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Spider covers for prize-collecting network activation lpieam

Takuro Fukunaga

Abstract

In network activation problem, each edge in a graph is aasetiwith an activation function that
decides whether the edge is activated from weights assigniésl end nodes. The feasible solutions
of the problem are node weights such that the activated efdgesgraphs of required connectivity,
and the objective is to find a feasible solution minimizirgytital weight. In this paper, we consider a
prize-collecting version of the network activation prabland present the first nontrivial approximation
algorithms. Our algorithms are based on a new linear progniagrelaxation of the problem. They
round optimal solutions for the relaxation by repeatedignpating node weights activating subgraphs,
called spiders, which are known to be useful for approxintatihe network activation problem. For the
problem with node-connectivity requirements, we also @nés new potential function on uncrossable
biset families and use it to analyze our algorithms.

1 Introduction

1.1 Problem

Network activation problem is a problem of activating a well-connected network by asisigy weights to
nodes. The problem is formally described as follows. GivgrephG = (V, E) and a set?” of non-negative
real numbers such thate W andi 4 j € W for anyi, j € W, a solution in the problem is a node weight
functionw: V. — W. Foru,v € V, let {u,v} anduv denote the unordered and ordered pairs ahdv,
respectively. Each edde:, v} € E is associated with an activation functigr’ : W x W — {true, false}
such thaty"’(i,j) = ¥"“(4,4) holds for anyi,j € W. In this paper, each activation functiaft'’ is
supposed to benonotone, i.e., if "V (i,j) = true for somei,j € W, theny*’(i',5’) = true for any
i',7 € Wwith ¢ > iandj’ > j. An edge{u, v} is activated by w if ¢*’(w(u),w(v)) = true. LetE,, be
the set of edges activated hyin E. A node weight functionw is feasible in the network activation problem
if E,, satisfies given constraints, and the objective of the prolieto find a feasible node weight function
w that minimizesy ., w(v), denoted byw (V). We assume throughout the paper tfidas undirected even
though the problem can be defined for directed graphs as well.

In this paper, we pose connectivity constraints on thetgebf activated edges. Namely, we are given
demand pairgsiy,t1},...,{sq,tq} C V associated with connectivity requirememts. .., r4 defined as
natural numbersld] denotes(1, . .., d}, k denotesnax;c |4 ;, and a node that participates in some demand
pair is called aerminal. The constraints require that the connectivity betwgeandt; in the graphV, E,,)
is at leastr; for eachi € [d]. We consider three definitions of the connectivity: edgereztivity, node-
connectivity, and element-connectivity. The edge-cotiviég between two nodes andv is the maximum
number of edge-disjoint paths betweeandv, and the node-connectivity betweemndv is the maximum
number of inner disjoint paths betweenandv. The element-connectivity is defined only for pairs of
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terminals, and for two terminalsandu, it is defined as the maximum number of paths between theratéat

disjoint in edges and in non-terminal nodes. The edge-atiivitg network activation problem denotes the
problem with the edge-connectivity constraints. The naaet the element-connectivity network activation
problems are defined similarly.

The network activation problem is closely related to shievivable network design problem (SNDP), a
problem of constructing a cheap network that is sufficientiynected. A feasible solution to the SNDP
is a subgrapHhV, F') of a given graphG = (V, E) that satisfies the connectivity constraints. There are
two popular variations, called the edge- and node-weiglBBiDPs. In the edge-weighted SNDP, each
edge in the graph is associated with a weigfit), and the objective is to minimize the weight F') of
F defined asy |, w(e). In the node-weighted SNDP, a weightv) is given for each node < V, and
the objective is to minimizé_ .\, w(v), whereV (F) denotes the set of end nodes of edges'inWe
denoted .y () w(v) by w(V (F)) in the sequel. Itis known that the node-weighted SNDP géinesathe
edge-weighted SNDP.

It can be seen that the network activation problem extereladde-weighted SNDP. Given node weights
w':V — Rsp, letW = {w'(v): v € V} U{0}, and define a monotone activation functigff’ for
{u,v} € E sothaw"’(i,j) = true ifand only ifi > w'(u) andj > w’(v). A minimal solutionw: V" — W
to the network activation problem with these activationdiions does not assign a weight larger théfw)
tov € V. Hence, if an edge activated hyis incident to a node, thenw(v) = w'(v) holds without loss
of generality. Therefore, the node-weighted SNDP withs equivalent to the network activation problem
with +) defined fromuw’.

The extension from the SNDP to the network activation probie not only important from a technical
viewpoint but also for practical reasons. In the node-wieidhSNDP, for each node, one is required to
decide whether it is chosen. In contrast, the network aaivgoroblem demands a decision concerning
which weight is assigned to a node. In other words, the nétaotivation problem admits more than two
choices while the node-weighted SNDP admits only two clofoe each node. This rich structure of the
network activation problem enables to capture many problamtivated by realistic applications. In fact,
Panigrahi [[16] discussed numerous applications to wisetetworks. In wireless networks, the success
of communication between two base stations depends orrdasich as physical obstacles between them,
positions of antennas, and signal strength. Panigrahiestgd that many problems related to wireless
networks can be modeled by the network activation problem.

Our main contribution in this paper is to develop algorithorsa prize-collecting version of the network
activation problem, which we call thggize-collecting network activation problem (PCNAP). In the PCNAP,
each demand palrs;, t;} is associated with not only a connectivity requiremegnbut also a non-negative
real numberr;, which is called thepenalty. The edge seF,, activated by a solutionv is allowed to
violate the connectivity requirements, but it has to payglealtyr; if it does not satisfy the connectivity
requirement fo s;, ¢; }. The objective of the PCNAP is to minimize the sumugfl”) and the penalties we
have to pay.

We also consider two variations of the PCNAP. Tioeted node-connectivity PCNAP is a special
case of the node-connectivity PCNAP such that a root node V is specified and the demand pairs
are{s,t1},...,{s,tq}. In the subset node-connectivity PCNAP, terminalst,...,t; € V and penalties
m,...,Tq are given instead of demand pairs. gt be the set of activated edges. In addition to node-
weights, a solution choosés C [d] such that every pair of terminatsandt; with i, j € U is k-connected
in the graph(V, E,,). The penalty iszie[d]\U ;. We note that the subset node-connectivity PCNAP is
not a special case of the node-connectivity PCNAP becawsalibve setting cannot be represented by
connectivity demands and penalties on terminal pairs.

In all of the known applications, it is reasonable to assuié = poly(|V]). In fact, all previous



research([15, 16] studied the network activation problemleunrthis assumption. In this paper, we proceed
on the same assumption and design algorithms that run impolial time of|W| and the size of.

