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ABSTRACT
Camera networks become smart when they can interpret video
data on board, in order to carry out tasks as a collective, such as
target tracking and (re-)identification of objects of interest. Unlike
today’s deployments, which are mainly restricted to lab settings
and highly controlled high-value applications, future smart camera
networks will be messy and unpredictable. They will operate on
a vast scale, drawing on mobile resources connected in networks
structured in complex and changing ways. They will comprise
heterogeneous and decentralised aggregations of visual sensors,
which will come together in temporary alliances, in unforeseen and
rapidly unfolding scenarios. The potential to include and harness
citizen-contributed mobile streaming, body-worn video, and robot-
mounted cameras, alongside more traditional fixed or PTZ cameras,
and supported by other non-visual sensors, leads to a number of
difficult and important challenges. In this position paper, we discuss
a variety of potential uses for such complex smart camera networks,
and some of the challenges that arise when staying smart in the
presence of such complexity. We present a general discussion on
the challenges of heterogeneity, coordination, self-reconfigurability,
mobility, and collaboration in camera networks.
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1 INTRODUCTION
More powerful embedded processors and improvements in memory
in the last fifteen years have led to a revolution in camera tech-
nology: camera networks evolved towards smart camera networks.
These smart cameras can observe the physical world, process the ac-
quired images on board, and communicate aggregated information
and extracted knowledge rather than the video feed alone. This en-
ables them to detach from central components, analysing imagery
locally, making decisions and acting on them autonomously. This
in turn allows for faster reactions to emerging situations, as well as
more increased flexibility, scalability, and robustness in surveillance
networks [41]. However, this also introduces significant challenges
in terms of target tracking and re-identification.

In this paper we will analyse the state-of-the-art and especially
the state-of-practice of camera networks, and discuss what is pos-
sible and what is not yet possible from a smart camera network
perspective, and with a particular focus on continuous target track-
ing and required re-identification. We discuss the challenges arising
frommobility and uncertainty in highly heterogeneous surveillance
networks, and the problems that come along with them. We dive
into detail on coordination problems and how we can overcome
them in centralised and decentralised settings. Finally, we describe
a potential future outlook for smart camera networks, that support
people through carrying out highly responsive tasks autonomously.

The rest of this paper is structured as follows. The next section
discusses the current state of practice in surveillance networks as
operated by industry. Section 3 sheds light on the issues with mo-
bile cameras and outlines potential solutions. Section 4 discusses
potential benefits and obstacles in using heterogeneous cameras
in a network. Section 5 explores the requirement of coordination
in large camera networks arising due to rapidly unfolding situa-
tions. Section 6 discusses the need of future camera networks to
autonomously form teams and cooperate in order to achieve their
goals. Section 7 provides an outlook and concludes the paper.

2 CURRENT PRACTICE
The development of smart cameras enables them to operate au-
tonomously. However, when networked, they can cooperate in or-
der to carry out more complex tasks and achieve collective goals [13,
14, 27, 36, 46]. As with other types of cyber-physical system, more
recently, self-awareness [24, 29] has been introduced in smart cam-
eras, enabling them to reason about their own behaviour, and adapt
accordingly in changing environments [15, 42].
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These developments of camera networks also changed their orig-
inal purpose. While manual surveillance is still an important aspect
of camera networks, other application areas have also emerged.
Those that have received most attention by researchers include:

• Autonomous distributed target tracking coordinates track-
ing of objects with a single camera at a time. This ensures
efficiency of network-wide resources, but requires either
perfect re-identification or knowledge of the environment to
ensure sufficient re-identification of targets among different
cameras [10, 13, 31, 34, 48].

• Autonomous multi-camera tracking, by contrast, tries
to cover each target with multiple cameras at the same time.
Several issues may arise, such as: how to observe the object
from different angles, while keeping a minimum of overlap;
or how to place cameras to ensure continuous coverage of
objects by multiple cameras [4, 7, 21]. In addition, cameras
need to ensure they track the same object. This requires
efficient data association across multiple cameras [6, 19].

