided that a ∈ S ∩ S′). The
idea is that, if starting with L ▷ M we perform a reduction step
D ⊢ M T

↪−→ N whose redex is entirely guarded by the label a, we
obtain a term that is still quasi-equal to L′ ▷ M ′. If instead the redex
is not guarded by a, then we can find a reduction D ⊢ M ′ T ′

↪−→ N ′
such that T L ▷ N ≈a T ′ L′ ▷ N ′.

To indicate reductions guarded and not guarded by an annotation,
we use the notation:

D ⊢ (L ▷ M) T
↪−→a N

D ⊢ (L ▷ M) T
↪−→ā N

(a formal definition is given in the extended version of this paper).

Theorem 4.9 (well-behavedness ofD). Suppose L ▷ M ≈a L′ ▷
M ′. Then:

(1) If D ⊢ (L ▷ M) T
↪−→a N , we have T L ▷ N ≈a L′ ▷ M ′.

(2) If D ⊢ (L ▷ M) T
↪−→ā N , there exist T ′, N ′ such that D ⊢

M ′
T ′
↪−→ N ′ and T L ▷ N ≈a T ′ L′. ▷ N ′.

Admittedly, this property is weaker than the dependency-correctness
of [10], as we do not consider redexes that are partially guarded by
a, such as (f (x).M){a } N . We believe that full dependency-correct-
ness also holds, but cannot be proved without resorting to a more
complex argument involving well-typedness; we thus leave this
proof as future work.

5 SELF-INSPECTION
The language described in Section 3, together with the view defini-
tion framework of Section 4, can be compared to TML. Although we
have simplified the type system by renouncing recursive types, the
two languages are quite similar; the provenance extraction frame-
work can also be compared to our view definition framework. Our
approach, however, does provide a few enhancements:
• our small-step semantics is not limited to call-by-value evalu-
ation, like their big-step definition, but accomodates a variety
of evaluation strategies;
• provenance views and provenance data are expressed in the
same language as the programs whose provenance is being
considered;

195

PPDP’17, October 9–11, 2017, Namur, Belgium Wilmer Ricciotti

Expressions L,M,N ::= . . . | ι(F ,L ▷ M)
Views F ::= ⟨Mβ ,Mfst,Msnd,M•,M∼,

Mϵ ,M#,M⊕,Mι ⟩
locs(ι(F ,L ▷ M)) = {ϵ}

Γ ⊢ F : Tσ Γ ⊢ L : Provσ Γ ⊢ M : τ
Γ ⊢ ι(F ,L ▷ M) : τ × Provσ

Tσ (ι) = Transσ
F (vι) = λp, ℓ.case ℓ of {ϵ 7→ vι (p ϵ); _ 7→ •}

G ⊢ M T
↪−→ N

F ⊢ ι(G,L ▷ M) I
↪−→ ι(G,T L ▷ N)

FV(V) = ∅
F ⊢ ι(G,L ▷ V) Fι

↪−→ ⟨V ,L⟩

Figure 7: Syntax, semantics, and typing of inspection

• in our language, we need not take the extra step of material-
izing the execution trace of a program before extracting its
provenance;
• as a consequence, to compute the provenance of a program
we do not have to replay its execution trace.

The most important reason why these features matter is that
they make it possible for our language to be extended with an
introspective inspection operation, which we will denote by the
following syntax:

ι(F ,LM ▷ M)
The intended semantics of inspections, informally, is that M will
be evaluated to V ; at the same time, the provenance view F will be
applied to LM to obtain a new labelling LV for V ; finally, evalua-
tion will produce the pair ⟨V ,LV ⟩, making both the value and its
provenance available for the rest of the program.

Provenance inspection is introduced by means of the extension
described in Figure 7. From the point of view of location lookup,
inspections are treated like opaque boxes: the locs operation only
returns the singleton {ϵ} when applied to an inspection, so access
to its syntactic subterms is not allowed. The typing rule checks that
the type of the provenance view F agree with that of the provenance
labelling L; the term under inspection can be of any type.