1.2 Reated work

The SNDP is a well-studied optimization problem, and theeesaibstantial number of studies regarding
algorithms for it. The best known approximation factors foe edge-weighted SNDP are two for the
edge-[8] and element-connectivity [5], abdk? log |V |) for node-connectivity([4]. For the node-weighted
SNDP, Nutov([[12] gave a®(k log |V |)-approximation algorithm with edge-connectivity requments, and
element-connectivity requirements in [13]. His algoritieased on an algorithm for the problem of cover-
ing uncrossable biset families by edges, where a biset isdated pair of two node sets, and an uncrossable
family is a family closed under some uncrossing operatisres Will present their formal definitions later).
However, his analysis of the algorithm for covering uncatss biset families has an error. We will explain
itin Section’b.

The prize-collecting SNDP has also been well studied. Asflire-weighted graphs, we refer to only
Hajiaghayi et al.[[7] whereas many papers studied relatedl@ms such as the prize-collecting Steiner tree
and forest. Recently much attention has been paid to noightee graphs. Konemann, Sadeghian, and
Sanita[10] gave a(log |V |)-approximation algorithm for the prize-collecting nodeighted Steiner tree
problem. Their algorithm has the Lagrangian multipliergem¥ing property, which is useful in many con-
texts. They also pointed out a technical error in Moss anchRigi1]. Bateni, Hajiaghayi, and Liaghat [1]
gave arnO(log |V'|)-approximation algorithm for the prize-collecting nodeighted Steiner forest problem
with application to the budgeted Steiner tree problem. @tigEne, and Vakilian[3] gave af(k? log |V |)-
approximation for the prize-collecting SNDP with edge-gectivity requirements, which they later im-
proved toO(k log |V'|)-approximation and also extended to the element-conrigctaquirements (refer to
[17]). We note that the proof in [17] implies that the algbnit in [13] works for the node-weighted SNDP
with element-connectivity requirements, as Nutov oriiijnelaimed, even though his analysis of the algo-
rithm for covering uncrossable biset families is not cariaaeneral. We also note that the algorithm for
the element-connectivity requirements inl[17] impli@ék* log |V |)-approximation for node-connectivity
requirements, using the reduction from node-connectigtuirements to the element-connectivity require-
ments presented by Chuzhoy and Khanna [4].

Concerning the network activation problem, Panigrahi [d&teO(log |V'|)-approximation algorithms
for £ < 2 and proved that it is NP-hard to obtain aflog |V|)-approximation algorithm even when acti-
vated edges are required to be a spanning tree. Nutov [15¢mied approximation algorithms for higher
connectivity requirements, includin@(k log |V |)-approximation for the edge- and element-connectivity
andO(k* log? |V|)-approximation for the node-connectivity. He also disedsspecial node-connectivity
requirements such as rooted and subset requirements. fidseses are built based on his research in [13]
for covering uncrossable biset families. This contains mareas mentioned above, and the rectification
offered in [17] cannot be extended to the network activapooblem. Therefore, the network activation
problem currently has no non-trivial algorithms for theraént- and node-connectivity. One contribution of
this paper is to rectify the Nutov’s error and to provide aidyons for these problems.

An important factor in most of the research mentioned abeviné greedy spider cover algorithm.
The notion ofspiders was invented by Klein and Ravil[9] in order to solve the nodsghited Steiner tree
problem. It was originally defined as a tree that admits attrone node of degree larger than two and that
spans at least two terminals. The node of degree larger thastcalled thehead, and nodes of degree
one are called théeet of the spider. It is supposed without loss of generality taath foot of a spider is a
terminal. If all nodes have degrees of at most two, then aitranp node is chosen to be the head. Klein
and Ravi[[9] proved that any Steiner tree can be decomposedaae-disjoint spiders so that each terminal
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Table 1. Approximation factors for the edge-weighted SNi#eje-weighted SNDP, and the network acti-
vation problem

non-prize-collecting prize-collecting
edge-connectivity
edge-weighted SNDP 2 Jain [8] 2.54 Hajiaghayi etlal. [7]
node-weighted SNDP O(klog|V|)  Nutov [12] O(klog|V])  Chekurietal.[[3]
network activation O(klog|V])  Nutov [15] O(klog|V]) [this paper]
element-connectivity
edge-weighted SNDP 2 Fleischer etal. [5] 2.54 Hajiaghagi.47]
node-weighted SNDP O(klog [V|)  Vakilian [17]* O(klog|V])  Vakilian [17]
network activation O(k*log|V'|) [this paper} O(k?log |V]) [this paper]

! Nutov [13[15] claimedD(k log |V |)-approximation algorithms for the node-weighted SNDP &edetwork activation
problem with element-connectivity constraints, but themetained an error.

is included by some spider. Thiensity of a subgraph is defined as its node weight divided by the numbe
of terminals included by it. The decomposition theorem ieglthat there exists a spider with a density
of at most that of Steiner trees. Since contracting a spidr fvfeet decreases the number of terminals
by at leastf — 1, a greedy algorithm to repeatedly contract minimum derspigers achieve®(log |V|)-
approximation. Minimum density spiders are hard to computietheir relaxations can be computed by a
simple algorithm that involves first guessing the place eflead and number of feet, which is possible
because there are only’| options for each. Let be the head, and be the number of feet. We then
compute a shortest path fromto each terminal, and choose tlieshortest paths from them. The union
of these shortest paths is not necessarily a spider, bugiitsity is at most that of spiders, and contracting
the union can play the same role as contracting spiders.vNi)(13,[15] extended the notion of spiders
to uncrossable biset families, and demonstrated in theeseguof his research that they are useful for the
node-weighted SNDP and the network activation problem.

1.3 Our results

The main result in this paper is to present approximatioorétyms for the PCNAP. Our algorithms achieve
O(klog |V|)-approximation for the edge-connectivity PCNAP, afdk? log |V |)-approximation for the
element-connectivity PCNAP. Tallé 1 summarizes the appration factors achieved by our algorithms
and previous studies. Using decompositions of connegtreiuirements given in_[4, 13, 14], we can also
achieve approximation factor3(k° log? |V'|) for the node-connectivity PCNAP ar@(k> log | V) for the
rooted and subset node-connectivity PCNAPs. Our resulsthe first non-trivial algorithms for the PC-
NAP. We also recall that, besides our algorithms, no algori are known even for the element- and node-
connectivity network activation problems because theyamabf the algorithms claimed by Nutav [13,/15]
contains an error. For wireless networks, it is natural tastaer node-connectivity, which represents tol-
erance against node failures, rather than edge-conrtgctishich represents tolerance against link failures.
Hence, our results are important for not only theory but alsglications.

Let us present a high level overview of our algorithms. Ogodthms first reduce the problem with high
connectivity requirements to ttagmentation problem, which asks to increase the connectivity of demand
pairs by one. This is a standard trick for SNDP, and we wilvgihm Sectior 2 that this trick can work even
for the PCNAP. Then, our algorithms compute an optimal smiuto an LP relaxation, and discards some
of the demand pairs according to the optimal solution, wisch popular way to deal with prize-collecting
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problems since Bienstock et dll [2]. In the last step, theritlyms solves the problem using the greedy
spider cover algorithm. To obtain an approximation gua@ntve are required to show that the minimum
density of spiders can be bounded in terms of the optimalevafuithe LP relaxation. We achieve this by
presenting a primal-dual algorithm for computing spidersich is the same approach as([3, 1, 17].