• (k-)Coverage and barrier optimization, the art-gallery
problem, aims to ensure coverage of a specific area. Barrier
optimization refines this to ensure objects cannot pass be-
tween areas undetected. k refers to the number of cameras
observing the same area at any given time [8, 11, 14].

• Search and rescue/follow oftenmounts cameras onmobile
robots and aims to find specific targets autonomously. These
targets can be stationary or mobile as well as collaborative
or evasive [12, 18, 22, 35, 40, 47]. Cameras have to be able to
re-identify a target based on a given model. In case of mobile
cameras (e.g. PTZ or drones), cameras need to be controlled
in such a fashion that they do not deplete their resources
before the target has been found.

• Personal data collection and performance review is a
novel area of application of camera networks for personal
data collection and performance review of individuals. The
idea is, to have video material of interactions within the
personal range of employees. This information can be used
to improve performance and also when incidents occur.

• Guidance and control utilises captured video material to
map the environment and hence control and guide robotic
systems and autonomously driving cars safely through it
[49, 51]. However, we can also use camera networks to guide
people through their environment, allowing them to avoid
hazardous situations or simply find the best and fastest way
through an unknown environment.

When considering camera networks, one typically thinks first of
static or PTZ (Pan-Tilt-Zoom) cameras, where fields of view (FOV)
can only to a limited extend be changed. Alternatively, networks
of drones equipped with visual sensors introduce mobility and
allow the network to observe situations from different viewpoints
if necessary. Mobile cameras, by contrast, can relocate within their
environment, being worn by humans or mounted on mobile robots.

Indeed, the efforts highlighted above have so far been either
focused on static and pan-tilt-zoom cameras, or limited to fully con-
trollable robots acting as mobile cameras. The sector of body worn
video, which has rapidly developed in terms of both technology and
growth of the market, has been widely neglected by researchers so

far. Similarly, hybrid networks, where different types of sensors are
brought together, are often used in search and rescue operations,
where stationary sensors support mobile robots [20, 25, 50]. Hybrid
camera networks have also received little attention to date [9, 52].

In particular, there is little academic consideration of the impact
of important recent developments in mobile camera technology.
These include new market sectors focussed on body worn video
(BWV) and incident based video (IBV), which employ small video de-
vices often worn on lanyards or special harnesses, e.g., as shown in
Figure 2. These cameras can be switched on by the wearer when nec-
essary, and can stream, record and/or process video feeds on board,
or in conjunction with a local mobile device. Figure 1 shows these
two developing market sectors, and their overlap with traditional
CCTV and more recently developed smart CCTV applications.

Body Worn Video CCTV

Incident Based Video

Figure 1: Market sectors (light shaded circles) and their overlap, in camera
systems. Camera networks of different types interplay with each other. Each
market sector also considers smart devices (darker shaded areas) where in-
formation can be processed on the device and communicated to others.

Figure 2: Edesix’s VideoBadge. Source: http://edesix.com/

While CCTV is usually used to observe a specific area, BWV
and IBV are employed by individual users. Users are categorised
into two groups either where mobile cameras are carried as part of
their job (BWV) or for their own safety and when video should be
recorded for legal purposes (IBV). BWV is worn by personnel that
often and repeatedly come into situations where video evidence has
to be taken (e.g., a police officer, or a bailiff). IBV, on the other hand,
is only turned on in rare situations (e.g., a shopkeeper at the airport
is faced with an incident). In both cases, however, the worn cameras
is used to capture evidence of a situation. Current surveillance net-
works, deployed in the field, combine standard equipment, mounted
at fixed locations, with novel, mobile BWV/IBV (cp. Figure 1).