Two different reduction rules are applied depending on whether
the term under inspection has been fully evaluated or not. When
the term M under inspection is not a value, it can be reduced to
N , by means of the first reduction rule, using the view G specified
by the inspection; this returns a transducer T that we apply to the
initial provenance labelling L to obtain a new labelling T L suitable
for N .

When, after a certain number n of reduction steps, the inspected
term becomes a value V , with a certain provenance
L′ = Tn (Tn−1 · · · (T0 L) · · ·); then the inspection can be concluded
by a final step, using the second rule, which merely returns the
value V together with its labelling L′. The premise requiring that
V should be a closed term is needed because free variables might
be replaced by any expression, including expressions containing
redexes, and in such a case the inspection should continue; however,

since we do not allow reduction inside binders, this check is only
necessary if we are interested in evaluating open terms.

Unlike TML, the syntax of PIC allows free nesting of provenance
inspections. For this reason we also need to explain what an ex-
ternal observer can see when an inspection is performed. Here we
need to make a choice and decide whether inner reductions can be
observed or not. Since inspections come with a local provenance
labelling, they cannot be easily reconciled with a non-local prove-
nance view; then the simplest policy, which we adopt, is to make
inner reductions not observable: this is obtained by returning the
identity I = λx .x as the transducer for inner reductions. The final
inspection step, instead, can be observed: it employs the transducer
Fι , which is defined in the outer view F .

The presence of nested inspections has implications for privacy
and confidentiality: on one hand, inner inspections decide whether
to share provenance information with external observers, and to
what extent; on the other hand, the external observer is aware of
hidden computations thanks to the transducer Fι . This interaction
is not unexpected: implications of provenance for confidentiality,
privacy, availability, and other security properties have been investi-
gated by some previous work ([6, 9, 13, 17]). We will now elaborate
further by considering a security application example.

5.1 Example: inspection of dynamic linking
In the previous sections we have discussed provenance as a property
of data, and how it evolves during the execution of a program, but
we have not provided concrete examples of how provenance can
be used in a concrete setting.

We will here provide a demonstration of how provenance can
be used to detect possible security issues. Our example considers
dynamic linking, a technique widely available in modern operat-
ing systems, which allows the linking of object code from several
sources to happen at load time (or in certain cases at run time),
rather than compile time. When an executable file is built from
source code containing references to functions defined in a shared
(or dynamic-link) library, those references remain unresolved; in-
stead, special directives are added to the executable file header,
including a record of the required library functions (sometimes
called import table). When loading the executable file, the operating
system is expected to find the required shared libraries and load
them into memory beside the program code, and link the two by
resolving the function references declared in the import table.

Dynamic linking allows a system to avoid duplication of fre-
quently used code, both on disk and in RAM (when two processes
using the same library are running concurrently, the memory image
of the library can be shared across the two addressing spaces by
means of paging). While 30 years ago programs usually employed
less than 5 dynamic-link libraries, today’s software systems can
require several even hundreds of libraries provided by different de-
velopers. Libraries from trusted sources may coexist with libraries
from untrusted sources, and they may use each other’s services.

To model a simple dynamic linker, we assume a type [N] ⊃ N
for shared library functions – an acceptable assumption, given that
executable file formats often enforce a loose or trivial typing disci-
pline for these functions. A store of type [id × ([N] ⊃ N)] associates
function identifiers to the corresponding shared function.

196

A Core Calculus for Provenance Inspection PPDP’17, October 9–11, 2017, Namur, Belgium

A program comprises executable code, which we model as a
function of type [[N] ⊃ N] ⊃ [N] ⊃ N, and an import table, which
in our setting is a list of identifiers of shared functions that should
be loaded. The code receives as its first parameter a list of concrete
functions matching the imported identifiers from the import table,
while the second argument must be a list of input parameters for
the program; at the end, a natural number is returned.

The goal of the dynamic linker is to serve the list of imported
functions to the program code. If the store and the import table
are both ordered by increasing values of identifiers, this can be
achieved by the following procedure:

dynalink := λstore, code, imptab.

let imps := filter_map (λ⟨x , f ⟩.x ∈ imptab) (λ⟨x , f ⟩. f) store
in code imps

where filter_map p f l ignores the elements of the list l that do
not satisfy the predicate p, but is otherwise the same as map f l .