As observed from this overview, our algorithms rely on maisais given in the previous studies on the
prize-collecting SNDP and the network activation probldtowever, it is highly nontrivial to apply these
ideas for the PCNAP, and we required several new ideas tinaiaalgorithms. Specifically, the technical
contributions of the present paper are the following threw findings: an LP relaxation of the problem, a
primal-dual algorithm for computing spiders, and a potdritinction for analyzing the greedy spider cover
algorithm. Below we explain these one by one.

L P relaxation

Nutov’s spider decomposition theorem is useful for thetteseering problem defined from the SNDP and
the network activation problem, but we have to strengthéor isolving their prize-collecting versions. We
define an LP relaxation of the problem and compare the minirdansity of spiders with the density of
fractional solutions feasible to this relaxation. The sattempt has been made previously by [1, 3, 10] for
the node-weighted SNDP, but our situation is much more cimapeld. Each connectivity requirement in the
node-weighted SNDP can be simply represented by demandsarutmber of chosen nodes in node cuts
of graphs, which naturally formulates an LP relaxation feforms well. On the other hand, the network
activation problem requires to decide which edges areatetiMfor covering bisets in addition to the decision
on which weights are assigned to nodes for activating thesdglence an LP relaxation for the network
activation problem needs variables corresponding to edgdsiodes whereas that for the node-weighted
SNDP needs only variables corresponding to nodes. Howegaling with both edge and node variables
introduces a large integrality gap into a natural LP reliaxafor the network activation problem, as we will
see in Sectiohl3. Hence we require to formulate an LP relaxatarefully.

In the present paper, we propose a nhew LP that lifts the datiaelaxation for the PCNAP. It is
non-trivial even to see that our LP relaxes the PCNAP. Weeibusing the structure of uncrossable biset
families, wherein any uncrossable biset family can be deas®d into a polynomial number of ring biset
families, and the degree of each node is at most two in anymmainédge cover of a ring biset family. In
addition, the main result in this paper implies that our LB &imall integrality gap.

Let us mention that the idea on formulating our LP relaxai®potentially useful for other covering
problems. The author pointed out in his recent wotk [6] thagtural LP relaxation has a large integrality
gap for many covering problems in node-weighted graphs. Iste @esented several tight approximation
algorithms using the LP relaxations designed based on #zevie propose in the present paper.

Primal-dual algorithm for computing spiders

For bounding the minimum density of spiders in terms of optiralues of our relaxation, we will present
a primal-dual algorithm for computing spiders. Usually, rarfal-dual algorithm computes fractional so-
lutions feasible to the dual of an LP relaxation togethehwpitimal solutions, but this seems difficult for
our relaxation because of its complicated form. Hence, gorghm does not directly compute solutions
feasible to the dual of our relaxation. Instead, we defindghard_P simpler than our relaxation, and our
algorithm computes feasible solutions to the dual of thigér LP. Although the simpler LP does not relax
our relaxation, we can show that it is within a constant faofaur relaxation if biset families are restricted
to laminar families of cores, which are bisets that do noluitle more than one minimal biset. Our primal-
dual algorithm computes dual solutions that assign noo-zalues only to variables corresponding to cores



in laminar families. Hence, the density of spiders can bédyaed in terms of our relaxation.

Summarizing, our algorithm uses two different LPs: the LBdubon the structure of uncrossable biset
families is used for deciding which demand pairs are diszhid the first step, and the simpler LP with
laminar core families is used in the second step that iter@teosing spiders. We note that the simpler LP
cannot be used in the first step because of two reasons. westp not know beforehand which laminar
core families will be used, and second, we have differentdanfamilies in distinct iterations.

Although our primal-dual algorithm for the simpler LP seetnse similar to primal-dual algorithms
known for related problems, its design and analysis is noatr One reason for this is the existence of more
than one choices of weights for each end node of activatedsealgywe have already mentioned. Another
reason is the involved structure of bisets. Since a bisetfined as an ordered pair of two node sets, covering
a biset family by edges is much more difficult problem thanetimg a set family, for which primal-dual
algorithms are often studied. Indeed, our algorithm wgimany non-trivial properties of uncrossable biset
families.

Potential function for analyzing greedy spider cover algorithm

Nutov [13] claimed that repeatedly choosing a constant@pration of minimum density spiders achieves
O(log |V |)-approximation for covering uncrossable biset familiesisTclaim is true if biset families are
defined from edge-connectivity requirements. However iitastrue for all uncrossable biset families. The
claim is based on the fact that contracting a spider wifbet decreases the number of minimal bisets by a
constant fraction of. However there is a case in which contracting a spider doedawease the number
at all (see Sectidn 5). Chekuri, Ene, and Vakilian [17] shebétat the claim is true for biset families arising
from the node-weighted SNDP, but it cannot be extended fitranp uncrossable biset families, including
those from the network activation problem.

To rectify this situation, we will define a new potential ftion. The new potential function depends on
the numbers of minimal bisets and nodes shared by more tlmmimimal bisets. If the number of minimal
bisets does not decrease considerably when a spider isegklatany new minimal bisets share the head of
the spider. This fact motivates the definition of the potdritinction.

With this new potential function, the definition of densitiyan edge set will be changed to the total
weight for activating it divided by the value of the potehfianction. We cannot prove that the minimum
density of spiders is at most that of biset family coversrafteanging the definition of density. Instead, we
will show that a spider minimizing the density in the old d@fon approximates the density of biset family
covers in the new definition within a factor 6f(k). This proves that the greedy spider covering algorithm
achievesD(k log |V|)-approximation for the biset covering problem with uncedde biset families. Since
Klein and Ravi [9], the greedy spider cover algorithms hagerbapplied to many problems related to
the node-weighted SNDP. Considering this usefulness ofjithedy spider cover algorithms, our potential
function is of independent interest because it is requicechhalyzing the algorithms for uncrossable biset
families.

1.4 Roadmap

The remainder of this paper is organized as follows. Se@iquesents reduction from the PCNAP to

the augmentation problem and introduces preliminary faotdbiset families. Section] 3 defines our LP

relaxation. Sectiofil4 presents our primal-dual algorittomdomputing spiders, and Sectibh 5 presents
a new potential function for analyzing the greedy spiderecsy Sectionl6 presents our algorithms, with
Sectior ¥ concluding this paper.



