
ar
X

iv
:1

31
0.

54
22

v3
 [

cs
.D

S
]

26
 S

ep
 2

01
4

Spider covers for prize-collecting network activation problem

Takuro Fukunaga∗

Abstract

In network activation problem, each edge in a graph is associated with an activation function that
decides whether the edge is activated from weights assignedto its end nodes. The feasible solutions
of the problem are node weights such that the activated edgesform graphs of required connectivity,
and the objective is to find a feasible solution minimizing its total weight. In this paper, we consider a
prize-collecting version of the network activation problem and present the first nontrivial approximation
algorithms. Our algorithms are based on a new linear programming relaxation of the problem. They
round optimal solutions for the relaxation by repeatedly computing node weights activating subgraphs,
called spiders, which are known to be useful for approximating the network activation problem. For the
problem with node-connectivity requirements, we also present a new potential function on uncrossable
biset families and use it to analyze our algorithms.

1 Introduction

1.1 Problem

Network activation problem is a problem of activating a well-connected network by assigning weights to
nodes. The problem is formally described as follows. Given agraphG = (V,E) and a setW of non-negative
real numbers such that0 ∈ W andi+ j ∈ W for anyi, j ∈ W , a solution in the problem is a node weight
functionw : V → W . Foru, v ∈ V , let {u, v} anduv denote the unordered and ordered pairs ofu andv,
respectively. Each edge{u, v} ∈ E is associated with an activation functionψuv : W ×W → {true, false}
such thatψuv(i, j) = ψvu(j, i) holds for anyi, j ∈ W . In this paper, each activation functionψuv is
supposed to bemonotone, i.e., if ψuv(i, j) = true for somei, j ∈ W , thenψuv(i′, j′) = true for any
i′, j′ ∈ W with i′ ≥ i andj′ ≥ j. An edge{u, v} is activated byw if ψuv(w(u), w(v)) = true. LetEw be
the set of edges activated byw in E. A node weight functionw is feasible in the network activation problem
if Ew satisfies given constraints, and the objective of the problem is to find a feasible node weight function
w that minimizes

∑

v∈V w(v), denoted byw(V). We assume throughout the paper thatG is undirected even
though the problem can be defined for directed graphs as well.

In this paper, we pose connectivity constraints on the setEw of activated edges. Namely, we are given
demand pairs{s1, t1}, . . . , {sd, td} ⊆ V associated with connectivity requirementsr1, . . . , rd defined as
natural numbers.[d] denotes{1, . . . , d}, k denotesmaxi∈[d] ri, and a node that participates in some demand
pair is called aterminal. The constraints require that the connectivity betweensi andti in the graph(V,Ew)

is at leastri for eachi ∈ [d]. We consider three definitions of the connectivity: edge-connectivity, node-
connectivity, and element-connectivity. The edge-connectivity between two nodesu andv is the maximum
number of edge-disjoint paths betweenu andv, and the node-connectivity betweenu andv is the maximum
number of inner disjoint paths betweenu and v. The element-connectivity is defined only for pairs of

∗National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan. JST, ERATO, Kawarabayashi Large Graph
Project, Japan. Email: takuro@nii.ac.jp

1

http://arxiv.org/abs/1310.5422v3

terminals, and for two terminalsu andv, it is defined as the maximum number of paths between them thatare
disjoint in edges and in non-terminal nodes. The edge-connectivity network activation problem denotes the
problem with the edge-connectivity constraints. The node-and the element-connectivity network activation
problems are defined similarly.

The network activation problem is closely related to thesurvivable network design problem (SNDP), a
problem of constructing a cheap network that is sufficientlyconnected. A feasible solution to the SNDP
is a subgraph(V, F) of a given graphG = (V,E) that satisfies the connectivity constraints. There are
two popular variations, called the edge- and node-weightedSNDPs. In the edge-weighted SNDP, each
edge in the graph is associated with a weightw(e), and the objective is to minimize the weightw(F) of
F defined as

∑

e∈F w(e). In the node-weighted SNDP, a weightw(v) is given for each nodev ∈ V , and
the objective is to minimize

∑

v∈V (F)w(v), whereV (F) denotes the set of end nodes of edges inF . We
denote

∑

v∈V (F) w(v) byw(V (F)) in the sequel. It is known that the node-weighted SNDP generalizes the
edge-weighted SNDP.

It can be seen that the network activation problem extends the node-weighted SNDP. Given node weights
w′ : V → R≥0, let W = {w′(v) : v ∈ V } ∪ {0}, and define a monotone activation functionψuv for
{u, v} ∈ E so thatψuv(i, j) = true if and only ifi ≥ w′(u) andj ≥ w′(v). A minimal solutionw : V → W

to the network activation problem with these activation functions does not assign a weight larger thanw′(v)

to v ∈ V . Hence, if an edge activated byw is incident to a nodev, thenw(v) = w′(v) holds without loss
of generality. Therefore, the node-weighted SNDP withw′ is equivalent to the network activation problem
with ψ defined fromw′.

The extension from the SNDP to the network activation problem is not only important from a technical
viewpoint but also for practical reasons. In the node-weighted SNDP, for each node, one is required to
decide whether it is chosen. In contrast, the network activation problem demands a decision concerning
which weight is assigned to a node. In other words, the network activation problem admits more than two
choices while the node-weighted SNDP admits only two choices for each node. This rich structure of the
network activation problem enables to capture many problems motivated by realistic applications. In fact,
Panigrahi [16] discussed numerous applications to wireless networks. In wireless networks, the success
of communication between two base stations depends on factors such as physical obstacles between them,
positions of antennas, and signal strength. Panigrahi suggested that many problems related to wireless
networks can be modeled by the network activation problem.

Our main contribution in this paper is to develop algorithmsfor a prize-collecting version of the network
activation problem, which we call theprize-collecting network activation problem (PCNAP). In the PCNAP,
each demand pair{si, ti} is associated with not only a connectivity requirementri, but also a non-negative
real numberπi, which is called thepenalty. The edge setEw activated by a solutionw is allowed to
violate the connectivity requirements, but it has to pay thepenaltyπi if it does not satisfy the connectivity
requirement for{si, ti}. The objective of the PCNAP is to minimize the sum ofw(V) and the penalties we
have to pay.

We also consider two variations of the PCNAP. Therooted node-connectivity PCNAP is a special
case of the node-connectivity PCNAP such that a root nodes ∈ V is specified and the demand pairs
are{s, t1}, . . . , {s, td}. In the subset node-connectivity PCNAP, terminalst1, . . . , td ∈ V and penalties
π1, . . . , πd are given instead of demand pairs. LetEw be the set of activated edges. In addition to node-
weights, a solution choosesU ⊆ [d] such that every pair of terminalsti andtj with i, j ∈ U is k-connected
in the graph(V,Ew). The penalty is

∑

i∈[d]\U πi. We note that the subset node-connectivity PCNAP is
not a special case of the node-connectivity PCNAP because the above setting cannot be represented by
connectivity demands and penalties on terminal pairs.

In all of the known applications, it is reasonable to assume|W | = poly(|V |). In fact, all previous

2

research [15, 16] studied the network activation problem under this assumption. In this paper, we proceed
on the same assumption and design algorithms that run in polynomial time of|W | and the size ofG.

1.2 Related work

The SNDP is a well-studied optimization problem, and there are substantial number of studies regarding
algorithms for it. The best known approximation factors forthe edge-weighted SNDP are two for the
edge- [8] and element-connectivity [5], andO(k3 log |V |) for node-connectivity [4]. For the node-weighted
SNDP, Nutov [12] gave anO(k log |V |)-approximation algorithm with edge-connectivity requirements, and
element-connectivity requirements in [13]. His algorithmis based on an algorithm for the problem of cover-
ing uncrossable biset families by edges, where a biset is an ordered pair of two node sets, and an uncrossable
family is a family closed under some uncrossing operations (we will present their formal definitions later).
However, his analysis of the algorithm for covering uncrossable biset families has an error. We will explain
it in Section 5.

The prize-collecting SNDP has also been well studied. As foredge-weighted graphs, we refer to only
Hajiaghayi et al. [7] whereas many papers studied related problems such as the prize-collecting Steiner tree
and forest. Recently much attention has been paid to node-weighted graphs. Könemann, Sadeghian, and
Sanità [10] gave anO(log |V |)-approximation algorithm for the prize-collecting node-weighted Steiner tree
problem. Their algorithm has the Lagrangian multiplier preserving property, which is useful in many con-
texts. They also pointed out a technical error in Moss and Rabani [11]. Bateni, Hajiaghayi, and Liaghat [1]
gave anO(log |V |)-approximation algorithm for the prize-collecting node-weighted Steiner forest problem
with application to the budgeted Steiner tree problem. Chekuri, Ene, and Vakilian [3] gave anO(k2 log |V |)-
approximation for the prize-collecting SNDP with edge-connectivity requirements, which they later im-
proved toO(k log |V |)-approximation and also extended to the element-connectivity requirements (refer to
[17]). We note that the proof in [17] implies that the algorithm in [13] works for the node-weighted SNDP
with element-connectivity requirements, as Nutov originally claimed, even though his analysis of the algo-
rithm for covering uncrossable biset families is not correct in general. We also note that the algorithm for
the element-connectivity requirements in [17] impliesO(k4 log |V |)-approximation for node-connectivity
requirements, using the reduction from node-connectivityrequirements to the element-connectivity require-
ments presented by Chuzhoy and Khanna [4].

Concerning the network activation problem, Panigrahi [16]gaveO(log |V |)-approximation algorithms
for k ≤ 2 and proved that it is NP-hard to obtain ano(log |V |)-approximation algorithm even when acti-
vated edges are required to be a spanning tree. Nutov [15] presented approximation algorithms for higher
connectivity requirements, includingO(k log |V |)-approximation for the edge- and element-connectivity
andO(k4 log2 |V |)-approximation for the node-connectivity. He also discussed special node-connectivity
requirements such as rooted and subset requirements. Theseresults are built based on his research in [13]
for covering uncrossable biset families. This contains an error as mentioned above, and the rectification
offered in [17] cannot be extended to the network activationproblem. Therefore, the network activation
problem currently has no non-trivial algorithms for the element- and node-connectivity. One contribution of
this paper is to rectify the Nutov’s error and to provide algorithms for these problems.

