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Abstract

The association of tabletop interaction with gesture
typing presents interaction potential for situationally or
physically impaired users. In this work, we use depth
cameras to create touch surfaces on regular tabletops. We
describe our prototype system and report on a supervised
learning approach to fingertips touch classification. We
follow with a gesture typing study that compares our
system with a control tablet scenario and explore the
influence of input size and aspect ratio of the virtual
surface on the text input performance. We show that
novice users perform with the same error rate at half the
input rate with our system as compared to the control
condition, that an input size between A5 and A4 present
the best tradeoff between performance and user
preference and that users’ indirect tracking ability seems
to be the overall performance limiting factor.
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Figure 1. Potential interaction
setup. A mobile device whose
optical sensor creates an
on-demand touch surface offers
width and height as free
parameters.

Figure 2. Segmented sensor
image with points within the
interactive surface (blue), the
ROI plane (cyan), the detected
fingers (yellow) and the user
pointer (red).

Introduction

The combination of indirect optically tracked input and
potentially projected display (“virtual surfaces”) has
several interesting properties. Virtual surfaces, as opposed
to touch screens, are well suited to tackle the palm
rejection problem and the occlusion problem, offer a
choice of size, aspect ratio and texture of the input space,
and allow interactions with dirty or wet hands.

Depth cameras [4, 12, 14] have usually been employed to
create such surfaces, while other work have combined
different sensor sources [13]. However, the touch
classification, critical to the quality of the interaction
remains challenging [14] and is traditionally addressed by
hand-tuning parameters and thresholding.

In this context, the task of gesture typing [6] is an
interesting research focus. Text-input is a major

activity [9] on mobile device taking up to 40% of the user
interaction time. The technique lends itself well to optical
systems by limiting the requirement for repetitive target
acquisition or touch classification. Yet, little is known
about the impact of input size (one of the free parameters
of virtual surfaces) on writing performance as other works
focused on pointing [2, 3] or bimanual task [11].

This work specifically focuses on two goals: to report on a
supervised learning approach to the fingertip touch
classification task and to study the influence of input
space (size and aspect ratio) on gesture typing
performance using virtual tabletops.

System Overview

The envisioned interaction scenario is shown in Figure 1.
A camera overlooks the interaction surface and a
computing device performs the hand and fingers tracking
as well as the touch detection. The system map in an

indirect manner the user's pointer from the virtual surface
onto the device's screen. A 3-state button model is used
with visual feedback indicating hover positions and
continuous touches. Audio cues indicate whenever a new
touch down event is detected.

Touch Classification

This task is well suited to a supervised learning approach
provided a training dataset is available. One of the
authors video-taped 6 minutes of interactions creating 3
distincts datasets for 3 different fingers (index, thumb and
pinky) totalling 10800 frames. The datasets are balanced
with regards to touching frames and hovering frames and
include a minor fraction of out-of-range frames.
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Figure 3. Performance of the fingertip touch classification
with 3-fold cross validation. Each split trains on two finger
types (among three) and validates against the remaining one.

The classification features are chosen as 20-bins
histograms of z-values of the detected fingertip
pointcloud, in red on Figure 2, which provides some
orientation and shape invariance. This is fed to a binary
neural network classifier: 20 inputs dimensions, 2 layers of
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Figure 4. Picture of the user
study setup. A tablet device
provides the audiovisual feedback
while a depth camera mounted
on a tripod creates a virtual
touch input surface.

64 hidden units with rectified linear (ReLU) activation and
50% dropout, and a fully connected output layer with
sigmoid activation. We use the binary cross-entropy as
loss function and rmsprop for the optimiser. Finally, we
train the model over 50 epochs and perform a 3 folds
cross-validation across the 3 datasets, different fingers are
thus validated against each others. This provides an
estimate for the generalisation power of the model when
classifying unseen users as shown by the averaged 0.96
AUC for the ROC, see Figure 3.

The model used for the user study was trained over the
full dataset over 75 epochs. As an improvment, it is worth
noting the possibility to delegate the feature extraction
step to a model capable of inferring features directly, such
as a convolutional neural network.