2 Preiminaries

2.1 Reduction to the augmentation problem

First, we define the augmentation problem in detail. We assiinat there are two edge séfs and £, and
activation functions are given for edgesfih The connectivity of each demand péis;, ¢; } is at least’ — 1

in the graph(V, Ey), and a subsek’ of E is feasible if the connectivity of each demand paif¥ Ey U F)

is at leastk’. The objective of the problem is to find a node weight functionV — W so thatE,, is
feasible andv (V') is minimized. In the prize-collecting augmentation probjeeach demand pa{rs;, t; }
has a penaltyt;, and if the connectivity of s;, ¢; } is not increased by,,, then we must pay the penalty. The
objective of the prize-collecting augmentation problentoigind a node weight functionw that minimizes
the sum ofw(V') and penalties of demand pairs of connectivity smaller tfan (V, E, U E,,). PCNAP
can be reduced to the prize-collecting augmentation prnolale follows.

Theorem 1. If the prize-collecting augmentation problem admits an «-approximation algorithm, then PC-
NAP admits an ak-approximation algorithm.

Proof. We sequentially define instances of the prize-collectingnaentation problem. In the first instance,
Ey is set to be empty anfl is the edge set of the graph in the instance of the PCNAP. &tativ functions,
demand pairs and their penalties are same as those in the P@&t&nce. The connectivity of each demand
pair is0 in (V, Ey), and the requirement of a demand pair is satisfied if its cctiviy is increased to at
least one iV, Ey U E,,).

We define thek’-th instance after solving thek’ — 1)-th instance. Letw;,_; be the node weights
computed by the-approximation algorithm for thék’ — 1)-th instance, and,,_; be the set of indices of
demand pairs that are satisfieddy _; in the (¥’ — 1)-th instance. We move the edges activatedy ;
from E to Ey. For each € Dy _1, the connectivity of s;, ¢;} is at leastt’ — 1 in (V, Ey) after the update.
Let [ = {i € Dy—_1: r; > k'}. We define the demand pairs in theth instance ags;, t;}, i € Is. The
activation functions in thé’-th instance are same as those in the PCNAP instance.

We repeat the above sequence until dth instance is solved. Our solution to the PCNAP instance
isw = Z’,z,zl wy. We prove thatw achievesak-approximation. Letw* be an optimal solution for the
PCNAP instance, an®* = {i € [d]: {s;,;} is satisfied byF,,- }. Then, the optimal value of the PCNAP
instance isv* (V') +3_;c(qp p- mi- Ifan edge is activated by in the PCNAP instance, then it s eitherfii
or is activated byw* in the £’-th instance of the prize-collecting augmentation problétence, a demand
pair {s;,t;} with i € I, is satisfied byw* if it is satisfied byw* in the PCNAP instance, implying that the
objective value ofv* in the &’-th instance is at most* (V') + Zz‘ezk,\p* ;. By the a-approximability of
wyr, We have

wi (V) + Z m<alw (V)+ Z i
i€l \Dy i€l \D*

The objective value ofv in the PCNAP instance is

k

k
Z wi (V') + Z i SO‘Z w (V) + Z m | <ak|w(V)+ Z i

k'=1 1€l \Dy, k'=1 i€l \D* ie[d]\D*



2.2 Biset covering problem

Here, we formulate the prize-collecting augmentation fgwbas a problem of activating edges covering
bisets. Abiset is an ordered paik = (X, X*) of subsets of such thatX C X+. The former element of
a biset is called thinner-part and the letter is called thauter-part. We always letX denote the inner-part
of a bisetX and X+ denote the outer-part df . X+ \ X is called theboundary of a bisetX and is denoted
by T'(X). For an edge s, 5(X) denotes the set of edgesfithat have one end-node i and the other
inV \ XT. We say that an edgecovers X if e € dp(X), and a sef’ of edgescovers a biset familyV if
eachX e Vis covered by some edge}ﬁ

Leti € [d]. We say that a biseX separatesa demand pal{sl,t HIf [ X0 {si, i} = Hsi, t; )\ XT| = 1.
We defineV*¢° as the family of biset& such thatX = X+ (X)| = k — 1, andX separates the
demand pan{sl,t }. According to Menger’s theorenk; C E increases the edge-connectivity{af, ¢;} in
the augmentation problem if and only i coversvfdgc. We defineV*d¢ as the family of bisetst such
that |6z, (X)| + |T'(X)| = k — 1 and X separates the demand p4is;, t;}. F C E increases the node-
connectivity of{s;, t;} if and only if F* coversV°d°. We defineV;' as the family of bisetsy e ppode
such thatl’(X) N {s;/,ty} = 0 for eachi’ € [d]. F C E increases the element-connectivity {af, ¢, } if
and only if F' coversy?'e.

For two bisetsX andY’, we defineXNY = (XNY, XtNY*), XUY = (XUY, X TUY 1), andX\Y =
(X\ Y+, XT\Y). Abiset familyV is calleduncrossable if, forany X, Y e V, (i) X nY, X UY €V, or
(i) X\Y,Y\ X €V holds. The following lemma indicates that the uncrossalsletfiamilies characterize
the augmentation problem with edge- and element-conrigctaquirements.

Lemma 1. For any D C [d], biset families |, , Vi and |, , V5'® are uncrossable.

Lemmall follows from the submodularity and posimodularityd;, (-)| and|I'(-)|, and a simple case
analysis. The same claim can be found[ih[[5, 13], and we reamdneferring to them for the proof of
Lemmadl.

By Lemmall, the problem of finding a minimum weight edge sekedog a given uncrossable biset
family contains the augmentation problem with edge- or eletrtonnectivity requirements. The biset fam-
ily Usen ynode defined from the node-connectivity requirements is not semély uncrossable. However,
it was shown previously i [4, 13, 14] that this family can edmposed into uncrossable families, and the
union of covers of these uncrossable families gives a gopdoajmate solution for the node-connectivity
augmentation problem. We apply this approach for dealinfy wbode-connectivity constraints (see Sec-
tion[g).

We define thebiset covering problem as the problem of minimizing the sum of node weights under
the constraint that the edges activated by the node weigher given biset families. The prize-collecting
version of the biset covering problem is defined as followiseG@an undirected grap = (V, E) such that
each edge i’ is associated with an activation function, demand pgiist; },. . ., {sq, t4} with penalties
m1,..., 74, and a biset family’ on V. Fori € [d], letV; be the family of bisets iV that separatés;, ¢; }.

We say thatX € V is violated by an edge seF’ C E if 6p(X) = (. The penalty ofv: V — Wis Y 7

where the summation is taken over ak [d] such thatt,, violates some biset iW;. The objective of the
problem is to findw: V' — W that minimizes the sum af(V') and penalty ofv. This problem generalizes
the prize-collecting augmentation problem, and henceffices to present an algorithm for this problem.