An important factor in most of the research mentioned above is thegreedy spider cover algorithm.
The notion ofspiders was invented by Klein and Ravi [9] in order to solve the node-weighted Steiner tree
problem. It was originally defined as a tree that admits at most one node of degree larger than two and that
spans at least two terminals. The node of degree larger than two is called thehead, and nodes of degree
one are called thefeet of the spider. It is supposed without loss of generality thateach foot of a spider is a
terminal. If all nodes have degrees of at most two, then an arbitrary node is chosen to be the head. Klein
and Ravi [9] proved that any Steiner tree can be decomposed into node-disjoint spiders so that each terminal

3

Table 1: Approximation factors for the edge-weighted SNDP,node-weighted SNDP, and the network acti-
vation problem

non-prize-collecting prize-collecting

edge-connectivity
edge-weighted SNDP 2 Jain [8] 2.54 Hajiaghayi et al. [7]
node-weighted SNDP O(k log |V |) Nutov [12] O(k log |V |) Chekuri et al. [3]
network activation O(k log |V |) Nutov [15] O(k log |V |) [this paper]

element-connectivity
edge-weighted SNDP 2 Fleischer et al. [5] 2.54 Hajiaghayi etal. [7]
node-weighted SNDP O(k log |V |) Vakilian [17]1 O(k log |V |) Vakilian [17]
network activation O(k2 log |V |) [this paper]1 O(k2 log |V |) [this paper]
1 Nutov [13, 15] claimedO(k log |V |)-approximation algorithms for the node-weighted SNDP and the network activation

problem with element-connectivity constraints, but thesecontained an error.

is included by some spider. Thedensity of a subgraph is defined as its node weight divided by the number
of terminals included by it. The decomposition theorem implies that there exists a spider with a density
of at most that of Steiner trees. Since contracting a spider with f feet decreases the number of terminals
by at leastf − 1, a greedy algorithm to repeatedly contract minimum densityspiders achievesO(log |V |)-
approximation. Minimum density spiders are hard to computebut their relaxations can be computed by a
simple algorithm that involves first guessing the place of the head and number of feet, which is possible
because there are only|V | options for each. Leth be the head, andf be the number of feet. We then
compute a shortest path fromh to each terminal, and choose thef shortest paths from them. The union
of these shortest paths is not necessarily a spider, but its density is at most that of spiders, and contracting
the union can play the same role as contracting spiders. Nutov [12, 13, 15] extended the notion of spiders
to uncrossable biset families, and demonstrated in the sequence of his research that they are useful for the
node-weighted SNDP and the network activation problem.

1.3 Our results

The main result in this paper is to present approximation algorithms for the PCNAP. Our algorithms achieve
O(k log |V |)-approximation for the edge-connectivity PCNAP, andO(k2 log |V |)-approximation for the
element-connectivity PCNAP. Table 1 summarizes the approximation factors achieved by our algorithms
and previous studies. Using decompositions of connectivity requirements given in [4, 13, 14], we can also
achieve approximation factorsO(k5 log2 |V |) for the node-connectivity PCNAP andO(k3 log |V |) for the
rooted and subset node-connectivity PCNAPs. Our results give the first non-trivial algorithms for the PC-
NAP. We also recall that, besides our algorithms, no algorithms are known even for the element- and node-
connectivity network activation problems because the analysis of the algorithms claimed by Nutov [13, 15]
contains an error. For wireless networks, it is natural to consider node-connectivity, which represents tol-
erance against node failures, rather than edge-connectivity, which represents tolerance against link failures.
Hence, our results are important for not only theory but alsoapplications.

Let us present a high level overview of our algorithms. Our algorithms first reduce the problem with high
connectivity requirements to theaugmentation problem, which asks to increase the connectivity of demand
pairs by one. This is a standard trick for SNDP, and we will show in Section 2 that this trick can work even
for the PCNAP. Then, our algorithms compute an optimal solution to an LP relaxation, and discards some
of the demand pairs according to the optimal solution, whichis a popular way to deal with prize-collecting

4

problems since Bienstock et al. [2]. In the last step, the algorithms solves the problem using the greedy
spider cover algorithm. To obtain an approximation guarantee, we are required to show that the minimum
density of spiders can be bounded in terms of the optimal value of the LP relaxation. We achieve this by
presenting a primal-dual algorithm for computing spiders,which is the same approach as [3, 1, 17].

As observed from this overview, our algorithms rely on many ideas given in the previous studies on the
prize-collecting SNDP and the network activation problem.However, it is highly nontrivial to apply these
ideas for the PCNAP, and we required several new ideas to obtain our algorithms. Specifically, the technical
contributions of the present paper are the following three new findings: an LP relaxation of the problem, a
primal-dual algorithm for computing spiders, and a potential function for analyzing the greedy spider cover
algorithm. Below we explain these one by one.

LP relaxation

Nutov’s spider decomposition theorem is useful for the biset covering problem defined from the SNDP and
the network activation problem, but we have to strengthen itfor solving their prize-collecting versions. We
define an LP relaxation of the problem and compare the minimumdensity of spiders with the density of
fractional solutions feasible to this relaxation. The sameattempt has been made previously by [1, 3, 10] for
the node-weighted SNDP, but our situation is much more complicated. Each connectivity requirement in the
node-weighted SNDP can be simply represented by demands on the number of chosen nodes in node cuts
of graphs, which naturally formulates an LP relaxation thatperforms well. On the other hand, the network
activation problem requires to decide which edges are activated for covering bisets in addition to the decision
on which weights are assigned to nodes for activating the edges. Hence an LP relaxation for the network
activation problem needs variables corresponding to edgesand nodes whereas that for the node-weighted
SNDP needs only variables corresponding to nodes. However,dealing with both edge and node variables
introduces a large integrality gap into a natural LP relaxation for the network activation problem, as we will
see in Section 3. Hence we require to formulate an LP relaxation carefully.

In the present paper, we propose a new LP that lifts the natural LP relaxation for the PCNAP. It is
non-trivial even to see that our LP relaxes the PCNAP. We prove it using the structure of uncrossable biset
families, wherein any uncrossable biset family can be decomposed into a polynomial number of ring biset
families, and the degree of each node is at most two in any minimal edge cover of a ring biset family. In
addition, the main result in this paper implies that our LP has small integrality gap.

Let us mention that the idea on formulating our LP relaxationis potentially useful for other covering
problems. The author pointed out in his recent work [6] that anatural LP relaxation has a large integrality
gap for many covering problems in node-weighted graphs. He also presented several tight approximation
algorithms using the LP relaxations designed based on the idea we propose in the present paper.

Primal-dual algorithm for computing spiders

For bounding the minimum density of spiders in terms of optimal values of our relaxation, we will present
a primal-dual algorithm for computing spiders. Usually, a primal-dual algorithm computes fractional so-
lutions feasible to the dual of an LP relaxation together with primal solutions, but this seems difficult for
our relaxation because of its complicated form. Hence, our algorithm does not directly compute solutions
feasible to the dual of our relaxation. Instead, we define another LP simpler than our relaxation, and our
algorithm computes feasible solutions to the dual of this simpler LP. Although the simpler LP does not relax
our relaxation, we can show that it is within a constant factor of our relaxation if biset families are restricted
to laminar families of cores, which are bisets that do not include more than one minimal biset. Our primal-
dual algorithm computes dual solutions that assign non-zero values only to variables corresponding to cores

5

in laminar families. Hence, the density of spiders can be analyzed in terms of our relaxation.
Summarizing, our algorithm uses two different LPs: the LP based on the structure of uncrossable biset

families is used for deciding which demand pairs are discarded in the first step, and the simpler LP with
laminar core families is used in the second step that iterates choosing spiders. We note that the simpler LP
cannot be used in the first step because of two reasons. First,we do not know beforehand which laminar
core families will be used, and second, we have different laminar families in distinct iterations.

Although our primal-dual algorithm for the simpler LP seemsto be similar to primal-dual algorithms
known for related problems, its design and analysis is not trivial. One reason for this is the existence of more
than one choices of weights for each end node of activated edges as we have already mentioned. Another
reason is the involved structure of bisets. Since a biset is defined as an ordered pair of two node sets, covering
a biset family by edges is much more difficult problem than covering a set family, for which primal-dual
algorithms are often studied. Indeed, our algorithm utilizes many non-trivial properties of uncrossable biset
families.

Potential function for analyzing greedy spider cover algorithm

Nutov [13] claimed that repeatedly choosing a constant approximation of minimum density spiders achieves
O(log |V |)-approximation for covering uncrossable biset families. This claim is true if biset families are
defined from edge-connectivity requirements. However it isnot true for all uncrossable biset families. The
claim is based on the fact that contracting a spider withf feet decreases the number of minimal bisets by a
constant fraction off . However there is a case in which contracting a spider does not decrease the number
at all (see Section 5). Chekuri, Ene, and Vakilian [17] showed that the claim is true for biset families arising
from the node-weighted SNDP, but it cannot be extended to arbitrary uncrossable biset families, including
those from the network activation problem.

To rectify this situation, we will define a new potential function. The new potential function depends on
the numbers of minimal bisets and nodes shared by more than two minimal bisets. If the number of minimal
bisets does not decrease considerably when a spider is selected, many new minimal bisets share the head of
the spider. This fact motivates the definition of the potential function.

With this new potential function, the definition of density of an edge set will be changed to the total
weight for activating it divided by the value of the potential function. We cannot prove that the minimum
density of spiders is at most that of biset family covers after changing the definition of density. Instead, we
will show that a spider minimizing the density in the old definition approximates the density of biset family
covers in the new definition within a factor ofO(k). This proves that the greedy spider covering algorithm
achievesO(k log |V |)-approximation for the biset covering problem with uncrossable biset families. Since
Klein and Ravi [9], the greedy spider cover algorithms have been applied to many problems related to
the node-weighted SNDP. Considering this usefulness of thegreedy spider cover algorithms, our potential
function is of independent interest because it is required for analyzing the algorithms for uncrossable biset
families.

1.4 Roadmap

The remainder of this paper is organized as follows. Section2 presents reduction from the PCNAP to
the augmentation problem and introduces preliminary factson biset families. Section 3 defines our LP
relaxation. Section 4 presents our primal-dual algorithm for computing spiders, and Section 5 presents
a new potential function for analyzing the greedy spider covers. Section 6 presents our algorithms, with
Section 7 concluding this paper.

6

2 Preliminaries

2.1 Reduction to the augmentation problem

First, we define the augmentation problem in detail. We assume that there are two edge setsE0 andE, and
activation functions are given for edges inE. The connectivity of each demand pair{si, ti} is at leastk′− 1

in the graph(V,E0), and a subsetF of E is feasible if the connectivity of each demand pair in(V,E0 ∪ F)

is at leastk′. The objective of the problem is to find a node weight functionw : V → W so thatEw is
feasible andw(V) is minimized. In the prize-collecting augmentation problem, each demand pair{si, ti}
has a penaltyπi, and if the connectivity of{si, ti} is not increased byEw, then we must pay the penalty. The
objective of the prize-collecting augmentation problem isto find a node weight functionw that minimizes
the sum ofw(V) and penalties of demand pairs of connectivity smaller thank′ in (V,E0 ∪ Ew). PCNAP
can be reduced to the prize-collecting augmentation problem as follows.

Theorem 1. If the prize-collecting augmentation problem admits an α-approximation algorithm, then PC-
NAP admits an αk-approximation algorithm.

Proof. We sequentially define instances of the prize-collecting augmentation problem. In the first instance,
E0 is set to be empty andE is the edge set of the graph in the instance of the PCNAP. Activation functions,
demand pairs and their penalties are same as those in the PCNAP instance. The connectivity of each demand
pair is0 in (V,E0), and the requirement of a demand pair is satisfied if its connectivity is increased to at
least one in(V,E0 ∪ Ew).

We define thek′-th instance after solving the(k′ − 1)-th instance. Letwk′−1 be the node weights
computed by theα-approximation algorithm for the(k′ − 1)-th instance, andDk′−1 be the set of indices of
demand pairs that are satisfied bywk′−1 in the(k′ − 1)-th instance. We move the edges activated bywk′−1

fromE toE0. For eachi ∈ Dk′−1, the connectivity of{si, ti} is at leastk′ − 1 in (V,E0) after the update.
Let Ik′ = {i ∈ Dk′−1 : ri ≥ k′}. We define the demand pairs in thek′-th instance as{si, ti}, i ∈ Ik′ . The
activation functions in thek′-th instance are same as those in the PCNAP instance.