We now consider a toy program whose purpose is to store pass-
words to permanent memory. The program employs salt and a hash
function to make dictionary attacks unfeasible in case a malicious
agent gained access to the password file:

savepw :=λimps,pw .

let salt := $RND [] in
$WRITE [salt];
$WRITE [$HASH [(salt∥pw)]]

where the semi-colon is an infix binary operator on natural num-
bers simply returning the second argument, and ∥ combines two
natural numbers into one, for example by concatenating their bit
representations, or by means of Cantor’s encoding of pairs. HASH,
RND, and WRITE are identifiers for three imported functions: the
import table for savepw is thus the following:

[HASH; RND; WRITE]
Finally, we write $ID as syntactic sugar for an imported function
call; concretely, this involves a lookup by ordinal number in the
import list imps: e.g $WRITE = nth imps 2 (where nth returns the
element of a list referred to by a zero-based index).

Suppose that we do not have access to the source code of savepw:
we can still read its import table and see that the program requires
the use of a cryptographic hash function, a random number genera-
tor, and persistent storage. This is not suspicious, but for increased
trust we may want to inspect the operation of savepw and verify
that only a properly encrypted password has been stored.

For this purpose, we use the following provenance label type:

∼label ::= • | ∼private | ∼random | ∼rndpriv | ∼breach
| ∼standard | ∼unsafe | ∼oneway

The first four labels are used to express the provenance of data:
the default • labels data that is public or irrelevant as far as con-
fidentiality goes; data labelled by ∼private, on the contrary, is
confidential; ∼random is used for non-private data coming from
a random source; finally, ∼rndpriv labels data containing both
private and random information. A label ∼breach, also used to
annotate data, is only generated when a potential security breach
is detected.

The last three labels are used to annotate functions:
• ∼standard is used for pure functions that manipulate the
input in an unknown way; they can throw away part of the
input, but may not create private data out of thin air: since
the randomized part of the input may not be preserved, this
label combines with labelled data as follows

∼standard(•) = •
∼standard(∼random) = •
∼standard(∼private) = ∼private
∼standard(∼rndpriv) = ∼private
∼standard(∼breach) = ∼breach

• ∼unsafe annotates functions that should not receive private
data, because they contain untrusted code with side effects
(e.g. writing to disk, sending data over a network, displaying
information on a terminal): it behaves as follows

∼unsafe(•) = •
∼unsafe(∼random) = •
∼unsafe(∼private) = ∼breach
∼unsafe(∼rndpriv) = ∼breach
∼unsafe(∼breach) = ∼breach

• ∼oneway is similar to standard but is used with functions
known to be one-way; thus when applied to randomized
private data, it produces non-confidential output:
∼oneway(•) = • ∼oneway(∼random) = •

∼oneway(∼private) = ∼private ∼oneway(∼rndpriv) = •
∼oneway(∼breach) = ∼breach
This annotation propagation policy can be implemented as a

provenance view S . The labelling Lstore for the shared library
functions will usually be fixed, and we assume that the concrete
functions hash, rnd, write are labelled by oneway, random, unsafe.
Given the password pw (which, for simplicity, will be a natural
number), we make it confidential by defining its labelling as

Lpw := λℓ.case ℓ of {ϵ 7→ ∼private; _ 7→ •}
As previously mentioned, an outer inspection cannot see what

happens within an inner one, so an additional task of S , besides
propagating annotations, is to flag inner inspections as possible
security breaches, by means of the transducer

Sι := λ_, _.breach
Nowwe can apply the dynamic linker to savepw and try running

it by means of the syntax:
M = dynalink store savepw [HASH; RND; WRITE] pw

where the provenance labelling forM can be obtained by combining
Lstore, Lpw, and trivial labellings for all the other parts ofM :

L = IProv2 (IProv2 (IProv2 (IProv2 ⊥ Lstore •) ⊥ •) ⊥ •) Lpw •
Finally, we perform an inspection:

ι(S,L ▷ M) ∗↪→ ⟨0,L′⟩
where 0 is the value returned by the call to WRITE, and L′ ϵ

∗
↪→

∼public confirms that no security breaches were detected.