Our results require several properties of uncrossable faseilies. We say that biset¥ andY are
strongly digoint when bothX N Y™* = @ andX* NY = () hold. WhenX C Y andX* C Y, we say
X C Y. Minimality and maximality in a biset family are defined witegard to inclusion. A biset family
V is calledstrongly laminar when, if X, Y € V are not strongly disjoint, then they are comparable (i.e.,
X CYorY C X). Aminimal biset in a biset family is called amin-core, andM,, denotes the family of
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min-cores in). A biset is called &oreif it includes only one min-core, and, denotes the family of cores
in ¥V, where min-cores are also cores. Wheis clear from the context, we may simply denote themMy
andC.

For a biset familyV, biset X, and nodev, V(X) denotes{Y € V: X C Y} andV(X,v) denotes
{Y e V(X): v & YT}. A biset familyV is called aring-family if X N Y, X UY € V hold for any
X,Y € V. Amaximal biset in a ring-family is unique because ring-iiggs are closed under union.

Lemma 2. If V isan uncrossable family of bisets, then the following properties hold:
(i) C(X)isaring-family for any X € M.

(i) Let X,Y € M bedistinct min-cores. For any X’ € C(X)and Y’ € C(Y), both X"\ Y’ € C(X) and
Y\ X’ € ¢(Y) hold.

(i) Let X,Y € M bedistinct min-cores. Then Y is strongly digicint with any X’ € C(X). In particular,
min-cores are pairwise strongly digoint.

The proof of Lemmal2 can be found in]13].
For a biset family) and an edge sdf, let Vp = {X € V: §p(X) = 0}. The following lemma is
required when we compute solutions recursively.

Lemma 3. Let V be a family of bisetsand /' C E. Then Vg isuncrossable if V is uncrossable. Vr isa
ring-family if V is a ring-family.

Proof. If bisets X andY satisfydx(X) = 6p(Y) = 0, then allop (X NY), 6p(X UY), dp(X \ Y), and
§p(Y \ X) are empty. The claim follows from this fact. O

Below, we consider directed edges for technical reas@ndenotes the set of directed edges obtained
by orienting the edges iV in both directions.s; (X) denotes{uv € A: v € X,u € V' \ X*} for a biset
X. We say that a directed edgeovers a biseX if ¢ ¢ oy (X ), and a sef” of directed edges covers a biset
family V if each biset inV is covered by some edge . The following lemma will be required to prove
that our LP relaxes the prize-collecting biset coveringopeo.

Lemma4. Let F' be aninclusion-wise minimal set of directed edges that covers a ring-family V' of bisets.
Then the in-degree and out-degree of each node in the graph (V, F') is at most one.

Proof. Letv € V. We see that at most one edgefileavesv. For arriving at a contradiction, suppose that
F contains two edges = vu ande’ = vu'. By the minimality of F*, there existX € V with 6, (X) = {e}
and X’ € V with 0, (X’) = {¢'}. Note thatv ¢ X+ U (X’)*. We haveX N X', X U X’ € V becaus&/
is a ring-family. « € X \ X’ and«’ € X’ \ X hold, and hence, ¢’ ¢ 65(X N X’) holds. However, this
means thab (X N X’) contains an edge distinct fromande’, and that this edge cove?s or X'. This
contradicts the definition ok or X’.

We can also see that contains at most one edge enteringro the contrary, suppose that there are two
edgesf = uv andf’ = w'v in F. There exist’ € V with ,(Y) = {f} andY’ € V with 67 (V") = {f'}
by the minimality of F. Note thatv € Y N'Y’. We haveY NY’,Y UY’ € V. If f coversY U Y, then it
coversY” as well, which is a contradiction. Hengedoes not covet” U Y. Similarly, we can see that
does not covel” U Y’, which means that,; (Y U Y”) contains an edge that is distinct frofrand £/, and it
coversY or Y'. However, this contradicts the definition Bfor Y. 0



3 LPrelaxation for prize-collecting augmentation problem

In this section, we present an LP relaxation for the priZéecting augmentation problem. Henceforth, we
let £ denote the target connectivity from now on; The connegtigfteach demand pair is— 1 in (V, Ey),
and the problem requires an increase in the connectivitacii @emand pair by at least one.

For an edgew € A, let U"¥ denote the set of pairg, ;') € W x W such that)"?(j,j') = true. A
natural integer programming (IP) formulation for the prtzlecting biset covering problem can be given
by preparing variables(uv, j, j') € {0,1} for eachuv € A and(j,j’) € ¥*, z(v,j) € {0,1} for each
v e Vandj € W, andy(i) € {0,1} for eachi € [d]. z(uv,j,j') = 1 indicates thatw is activated
by weightsw with w(u) = j andw(v) = j'. z(v,j) is equal to 1 ifv is assigned the weight, and
0 otherwise. y(7) indicates whether the connectivity requirement {er, ¢;} is satisfied, and;(i) = 0
holds when all bisets separatidg;,t;} are covered. The connectivity constraints require thatefxh
i € [d] and X e V), y(i) = 1 holds or X is covered by an activated edge, which is represented by
Zuve&;@) > Gneww (uv, 4, ) +y(i) = 1. If z(uwv, j,5) = 1, thenu andv must be assigned the
weights;j andj’, respectively. This is represented bju, j) > x(uv, j,j") andz(v,j’) > x(uv,j, ;") for
eachuv € Aand(j,j') € \If““ The objective is to minimiz&_, .y > 5y J - (v, J) + X iepq ™ - ¥ (). In
conclusion, IP can be described as follows:

minimize DD IFREICY +Zm

veV jeW
subject to > Z z(uv, j, 7)) +y(i) > 1 fori e [d, X €V,
wed, (X) (4.3 ev™
z(u, j) > x(uv, 5, j) foruv e 4, (5,5') e ¥, (1)
z(v,7") > x(uv, j, ) foruv € A, (j,j') € ¥%w,  (2)
z(v,7) € {0,1} forveV,jeW,
z(uv, j,j') € {0,1} foruv € A, (j,5') € %,
y(i) € {0,1} fori € [d].

However, the LP relaxation obtained by dropping off the gnddity constraints from this IP has an un-
bounded integrality gap as follows. Consider the case wiierel, V; consists of only one biset, and
55(X) containsm edges incident to a node € V \ X*. Moreover,IW = {0,1} and each edgev is
activated by weights(u) = 1 andw(v) = 0. Supposer; = +oo so thaty(1) = 0 holds in any optimal
solutions for the IP and LP relaxation. For this instanceingggral solution activates one edge frdgw(f()
by assigning weight 1 ta and weight O to the other end-node of the chosen edge, whiibvas the ob-
jective value 1. On the other hand, define a fractional swhuti so thatz(u,1) = 1/m, z(v,0) = 1/m,
andz(uv,1,0) = 1/m for all uv € ¢, (X), and the other variables are equal to 0. This solution iskitas
for the LP relaxation, and its objective valuelign. This example implies that the integrality gap of the LP
relaxation is at least:.