We repeat the above sequence until thek-th instance is solved. Our solution to the PCNAP instance
is w =

∑k
k′=1wk′ . We prove thatw achievesαk-approximation. Letw∗ be an optimal solution for the

PCNAP instance, andD∗ = {i ∈ [d] : {si, ti} is satisfied byEw∗}. Then, the optimal value of the PCNAP
instance isw∗(V)+

∑

i∈[d]\D∗ πi. If an edge is activated byw∗ in the PCNAP instance, then it is either inE0

or is activated byw∗ in thek′-th instance of the prize-collecting augmentation problem. Hence, a demand
pair {si, ti} with i ∈ Ik′ is satisfied byw∗ if it is satisfied byw∗ in the PCNAP instance, implying that the
objective value ofw∗ in thek′-th instance is at mostw∗(V) +

∑

i∈Ik′\D
∗ πi. By theα-approximability of

wk′ , we have

wk′(V) +
∑

i∈Ik′\Dk′

πi ≤ α



w∗(V) +
∑

i∈Ik′\D
∗

πi



 .

The objective value ofw in the PCNAP instance is

k
∑

k′=1



wk′(V) +
∑

i∈Ik′\Dk′

πi



 ≤ α

k
∑

k′=1



w∗(V) +
∑

i∈Ik′\D
∗

πi



 ≤ αk



w∗(V) +
∑

i∈[d]\D∗

πi



 .

7

2.2 Biset covering problem

Here, we formulate the prize-collecting augmentation problem as a problem of activating edges covering
bisets. Abiset is an ordered pair̂X = (X,X+) of subsets ofV such thatX ⊆ X+. The former element of
a biset is called theinner-part and the letter is called theouter-part. We always letX denote the inner-part
of a bisetX̂ andX+ denote the outer-part of̂X . X+ \X is called theboundary of a bisetX̂ and is denoted
byΓ(X̂). For an edge setE, δE(X̂) denotes the set of edges inE that have one end-node inX and the other
in V \X+. We say that an edgee covers X̂ if e ∈ δE(X̂), and a setF of edgescovers a biset familyV if
eachX̂ ∈ V is covered by some edge inF .

Let i ∈ [d]. We say that a biset̂X separates a demand pair{si, ti} if |X∩{si, ti}| = |{si, ti}\X
+| = 1.

We defineVedge
i as the family of bisetŝX such thatX = X+ ⊂ V , |δE0

(X̂)| = k − 1, andX̂ separates the
demand pair{si, ti}. According to Menger’s theorem,F ⊆ E increases the edge-connectivity of{si, ti} in
the augmentation problem if and only ifF coversVedge

i . We defineVnode
i as the family of bisetŝX such

that |δE0
(X̂)| + |Γ(X̂)| = k − 1 andX̂ separates the demand pair{si, ti}. F ⊆ E increases the node-

connectivity of{si, ti} if and only if F coversVnode
i . We defineVele

i as the family of bisetŝX ∈ Vnode
i

such thatΓ(X̂) ∩ {si′ , ti′} = ∅ for eachi′ ∈ [d]. F ⊆ E increases the element-connectivity of{si, ti} if
and only ifF coversVele

i .
For two bisetsX̂ andŶ , we defineX̂∩Ŷ = (X∩Y,X+∩Y +), X̂∪Ŷ = (X∪Y,X+∪Y +), andX̂\Ŷ =

(X \ Y +,X+ \ Y). A biset familyV is calleduncrossable if, for any X̂, Ŷ ∈ V, (i) X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ V, or
(ii) X̂ \ Ŷ , Ŷ \ X̂ ∈ V holds. The following lemma indicates that the uncrossable biset families characterize
the augmentation problem with edge- and element-connectivity requirements.

Lemma 1. For any D ⊆ [d], biset families
⋃

i∈D Vedge
i and

⋃

i∈D Vele
i are uncrossable.

Lemma 1 follows from the submodularity and posimodularity of |δE0
(·)| and|Γ(·)|, and a simple case

analysis. The same claim can be found in [5, 13], and we recommend referring to them for the proof of
Lemma 1.

By Lemma 1, the problem of finding a minimum weight edge set covering a given uncrossable biset
family contains the augmentation problem with edge- or element-connectivity requirements. The biset fam-
ily

⋃

i∈D Vnode
i defined from the node-connectivity requirements is not necessarily uncrossable. However,

it was shown previously in [4, 13, 14] that this family can be decomposed into uncrossable families, and the
union of covers of these uncrossable families gives a good approximate solution for the node-connectivity
augmentation problem. We apply this approach for dealing with node-connectivity constraints (see Sec-
tion 6).

We define thebiset covering problem as the problem of minimizing the sum of node weights under
the constraint that the edges activated by the node weights cover given biset families. The prize-collecting
version of the biset covering problem is defined as follows. Given an undirected graphG = (V,E) such that
each edge inE is associated with an activation function, demand pairs{s1, t1}, . . . , {sd, td} with penalties
π1, . . . , πd, and a biset familyV onV . For i ∈ [d], let Vi be the family of bisets inV that separate{si, ti}.
We say thatX̂ ∈ V is violated by an edge setF ⊆ E if δF (X̂) = ∅. The penalty ofw : V → W is

∑

πi
where the summation is taken over alli ∈ [d] such thatEw violates some biset inVi. The objective of the
problem is to findw : V →W that minimizes the sum ofw(V) and penalty ofw. This problem generalizes
the prize-collecting augmentation problem, and hence, it suffices to present an algorithm for this problem.

Our results require several properties of uncrossable biset families. We say that bisetŝX and Ŷ are
strongly disjoint when bothX ∩ Y + = ∅ andX+ ∩ Y = ∅ hold. WhenX ⊆ Y andX+ ⊆ Y +, we say
X̂ ⊆ Ŷ . Minimality and maximality in a biset family are defined withregard to inclusion. A biset family
V is calledstrongly laminar when, if X̂, Ŷ ∈ V are not strongly disjoint, then they are comparable (i.e.,
X̂ ⊆ Ŷ or Ŷ ⊆ X̂). A minimal biset in a biset familyV is called amin-core, andMV denotes the family of

8

min-cores inV. A biset is called acore if it includes only one min-core, andCV denotes the family of cores
in V, where min-cores are also cores. WhenV is clear from the context, we may simply denote them byM
andC.

For a biset familyV, bisetX̂, and nodev, V(X̂) denotes{Ŷ ∈ V : X̂ ⊆ Ŷ } andV(X̂, v) denotes
{Ŷ ∈ V(X̂) : v 6∈ Y +}. A biset familyV is called aring-family if X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ V hold for any
X̂, Ŷ ∈ V. A maximal biset in a ring-family is unique because ring-families are closed under union.

Lemma 2. If V is an uncrossable family of bisets, then the following properties hold:

(i) C(X̂) is a ring-family for any X̂ ∈ M.

(ii) Let X̂, Ŷ ∈ M be distinct min-cores. For any X̂ ′ ∈ C(X̂) and Ŷ ′ ∈ C(Ŷ), both X̂ ′ \ Ŷ ′ ∈ C(X̂) and
Ŷ ′ \ X̂ ′ ∈ C(Ŷ) hold.

(iii) Let X̂, Ŷ ∈ M be distinct min-cores. Then Ŷ is strongly disjoint with any X̂ ′ ∈ C(X̂). In particular,
min-cores are pairwise strongly disjoint.

The proof of Lemma 2 can be found in [13].
For a biset familyV and an edge setF , let VF = {X̂ ∈ V : δF (X̂) = ∅}. The following lemma is

required when we compute solutions recursively.

Lemma 3. Let V be a family of bisets and F ⊆ E. Then VF is uncrossable if V is uncrossable. VF is a
ring-family if V is a ring-family.

Proof. If bisetsX̂ andŶ satisfyδF (X̂) = δF (Ŷ) = ∅, then allδF (X̂ ∩ Ŷ), δF (X̂ ∪ Ŷ), δF (X̂ \ Ŷ), and
δF (Ŷ \ X̂) are empty. The claim follows from this fact.

Below, we consider directed edges for technical reasons.A denotes the set of directed edges obtained
by orienting the edges inE in both directions.δ−A(X̂) denotes{uv ∈ A : v ∈ X,u ∈ V \X+} for a biset
X̂. We say that a directed edgee covers a biset̂X if e ∈ δ−A(X̂), and a setF of directed edges covers a biset
family V if each biset inV is covered by some edge inF . The following lemma will be required to prove
that our LP relaxes the prize-collecting biset covering problem.

Lemma 4. Let F be an inclusion-wise minimal set of directed edges that covers a ring-family V of bisets.
Then the in-degree and out-degree of each node in the graph (V, F) is at most one.

Proof. Let v ∈ V . We see that at most one edge inF leavesv. For arriving at a contradiction, suppose that
F contains two edgese = vu ande′ = vu′. By the minimality ofF , there existX̂ ∈ V with δ−F (X̂) = {e}
andX̂ ′ ∈ V with δ−F (X̂

′) = {e′}. Note thatv 6∈ X+ ∪ (X ′)+. We haveX̂ ∩ X̂ ′, X̂ ∪ X̂ ′ ∈ V becauseV
is a ring-family. u ∈ X \X ′ andu′ ∈ X ′ \X hold, and hencee, e′ 6∈ δ−F (X̂ ∩ X̂ ′) holds. However, this
means thatδ−F (X̂ ∩ X̂ ′) contains an edge distinct frome ande′, and that this edge coverŝX or X̂ ′. This
contradicts the definition of̂X or X̂ ′.

We can also see thatF contains at most one edge enteringv. To the contrary, suppose that there are two
edgesf = uv andf ′ = u′v in F . There exist̂Y ∈ V with δ−F (Ŷ) = {f} andŶ ′ ∈ V with δ−F (Ŷ

′) = {f ′}

by the minimality ofF . Note thatv ∈ Y ∩ Y ′. We haveŶ ∩ Ŷ ′, Ŷ ∪ Ŷ ′ ∈ V. If f coversŶ ∪ Ŷ ′, then it
coversŶ ′ as well, which is a contradiction. Hencef does not cover̂Y ∪ Ŷ ′. Similarly, we can see thatf ′

does not cover̂Y ∪ Ŷ ′, which means thatδ−F (Ŷ ∪ Ŷ ′) contains an edge that is distinct fromf andf ′, and it
coversŶ or Ŷ ′. However, this contradicts the definition ofŶ or Ŷ ′.

9

3 LP relaxation for prize-collecting augmentation problem

In this section, we present an LP relaxation for the prize-collecting augmentation problem. Henceforth, we
let k denote the target connectivity from now on; The connectivity of each demand pair isk − 1 in (V,E0),
and the problem requires an increase in the connectivity of each demand pair by at least one.