There are several benefits of introducing BWV/IBV into smart
camera networks, but also a number of challenges. On one hand,
additional mobile cameras are added to the fixed set of cameras
mounted on walls and ceilings. This increases the amount of in-
formation captured from the environment and allows for more

http://edesix.com/
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thorough analysis at any stage. Furthermore, cameras worn by
humans can relocate effortlessly and do not require sophisticated
route planning or obstacle avoidance algorithms. This allows the
mobile cameras to capture images from situations that might be on
the edge of the fixed mounted camera network or not covered at all.
Finally, being able to change locations also allows them to change
their viewpoint generating video material from a new angle. This
in turn may generate information that might otherwise be obscured
due to potential obstacles, even concerning the targets themselves.

On the other hand, mobile cameras will be integrated into fixed
surveillance networks at runtime, which might not occur voluntar-
ily. This gives rise to a potential security issue. Using only fixed
cameras allows exploitation of the network topology in perform-
ing person re-identification [32, 33]. BWV/IBV introduces a per-
manently changing topology, requiring the constant updating of
topology information within the network. Integration itself does
not guarantee compliance of the wearer. This means, coordination
of mobile cameras might only be possible to a certain degree or not
at all. One might think of situations where it is simply to dangerous
and the wearer of a mobile camera decides not to relocate there.
Being a mobile camera and being able to relocate also introduces
ongoing change to the network. This can be introduced because the
wearer wants to leave a specific area or because the video footage
is obscured on purpose. Such a situation is shown in Figure 3. It
is unclear if the wearer is occluding the FOV of the camera or if
another person is obscuring the FOV. Furthermore, it is not clear if
this is done on purpose or accidentally.

Figure 3: Footage occluded by a hand. It is unclear if this is the hand of the
wearer or another person. Further, from the video footage alone, one cannot
determine if this is intentional or accidental. Courtesy of Seth W. Stoughton.

Due to the different viewpoints of BWV/IBV, in comparison to
wall-mounted cameras, an extensive model of the target is required
to ensure reliable re-identification of them between fixed cameras
and different mobile cameras. Finally, decoupling mobile cameras
from a central controller may allow for better flexibility, however,
there limited resources may not allow for the required autonomous
coordination nor reliable target re-identification on the device.

In the SOLOMON project1 we are extending recent research on
static smart camera networks, to build networks of mobile smart
cameras that exploit their mobility. In doing so, our research has
exposed a number of challenges, which we describe in this paper.

3 MOBILITY
When introducing mobility to camera networks, the question arises
of how to control the mobility behaviour. This question becomes
1SOLOMON: Self-Organisation and Learning Online in Mobile Observation Networks,
https://alice.aston.ac.uk/solomon

even more pressing when cameras are worn by humans (as opposed
to robots) who may not comply with instructions. In such cases,
we can only talk about suggested movement rather than controlled
movement. Here, we discuss the benefits and challenges associated
with both fully controlled and suggested movement.

The main benefit of fully-controlled movement is being able to
select the position and orientation of each camera. This is usually
available in robotic systems, but may be constrained in some cases,
such as with fixed-wing UAVs. This allows a more stable video feed,
even when in motion, in comparison to BWV. However, robotic
systems are often not able to move as fast as humans and, depending
on the robot, may have trouble with obstacles in the environment.

A more realistic scenario is a hybrid network consisting of cam-
erasmounted on humans, where human decision-making behaviour
forms part of the network’s decentralised control process. Having
humans in the loop allows for more reactive camera networks, as
humans are expert at acting on instinct and making good, rapid
decisions. The wearer of a camera might make a decision before a
controller could decide what each camera might need to do next.
This can be a benefit as well as a disadvantage. On the one hand,
a person with BWV might follow a target more thoroughly and
hence provide continuous and reliable target tracking. On the other
hand, the person might decide not to follow a person of interest
and hence not provide any video feed at all. A smart controller able
to account for the needs and uncertainties of the human, however,
might suggest a BWV user to move in a direction that removes the
person from potential harm.Alternatively, a suggestion to a user
might involve moving only if safe to do so, along with alternative
safer options, that still provide value to the network.