197

PPDP’17, October 9–11, 2017, Namur, Belgium Wilmer Ricciotti

6 CONCLUSIONS
The language PIC that we have described represents provenance by
means of labelling functions. This seems to be a natural approach
in a calculus allowing provenance to be manipulated as a first-class
expression because in this way all the provenance annotations for
the same term are gathered in the same place. Other approaches
based on annotation propagation would scatter this information
across various subterms, and thus require additional effort to extract
the provenance and separate it from the term it describes. A key
element of our language is the presence of a relocation operator,
whose lack makes it impossible to compute provenance past beta-
reductions in other languages with inspection [2, 20]

Provenance labellings also seems to have a relatively elegant,
albeit slightly low-level, theory of combinators, which guides the
definition of the provenance-aware semantics. Although defining
provenance views by combining annotations locally (as in TML) is
simpler than doing so by handling whole labellings (as in PIC), we
have provided a simplified framework to bridge this gap.

Although PIC is a pure functional language, we envision extend-
ing it with imperative constructs. Experience in the related area of
program slicing ([21]) tells us that such an extension would not be
straightforward, but might provide a good starting point.

We have chosen to make provenance inspection local: an outer
inspection cannot observe the computation happening within an
inner inspection; this ensures a certain confidentiality of metadata,
which cannot be shared by accident with the public. However,
this is not the only possible way to handle nested inspections: a
transparent provenance inspection could also be defined using the
following evaluation rule:

G ⊢ M G[R]
↪−−−−→ N

F ⊢ ι(G,L ▷ M)
I1.1 (F [R])
↪−−−−−−−−−→ ι(G,T L ▷ N)

where R identifies the reduction rule used in the premise, and F [R]
returns the trasducer for rule R according to the view F : this al-
lows reduction within ι to be treated like any other congruence.
Apart from a slight notational complication, this extension appears
straightforward. Another possibility, given ι(G,L ▷ M) is to make
M invisible to an external observer, but to allow an outer inspec-
tion to provide a labelling for G and L. Indeed, since a provenance
view contains standard language functions, it needs not be stati-
cally determined: it is perfectly admissible to receive provenance
transducers as the arguments of a program, and use them to con-
struct a view to be used in an inspection. In other words, views may
have a non-trivial provenance, which could provide a reason to
inspect the provenance of provenance. This concept appears not to
be entirely new (see e.g. [16, 18]); further investigation of relations
between nested inspections and provenance of provenance will be
the subject of future work.

REFERENCES
[1] U. A. Acar, A. Ahmed, J. Cheney, and R. Perera. 2013. A core calculus for prove-

nance. Journal of Computer Security 21 (2013), 919–969.
[2] F. Bavera and E. Bonelli. 2015. Justification logic and audited computation. Journal

of Logic and Computation (2015). Published online, June 19, 2015.
[3] David A. Bearman. 1985. The Power of the Principle of Provenance. Archivaria

21 (1985), 14âĂŞ27.

[4] Deepavali Bhagwat, Laura Chiticariu,Wang-ChiewTan, andGaurav Vijayvargiya.
2005. An annotation management system for relational databases. VLDB Journal
14, 4 (2005), 373–396.

[5] Rajendra Bose and James Frew. 2005. Lineage retrieval for scientific data process-
ing: a survey. ACM Comput. Surv. 37, 1 (2005), 1–28.

[6] Uri Braun, Avraham Shinnar, and Margo I. Seltzer. 2008. Securing Provenance.
In HotSec.

[7] Peter Buneman, James Cheney, and Stijn Vansummeren. 2008. On the expressive-
ness of implicit provenance in query and update languages. ACM Transactions
on Database Systems 33, 4 (November 2008), 28.

[8] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. 2001. Why and Where:
A Characterization of Data Provenance. In ICDT (LNCS). 316–330.