For an edgeuv ∈ A, let Ψuv denote the set of pairs(j, j′) ∈ W ×W such thatψuv(j, j′) = true. A
natural integer programming (IP) formulation for the prize-collecting biset covering problem can be given
by preparing variablesx(uv, j, j′) ∈ {0, 1} for eachuv ∈ A and(j, j′) ∈ Ψuv, x(v, j) ∈ {0, 1} for each
v ∈ V and j ∈ W , andy(i) ∈ {0, 1} for eachi ∈ [d]. x(uv, j, j′) = 1 indicates thatuv is activated
by weightsw with w(u) = j andw(v) = j′. x(v, j) is equal to 1 ifv is assigned the weightj, and
0 otherwise. y(i) indicates whether the connectivity requirement for{si, ti} is satisfied, andy(i) = 0

holds when all bisets separating{si, ti} are covered. The connectivity constraints require that, for each
i ∈ [d] and X̂ ∈ Vi, y(i) = 1 holds or X̂ is covered by an activated edge, which is represented by
∑

uv∈δ−
A
(X̂)

∑

(j,j′)∈Ψuv x(uv, j, j′) + y(i) ≥ 1. If x(uv, j, j′) = 1, thenu andv must be assigned the

weightsj andj′, respectively. This is represented byx(u, j) ≥ x(uv, j, j′) andx(v, j′) ≥ x(uv, j, j′) for
eachuv ∈ A and(j, j′) ∈ Ψuv. The objective is to minimize

∑

v∈V

∑

j∈W j · x(v, j) +
∑

i∈[d] πi · y(i). In
conclusion, IP can be described as follows:

minimize
∑

v∈V

∑

j∈W

j · x(v, j) +
∑

i∈[d]

πi · y(i)

subject to
∑

uv∈δ−
A
(X̂)

∑

(j,j′)∈Ψuv

x(uv, j, j′) + y(i) ≥ 1 for i ∈ [d], X̂ ∈ Vi,

x(u, j) ≥ x(uv, j, j′) for uv ∈ A, (j, j′) ∈ Ψuv, (1)

x(v, j′) ≥ x(uv, j, j′) for uv ∈ A, (j, j′) ∈ Ψuv, (2)

x(v, j) ∈ {0, 1} for v ∈ V , j ∈W ,

x(uv, j, j′) ∈ {0, 1} for uv ∈ A, (j, j′) ∈ Ψuv,

y(i) ∈ {0, 1} for i ∈ [d].

However, the LP relaxation obtained by dropping off the integrality constraints from this IP has an un-
bounded integrality gap as follows. Consider the case whered = 1, V1 consists of only one biset̂X, and
δE(X̂) containsm edges incident to a nodeu ∈ V \ X+. Moreover,W = {0, 1} and each edgeuv is
activated by weightsw(u) = 1 andw(v) = 0. Supposeπ1 = +∞ so thaty(1) = 0 holds in any optimal
solutions for the IP and LP relaxation. For this instance, anintegral solution activates one edge fromδ−A(X̂)

by assigning weight 1 tou and weight 0 to the other end-node of the chosen edge, which achieves the ob-
jective value 1. On the other hand, define a fractional solution x so thatx(u, 1) = 1/m, x(v, 0) = 1/m,
andx(uv, 1, 0) = 1/m for all uv ∈ δ−A(X̂), and the other variables are equal to 0. This solution is feasible
for the LP relaxation, and its objective value is1/m. This example implies that the integrality gap of the LP
relaxation is at leastm.

For this reason, we need another LP relaxation. Our idea is tostrengthen (1) and (2). In the above
IP, x(u, j) is bounded byx(uv, j, j′) from below in (1). Instead, our new constraints boundx(u, j) by
∑

v∈X:uv∈X

∑

j′∈W :(j,j′)∈Ψuv x(uv, j, j′) for eachX̂ ∈ V with u 6∈ X+. However, these constraints are
so strong that solutions feasible to the prize-collecting biset covering problem do not satisfy it. To rem-
edy this drawback, we introduce new variablesx(uv, j, j′, Ĉ) for eachĈ ∈ MV to replacex(uv, j, j′).
x(uv, j, j′, Ĉ) is used for coverinĝX ∈ V(Ĉ). For eachĈ ∈ MV , X̂ ∈ V(Ĉ), u ∈ V \X+, andj ∈ W ,
x(u, j) is bounded by

∑

v∈X:uv∈A

∑

j′∈W :(j,j′)∈Ψuv x(uv, j, j′, Ĉ). (2) is similarly modified. Summarizing,

10

the following is the proposed LP relaxation.

PCLP(V) =

minimize
∑

v∈V

∑

j∈W

j · x(v, j) +
∑

i∈[d]

πi · y(i)

subject to
∑

uv∈δ−
A
(X̂)

∑

(j,j′)∈Ψuv

x(uv, j, j′, Ĉ) + y(i) ≥ 1 for Ĉ ∈ MV , i ∈ [d], X̂ ∈ Vi(Ĉ), (3)

x(u, j) ≥
∑

v∈X:

uv∈A

∑

j′∈W :

(j,j′)∈Ψuv

x(uv, j, j′, Ĉ) for Ĉ ∈ MV , X̂ ∈ V(Ĉ), u ∈ V \X+, j ∈W ,

(4)

x(v, j′) ≥
∑

u∈V \X+:

uv∈A

∑

j∈W :

(j,j′)∈Ψuv

x(uv, j, j′, Ĉ) for Ĉ ∈ MV , X̂ ∈ V(Ĉ), v ∈ X, j′ ∈W ,

(5)

x(v, j) ≥ 0 for v ∈ V , j ∈W ,

x(uv, j, j′, Ĉ) ≥ 0 for uv ∈ A, (j, j′) ∈ Ψuv, Ĉ ∈ MV ,

y(i) ≥ 0 for i ∈ [d].

Note: In [6], the author applied a similar idea of lifting LP relaxations for solving several covering
problems in edge- and node-weighted graphs. He defined a new LP relaxation by replacing edge variables
by variables corresponding to pairs of edges and constraints, and showed that the new LP relaxation has
better integrality gap than the original one. This idea cannot be applied to the SNDP and the network
activation problem straightforwardly because they have anexponential number of constraints. Hence we
instead define a new variable for each pair of edges and min-cores, which makes the number of new variables
being polynomial.

Lemma 5. PCLP(V) is at most the optimal value of the prize-collecting biset covering problem when V is
uncrossable.

Proof. Let w : V → W be a solution to the prize-collecting biset covering problem, and letAw be the set
of directed edges obtained by replacing each{u, v} ∈ Ew with uv andvu. For eachĈ ∈ MV , letA

Ĉ
be a

minimal subset ofAw covering eachX̂ ∈ V(Ĉ) that is covered byEw. We define an integer solution(x, y)
to PCLP(L) as follows:

y(i) =

{

1 if all bisets inVi are not covered byEw,

0 otherwise,

x(uv, j, j′, Ĉ) =

{

1 if uv ∈ A
Ĉ

and(j, j′) = (w(u), w(v)),

0 otherwise,

x(v, j) =

{

1 if j = w(v),

0 otherwise.

We can see that the objective value of(x, y) is at most that ofw. We here prove that(x, y) is feasible
for PCLP(V). SinceA

Ĉ
covers eacĥX ∈ Vi(Ĉ) unlessy(i) = 1, we can see that (3) holds. By Lemma 2,

V(Ĉ) is a ring-family. Hence, the right-hand side of (4) is at mostone by Lemma 4. If it is one, then the

11

left-hand side of (4) is also one by the definition ofx. Hence,x satisfies (4). It can be similarly observed
from Lemma 4 thatx satisfies (5).

In our algorithm, we first solvePCLP(V). This is possible by the ellipsoid method under the assumption
that a polynomial-time algorithm is available for computing a minimal biset, including a specified node in
its inner-part over a ring-family. This is because the separation over the feasible region ofPCLP(V) can
be done in polynomial time as follows. The separation of (3) can be reduced to the submodular function
minimization problem for which polynomial-time algorithms are known. (4) has an exponential number of
constraints for fixedĈ ∈ MV , u ∈ V andj ∈ W , but a maximal biset inV(C) such thatu ∈ V \ X+

is unique and can be found in polynomial time by the above assumption and from the fact thatV(Ĉ) is a
ring-family. Hence, it is sufficient to check a polynomial number of inequalities for the separation of (4),
which can be done in polynomial time. The separation of (5) can be done similarly. IfV is defined as
⋃

i∈[d] V
edge
i or

⋃

i∈[d] V
ele
i , then the algorithm in the assumption is available, and the minimal biset can be

computed from maximum flows. The separation of (3) can be doneby the maximum flow computation as
well in such a case. Moreover,PCLP(V) has a compact representation ifV is

⋃

i∈[d] V
edge
i or

⋃

i∈[d] V
ele
i , and

hence we can also use other LP solvers for solvingPCLP(V).
After solvingPCLP(V), we round each variabley(i), i ∈ [d] in the optimal solution to either0 or 1. The

demand pair{si, ti} is thrown away ify(i) is rounded to1. We letNPCLP(V) denote the LP such thaty(i)
is fixed to0 for all i ∈ [d]. We then apply a primal-dual algorithm, given in the subsequent section, that
computes a spider for the remaining demand pairs. The algorithm does not deal withNPCLP(V) directly but
runs on a simpler LP, which we callSimpleLP(V). The following is a description ofSimpleLP(V).

SimpleLP(V) =

minimize
∑

v∈V

∑

j∈W

j · (xin(v, j) + xout(v, j))

subject to
∑

uv∈δ−
A
(X̂)

∑

(j,j′)∈Ψuv

x(uv, j, j′) ≥ 1 for X̂ ∈ V, (6)

xout(u, j) ≥
∑

v∈X:

uv∈A

∑

j′∈W :

(j,j′)∈Ψuv

x(uv, j, j′) for X̂ ∈ V, u ∈ V \X+, j ∈W , (7)

xin(v, j
′) ≥

∑

u∈V \X+:

uv∈A

∑

j∈W :

(j,j′)∈Ψuv

x(uv, j, j′) for X̂ ∈ V, v ∈ X, j′ ∈W , (8)

xin(v, j) ≥ 0 for v ∈ V , j ∈W ,

xout(v, j) ≥ 0 for v ∈ V , j ∈W ,

x(uv, j, j′) ≥ 0 for uv ∈ A, (j, j′) ∈ Ψuv.

Instead ofx(v, j) in PCLP(V), SimpleLP(V) has two variablesxin(v, j) andxout(v, j) for each pair of
v ∈ V andj ∈W , wherexin(v, j) indicates ifv is assigned the weightj for activating edges enteringv, and
xout(v, j) indicates ifv is assigned the weightj for activating edges leavingv. We require this modification
in order to obtain a primal-dual algorithm.

SimpleLP(V) does not relaxNPCLP(V) or the biset covering problem. In fact, the analysis of our primal-
dual algorithm does not useSimpleLP(V). The LP relaxation we use isSimpleLP(L) defined from some
subfamilyL of V. We do not knowL beforehand, but we can show thatL is a strongly laminar family
of cores ofV. The following lemma indicates that in this caseSimpleLP(L) is within a constant factor of
NPCLP(V).

12

Lemma 6. SimpleLP(L) ≤ 2NPCLP(V) if V is uncrossable and L is a strongly laminar family of cores of
V .

Proof. Let x be an optimal solution forNPCLP(V). Decreasingx greedily, we transformx into a mini-
mal feasible solution toNPCLP(L). Then, we define a solutionx′ to SimpleLP(L) so thatx′(uv, j, j′) =

max
Ĉ∈MV

x(uv, j, j′, Ĉ) for eachuv ∈ A and(j, j′) ∈ Ψuv, andx′out(v, j) = x′in(v, j) = x(v, j) for each
v ∈ V andj ∈ W . The objective value ofx′ in SimpleLP(L) is at most2NPCLP(V). Hence, it suffices to
prove thatx′ is feasible toSimpleLP(L).