4 HETEROGENEITY
Heterogeneity is an increasingly prevalent property of complex
computational and cyber-physical systems [3, 26, 28], and smart
camera networks are no exception. Heterogeneity in camera net-
works may take various forms (e.g., as depicted in Figure 4), includ-
ing variation in hardware between nodes, physical properties of the
camera, processing power and storage, and connectivity and band-
width. A camera network with platform heterogeneity is composed
of different types of cameras, possibly including static and fixed
mounted ones, PTZ cameras able to change their orientation and
zoom, BWV able to relocate, and robot-mounted cameras. This can
often lead to other sources of platform heterogeneity, for example,
fixed mounted cameras are most likely to have a wired network
connection, and can usually rely on a constant power supply. In
contrast, mobile cameras have to rely on batteries as a power sup-
ply and typically only have wireless communication interfaces.
Another manifestation of heterogeneity arising from platform het-
erogeneity is in terms of image resolution. Mobile cameras are fully
embedded devices and rely on very small sensors. Due to their lower
processing capabilities and available storage, acquired images may
have a lower resolution to begin with. Considering multi-camera
continuous target tracking and re-identification, cameras in the
network with lower processing capabilities may slow down the
network. Furthermore, lower image quality may skew the acquired
model of a target and accelerate the problem of concept drift in
target tracking and online target model learning [2].

https://alice.aston.ac.uk/solomon
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Cameras’ behaviours can also vary, leading to behavioural het-
erogeneity. The classic approach is for cameras to use a common
algorithm or behavioural strategy. However, cameras are often
located in different areas, and hence are subject to different experi-
ences. This challenges the common assumption when deploying
smart camera networks, that a single behaviour, captured in a single
software solution, should be used. Indeed, results from Lewis et
al’s study of heterogeneity in smart camera networks [27] support
the idea that to achieve efficient network-wide behaviour, each
device should have a specialised behaviour, based on its own local
perspective and context. This result mirrors those from studies of
heterogeneity elsewhere inmulti-agent and self-organising systems,
where specific benefits include adaptation to unknown situations
or environments. For example, Anders et al. [1] showed that hetero-
geneity among nodes in a network can lead to better achievement of
system wide objectives, and Salazar et al. [44] highlight the impor-
tance of understanding and harnessing heterogeneity when nodes
can adapt independently online, in response to uncertainty and
changes in the environment. In dynamic task allocation, Camp-
bell et al. [5] show that variation in agent behaviour increases the
system’s ability to adapt to varying stimuli. Focussing on sensor net-
works, Yarvis et al. [53] explore the impact of heterogeneity at the
network level, and Römer et al. [43] observe that, while wireless sen-
sor networks were initially conceived as homogeneous networks
of near-identical sensors, in practice many applications contain
platform heterogeneity. Further, Prasath et al. [37] recommend het-
erogeneity in wireless sensor networks to generate near-optimal
configurations. This raises a further challenge: while heterogeneity
can improve global efficiency, how should “good” behaviour for
each individual camera be determined? In large networks, for even
reasonable sets of possible behaviours at the individual camera
level, this leads to a combinatorial explosion of possible network
behaviour configurations, and identifying by hand the most ap-
propriate configuration at a particular point in time is not feasible.
Thus, some automation, through a-priori optimisation, or by online
machine learning (e.g., as in [27]) will be needed.

Figure 4: Camera network platforms vary, leading to platform heterogeneity.
BWV/IBV has received little attention so far from the research community.

5 NETWORKING AND COORDINATION
In networks where cameras can change their pose or relocate, it
is important to coordinate the cameras so that network goals are
met [17, 23]. These might include: maximise the number of tracked
objects, ensure each target is tracked by k cameras at a time, etc.