For this reason, we need another LP relaxation. Our idea s$rémgthen[(1) and]2). In the above
IP, z(u, j) is bounded byz(uv, j,j") from below in [1). Instead, our new constraints bour(d, j) by
D veXaweX 2jrew:(jjevu T(wv, j, j') for eachX € V with u ¢ X*. However, these constraints are
so strong that solutions feasible to the prize-collectirgetcovering problem do not satisfy it. To rem-
edy this drawback, we introduce new variab&e(mv,j,j’,é') for eachC € My to replacex(uv, j, 7).
z(uv, §, 5, C) is used for coveringd € V(C). For eachC' € My, X ¢ V(C),u € V' \ X*, andj € W,
z(u, j) isbounded bY ¢ v.,nea 2 jrew:(jneww T(wv, 4, 5, C). @) is similarly modified. Summarizing,
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the following is the proposed LP relaxation.

PCLP(V) =
minimize ZZ] x(v,7) —|—Z7TZ
veV jeWw
subjectto > Z z(uv, j, 7, C) +y(i) =1 forC e My,ield], X € Vi(0), (3)
wedy (X) (7,4)erH
J) > Z Z z(uv, 5,5, C) for C € My, X e V(O),uc V\Xt,jeW,
veEX: j'ew:
uv€A (]J )E\I;uv
(4)
> > > a(w,ij,C)  forCeMy, XeV(@),veX,jeW,
ueV\Xt: JEW:
weA (J,5)evv?
(5)
z(v,j) >0 forveV,jeW,
z(uv,j,7',C) >0 foruv € A, (j,5') € ¥%, C' € My,
y(i) = 0 for i € [d).

Note: In [6], the author applied a similar idea of lifting LP reldixans for solving several covering
problems in edge- and node-weighted graphs. He defined a Rensléxation by replacing edge variables
by variables corresponding to pairs of edges and constraamd showed that the new LP relaxation has
better integrality gap than the original one. This idea carbe applied to the SNDP and the network
activation problem straightforwardly because they havexgonential number of constraints. Hence we
instead define a new variable for each pair of edges and mascahich makes the number of new variables
being polynomial.

Lemma5. PCLP(V) is at most the optimal value of the prize-collecting biset covering problem when V' is
uncrossable.

Proof. Letw: V' — W be a solution to the prize-collecting biset covering probland let4,, be the set
of directed edges obtained by replacing e&chv} € E,, with wv andvu. For each” € My, let Apsbea
minimal subset ofd,, covering eachX € V(C) that is covered byz,,. We define an integer solutida, y)
to PCLP(L) as follows:

1 ifall bisets inV; are not covered by,,,
0 otherwise,

(ww.jiC) — {1 if uv G.Aé and(j,7") = (w(u), w(v)),
0 otherwise,
) 1 ifj=w),
r(v,j) = .
0 otherwise.

We can see that the objective value(of y) is at most that ofv. We here prove thatr, y) is feasible
for PCLP(V). SinceA  covers eaclX € V;(C') unlessy(i) = 1, we can see thatl(3) holds. By Lemiia 2,
V(C) is a ring-family. Hence, the right-hand side Bf (4) is at mmisé by Lemma. If it is one, then the
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left-hand side of[(4) is also one by the definitionzof Hence,x satisfies[(#). It can be similarly observed
from Lemmad_ 4 that: satisfies[(b). O

In our algorithm, we first solv@CLP(V). This is possible by the ellipsoid method under the asswnpti
that a polynomial-time algorithm is available for compagtia minimal biset, including a specified node in
its inner-part over a ring-family. This is because the safiam over the feasible region ®CLP()) can
be done in polynomial time as follows. The separationof &) be reduced to the submodular function
minimization problem for which polynomial-time algorittsnare known.[(4) has an exponential number of
constraints for fixed” € My, v € V andj € W, but a maximal biset in’(C) such that € V \ X+
is unique and can be found in polynomial time by the aboverapsion and from the fact that(C) is a
ring-family. Hence, it is sufficient to check a polynomialmioer of inequalities for the separation bf (4),
which can be done in polynomial time. The separation_df (%) lsa done similarly. IfY is defined as
Uier Vodee or Uiera Vele then the algorithm in the assumption is available, and timénmal biset can be
computed from maximum flows. The separation[df (3) can be dgrthe maximum flow computation as
well in such a case. MoreovetCLP(V) has a compact representationVifs U, Vedee or Uicg V5, and
hence we can also use other LP solvers for sol®oP (V).

After solvingPCLP(V), we round each variablg(i), i € [d] in the optimal solution to eitheé¥or 1. The
demand paifs;, t; } is thrown away ify (i) is rounded tal. We letNPCLP(V) denote the LP such thgti)
is fixed to0 for all i € [d]. We then apply a primal-dual algorithm, given in the subsediisection, that
computes a spider for the remaining demand pairs. The #igodoes not deal withPCLP(V) directly but
runs on a simpler LP, which we calimpleLP(V). The following is a description dimpleLP(V).

SimpleLP(V) =

minimize > )" i+ (#in(v,5) + Tout (v, 5))
veV jeW

subject to > Z z(uv, j,j') > 1 for X e V, (6)
wesy (X) (4,3)ern
Tout (U, J) Z Z x(uv, j,5") for X eV,ueV\Xt jeW, (7

veX: jlew:
uvEA (] J )E\Ijuv

zin(v,7) Z Z z(uv, j, 5" for X eV,ve X,j eW, (8)

weV\Xt: JEW:
uww€A (4,3)e¥™Y

Zin(v,7) >0 forveV,jeW,
ZTout(v,7) >0 forreV,jeW,
r(uv,j,7') >0 foruv € A, (,5') € .

Instead ofx(v, j) in PCLP(V), SimpleLP()) has two variables;, (v, j) andz.u (v, j) for each pair of
v € Vandj € W, wherez;, (v, j) indicates ifv is assigned the weigljtfor activating edges entering and
zout (v, 7) indicates ifv is assigned the weighjtfor activating edges leaving We require this modification
in order to obtain a primal-dual algorithm.

SimpleLP()V) does not relaXPCLP()V) or the biset covering problem. In fact, the analysis of oumpt-
dual algorithm does not useimpleLP()). The LP relaxation we use impleLP(L) defined from some
subfamily £ of V. We do not knowZ beforehand, but we can show thétis a strongly laminar family
of cores ofV. The following lemma indicates that in this ca&ampleLP(L) is within a constant factor of
NPCLP(V).
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Lemma 6. SimpleLP(L£) < 2NPCLP(V) if V isuncrossable and £ is a strongly laminar family of cores of
V.

Proof. Let  be an optimal solution foNPCLP(}V). Decreasing: greedily, we transfornx into a mini-
mal feasible solution t&PCLP(L). Then, we define a solutior to SimpleLP(L) so thatx'(uv, j,5") =
maxgse . (u, j, §', C) for eachuv € A and(j, ;') € ¥*, andz’ . (v,j) =z}, (v, j) = z(v, j) for each
v € V andj € W. The objective value af’ in SimpleLP(L) is at mos2NPCLP()). Hence, it suffices to
prove thatz’ is feasible t®impleLP(L).