(6) follows from (3). LetĈ ∈ MV . If (7) is violated forX̂ ∈ L(Ĉ), u ∈ V \X+ andj ∈W , then there
exists a pair ofuv ∈ δ−A(X̂) andĈ ′ ∈ MV such thatx(uv, j, j′, Ĉ ′) > x(uv, j, j′, Ĉ). The minimality of
x implies that there existŝY ∈ L(Ĉ ′) with uv ∈ δ−A(Ŷ). The strong laminarity ofL indicates that̂Y is
comparable withX̂ , but this means that̂Y ∈ L(Ĉ), which is a contradiction because a core does not include
two min-cores. Therefore,x′ satisfies (7). We can similarly prove thatx′ satisfies (8) as well.

The dual ofSimpleLP(V) is

SimpleDual(V) =

maximize
∑

X̂∈V

z(X̂)

subject to
∑

X̂∈V :uv∈δ−
A
(X̂)

z(X̂) ≤
∑

X̂∈V :uv∈δ−
A
(X̂)

(

z(X̂, u, j) + z(X̂, v, j′)
)

for uv ∈ A, (j, j′) ∈ Ψuv, (9)
∑

X̂∈V :v∈X

z(X̂, v, j′) ≤ j′ for v ∈ V , j′ ∈W , (10)

∑

X̂∈V :u∈V \X+

z(X̂, u, j) ≤ j for u ∈ V , j ∈W , (11)

z(X̂) ≥ 0 for X̂ ∈ V,

z(X̂, v, j) ≥ 0 for X̂ ∈ V, v 6∈ Γ(X̂), j ∈W .

In the subsequent section, we present an algorithm for computing node weights activating a spider and
a solutionz feasible toSimpleDual(L) for some strongly laminar familyL of cores. The sum of weights
is bounded in terms of

∑

X̂∈L z(X̂).

4 Primal-dual algorithm for computing spiders

A spider for a biset familyV is an edge setS ⊆ E such that there existh ∈ V andX̂1, . . . , X̂f ∈ M, and
S can be decomposed into subsetsS1, . . . , Sf that satisfy the following conditions:

• V (Si) ∩ V (Sj) ⊆ {h} for eachi, j ∈ [f] with i 6= j;

• Si coversC(X̂i, h) for eachi ∈ [f];

• if f = 1, thenC(X̂1, h) = C(X̂1);

• h 6∈ X+
i for eachi ∈ [f].

13

h is called the head, and̂X1, . . . , X̂f are called the feet of the spider. For a spiderS, we letf(S) denote the
number of its feet. Note that this definition of spiders for biset families is slightly different from the original
one in [13], where an edge set is a spider in [13] even if it doesnot satisfy the last condition given above.

In this section, we present an algorithm for computing spiders. More precisely, we prove the following
theorem.

Theorem 2. Let V be an uncrossable family of bisets. There exists a polynomial-time algorithm for com-
puting w : V → W and a strongly laminar family L of cores such that Ew contains a spider S and
w(V)/f(S) ≤ SimpleLP(L)/|MV | holds.

Our algorithm keeps an edge setF ⊆ E, core familiesL,A ⊆ C, and a feasible solutionz to
SimpleDual(L). We initialize the dual variablesz to 0 andF to the empty set.L andA are initialized
to the familyM of min-cores ofV. By Lemma 2,L andA are pairwise strongly disjoint. The algorithm
always maintainsL being strongly laminar andA being pairwise strongly disjoint.

Increase phase: After initialization, we increase dual variablesz(X̂), X̂ ∈ A uniformly. We introduce
the concept of time. Each of the variables is increased by onein a unit of time.

For satisfying the constraints ofSimpleDual(L), we have to increase other variables as well. Let
uv ∈ δ−A(X̂) and(j, j′) ∈ Ψuv. To satisfy (9), for each such pair ofuv and(j, j′), we have to increase
z(X̂, u, j), or z(X̂, v, j′). Note thatz(X̂, u, j) is bounded from above by (11) for(u, j), andz(X̂, v, j′) is
bounded from above by (10) for(v, j′). Our algorithm first increasesz(X̂, v, j′) at the same speed asz(X̂)

until (10) becomes tight for(v, j′). Let τ(v, j′) denote the time when (10) becomes tight for(v, j′). After
time τ(v, j′), the algorithm increasesz(X̂, u, j). There may exist another pair ofuv′ ∈ δ−A(X̂) (possibly
v′ = v) and(j, j′′) ∈ Ψuv′ . In this case, we stop increasingz(X̂, v′, j′′) at timeτ(v, j′) even if (10) is not
yet tight for(v′, j′′) at timeτ(v, j′), We say that(uv, j, j′) getstight when we cannot increasez(X̂, u, j) or
z(X̂, v, j′).

Events: After increasing the dual variables for some time, we encounter an event that the variablez(X̂)

for someX̂ ∈ A can no longer be increased because of a tight tuple(uv, j, j′) with uv ∈ δ−A(X̂) and
(j, j′) ∈ Ψuv. Let τ̃ be the time when this event occurs.

It is possible that more than one such tuple may get simultaneously tight. We choose an arbitrary pair of
u ∈ V \X+ andj ∈ W such that there exists a tight tuple(uv, j, j′) with uv ∈ δ−A(X̂) and(j, j′) ∈ Ψuv.
Let (uv1, j1), . . . , (uvp, jp) be the pairs of edges leavingu in δ−A(X̂) and weights such that(uvp′ , j, jp′) is a
tight tuple for eachp′ ∈ [p]. For eachp′ ∈ [p], defineŶ ′

p as the minimal core inL such thatuvp′ ∈ δ−A(Ŷp′).

Without loss of generality, supposêY1 ⊆ · · · ⊆ Ŷp ⊆ X̂ . We add the undirected edge{u, v1} to F ,
and assign the weightj to u and weightj1 to v1. We say thatX̂ is the witness of the edge{u, v1}. If
z(X̂ ′, u, j) > 0 for some bisetX̂ ′ ∈ L comparable withX̂, thenŶ1 ⊆ X̂ ′ ⊆ X̂ holds because the algorithm
does not increasez(X̂ ′, u, j) unless there exists a pair ofuv ∈ δ−A(X̂

′) and(j, j′) ∈ Ψuv such that (10) is
tight for (v, j′), and(uv, j, j′) is tight when (11) tightens for(u, j).

Let B be the set of directed edges leavingu whose corresponding undirected edges are added toF at
time τ̃ or earlier, whereB does not containuv if {u, v} is added toF because ofvu. We define two cases
here. In Case (a),|B| = 1 holds and there exists a corêZ ∈ C such thatX̂ ⊂ Ẑ andẐ is not covered byF .
In Case (b),|B| ≥ 2 holds or all coreŝZ ∈ C with X̂ ⊂ Ẑ are covered byF .

Case (a): |B| = 1 and there exists a corêZ ∈ C such thatX̂ ⊂ Ẑ andẐ is not covered byF . Let Ẑ
be a minimal core among such cores.Ẑ is unique becauseCF (X̂) is a ring-family by Lemmas 2 and 3. We
addẐ to bothL andA, and removeX̂ from A.

Lemma 7. A is the family of min-cores of VF after the update of Case (a).

Proof. Let uv ∈ B. Recall thatuv coversX̂ , and hencev ∈ X ⊆ Z. It suffices to show that{u, v} covers
no core inA. Let Ẑ ′ ∈ A. If Ẑ ′ = Ẑ, then its definition implies that{u, v} does not cover it. Hence,

14

suppose that̂Z ′ 6= Ẑ. LetF ′ representF before{u, v} is added. SincêZ ′ was inA before the update,̂Z ′ is
a min-core ofVF ′, which implies thatẐ andẐ ′ are strongly disjoint by Lemma 2 (iii).v 6∈ Z ′ follows from
v ∈ Z. Since{u, v} does not cover̂Z, we haveu ∈ Z+, and henceu 6∈ Z ′. These indicate that{u, v} does
not coverẐ ′.

Lemma 7 indicates thatA is pairwise strongly disjoint andL is strongly laminar even after the update.
Case (b): |B| ≥ 2 or all coresẐ with X̂ ⊂ Ẑ are covered byF . In this case, we go to the deletion phase,

which removes several edges fromF . We then output the obtained edge set, node weights for activating the
edge set, andL. We will show that the edge set is a spider with|B| feet.

Deletion Phase: Let Ŷ ∈ A, and letŶ1, . . . , Ŷl−1 be the cores included bŷY in L. We also letŶl = Ŷ .
We assume without loss of generality thatŶ1 ⊂ · · · ⊂ Ŷl holds. Ŷ1 is a min-core ofV. LetF

Ŷ
be the edges

in F whose witnesses are in{Ŷ1, . . . , Ŷl}. Note thatF can be partitioned intoF
Ŷ

, Ŷ ∈ A.
For eachl′ ∈ [l], F contains an edge{ul′ , vl′} whose witness iŝYl′ . Without loss of generality, we have

vl′ ∈ Yl′ andul′ ∈ Y +
l′+1 \ Y

+
l′ for l′ ∈ [l], where we letY +

l+1 = V for convenience. We apply the following
algorithm to delete several edges fromF

Ŷ
.

Deletion algorithm

Step 1: Definep asl andS
Ŷ

asF
Ŷ

.

Step 2: Let q be the smallest integer in[p] such thatvp ∈ Yq. Remove{up−1, vp−1}, . . . , {uq, vq} from
S
Ŷ

.

Step 3: If q > 1, then setp to q − 1 and go back to Step 2. Otherwise, outputS
Ŷ

and terminate.

u5

u4v4

v5

u3

u2

v3

u1

v2

v1

Ŷ5

Ŷ4

Ŷ3

Ŷ2

Ŷ1

Figure 1: An example of̂Y1, . . . , Ŷl and{u1, v1}, . . . , {ul, vl} with l = 5. Red edges are those chosen
in S

Ŷ
. Areas surrounded by the dotted lines represent bisets, anddark gray areas represent boundaries of

bisets.

Figure 1 illustrates an example to which the deletion algorithm is applied. Below, we letS
Ŷ

denote the
edge set obtained by applying the deletion algorithm toF

Ŷ
.

Lemma 8. Any core in C(Ŷ1, ul) is covered by at least one edge in S
Ŷ

. The core Ŷl′ is covered by exactly
one edge in S

Ŷ
for each l′ ∈ [l].

15

Ẑ

Ŷq

Ŷp

e

Ẑ

Ŷq
Ŷq+1

e

Figure 2: Bisets in the proof of Lemma 8. The left figure illustrates the case wherep > q, and the right
figure illustrates the case wherep = q.