Figure 5 illustrates some challenges: 5 cameras, relying purely on
their visual information, is tasked to observe a single target. Cam-
erasC1 andC2 observe it from the front. Since their view angles are
similar, identification by both cameras is not a problem. However,
little additional information is gathered. The object is occluded
from C3, so in order for the camera to contribute knowledge, it
would need to move. C4 can see the object from behind. Assum-
ing the model holds sufficient information, C4 also identifies the
target, and adds more new knowledge than C3 and C5. C5 should
be able to re-identify the object based on C1 or C2’s information,
while also providing new information about the object. If cameras
are calibrated, their location and orientation information can be
used to aid re-identification. Otherwise, the network relies on the
generalisation of the learnt model to other points of view.

5.1 Centralised Coordination
A global controller knows where each camera is located, its relation
to other cameras in the network, and the content of their FOVs.
Hence, the coordinator knows what targets are covered by how
many cameras, and which targets are not covered at any given time.
Achieving goals can be considered an optimization problem in a
game-theoretic setting [31]. This, however, requires the cameras
to constantly communicate their information to the central coor-
dinator. With fixed cameras on wired connections, this might not
be big issue. Furthermore, the central controller being aware of
the location and orientation of each individual camera and their
FOVs makes re-identification of targets a much easier task. How-
ever, in mobile BWV, information exchange has to be performed
via wireless communication channels. In rapidly unfolding situa-
tions, required infrastructure might not be available for cameras
to receive commands from the central entity. In addition, having
constantly changing environments, a camera might not be able to
wait for control input from the coordinator.

5.2 Decentralised Coordination
In decentralised coordination, coordination of the network is spit
up among multiple clusters of cameras. For each cluster, a local
coordinator is selected, perhaps through voting. Additionally it
is required that the communication range is at least the range at
which a camera can detect and potentially re-identify a target with
sufficient confidence. In comparison to centralised coordination, in
decentralised coordination, the communication effort is reduced
among neighbours. This does not necessarily reduce network-wide
communication, however, clusters currently not engaged in track-
ing a target might not have any communication at all.

One of the main challenges is how to select clusters efficiently at
runtime due to (i) the directed sensing of cameras, (ii) the possibility
to change their pose with PTZ cameras, and (iii) potentially even
change their location when employing mobile cameras. Having a
highly dynamic network of mobile cameras, selection of such a co-
ordinator with a high freqency at runtime introduces an additional
problem. Finally, when targets move across multiple clusters, where
each one is handled by a different coordinator, this cluster hand-off
needs to be handled efficiently. However, on a local level, a cluster
coordinator still has global knowledge, and would be used to ensure
positive re-identification of targets among different cameras.
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Figure 5: C1 and C2 have similar points of view on a target (orange) and thus
provide non-complementary information. C3’s view is occluded and it needs
to move to see the target. C4 sees the target from the opposite side to C1 and
C2. If the target is non-uniform and the model does not capture this, C4 will
not be able to identify the target. C5 also has a complementary angle to C1
and C2, and can re-identify the target and add new information.

5.3 Self-organised Coordination
Existing large camera deployments, especially BWV, are not net-
worked, and involve no interaction between cameras. Conversely,
networked deployments are smaller and centrally controlled, in-
troducing a bottleneck and a single point of failure. To address the
issue of scalability, self-organising and distributed coordination can
be used.In self-organising cameras, the network also benefits form
higher flexibility and more robustness to changes in the network.

However, self-organisation in a camera network requires a high
degree of interaction among the individual cameras, which may
result in higher communication and be error prone. Additionally,
not having a central controller results in cameras acting based on
local rules and defined behaviour. This might lead to cameras not
behaving as expected resulting in targets not being tracked or to
many cameras covering the same targets at the same time .

