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ABSTRACT

The current state of the research in landmark recognition highlights
the good accuracy which can be achieved by embedding techniques,
such as Fisher vector and VLAD. All these techniques do not exploit
spatial information, i.e. consider all the features and the correspond-
ing descriptors without embedding their location in the image. This
paper presents a new variant of the well-known VLAD (Vector
of Locally Aggregated Descriptors) embedding technique which
accounts, at a certain degree, for the location of features. The driv-
ing motivation comes from the observation that, usually, the most
interesting part of an image (e.g., the landmark to be recognized) is
almost at the center of the image, while the features at the borders
are irrelevant features which do no depend on the landmark. The
proposed variant, called locVLAD (location-aware VLAD), com-
putes the mean of the two global descriptors: the VLAD executed
on the entire original image, and the one computed on a cropped
image which removes a certain percentage of the image borders.
This simple variant shows an accuracy greater than the existing
state-of-the-art approach. Experiments are conducted on two public
datasets (ZuBuD and Holidays) which are used both for training and
testing. Morever a more balanced version of ZuBuD is proposed.
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1 INTRODUCTION

Mobile landmark recognition is an interesting research field of
computer vision. Basically, it consists of a client-server application:
the client (e.g. a mobile device) sends a picture of a place to the
server, that tries to recognize the place (or landmark) in a fast way
and sends back the final result to the client. Possible applications of
mobile landmark recognition range from augmented reality with
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information about the landmark, to image-based geo-localization
of the device, to advanced electronic tourist guides.

Generally speaking, landmark recognition is a challenging task
and, therefore, it is still a very active field of research. Among the
possible challenges, those related to the differences of two images of
the same place are the most relevant for computer vision algorithms.
Changes in the image resolution, illumination conditions, viewpoint
and the presence of distractors such as trees or traffic signs (just to
mention some) make the task of matching features between a query
image and the database rather difficult. In order to mitigate these
problems, the existing approaches rely on feature description with
a certain degree of invariance to scale, orientation and illumination
changes.

From the experimental perspective, in the field of landmark
recognition (as well as in other similar fields) it is common (and
often mandatory) to use public datasets, with the clear advantage to
have a fair and immediate comparison with competitive approaches.
Two experimental setups are possible: the first in which the training
of vocabulary words and the testing (or query) images come from
the same dataset (often called intra-dataset setup); the second in
which training is performed on one dataset, whereas the query
images belong to another dataset (inter-dataset setup). The second
setup aims at demonstrating the generalization property of the
proposed approach.

This paper introduces the following novel contributions on the
landmark recognition problem:

e alocation-aware version of VLAD, called locVLAD, that
allows to outperform the state of the art in the intra-dataset
problem;

o the proposed locVLAD technique is descriptive and dis-
criminant enough to achieve an accuracy comparable with
the state of the art also when the number of features used
during the vocabulary creation phase is significantly re-
duced, therefore speeding up the computation;

e a new balanced version of the public dataset ZuBuD is
proposed and made available to the scientific community;
the new version represents equally all the classes in the
dataset, by resulting in higher accuracy in the recognition
process.

This paper is organized as follows. Section 2 introduces the
techniques used in the state of the art. Section 3 briefly reviews
VLAD and describes our new implementation of VLAD. Section 4
evaluates our methods on public benchmarks: ZuBuD and Holidays.
Finally, concluding remarks are reported.
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2 RELATED WORK

The Bag of Words (BoW) model is the first technique implemented
for solving the problem of object recognition [19]. It is based on
the creation of a vocabulary of visual words using a clustering
algorithm applied on the training set. Then, each image during the
testing phase is described in terms of occurence of these words.
Though quite simple, BoW has achieved good results in image
retrieval, at the cost, however, of a large consumption of memory.

Given the limitations of this approach, researchers have started
to use vocabulary tree of descriptors [7, 14]. It is an optimization
of the BoW model for the representation of the features. Although
the performance is improved with respect to BoW approach, this
method required much more memory on the device therefore it is
not applicable for mobile devices.