Proof. Let l′ ∈ [l]. First, we show that̂Yl′ is covered by exactly one edge inS
Ŷ

. When the event occurs
to Ŷl′ , the algorithm adds the edge{ul′ , vl′} coveringŶl′ to F , and defineŝYl′ as the witness of the edge.
{ul′ , vl′} is not removed by the deletion algorithm unless another edgecoveringŶl′ remains inS

Ŷ
. Hence

Ŷl′ is covered by at least one edge after applying the deletion algorithm. Letp be the minimum integer in
[l] such that{up, vp} ∈ S

Ŷ
coversŶl′ . By way of constructingL, we havep ≥ l′. Suppose that another

edge{up′ , vp′} ∈ S
Ŷ

coversŶl′ as well. Then,vp′ ∈ Yl′ holds. The definition ofp indicates thatp′ > p.
However, in this case, the deletion algorithm removes{up, vp} from S

Ŷ
. Hence,Ŷl′ is covered by exactly

one edge inS
Ŷ

.
Let Ẑ ∈ C(Ŷ1, ul). We show thatẐ is covered by at least one edge inS

Ŷ
. To the contrary, suppose

thatẐ is covered by no edge inS
Ŷ

. Let Ẑ be a maximal core among such cores, and letq be the maximum
integer in[l] such thatŶq ⊆ Ẑ. By the above claim,S

Ŷ
contains the edgee = {up, vp} coveringŶq. Since

e does not cover̂Z, we havee ⊆ Z+, andp < l holds becauseul 6∈ Z+.
Suppose thatp > q. The left example in Figure 2 illustrates this case. By the maximality of q, Ŷp is not

included byẐ, and hencêZ ⊂ Ẑ ∪ Ŷp holds. SinceẐ ∪ Ŷp ∈ C(Ŷ1, ul), the maximality ofẐ indicates that
Ẑ ∪ Ŷp is covered by an edge inS

Ŷ
. Let f be an edge inS

Ŷ
coveringẐ ∪ Ŷp. Sincee ⊆ Z+, e does not

coverẐ ∪ Ŷp, implying e 6= f . f coversẐ or Ŷp. If f coversŶp, thenŶp is covered by two edges inS
Ŷ

,
which is a contradiction. Hence,f coversẐ, which is a contradiction again.

Next, consider the case wherep = q. The example on the right side of Figure 2 illustrates this case.
e ⊆ Y +

q+1 follows from p = q. Hence,e ⊆ Y +
q+1 ∩ Z

+, ande does not cover̂Yq+1 ∩ Ẑ. By the maximality

of q, Ŷq+1 is not included byẐ, and hencêYq+1 ∩ Ẑ ⊂ Ŷq+1. By Lemma 7,Ŷq+1 was a minimal core in
C(Ŷ1, ul) that was not covered byF whene was added toF . Note thatŶq+1 ∩ Ẑ ∈ C(Ŷ1, ul). Hence, an
edge inF coveredŶq+1 ∩ Ẑ whene was added toF . Let g denote such an edge. Sinceg does not cover
Ŷq+1, we haveg ⊆ Y +

q+1, implying that the witness ofg is included byŶq+1. Ŷq is not the witness ofg

becausee 6= g. Hence, the witness ofg is also included bŷYq. From this, it follows thatg ⊆ Y +
q ⊆ Z+.

However, it indicates thatg does not cover̂Yq+1 ∩ Ẑ, which is a contradiction.

Let h be the node that each edge inB leaves. When|B| ≥ 2, letX be the family of witnesses of edges
in B. We apply the deletion algorithm to eacĥY ∈ X to obtainS

Ŷ
, and defineS =

⋃

Ŷ ∈X SŶ . When

|B| = 1, let X̂ be the witness of the edge inB, and letX be the family ofX̂ and maximal cores inL \ A
that is not comparable witĥX . We apply the deletion algorithm to each coreŶ ′ ∈ X to obtainS

Ŷ ′ and
defineS =

⋃

Ŷ ′∈X SŶ ′ when|B| = 1. In the following lemmas, it will be shown thatS is a spider with|B|

feet andh is the head ofS.

16

Lemma 9. When |B| = 1, the edge set S is a spider with only one foot, and its head is h.

Proof. Let X̂ be the witness of the edge inB andM̂ be the min-core included bŷX. We prove thatS is a
spider and its foot isM̂ . Lemma 8 indicates that all cores inC(M̂ , h) are covered byS

X̂
. Hence, it suffices

to show that each corêZ ∈ C(M̂) with h ∈ Z+ is covered byS. Suppose that̂Z is covered by no edge in
S. Let Ẑ be the minimal core among such cores. There exists an edgee = {a, b} ∈ F that coversẐ. Let
K̂1 be the witness ofe, and leta ∈ K1 andb 6∈ K+

1 , without loss of generality. If̂K1 ∈ X , thene remains
in S. HenceK̂1 6∈ X . K̂1 is either incomparable witĥX or is included byX̂. If more than one edge inF
coverẐ and one of them giveŝK1 incomparable withX̂ , then we choose such an edge ase.

X̂
Ẑ K̂1

K̂2

e

f

g

X̂

K̂1

Ẑ
e

Figure 3: Bisets in the proof of Lemma 9. The left figure illustrates the case wherêK1 is incomparable with
X̂, and the right illustrates the case whereK̂1 is included byX̂ .

Suppose that̂K1 is incomparable withX̂. The left example in Figure 3 illustrates this case. LetK̂0 be
the min-core included bŷK1, and letK̂2 be the minimal core inL with K̂1 ⊂ K̂2. Note thate ⊆ K+

2 ,
andẐ andK̂2 are incomparable. Then,̂K2 \ Ẑ ∈ C(K̂0) holds, and it is covered by some edgef ∈ S by
Lemma 8. Sincef does not cover̂Z, it has one end-node inK2 \ Z

+ and the other inV \ (K+
2 ∪ Z). On

the other hand,̂Z \ K̂2 ∈ C(M̂). The minimality ofẐ indicates that̂Z \ K̂2 is covered by some edgeg ∈ S.
Sinceg does not cover̂Z, it has one end-node inZ \K+

2 and the other inK2∩Z
+. These imply thatf 6= g,

and bothf andg coverK̂2. If K̂2 ∈ L \A, then this is a contradiction because any core inL \A is covered
by exactly one edge inS by Lemma 8. Otherwise,̂K2 ∈ A\{X̂}. Even in this case, there is a contradiction
because each core inA \ {X̂} is covered by no edge inF .

Suppose that̂K1 is included byX̂ . X̂ ∪ Ẑ ∈ C(M̂) holds. Moreover,X̂ ⊂ X̂ ∪ Ẑ holds becauseZ+

includesh, andẐ ⊂ X̂ ∪ Ẑ holds because{a, b} ∈ δE(Ẑ) is included byX+. X̂ ∪ Ẑ is covered by some
edgef ′ ∈ F . The witness off ′ is incomparable withX̂ since otherwise,f ′ ⊆ X+. f ′ coversX̂ or Ẑ. If
f ′ coversẐ, thenf ′ is chosen instead ofe, and this case is categorized into the previous one whereK̂1 is
incomparable withX̂ . Hence,f ′ coversX̂ . Then, Lemmas 2 (iii) and 7 indicate that all cores comparable
with the witness off ′ are covered byF beforeX̂ is added toA, which is a contradiction.

Lemma 10. When |B| ≥ 2, the edge set S is a spider with |B| feet, and h is its head.

Proof. Let B = {B̂1, . . . , B̂b} be the set of witnesses of the edges inB. Let M̂b′ be the min-core included
by B̂b′ , and letFb′ denoteFBb′

for eachb′ ∈ [b]. Lemma 8 shows thatFb′ coversC(M̂b′ , h) for eachb′ ∈ [b].
Hence it suffices to prove thatV (Fb1) ∩ V (Fb2) ⊆ {h} for eachb1, b2 ∈ [b] with b1 6= b2. Suppose that
e1 ∈ Fb1 ande2 ∈ Fb2 share an end-nodev with h 6= v.

Suppose thate1 was added toF beforee2. Let Ŷ1 be the witness ofe1, andŶ ′
1 be the core that was

added toA when Ŷ1 was removed fromA. Note thatŶ1 ⊂ Ŷ ′
1 , ande1 does not cover̂Y ′

1 but Ŷ1. Hence,

17

v ∈ (Y ′
1)

+, and the other end-node ofe2 is inBb2 . If v ∈ Y ′
1 , thene2 covers all cores includingBb2 since

they are strongly disjoint withY ′
1 . Hence, Case (b) occurred whene2 was added toF , andv must beh in

this case. Even ifv 6∈ Y ′
1 , e1 ande2 are added toF because of the directed edges leavingv. This means that

Case (b) occurred whene2 was added toF , andh = v holds.

Lemma 11. There existsw : V →W such that S is activated byw, andw(V)/f(S) ≤
∑

X̂∈L z(X̂)/|MV |.

Proof. Recall that each edge inS is undirected, but it has a unique direction in which it enters the inner-part
of its witness. Hence, we regard the edges inS as directed edges in this proof. For eache = uv ∈ S,
there exists(je, j′e) ∈ Ψe such that (11) is tight for(u, je) and (10) is tight for(v, j′e). We can activatee
by settingw(u) to a value of at leastje andw(v) to a value of at leastj′e. Whene is added toF , e assigns
je to u andj′e to v. If a node has incident edges inS, we set the weight of the node to the maximum value
assigned from the incident edges inS. If a node has no incident edge inS, then its weight is set to0. Let τ
be the time when the algorithm was completed. Below, we provethat the total weight assigned from edges
in S is at mostτf(S) where we do not count the weight assigned to the headh of S multiple times. Since
τ =

∑

X̂∈L z(X̂)/|M|, this proves the lemma.

Let M̂ be a foot ofS andS′ be the set of edges inS that coverC(M̂ , h). Let e = uv ∈ S′. e assigns
je ∈W to u andj′e to v. Moreover,

je =
∑

X̂∈L:u∈V \X+

z(X̂, u, je) (12)

holds because (11) is tight for(u, je), and

j′e =
∑

X̂∈L:v∈X

z(X̂, v, j′e) (13)

holds because (10) is tight for(v, j′e). Let τe denote the time when (11) became tight for(u, je).
We first consider the case whereu 6= h. Let us prove that the right-hand side of (12) is contributedby

cores covered bye. Suppose thatz(X̂, u, je) > 0 holds for someX̂ ∈ L with u ∈ V \ X+. Then there
exists an edgeuv′ that coversX̂ , and (10) was tight for some(v′, j′) with (je, j

′) ∈ Ψuv′ at timeτe. If
X̂ 6∈ L(M̂), then this means that Case (b) occurred whene was added toF . Since this contradictsu 6= h,
we haveX̂ ∈ L(M̂). If X̂ includes the witness ofe, thene coversX̂ becauseu 6∈ X+. Hence,X̂ is
included by the witness ofe. However, in this case,uv is not added toF by the algorithm. Hencee covers
X̂.

The right-hand side of (13) is also contributed by cores covered bye. To see this, suppose thatz(X̂, v, j′e) >
0 holds for someX̂ ∈ L with v ∈ X. If e does not coverX̂, thenu ∈ X+ holds, implying thate was
already inF whenX̂ enteredA. In other words,X̂ entersA after timeτe. However, (10) was tight for
(v, j′e) at timeτe. Therefore,z(X̂, v, j′e) > 0 does not hold unlesse coversX̂. Note that this is the case
even whenu = h.

Whenu = h, e assignsje to h but more than one edge leavingh in S may assign the same weight toh.
By the same discussion as above, if a coreX̂ ∈ L with h 6∈ X+ satisfiesz(X̂, h, je) > 0, thenS contains an
edge that leavesh and coversX̂ . Hence, we here count only

∑

X̂∈L(M̂,h) z(X̂, h, je) as the weight assigned

from e to h. A core X̂ ∈ L(M̂, h) contributing to this value is covered bye according to the discussion
above. Then the total weight assigned from edges inS′ is exactly

∑

e=uv∈S′

∑

X̂∈L(M̂):e∈δ−
A
(X̂)

(

z(X̂, u, je) + z(X̂, v, j′e)
)

=
∑

e∈S′

∑

X̂∈L(M̂):e∈δ−
A
(X̂)

z(X̂).