Introducing mobility, whether in the form of robots or BWV,
requires the network to account for changing goals, resources, and
rapidly changing environments. This requires the control of the sys-
tem to be highly adaptive, robust, and flexible. In order to achieve
this, individual and collective online learning at the camera and
network level is required. Furthermore, the system and individual
cameras need to evaluate their own performance as well as the per-
formance of others at runtime. This will allow them to self-adapt to
such demanding change. Further, current approaches do not con-
sider the relationship and interplay of different goals and available
resources. To increase the efficiency of camera systems, trade-offs
need to be modelled during runtime and multiple objectives in our
learning approaches need to be considered. Guarantees for emer-
gent behaviour in self-organising camera systems are required to
ensure given goals in the network are achieved. However, this would
require the network to have a single common goal. Furthermore,
techniques on how to handle malicious/non-cooperative/counter-
productive nodes within a network are required.

6 COLLABORATION AND TEAMWORK
An important challenge, especially in heterogeneous networks, is
cooperation between individual cameras to achieve common goals.
Foeken and Kester [16] analyse adaptive team formation under
different communication constraints, using shared situation aware-
ness to maximise the performance of each team member. Raubal
and Winter [39] define a framework for agents to negotiate how to

perform a task. They consider, at runtime, if a task requires collabo-
ration and analyse the trade-off between urgency, risk, and distance
involved. In camera networks, Qureshi and Terzopoulos [38] use
contract net to assign tasks to cameras at runtime. They use auctions
to form coalitions of cameras to achieve specific tasks. Similarly,
Esterle et al. [10, 13] use auctions to find neighbouring cameras for
continuous tracking. They introduce artificial pheromones to adapt
to changes in the network. Li and Zhang [30] use a utility based on
the number of cameras observing a target and on the overlapping
area of the target to determine which cameras should collaborate
to achieve the best results. This is done exhaustively for all cam-
eras in a centralised way. SanMiguel and Cavallaro [45] propose a
coalition-based collaborative tracking framework. In negotiation,
cameras join teams to collaboratively track targets, based on their
available resources and expected contribution.

However, these approaches do not account for the dynamics
of the network introduced by mobility, nor the unpredictable be-
haviour of citizens contributing video data. This additional degree
of complexity will require further investigation to improve contin-
uous multi-camera target tracking and re-identification.

7 OUTLOOK
One recent trend in industry is the proliferation of mobile cameras,
including body worn video. However, research often still focusses
on homogeneous camera networks. In this paper we shed some
light on the upcoming challenges that will arise by incorporating
BWV into surveillance networks.

Future camera networks will be required to respond to any given
situation autonomously or with minimal human interaction. When
required, these networks can be extended by BWV on local person-
nel and/or privately owned equipment. This sudden heterogeneity
in the network can bring benefits, but needs to be handled accord-
ingly. Since this heterogeneity cannot be foreseen, this needs to be
done autonomously and during runtime. In addition, BWV requires
new techniques to compensate for motion introduced by rapid
movements. The additional cameras, however, allow for immediate
extension of the network and hence supplementary video data can
be made available when required. Nevertheless, the security team
may not be able to completely rely on BWV added by non-security
personnel as they may not comply with requests, e.g. relocating to
a position if it is potentially harmful. BWV also offers benefits to
lay personnel, as security services can use their video footage to
guide them safely out of harm’s way. In a given emergency, police
special forces may deploy additional mobile camera nodes in the
form of more BWV or drones. Recent developments allow those
drones to land on and depart from walls, enabling them to conserve
energy. These drones would also operate autonomously, extending
the camera infrastructure, and communicating with the rest of the
network when required. Special forces wearing BWV could again
be guided towards the reported incident.

Heterogeneity and self-organisation enable the network to at-
tend to multiple tasks at the same time, through parallelisation and
specialisation according to local situations. Autonomous coordina-
tion of mobile smart camera networks will allow the assessment
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of and response to situations faster, even in a chaotic and fast-
changing environment, while generating additional valuable and
up-to-date information in real time.
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