User Study

We ran an experiment with two research goals in mind.
First we wanted to evaluate the usability of our system,
for this purpose we included a condition with an
interaction directly on the tablet. Second, given the
nature of the task and its inherent difficulty for novice
users, we investigated the influence of the physical space
on performance. Accot et al. [1] demonstrated a
U-shaped curve in performance against input scale. Our
independent variable were thus the control surface
dimensions, which effectively change the control-display
gain (C'Dgyqy ) defined as in [2] by the the ratio of the
pointer velocity to device velocity.

We recruited 12 participants, all right handed, without
requirement on gesture typing experience. A repeated
measures within-subjects design was used. There were 3
conditions (DEVICE, SIZE and ORIENTATION) and 5 level
combinations were evaluated, see Table 1 below for

details. We adopted a 3-symbols naming convention: the
first letter represents the DEVICE, the second marks the
ORIENTATION and the number represents the scaling
factor as SIZE.

LEVEL DEVICE width  height area ratio CDgyqin
OP1 OPTICAL 9.4 4.7 442 2 1
OP2 OPTICAL 18.8 94 176.7 2 1/2
OoL2 OPTICAL 25.6 6.9 176.6 3.7 1/1.7
OP4 OPTICAL 37.7 18.9 7125 2 1/4
TP1 TABLET 94 4.7 442 2 1

Table 1. Design of the experiment. Level name, device type,
dimensions (in ¢m), area (in ¢cm?), ratio and control /display
gain for all 5 combinations used in the experiment.

The apparatus, see Figure 4, implements the system
description above. An Intel Realsense camera is used, and
the processing is performed on a desktop computer. An
Android tablet running custom software produces the
audiovisual feedback. The pointer tracked by the system
is defined as the point cloud closest to the camera in the
depth direction (y on Figure 2); there is no explicit finger
or hand modeling performed. Instead, the assumption is
that the interacting finger is the furthest protruding object
from the user.

The task was to write 20 words per level (words taken at
random from the most common english words with length
between 2 and 5 letters) with maximum 7 attempt to
complete 5 correct input for each word. The design of the
task is similar to [10] and allows novice users to focus on
the physical execution instead of the shape recollection,
effectively emulating a proficient bahavior even for novice
users. After each level, participants were offered to take a
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Figure 6. Effect of levels on
input rate.

break before moving to the next one. Finally, participants
were asked for their feedback using the NASA Task Load
Index [5] (NASA-TLX) to assess the perceived workload
of completed level.

The experimental design was thus: 12 participants x 5
LEVEL x 20 WORD = 1200 trials. For each trial, we had
5 to 7 attemps depending on the error rate, which means
a total of 6,000 to 8,400 total samples. After the
experiment, we actually recorded 6963 samples.

Results

The dependent variables we analyse are the success rate,
the time taken per trial and the trace data when available.
From these, we computed the dependent measure error
rate defined as the percentage of unsucessful attempts as
well as the text entry rate measured in Words Per Minute
(WPM), as in [8], according to the following formula:
WPM = |T|/s x 60/5 where |T| is the length of the
transcribed string and s is time in seconds.

We found one input word (LAY) presented some very
unusual behavior. Its error rate was at 89.5% while the
WORD mean was 20.1% and no other word had an error
rate higher than 30%. The reason was that the recogniser
promoted words of higher prior probability in the language
model, “Larry”, “last” or “Katy”. For the all subsequent
analysis of error rate, LAY was removed from the dataset.

Effect on error rate

A statistical analysis showed a significant main effect of
DEVICE (Fy 11 = 37.77, p < 0.0001) on error rate with
mean value for TP1 and OP1 equal to 6.2% and 26.1%,
respectively, see Figure 5. A statistical analysis also
showed a significant main effect of SIZE (F5 22 = 10.99,
p < 0.001) on the error rate. Finally, an ANOVA on TP1,
OP2, OP4 and OL2 did not show a significant main effect

(p = 0.11) even though OPTICAL is on average higher
than TABLET. In other words, among all levels of the
experiment, only OP1 shows a significant higher error rate.