18

Lemma 8 tells that eacĥX ∈ L is covered by exactly one edge inS. Hence the right-hand side of the above
equality is equal to

∑

X̂∈L(M̂) z(X̂). Since two cores inL(M̂) do not belong toA simultaneously, this does
not exceedτ . SinceS hasf(S) feet, it implies that the total weight is at mostτf(S).

Theorem 2 follows from Lemmas 9, 10, and 11.

5 Potential function on uncrossable biset families

In this section,V is an uncrossable family of bisets andγ stands formax
X̂∈V |Γ(X̂)|.

For analyzing the greedy algorithm of choosing spiders repeatedly, we need a potential function that
measures the progress of the algorithm. Nutov [13] used|MV | as a potential. He claimed that this potential
givesO(log d)-approximation because|MV | − |MVS

| ≥ f(S)/3 holds for each uncrossable biset family
V and each spiderS of V. However, there is a case with|MV | − |MVS

| = 0 as follows. LetV =

{X̂1, Ŷ1, . . . , X̂n, Ŷn}, and suppose that̂Xl ⊆ Ŷl for eachl ∈ [n], Ŷl andŶl′ are strongly disjoint for each
l, l′ ∈ [n] with l 6= l′, and a nodeh is in Γ(Ŷl) \ X

+
l for eachl ∈ [n]. V is strongly laminar, and hence

uncrossable. Note thatMV = {X̂1, . . . , X̂n}, and hence|MV | = n. If the head of a spiderS is h and its
feet areX̂1, . . . , X̂n (i.e.,f(S) = n), thenMVS

= {Ŷ1, . . . , Ŷn} holds, and hence|MVS
| = n. Therefore,

|MV | − |MVS
| = 0.

Vakilian [17] showed that such an inconvenient situation does not appear ifV arises from the node-
weighted SNDP. To explain this more precisely, let(V,E0) be the graph to be augmented in an instance of
the prize-collecting augmentation problem. Recall that the problem requires to add edges in an edge setE

toE0. If this instance is obtained by the reduction from the node-weighted SNDP in Theorem 1, thenE0 is
the subset ofE0∪E induced by some node setU ⊆ V , and each biset̂X that requires to be covered satisfies
Γ(X̂) ⊆ U . Moreover, a spider is not chosen if its head is inU , and therefore the heads of chosen spiders are
not included by the neighbor of any biset. This means that each spiderS achieves|MV |−|MVS

| ≥ f(S)/3

for V arising from the node-weighted SNDP. However this is not thecase for all uncrossable biset families,
including those arising from the PCNAP because(V,E0) may not be an induced subgraph in general.

Because of this, using|MV | as a potential function gives no desired approximation guarantee for general
uncrossable biset families. Hence, we introduce a new potential function in this section. For a familyX of
cores and corêX ∈ X , let ∆X (X̂) denote the set of nodesv ∈ Γ(X̂) such that there exists another core
Ŷ ∈ X \ {X̂} with v ∈ Γ(Ŷ). We define the potentialφX (X̂) of a coreX̂ asγ − |∆X (X̂)|. The potential
φ(X) of X is defined as(γ + 1)|X | +

∑

X̂∈X φX (X̂).

Lemma 12. Let X̂ ∈ MV , S be an edge set, and Ŷ be the min-core in MVS
such that X̂ ⊆ Ŷ where

X̂ = Ŷ possibly holds. Let v be a node with v ∈ ∆MV
(X̂)\∆MVS

(Ŷ), and Ẑ be a min-core in MV \{X̂}

with v ∈ Γ(Ẑ). Then, S covers all cores in CV(Ẑ). If there exists a min-core in MVS
that includes Ẑ , then

it is Ŷ .

Proof. Sincev ∈ Γ(X̂) ⊆ Y +, v is either inY or Γ(Ŷ). Suppose it is the former case (i.e.,v ∈ Y). Then,
Ẑ 6∈ VS becausêY and Ẑ are not strongly disjoint in this case, and̂Z ∈ VS contradicts Lemma 2 (iii).
Moreover,Ẑ is included byŶ since, otherwise, they must be strongly disjoint, contradicting the existence
of v. This means that all cores inCV(Ẑ) are covered byS.

Suppose it is the latter case (i.e.,v ∈ Γ(Ŷ)). Let Ẑ ′ be a min-core inMVS
that includesẐ, and assume

that it is distinct fromŶ . Sincev 6∈ ∆MVS
(Ŷ), no min-core inMVS

\{Ŷ } containsv in its neighbor. Hence

v ∈ Z ′. However, this means that̂Z ′ andŶ are not strongly disjoint, which contradicts Lemma 2 (iii).This
implies thatS coversCV(Ẑ) since, ifCV(Ẑ) contains a core not covered byS, then the minimal core among
such cores is a min-core inMVS

distinct fromŶ .

19

Lemma 13. Let S be an edge set and Ŷ ∈ MVS
\MV . Then, exactly one of the following holds:

• Ŷ includes at least two min-cores in MV \ MVS
, and all cores of V including these min-cores are

covered by S.

• Ŷ is a core of V that includes a min-core in MV \MVS
.

Proof. SinceŶ 6∈ MV , there exist min-cores inMV included byŶ . Suppose that the number of such
min-cores is one, and we call the min-core byX̂. Then,Ŷ is a core ofV. SinceŶ ∈ MVS

, X̂ is covered
by S, and hence,X̂ ∈ MV \ MVS

. If the number of such min-cores is at least two, then the cores of V
including such min-cores are covered byS becausêY is minimal inVS .

Lemma 14. Let S be a spider for V . If f(S) = 1, then φ(MV) − φ(MVS
) ≥ 1. Otherwise, φ(MV) −

φ(MVS
) ≥ (f(S)− 1)/2.

Proof. Let ν(S) denote the number of min-coreŝX ∈ MV such thatS covers all bisets inCV(X̂), and let
ξ(S) denote the number of min-coreŝY ∈ MV such thatS coversŶ but not all bisets inCV(Ŷ). Note
that ν(S) + ξ(S) ≥ f(S) holds. If Ŷ is a min-core counted inξ(S), then there exists a unique min-core
Ŷ ′ ∈ MVS

that includeŝY . LetP denote the set of pairs of sucĥY andŶ ′.
Let X̂ ∈ MV be a min-core counted inν(S). If a core ofVS includesX̂ , then the core includes at least

two min-cores inMV . Let M1 be the set of sucĥX that is included by a min-core inVS, and letM2 be
the set of sucĥX that is included by no min-core ofVS (although it may be included by a core inVS). Note
that |M1|+ |M2| = ν(S).

By Lemma 13, each min-core inMVS
\MV includes at least two members ofM1 or belongs toCV(Ŷ)

defined by a min-corêY ∈ MV covered byS. Hence|MVS
\MV | ≤ |M1|/2+ξ(S). From this, it follows

that

|MVS
| ≤ |MVS

\MV |+ |MV | − ν(S)− ξ(S) ≤ |MV | −
|M1|

2
− |M2|.

Recall thatφ(MV) is defined as(γ + 1)|MV | +
∑

Ẑ∈MV
φMV

(Ẑ), andφ(MVS
) is defined as(γ +

1)|MVS
|+

∑

Ẑ∈MVS

φMVS
(Ẑ). The first term ofφ(MV) is larger than that ofφ(MVS

) by (γ+1)(|MV |−

|MVS
|). A min-coreẐ ∈ MVS

\ MV either includes at least two members ofM1 or belongs toCV(Ŷ)

defined by a min-corêY ∈ MV \ MVS
(i.e., (Ŷ , Ẑ) ∈ P). There are at most|M1|/2 min-cores of the

former type, and hence the sum of their potentials is at mostγ|M1|/2. Let Ẑ belong to the latter type. Note
that

φMV
(Ŷ)− φMVS

(Ẑ) = |∆MVS
(Ẑ)| − |∆MV

(Ŷ)| = |∆MVS
(Ẑ) \∆MV

(Ŷ)| − |∆MV
(Ŷ) \∆MVS

(Ẑ)|.

If there existsv ∈ ∆MV
(Ŷ) \∆MVS

(Ẑ), then there existŝC ∈ MV counted inν(S) such thatv ∈ Γ(Ĉ),

andĈ ∈ M2 by Lemma 12. We makêC give one token tôZ. Then,Ẑ obtains|∆MV
(Ŷ) \ ∆MVS

(Ẑ)|

tokens. Note that onlŷZ containsv in its outer-part among all min-cores inMVS
; If v ∈ Z, then it is

implied by the strong disjointness of min-cores, and ifv ∈ Γ(Ẑ), then it is implied byv 6∈ ∆MVS
(Ẑ).

Hence, eacĥC ∈ M2 releases at most one token for each nodev ∈ Γ(Ĉ). Therefore, the total number of
tokens is at mostγ|M2|, and hence,

∑

(Ŷ ,Ẑ)∈P

|∆MV
(Ŷ) \∆MVS

(Ẑ)| ≤ γ|M2|.

20

Summing up,

φ(MV)− φ(MVS
)

≥ (γ + 1)(|MV | − |MVS
|)−

γ|M1|

2
+

∑

(Ŷ ,Ẑ)∈P

(|∆MVS
(Ẑ) \∆MV

(Ŷ)| − |∆MV
(Ŷ) \∆MVS

(Ẑ)|)

≥ (γ + 1)

(

|M1|

2
+ |M2|

)

−
γ|M1|

2
− γ|M2|+

∑

(Ŷ ,Ẑ)∈P

|∆MVS
(Ẑ) \∆MV

(Ŷ)|

=
|M1|

2
+ |M2|+

∑

(Ŷ ,Ẑ)∈P

|∆MVS
(Ẑ) \∆MV

(Ŷ)|

≥
ν(S)

2
+

∑

(Ŷ ,Ẑ)∈P

|∆MVS
(Ẑ) \∆MV

(Ŷ)|. (14)

If f(S) = 1, thenν(S) ≥ 1, and henceφ(MV) − φ(MVS
) ≥ 1/2 by (14). Since potentials are

integers, this means thatφ(MV) − φ(MVS
) ≥ 1. Suppose thatf(S) ≥ 2. Consider the case where the

head ofS is included by the inner-part of some min-corêX ∈ MVS
. If a foot Ĉ of S is strongly disjoint

from X̂ , thenCV(Ĉ) is covered byS, and henceĈ is counted inν(S). If X̂ includes at least two feet
of S, then all cores ofV including these feet are covered byS. Therefore,ν(S) ≥ f(S) − 1, and hence
φ(MV)− φ(MVS

) ≥ (f(S)− 1)/2 by (14).
In the remaining case,f(S) ≥ 2 and no min-core inMVS

contains the headh of S in its inner-part. By
definition of spiders, each foot̂C is covered byS. HenceĈ is counted inν(S) or ξ(S). If ν(S) ≥ f(S)−1,
then we are done. Hence, suppose thatν(S) ≤ f(S)− 2. f(S)− ν(S) feet ofS are counted inξ(S). Let Ŷ
be a foot ofS that is counted inξ(S). Then, there existŝZ ∈ MVS

with (Ŷ , Ẑ) ∈ P andh ∈ Γ(Ẑ) \Γ(Ŷ).
SinceMVS

contains at least two sucĥZ, we haveh ∈ ∆MVS
(Ẑ) \∆MV

(Ŷ). Therefore,

ν(S) +
∑

(Ŷ ,Ẑ)∈P

|∆MVS
(Ẑ) \∆MV

(Ŷ)| ≥ f(S),

and (14) implies thatφ(MV)− φ(MVS
) ≥ f(S)/2.