To overcome the weakness of the BoW approach, several em-
bedding techniques have been proposed in the literature. The first
proposal on this direction has been done by Perronnin and Dance
in [15]: here, Fisher Kernels are used to encode the vocabularies
of visual words represented by means of a GMM (Gaussian Mix-
ture Model). Another well-known embedding technique is VLAD
(Vector of Locally Aggregated Descriptors) [12] which encodes
the residual of a feature instead of the values of the features de-
tected in the images. Given its simplicity of implementation and the
good results achievable, VLAD is very diffused and several variants
have been proposed in the literature. For instance, the CVLAD
(Covariant VLAD) [23] creates different VLAD vectors for every
orientation of the keypoints. CVLAD resulted in good recognition
performance but at the cost of a large number of feature needed
(due to the separation in different vectors which require enough
data to be constructed). In fact, the paper [23] employed a dense
SIFT detector for obtaining the features from the images.

Zhang et al. [22] implemented a method based on sparse coding
and by using max pooling in alternative to sum pooling (used in
the traditional VLAD implementation).

An alternative embedding technique is represented by Hamming
embedding [11]. Jégou et al. binarized the values of descriptors
detected in the images and calculated the similarites through the
Hamming distance. Given its simplicity, this method can work well
also on large datasets. Unfortunately, this approach is prone to the
problem of burstiness, i.e. the presence of repetitive features in
the image (which can be quite common, for example, in bricks of
the building walls) can affect the value of the binarized descriptor
significantly.

In the last years, with the new developments of powerful GPUs,
the neural networks have allowed to resolve complex problems
with good results. Sharif et al. [18] used a CNN with an SVM
classifier to solve the problem of image recognition. CNNs have
been applied to solve many computer vision and machine learning
problems, always reaching excellent results. This is also the case of
landmark recognition. However, CNNs have two main drawbacks.
The first is that they need a lot of data to be trained effectively,
and this can be a challenging task in some cases. Secondly, the
computational resources necessary for CNNs still make them hard
to be implemented on mobile devices. Gong et al. [10] implemented
CNN, that makes use of VLAD embedding in several phases of
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the system. The results of each level are then pooled in the final
descriptor.

With regards to the specific application, several previous works
have been reported. The paper of Fritz et al. [9] implemented a new
version of the SIFT detector, called i-SIFT, that achieves a significant
speedup by applying a filtering to remove the less promising candi-
date descriptors. The landmark recognition application developed
by Chen et al. [6] used a vocabulary tree and RANSAC method for
geometric verification of the top candidates. However, it requires
some time to obtain the final results. Finally, Schroth et al. [17]
proposed an approach based on multiple hypotesis vocabulary tree.

3 THE LOCVLAD APPROACH

Before starting to describe the locVLAD variant, let us introduce the
basic concepts of VLAD. VLAD is based on computing a compact
descriptor based on the residuals of feature descriptors. The original
VLAD proposal [12] uses an Hessian-Affine feature detector and
SIFT as descriptor. Arandjelovic and Zisserman [1] introduced a
variant which substitutes SIFT descriptor with the so-called Root-
SIFT. This descriptor applies square root to the positive components
of the descriptor and then a Ly normalization is performed.

Creation. The first step for computing VLAD is the creation of
the vocabulary. Let k be the size of the C = {11, . .., g } vocabulary
(i.e., the number of visual words retained), then K-means clustering
algorithm can be used on all the features in the training set to
compute the cluster centers ;.

Once the vocabulary has been created, in the testing phase each
of the m descriptors extracted from the query image can be assigned
to the closest cluster center. Being X = {x1,...,Xn} the set of
descriptors, the assignment function g can be written as:

q:Rd—>C

qx) = pil i = é_irlgmin [1x = pill
i=1,...,
where || - || is a proper d-dimensional distance measure and d is the
size of the descriptors (d = 128 in the case of SIFT). Each descriptor
xj is thus composed of d value x; withs = 1,...,d.