[9] J. Cheney. 2011. A formal framework for provenance security. In Proceedings of
the 24th IEEE Computer Security Foundations Symposium (CSF). IEEE, 281–293.

[10] James Cheney, Amal Ahmed, and Umut a. Acar. 2011. Provenance As Dependency
Analysis. Mathematical. Structures in Comp. Sci. 21, 6 (Dec. 2011), 1301–1337.
https://doi.org/10.1017/S0960129511000211

[11] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. 2000. Tracing the lineage of
view data in a warehousing environment. ACM Trans. Database Syst. 25, 2 (2000),
179–227.

[12] Susan B. Davidson and Juliana Freire. 2008. Provenance and Scientific Work-
flows: Challenges and Opportunities. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’08). ACM, New York,
NY, USA, 1345–1350. https://doi.org/10.1145/1376616.1376772

[13] Susan B. Davidson, Sanjeev Khanna, Sudeepa Roy, and Sarah Cohen Boulakia.
2010. Privacy Issues in Scientific Workflow Provenance. In Proceedings of the
1st International Workshop on Workflow Approaches to New Data-centric Science
(Wands ’10). ACM, New York, NY, USA, Article 3, 6 pages. https://doi.org/10.
1145/1833398.1833401

[14] Boris Glavic and Gustavo Alonso. 2009. Provenance for Nested Subqueries. In
Proceedings of the 12th International Conference on Extending Database Technology:
Advances in Database Technology (EDBT ’09). ACM, New York, NY, USA, 982–993.
https://doi.org/10.1145/1516360.1516472

[15] Boris Glavic, Renée J. Miller, and Gustavo Alonso. 2013. Using SQL for Efficient
Generation and Querying of Provenance Information. In In Search of Elegance in
the Theory and Practice of Computation. 291–320.

[16] Kwan Hee Han, Seock Kyu Yoo, and Bohyun Kim. 2009. Qualitative and
Quantitative Analysis of Workflows Based on the UML Activity Diagram and
Petri Net. WSEAS Trans. Info. Sci. and App. 6, 7 (July 2009), 1249–1258. http:
//dl.acm.org/citation.cfm?id=1639420.1639437

[17] Ragib Hasan, Radu Sion, and Marianne Winslett. 2007. Introducing Secure
Provenance: Problems and Challenges. In Proceedings of the 2007 ACM Workshop
on Storage Security and Survivability (StorageSS ’07). ACM, New York, NY, USA,
13–18. https://doi.org/10.1145/1314313.1314318

[18] Zachary Hensley, Jibonananda Sanyal, and Joshua New. 2013. Provenance in
Sensor Data Management. Queue 11, 12, Article 50 (Dec. 2013), 14 pages. https:
//doi.org/10.1145/2559899.2574836

[19] Jan Hidders, Natalia Kwasnikowska, Jacek Sroka, Jerzy Tyszkiewicz, and Jan
Van den Bussche. 2007. A Formal Model of Dataflow Repositories. In Proceedings
of the 4th International Conference on Data Integration in the Life Sciences (DILS’07).
Springer-Verlag, Berlin, Heidelberg, 105–121. http://dl.acm.org/citation.cfm?id=
1768933.1768947

[20] Wilmer Ricciotti and James Cheney. 2017. Strongly Normalizing Audited Com-
putation. In 26th EACSL Annual Conference on Computer Science Logic (CSL 2017)
(Leibniz International Proceedings in Informatics (LIPIcs)), Valentin Goranko and
Mads Dam (Eds.), Vol. 82. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 36:1–36:21. https://doi.org/10.4230/LIPIcs.CSL.2017.36

[21] Wilmer Ricciotti, Jan Stolarek, Roly Perera, and James Cheney. 2017. Imperative
functional programs that explain their work. In ICFP 2017. In press.

[22] T. R. Schellenberg. 1965. The Principle of Provenance and Modern Records in
the United States. The American Archivist 28, 1 (1965), 39–41.

[23] Yogesh Simmhan, Beth Plale, and Dennis Gannon. 2005. A survey of data prove-
nance in e-science. SIGMOD Record 34, 3 (2005), 31–36.

198