() follows from [3). LetC' € My. If (@) is violated forX € £(C),u € V\ Xt andj € W, then there
exists a pair ofiw € 65 (X) andC’ € My such that(uv, §,§', C") > z(uv, j, j',C). The minimality of
z implies that there existy” € £(C) with uv € §(Y). The strong laminarity of indicates thal” is
comparable withX, but this means that € £(C'), which is a contradiction because a core does not include
two min-cores. Therefore; satisfies[(I7). We can similarly prove thétsatisfies[(B) as well. O

The dual ofSimpleLP(V) is

SimpleDual(V) =
maximize > 2(X)
Xev
subject to Yo AX)< > (z(X,u,j) + z(X,v,j’))
Xevuves; (X) Xevuves; (X)
foruv € A, (j,5') € ¥, 9)
> X)) < forveV,j e W, (10)
XevweX
> X ug) < forueV,jeWw, (11)
XeVweV\X+
2(X) >0 for X e V,
2(X,0,7) >0 for X e V,o ¢ (X),jeW.

In the subsequent section, we present an algorithm for congpnode weights activating a spider and
a solutionz feasible toSimpleDual(L) for some strongly laminar family of cores. The sum of weights
is bounded in terms of | ¢ - 2(X).

4 Primal-dual algorithm for computing spiders

A spider for a biset family is an edge sef C E such that there exidt € V and X, . .. ,Xf € M, and
S can be decomposed into subs§ts. .., Sy that satisfy the following conditions:

o V(S;)NV(S;) C {h} foreachi,j € [f] with i # j;
e S; coversC(X;, h) for eachi € [f];

o if f=1,thenC(X1,h) =C(X,);

e h ¢ X foreachi € [f].
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his called the head, andl;, . . . ,Xf are called the feet of the spider. For a spiflewe let f(.S) denote the
number of its feet. Note that this definition of spiders fadtifamilies is slightly different from the original
one in [13], where an edge set is a spidel in [13] even if it dessatisfy the last condition given above.

In this section, we present an algorithm for computing sgid®ore precisely, we prove the following
theorem.

Theorem 2. Let V be an uncrossable family of bisets. There exists a polynomial-time algorithm for com-
puting w: V. — W and a strongly laminar family £ of cores such that F,, contains a spider S and
w(V)/f(S) < SimpleLP(L)/|My| holds.

Our algorithm keeps an edge st C F, core families, A C C, and a feasible solution to
SimpleDual(L). We initialize the dual variables to 0 and £’ to the empty set.L and.A are initialized
to the family M of min-cores ofY. By Lemma2,L and.A are pairwise strongly disjoint. The algorithm
always maintaing being strongly laminar andl being pairwise strongly disjoint.

Increase phase: After initialization, we increase dual variablesX), X < .4 uniformly. We introduce
the concept of time. Each of the variables is increased byroaeinit of time.

For satisfying the constraints @&fimpleDual(L), we have to increase other variables as well. Let
uv € 5;()2) and(j,j") € v"¥. To satisfy [9), for each such pair ek and(j, j'), we have to increase
2(X,u,j), orz(X,v,j). Note thatz(X, u, j) is bounded from above bif{111) fét, j), andz(X, v, ;') is
bounded from above by {1L0) f¢p, j/). Our algorithm first increaseg X , v, ;') at the same speed a&X)
until (10) becomes tight fofv, /). Let r(v, ;') denote the time wheh (10) becomes tight for;’). After
time 7(v, /), the algorithm increases X, u, j). There may exist another pair af’ € 0 (X) (possibly
v =v)and(j, ") € ¥*'. In this case, we stop increasingX ,v', ;') at timer (v, ;') even if [I0) is not
yet tight for (v/, ') at timer (v, j'), We say thatuv, j, ') getstight when we cannot increasé X , u, j) or
2(X,v,5').

Events: After increasing the dual variables for some time, we enteruan event that the variabhéX )
for someX € A can no longer be increased because of a tight tiplej, ') with uwv € §,(X) and
(7,5") € “?. Let7 be the time when this event occurs.

It is possible that more than one such tuple may get simudtasig tight. We choose an arbitrary pair of
uw €V \ XT andj € W such that there exists a tight tuglev, j, J") with v € 6 (X X) and(j,j') € U¥.
Let (uv1, j1), ..., (uvp, jp) be the pairs of edges leavingn ¢, (X) and weights such thati,y, j, jr) is a
tight tuple for each’ € [p]. For eachy’ € [p], deflneY/ as the minimal core it such thatuw, € 85 (V).
Without loss of generality, suppos§ C --- C Y C X. We add the undirected edde, v;} to F'
and assign the weight to « and weightj; to v;. We say thatX is the witness of the edge{u, v }.

2(X’,u, j) > 0 for some biseX’ e £ comparable withX, thenY; C X’ C X holds because the algorithm
does not increase(X’, u, j) unless there exists a pair of € 0 (X") and(j,5) € ¥* such that[(ID) is
tight for (v, j'), and(uw, 4, ') is tight when[(11) tightens fofu, j).

Let B be the set of directed edges leavimgvhose corresponding undirected edges are addédab
time 7 or earlier, whereB does not contaimw if {u,v} is added toF’ because ofu. We define two cases
here. In Case (a)B| = 1 holds and there exists a cafee C such thatX ¢ Z andZ is not covered by
In Case (b)|B| > 2 holds or all coresZ € C with X ¢ Z are covered by

Case (a): | B| = 1 and there exists a cote € C such thatX C Z andZ is not covered by". Let Z
be a minimal core among such corésis unique becausér (X ) is a ring-family by Lemmakl2 arid 3. We
addZ to both£ and.4, and removeX from A.

Lemma7. A isthe family of min-cores of Vy after the update of Case (a).

Proof. Letuv € B. Recall thatuv coversX, and hence € X C Z. It suffices to show thafu, v} covers
no core inA. LetZ' € A. If Z/ = Z, then its definition implies thafu, v} does not cover it. Hence,
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suppose that’ # Z. Let I’ represeni before{u, v} is added. Sinc&’ was in.A before the update;’ is
a min-core ofV, which implies thatZ andZ’ are strongly disjoint by Lemnid 2 (iii): ¢ Z’ follows from
v € Z. Since{u, v} does not cove#, we haveu € Z+, and hence: ¢ Z'. These indicate that, v} does
not coverZ’. O

LemmdY indicates thad is palr\lee strongly disjoint and is strongly laminar even after the update.

Case(b): |B| > 2orall coresZ with X C Z are covered by In this case, we go to the deletion phase,
which removes several edges fram We then output the obtained edge set, node weights foradickiythe
edge set, and. We will show that the edge set is a spider wiij feet.