The VLAD vector v is obtained by accumulating the residuals
computed by the difference between the feature descriptor and the
relative cluster center. Different strategies have been proposed in
the literature. The two most common are the original sum aggre-
gation and the so-called mean aggregation proposed in [5]. How-
ever, as shown by Spyromitros et al. in [20] and confirmed by our
tests, the sum aggregation yield the best results: therefore, defin-
ingv = {vl,...
follows:

vk } we can obtain the values of VLAD vector as

Vi = Z X — Hi
VxeX:q(x)=p;

Finally, the resulting k X d vectors are concatenated to form the
unnormalized VLAD vector v.

Normalization. Several possible normalization strategies have
been proposed in the past, such as power-law normalization [16]
that updates the VLAD components using a power law, or intra
normalization [2], that normalizes the sum of residuals of each
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block with Ly normalization, or signed square rooting [13], where
the VLAD components are updated with the absolute value of the
square root of the element.

However, it has been demonstrated in 8] that the residual nor-
malization results to be the best performing:

i_ X~ Hi
VxeX'gtoyp X~ Hill

A further Ly normalization step is performed at the vector level,
v

ie V=
v

One oltL tlklle weakness of classical VLAD in landmark recognition
is due to the noisy features corresponding to distractors such as
trees, traffic signs, cars, people, etc. The proposed variant of VLAD,
called locVLAD (location-aware VLAD), tackles this problem by
reducing the influence of features found at the borders of the image.
One important point to make is that we do not simply remove
features at the image borders, but fuse them at the VLAD descriptor
level. The VLAD procedure described above is performed twice
(only on test phase), one considering the whole image, and the other
considering the images cropped of a certain percentage. It is quite
straightforward (but important) to notice that, by repeating the
whole pipeline, the feature set x and, therefore, the VLAD vectors
will be different. For instance, Fig. 1 shows how the detected
features change. Once the two VLAD vectors (denoted with v and
Veropped) @re computed, the locVLAD vector is simply obtained by
averaging them:

V + Veropped

VlocVLAD = T (1)

There are two main parameters to account for: the weights for
the two vectors v and Veropped, @nd the percentage of borders to be
cropped. Regarding the former, we performed different tests and
realized that the best results are obtained by an equal weight for
the two vectors, as shown in equation 1. The second parameter
depends on the resolution of the images in the dataset and will be
discussed in the experiments. The rationale behind our proposal is
that the most important features (useful to recognize the landmark)
are located near the center of the image, whereas the distractors
are often at the border of the image (see, for instance, Fig. 1).

The above rationale might not be always true, i.e. some features
at the image borders might be useful. For this reasone we average
both the cropped and not-cropped VLAD descriptors. However,
locVLAD procedure is not applied to the database images. Although
this could be reasonable, experiments demonstrate that applying it
also on the database images decreases the recognition accuracy. This
behaviour can be explained by the fact that the database contains
different views of the same landmark, also zoomed views. In these
latter cases the significant features are located at the borders too
and should not be removed. Therefore, the best results are achieved
by applying locVLAD encoding on the query images only.

4 EXPERIMENTAL RESULTS

In order to evaluate the accuracy of the proposed embedding tech-
nique with respect to the state of the art, we run experiments on
public datasets and employing standard evaluation metrics.
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Table 1: Size of cropped images used for the application of
locVLAD

Dataset Size of cropped image

ZuBuD and ZuBuD+  90% of the original images’ size
Holidays 70% of the original images’ size

4.1 Datasets and metrics

The performance is measured on two public image datasets: ZuBuD
and Holidays.

ZuBuD [24] is composed by 1005 images of the size of 640x480
(or 480x640 if they are rotated), subdivided in 201 classes, about the
building of Zurich. The query images are 115 and they are of the
size of 320x240. Not all the classes are represented in the query set,
but only 85.