Effect on input rate

A statistical analysis showed a significant main effect of
DEVICE (F1,11 = 90.15, p < 0.0001) on input rate,

see Figure 6, with mean values for TP1 and OP1 equal to
29.2 WPM and 13.7 WPM, respectively. We also looked
at pairwise comparison for OPTICAL and could not find a
statistical difference in the mean input rate. The input
rate achieved by the participants in TP1 is in-line with
what can be expected from novice users after the time of
the experiments [6]. The averaged 54% lower input rate in
OPTICAL should be compared with other similar results,
as [8] with 57% after 10 sessions, that compare direct and
indirect input modality for mid-air gesture typing.

Effect of orientation

The design of the experiment also includes
ORIENTATION. This condition has so far been excluded
from the SIZE analysis and can be difficult to apprehend
since not only the ORIENTATION of the visual feedback
changes, but its size also. The main result is the average
pointer speed in display space at 303.75pizel/s, higher
than the PORTRAIT orientation at an average
228pixel/s. It is important to keep in mind that the
keyboard area in LANDSCAPE (61cm?), bigger than
PORTRAIT (44cm?), which can explain the faster pointer
speed but is not responsible for a higher input rate due to
longer traces to produces.

Qualitative data

At the end of the experiment, participants were invited to
provide some informal feedback, rank the different level in
order of preference and fill in the NASA-TLX form, the
tablet interaction was ranked best by all participants



except one. OP4 was consistently ranked last, while OP2
and OL2 had equal ranking in second position. The
NASA-TLX data shows that participants describe OP4 as
the most physically demanding interaction. Participants
graded OP1 and OP4 20% higher than OP2 and OL2 on
the scale of effort and frustration. Finally, OP1 was
graded as having lowest level of performance and highest
mental and temporal demand.

Discussion

We conducted a user study investigating the usability of
the system and showed that for control dimension at least
twice the display dimension novice users were capable the
same error rate at half the input rate. We also showed
that at the same C'Dyq;p, the error rates were
dramatically higher. Also, the experiment showed a
constant input rate across display sizes and aspect ratios.
Accot et al. [1] showed that task with high index of
difficulty would exhibits a u-shaped curved with size. Since
we did not observe such a behavior, this puts in question
whether gesture typing for novice users is “hard enough”.

The constant input rate however shows that participants
are capable of adapting their motor speed across all
investigated scales. Participants also varied the display
pointer speed, especially in OL2 when presented with a
bigger display surface. Because participants are capable of
adapting their motor behavior and their control bahavior,
another explanation for the upper bound in text input is
that the indirect nature of the interaction is the limiting
factor.

Participants feedback showed that OP1 was a demanding
interaction, and that increasing the surface size to the
extent of OP4 was also physically demanding. We would
therefore recommend sizes OP2 or OL2 for interaction,

noting that the performance is also dependent on the
CDyqin). Some participants reported the texture having
an impact of the interaction. Levesque et al. [7] have used
friction in a dynamic manner to improve target
acquisition. Given the relatively low performance of the
participants, it could be interesting to explore if tactile
feedback could help controlling an indirect pointer.

Conclusion

We developed a system that affords gesture typing on
arbitrary flat surfaces using depth camera tracking, and
demonstrated a machine learning approach to the issue of
detecting touch for fingertips which is effective for this
mode of control. We designed an experiment with two
research goals in mind. First, we compared the typing
performance of our optical indirect system against a
control condition which was a direct interaction on a
tablet. Second, we studied the influence of size and aspect
ratio of the input surface on gesture typing performance.
We showed that the participants could enter text at half
the input rate and the same error rate on surface at least
twice the size of the visual feedback. We also showed that
the input rate is largely independent of surface size across
the range of sizes we were able to examine. Gesture typing
has promise for interaction outside of mobile devices, e.g.
for motor impaired users who struggle with capacitive
touch technologies. This paper indicates that while
camera-tracked gesture typing performance is usable,
input rates are lower than touchscreen performance, and
this is not influenced by scaling of the input.
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