Theorem 3. Let V be an uncrossable family of bisets. There exist w : V → W , a spider S activated by w,
and a strongly laminar family L of cores of V such that

w(V)

φ(MV)− φ(MVS
)
= O(max{γ, 1}) ·

SimpleLP(L)

φ(MV)
.

Proof. Theorem 2 shows that there existw : V → W , a spiderS activated byw, and a strongly laminar
family L of cores such that

w(V)

f(S)
≤

SimpleLP(L)

|MV |
.

Sinceφ(MV) ≤ (2γ + 1)|MV |, we have

w(V)

f(S)
≤

SimpleLP(L)

|MV |
≤ (2γ + 1) ·

SimpleLP(L)

φ(MV)
. (15)

If f(S) = 1, thenφ(MV)−φ(MVS
) ≥ f(S) by Lemma 14, and hence, the required inequality follows

from (15). Otherwise,φ(MV)− φ(MVS
) ≥ (f(S)− 1)/2 by Lemma 14, and hence,

w(V)

f(S)
≥

w(V)

2(f(S)− 1)
≥

w(V)

4(φ(MV)− φ(MVS
))
,

21

where the first inequality follows fromf(S) ≥ 2. Combining with (15), this gives

w(V)

φ(MV)− φ(MVS
)
≤ 4(2γ + 1) ·

SimpleLP(L)

φ(MV)
.

Our algorithm presented in Section 4 computes the node weightsw and spiderS claimed by Theorem 3
in polynomial time. Alternatively, one can use the simpler algorithm in [15], which approximatesw within
a factor of2.

6 Algorithm

We first present our main theorem.

Theorem 4. Suppose that V is a biset family such that
⋃

i∈D Vi is uncrossable for each D ⊆ [d]. Let

γ = max
X̂∈V |Γ(X̂)| and γ′ = max{γ, 1}. The prize-collecting biset covering problem with V admits an

O(γ′ log(γ′d))-approximation algorithm.

Proof. Let (x, y) be an optimal solution forPCLP(V). We first compute(x, y). We eliminate all demand
pairs{si, ti} such thaty(i) ≥ 1/2, and eliminate each biset that separates no remaining demand pair from
V. Let V ′ be the biset family obtained after this operations.NPCLP(V ′) ≤ 2

∑

v∈V

∑

j∈W j · x(v, j) holds
because2x is feasible toNPCLP(V ′).

Applying Theorem 3 toV ′, we obtainw, S andL such thatw(V)/(φ(MV ′) − φ(MV ′
S
)) = O(γ′) ·

SimpleLP(L)/φ(MV ′), and the right-hand side is at mostO(γ′) · NPCLP(V ′)/φ(MV ′) by Lemma 6. If
φ(MV ′

S
) > 0, then we apply Theorem 3 toV ′

S. Let w′ andS′ be the obtained node weights and spider,
respectively. We add edges inS′ to S, increase the weightw(v) by w′(v) for eachv ∈ V . We repeat this
until φ(MV ′

S
) becomes 0. By a standard argument of the greedy algorithm forthe set cover problem, we

havew(V) = O(γ′ log(φ(MV ′))) · NPCLP(V ′) when the above procedure is completed. Sinceφ(MV ′) =

O(γ′d), it implies thatw(V) = O(γ′ log(γ′d)) · NPCLP(V ′).
The penalty ofw is at most2

∑

i∈[d] πiy(i) becauseS covers all bisets separating each demand pair
{si, ti} with y(i) < 1/2, and S ⊆ Ew. w(V) = O(γ′ log(γ′d)) · NPCLP(V ′) = O(γ′ log(γ′d)) ·
∑

j∈W

∑

v∈V j · x(v, j). Therefore the objective value ofw is O(γ′ log(γ′d)) timesPCLP(V). Lemma 5
shows thatPCLP(V) is at most the optimal value of the prize-collecting biset covering problem.

Corollary 1. Let k′ = min{k, |V |}. The edge-connectivity PCNAP admits an O(k log d)-approximation
algorithm, and the element-connectivity PCNAP admits an O(kk′ log(k′d))-approximation algorithm.

Proof.
⋃

i∈[d] V
edge
i is an uncrossable family of bisets withγ = 0. Hence, Theorems 1 and 4 give an

O(k log d)-approximation algorithm for the edge-connectivity PCNAP.
⋃

i∈[d] V
ele is an uncrossable family

of bisets withγ ≤ k′ − 1. Hence, Theorems 1 and 4 give anO(kk′ log(k′d))-approximation algorithm for
the element-connectivity PCNAP.

We note thatd = O(|V |2). Hence, the above corollary gives anO(k log |V |)-approximation algo-
rithm for the edge-connectivity PCNAP, and anO(k2 log |V |)-approximation algorithm for the element-
connectivity PCNAP.

The next corollary provides approximation algorithms for the node-connectivity requirements. Since it
is reasonable to supposek ≤ |V | for the node-connectivity requirements, the next corollary does not have
k′ in contrast with Corollary 1.

22

Corollary 2. (i) The node-connectivity PCNAP admits anO(k5 log |V | log(kd))-approximation random-
ized algorithm.

(ii) The rooted node-connectivity PCNAP admits an O(k3 log(kd))-approximation algorithm.

(iii) The subset node-connectivity PCNAP admits an O(k3 log(kd))-approximation algorithm.

Proof. Theorem 1 reduces the node-connectivity PCNAP to the prize-collecting biset covering problem with
the biset familyV =

⋃

i∈[d] V
node
i by paying factork. Chuzhoy and Khanna [4] presented a randomized

algorithm for decomposing an instance of the node-connectivity SNDP intoO(k3 log |V |) instances of the
element-connectivity SNDP such that the union of solutionsfor theO(k3 log |V |) instances is feasible to
the original instance. This algorithm can be applied for computingO(k3 log |V |) uncrossable subfamilies
of V such that an edge set covering the union of the subfamilies coversV. By Theorem 4, we compute
O(k log(kd))-approximate solutions for instances of the prize-collecting biset covering problem with the
subfamilies. We then return the union of the obtained solutions. This achievesO(k5 log(kd) log |V |)-
approximation for the original instance of the node-connectivity PCNAP.

For the rooted node-connectivity PCNAP, we replace the decomposition result due to Chuzhoy and
Khanna [4] by the one due to Nutov [13], which proved thatV can be decomposed intoO(k) uncrossable
subfamilies. This achievesO(k3 log(kd))-approximation for the rooted node-connectivity PCNAP.

Strictly speaking, Theorem 1 cannot be applied to the subsetnode-connectivity PCNAP because it is
not a special case of the PCNAP, but we can similarly prove that the same claim holds for the subset node-
connectivity PCNAP. Using a decomposition result in Nutov [14], the augmentation problem obtained by
the reduction can be decomposed into one instance with the rooted node-connectivity requirements and
O(3|T |/(|T | − k))2 · log(3|T |/(|T | − k)) instances with single demand pairs. The former instance can
be approximated within a factor ofO(k2 log(kd)) as above. Each of the latter instances admits a constant
factor approximation using the algorithm presented in [15]. These giveO(k2 log(kd))-approximation for the
original augmentation unlessk = |T |−o(|T |). When|T | = O(k) (including the case withk = |T |−o(|T |)),
the augmentation problem can be decomposed intoO(k2) instances with single demand pairs, resulting in
anO(k2)-approximation for the augmentation problem. Recall that we pay factork for reducing PCNAP to
the prize-collecting augmentation problem. Therefore, wehave anO(k3 log(kd))-approximation algorithm
for the subset node-connectivity PCNAP.

Note thatlog(kd) = O(log |V |) in Corollary 2.

7 Conclusion

We have presented approximation algorithms for PCNAP. Our algorithms are built on new formulations of
LP relaxations, the primal-dual algorithm for computing spiders, and the potential function for analyzing
the greedy spider cover algorithm.

Our algorithms must solve the LP relaxation in order to decide which demand pairs should be satisfied
by solutions. In contrast, several primal-dual algorithmssuch as those in [1, 10] can manage this without
solving LP by generic LP solvers. In other words, these algorithms are combinatorial. We believe that it is
challenging to design combinatorial algorithms for PCNAP.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 25730008 in part. The author thanks Zeev
Nutov for sharing information on his paper [13].

23

References

[1] M. Bateni, M. Hajiaghayi, and V. Liaghat. Improved approximation algorithms for (budgeted) node-
weighted Steiner problems. InICALP (1), vol. 7965 ofLecture Notes in Computer Science, pages
81–92, 2013.

[2] D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. P. Williamson. A note on the prize collecting
traveling salesman problem.Mathematical Programming, 59:413–420, 1993.

[3] C. Chekuri, A. Ene, and A. Vakilian. Prize-collecting survivable network design in node-weighted
graphs. InAPPROX-RANDOM, vol. 7408 ofLecture Notes in Computer Science, pages 98–109, 2012.

[4] J. Chuzhoy and S. Khanna. An O(k3 log n)-approximation algorithm for vertex-connectivity surviv-
able network design.Theory of Computing, 8(1):401–413, 2012.

[5] L. Fleischer, K. Jain, and D. P. Williamson. Iterative rounding 2-approximation algorithms for
minimum-cost vertex connectivity problems.Journal of Computer and System Sciences, 72(5):838–
867, 2006.

[6] T. Fukunaga. Covering problems in edge- and node-weighted graphs. InSWAT, vol. 8503 ofLecture
Notes in Computer Science, pages 217–228, 2014.

[7] M. T. Hajiaghayi, R. Khandekar, G. Kortsarz, and Z. Nutov. Prize-collecting steiner network problems.
ACM Transactions on Algorithms, 9(1):2, 2012.

[8] K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.Combina-
torica, 21(1):39–60, 2001.

[9] P. N. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-weighted Steiner
trees.Journal of Algorithms, 19(1):104–115, 1995.

[10] J. Könemann, S. S. Sadeghabad, and L. Sanità. An LMPO(log n)-approximation algorithm for node
weighted prize collecting Steiner tree. InFOCS, pages 568–577, 2013.

[11] A. Moss and Y. Rabani. Approximation algorithms for constrained node weighted Steiner tree prob-
lems.SIAM Journal on Computing, 37(2):460–481, 2007.

[12] Z. Nutov. Approximating Steiner networks with node-weights. SIAM Journal on Computing,
39(7):3001–3022, 2010.

[13] Z. Nutov. Approximating minimum-cost connectivity problems via uncrossable bifamilies.ACM
Transactions on Algorithms, 9(1):1, 2012.

[14] Z. Nutov. Approximating subsetk-connectivity problems.Journal of Discrete Algorithms, 17:51–59,
2012.

[15] Z. Nutov. Survivable network activation problems.Theoretical Computer Science, 514:105–115, 2013.

[16] D. Panigrahi. Survivable network design problems in wireless networks. InSODA, pages 1014–1027,
2011.

[17] A. Vakilian. Node-weighted prize-collecting survivable network design problems. Master’s thesis,
University of Illinois at Urbana-Champaign, 2013.

24

	1 Introduction
	1.1 Problem
	1.2 Related work
	1.3 Our results
	1.4 Roadmap

	2 Preliminaries
	2.1 Reduction to the augmentation problem
	2.2 Biset covering problem

	3 LP relaxation for prize-collecting augmentation problem
	4 Primal-dual algorithm for computing spiders
	5 Potential function on uncrossable biset families
	6 Algorithm
	7 Conclusion