Since not all the classes are represented in the query set, in order
to have a more balanced dataset, we created a new version of ZuBuD,
called ZuBuD+ (available at http://implab.ce.unipr.it/?page_id=194).
While keeping the database images unchanged, we extended the
query images by randomly selecting images of the missing classes
and transforming them by resizing and rotating them with +90°. The
total number of query images is raised to 1005 and all the classes
are equally represented (5 queries per class). Fig. 2 shows some
examples of the newly-added query images. According to [22], to
increase the recognition accuracy, we resized the database images
to 320x240 (or 240x320 if they are rotated) during the creation of
VLAD vectors for the database images.

Holidays [11] is composed of 1491 high-resolution images rep-
resenting the holiday photos of different locations and objects,
subdivided in 500 classes. The database images are 991 and the
query images are 500, one for every class.

Vocabulary creation. The vocabulary on both ZuBuD and
ZuBuD+ (because they have the same training images) is created
by using all the features detected (about 208k features) since the
images are few and of limited resolution. Conversely, Holidays is
a larger dataset with higher resolution images and using all the
features would result in a very large vocabulary. Therefore, we
downsampled the number of features by randomly selecting 1/5
of the detected features (1.84 M out of the total features). On the
downsampled set of features, K-Means++ (an approximated ver-
sion of K-Means clustering for NP-hard problems) [3] is applied.
The use of less features has a twofold motivation: first, it reduces
computational time; second, it allows to reduce the chance of over-
fitting problem by supposedly avoiding to include features of the
query images in the vocabulary. Finally, by randomly selecting the
features to be retained (instead of selecting the first N features), we
can avoid to overtrain on a particular patch.

Size of cropped images. As mentioned in the previous chapter
the locVLAD approach is based on a mean of two VLAD descriptors:
the VLAD on the original image and the one on the cropped image.
The size of the cropped image have different values for every dataset
used in the experiments. Before getting the best results, we tried
different values. The best values are shown in Table 1.

Metrics. Standard evaluation metrics include the mean average
precision (mAP) or some ranking-based metrics, such as Top1 or
5xRecall@Top5 (average of how many times the correct image is in
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Figure 1: An example of image from the ZuBuD dataset. The left image is the original query where 424 features are detected,
while the right image shows the cropped verison with 367 featured retained.

Figure 2: Example of data added in the query set of ZuBuD.

the top 5 results in the ranking). For the Holidays dataset we used
the mAP provided by the corresponding evaluation tool, whereas
for ZuBuD we prefered the ranking-based metrics which have been
used in the compared works.

Distance. In order to compare a query image with the database,
a Ly distance is employed. An alternative distance is the cosine
similarity, but results are similar and the computation is slower
than the L, distance.

Implementation. In term of actual implementation, the detec-
tor and descriptor used is SiftGPU [21], that runs on GPU on a
NVIDIA GeForce GTX 1070 mounted on a computer with a 8-core
3.40GHz CPU.

4.2 Results on ZuBuD+

We run the first set of experiments on the balanced dataset ZuBuD+.
We compared the proposed locVLAD with standard VLAD as base-
line. Moreover, we also compared our approach with published
results on ZuBuD from three state-of-the-art papers. The tree his-
togram approach proposed in [7] uses a vocabulary of 10M visual
words. Instead, the approach presented in [9] is based on decision
trees and the i-SIFT detector described above. Finally, the third
method compared [22] is based on sparse coding. In terms of vo-
cabulary size (which an important parameter to compare having

Table 2: Comparison with the state of the art on ZuBuD and
ZuBuD+ dataset

Method Descriptor size Top1 5xRecall@Top5
Tree histogram (ZuBuD) [7] 10M 98.00% -
Decision tree (ZuBuD) [9] n/a 91.00% -
Sparse coding (ZuBuD) [22] 8k*64+1k*36 - 4.538
VLAD (ZuBuD) [12] 4281%128 99.00% 4416
VLAD (ZuBuD-+) [12] 4281*128 99.00% 4526
locVLAD (ZuBuD) 4281*128 100.00% 4.469
locVLAD (ZuBuD+) 42817128 100.00% 4.543

a direct effect on the recognition accuracy and the computational
complexity of the approach), the first method [7] uses very large
vocabulary so they can not be fairly compared with our (which is
much more compact) and the second [9] does not use a vocabu-
lary. However, as shown in Table 2, the locVLAD approach can
obtain superior results on top1 even using a smaller vocabulary
(4281 wrt 10M for [7]). Conversely, in the case of sparse coding in
[22], a vocabulary composed of 8k 64 — D SURF descriptors plus
1k color descriptors is used. In order to perform a fair compari-
son, also locVLAD is tested with a vocabulary of the same size, i.e
64 %8k +36+ 1k = 548k. Since we are using 128 — D SIFT descriptors,
this means about 4281 visual words.
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Comparison of methods on ZuBuD and ZuBuD+
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Figure 3: We compare VLAD and locVLAD with the method
based on sparse coding, using different vocabulary size on
ZuBuD and ZuBuD+.

Table 2 shows the results of locVLAD compared with baseline
VLAD and sparse coding [22] with the same vocabulary size and
on 5xRecall@Top5, while the comparison with [7, 9] is done at
completely different sizes and on Top1. For locVLAD both results
on ZuBuD and ZuBuD+ are shown. It is evident that our method
outperforms [7, 9] and baseline VLAD, and that for the first two
it is also using a much small vocabulary. However, our results
compared with sparse coding are slightly worse when applied on
ZuBuD. This can be explained by the unbalance in the query set
described above. When applied on ZuBuD+, locVLAD outperforms
the sparse coding results. This is also confirmed in Fig. 3 where
we reported the comparison with the baseline VLAD and sparse
coding at different vocabulary sizes.

4.3 Results on Holidays

In similar way, we run experiments on the Holidays dataset. As
before, we compared with both the baseline VLAD and state-of-
the-art methods. In this case, we compared again with [22] which
uses sparse coding and max-pooling and with another paper [4]
using again sparse coding but with geometric pooling, i.e. local
descriptors sharing good geometric consistency are pooled together
to ensure a more precise spatial layouts. As we did for ZuBuD, we
set the vocabulary size to be comparable to that of the compared
methods, i.e 4281 for [22] and 20k for [4].

In fact, in this last case, the number K of visual words is set to
20k. Table 3 shows the results and clearly demonstrates that the
proposed locVLAD achieves better mAP than the other methods.

As we showed in Fig. 3, Fig. 4 shows the different values of mAP
achieved by baseline VLAD, sparse coding [22] and locVLAD at
different vocabulary sizes. Finally, Fig. 5 shows the computational
time needed for clustering at different vocabulary sizes when all
the features compared with the 1/5 downsampled features are used.
As expected, the computational time increases very quickly when
using all the features.
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Table 3: Comparison with the state of the art on Holidays
dataset with different feature vectors size

Method Descriptor size ~ mAP
Sparse coding [22]  8k*64+1k™36  76.51%
VLAD [12] 4281*128 74.43%
locVLAD 42817128 77.20%
Sparse coding [4] 20k*128 79.00%
VLAD [12] 20k*128 78.78%
locVLAD 20k*128 80.89%

Comparison of methods on Holidays
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Figure 4: We compare VLAD and locVLAD with the method
based on sparse coding, using different vocabulary size on
Holidays.
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Holidays dataset. The vocabulary size choosen are: 250, 1000
and 4281.
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5 CONCLUSIONS

This paper proposes a novel embedding technique for efficient and
effective landmark recognition. The proposed locVLAD technique
includes, at a certain degree, information on the location of the
features, by mitigating the negative efects of distractors found
at the image borders. Experiments are performed on two public
datasets, namely ZuBuD and Holidays, and demonstrates superior
recognition accuracy wrt the state of the art. It is worth to note
that on ZuBuD the method based on sparse coding in [22] slightly
outperforms the proposed one. This is due to an unbalanced query
set and, probably, on the use of color information (which is not used
in our approach). However, the results on both a more balanced
dataset (ZuBuD+) and on the other dataset (Holidays) show that
our method works better than [22], substantially confirming our
above-reported explanation.
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