Deletion Phase: LetY € A, and letYs, ..., Y,_; be the cores included Hy in £. We also lett; = Y.
We assume without loss of generality thatc --- < ¥; holds.Y; is a min-core of\. Let F; be the edges
in I whose witnesses are {11, ..., Y;}. Note thatF' can be partitioned intdy, Y € A

For each’ ¢ [I], F contains an edgéu;, vy } whose witness i§7,. Without loss of generality, we have
v € Yy anduy € Y5\ V! for I/ € [I], where we lety,, = V for convenience. We apply the following
algorithm to delete several edges frdmp.

Deletion algorithm

Step 1. Definep asl andS; asFy.

Step 2: Let ¢ be the smallest integer iip] such thaty, € Y,. Remove{u,_1,v,-1},...,{ug, vy} from
Sy
Step 3: If ¢ > 1, then sep to ¢ — 1 and go back to Step 2. Otherwise, outpyt and terminate.

Figure 1: An example ot7,...,Y; and {ur,v1},...,{w, v} with I = 5. Red edges are those chosen
in Sy. Areas surrounded by the dotted lines represent bisetsdardgray areas represent boundaries of
bisets.

Figure[l illustrates an example to which the deletion atbariis applied. Below, we le$;. denote the
edge set obtained by applying the deletion algorithmi'o

Lemma8. Any corein C(Yl, uy) is covered by at least one edge in Sy.. The core Y} is covered by exactly
one edgein Sy for each !’ € [I].
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Figure 2: Bisets in the proof of Lemnmi& 8. The left figure ilhases the case whefe> ¢, and the right
figure illustrates the case wheye= q.

Proof. Let!’ € [I]. First, we show that} is covered by exactly one edge #.. When the event occurs
to Y/, the algorithm adds the edde,, v, } coveringYy to F, and defined as the witness of the edge.
{uy, vy} is not removed by the deletion algorithm unless another edygeringY; remains inSy. Hence
Yy is covered by at least one edge after applying the deletigorighm. Letp be the minimum integer in
1] such that{u,,v,} € Sy coversYy. By way of constructing’, we havep > I’. Suppose that another
edge{u,, vy} € Sy coversYy as well. Thenp, € Yy holds. The definition op indicates thap’ > p.
However, in this case, the deletion algorithm remo{es, v, } from S;. Hence,Y;s is covered by exactly
one edge irb.

Let Z € C(Y1,u;). We show thatZ is covered by at least one edgeSp. To the contrary, suppose
that 7 is covered by no edge ifi;.. Let Z be a maximal core among such cores, ang Ie¢ the maximum
integer in[l] such thaty, C Z. By the above claimg, contains the edge = {u,,v,} coveringY;. Since
e does not coveZ, we havee C Z*, andp < [ holds because; ¢ Z.

Suppose that > q. The IefE exemple in FiguriEAZ illystratee this case. By theximality of q, Yp is not
included byZ, and henc&Z C Z UY), holds. Since&Z UY,, € C(Y1,v;), the maX|maI|ty ofZ indicates that
ZU Y is covered by an edge ifi,.. Letf be an edge irb coverlngZ U Y Sincee C Z™T, e does not
coverZ U Y;,, implyinge # f. f coversZ orY. If f coversY;,, thenY is covered by two edges ifi.,
which is a contradiction. Henc¢,coversZ, which is a contradiction again.

Next, consider the case whewe= ¢q. The example on the right side of Figlre 2 illustrates thiseca
e C Y+ follows fromp = ¢. Hencee C Y 1 N Z*, ande does not covef/q+1 N Z. By the maximality
of ¢ Yg41 is not included byZ, and hencé/ g+1 N ZC Yq+1 By Lemmd'_'}’Y+1 was a minimal core in
C(Yl,ul) that was not covered b¥ whene was added td'. Note thathH nZze C(Yl,ul) Hence, an
edge inF coveredYqH N Z whene was added td”. Let g denote such an edge Sing&loes not cover
Yq+1, we haveg C Yq+1, implying that the witness of is included bqu+1 Y is not the witness of
because # g. Hence, the witness qf is also included b)Yq. From this, it follows thaty C Y(;L c z+.
However, it indicates that does not covek,,; N Z, which is a contradiction. O

Let h be the node that each edgeBrleaves. WhenB| > 2, let X be the family of witnesses of edges
in B. We apply the deletion algorithm to eath € X' to obtainS,., and defineS = UYeX Sy When
|B| = 1, let X be the witness of the edge 1, and letX be the family ofX and maximal cores i \ A
that is not comparable wit. We apply the deletion algorithm to each cdfé € X to obtain Sy, and
defineS = (Jy ., Sy, when|B| = 1. In the following lemmas, it will be shown thatis a spider with 5|
feet andh is the head of.
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Lemma9. When | B| = 1, the edge set S isa spider with only one foot, and its head is h.

Proof. Let X be the witness of the edge i and M be the min-core included h¥. We prove thatS is a
spider and its foot i$/. Lemmd8 indicates that all cores@), h) are covered by ;. Hence, it suffices
to show that each cor# C(J\Z/) with h € Z* is covered byS. Suppose thaf is covered by no edge in
S. Let Z be the minimal core among such cores. There exists anedgéa, b} € F that coversZ. Let
K, be the witness of, and leta € K, andb ¢ K", without loss of generality. If{; € X, thene remains
in S. Hencek; ¢ X. K is either incomparable witlX or is included byX. If more than one edge iff
coverZ and one of them givek; incomparable withX, then we choose such an edgecas

Figure 3: Bisets in the proof of Lemrfid 9. The left figure ilhasés the case whef€, is incomparable with
X, and the right illustrates the case whéfe is included byX .

Suppose thais; is incomparable withX. The left example in Figuri 3 illustrates this case. Kgtbe
the min-core included by, and Ietf(g be the minimal core irC with K; C K,. Note thate C K,
andZ and K, are incomparable. Them{2 \ Ze C(Ko) holds, and it is covered by some edfjec S by
Lemma8. Sincef does not coverZ it has one end-node i, \ Z* and the other i/ \ (K U Z). On
the other handZ \ K, € C(M). The minimality ofZ indicates thaZ \ K, is covered by some edgec< S.
Sinceg does not coveZ, it has one end-node if\ K~ and the other ik, N ZF. These imply thaf # g,
and bothf andg coverK2 If K2 € L\ A, then this is a contradiction because any corg inA is covered
by exactly one edge ifi by Lemmd8. Otherwisds, € A\ {X}. Even in this case, there is a contradiction
because each core i\ {X} is covered by no edge iA.

Suppose thak; is included byX. X U Z e C(M) holds. MoreoverX C X U Z holds becaus¢*
includesh, andZ ¢ X U Z holds becauséa, b} € op(Z Z) is included byX*. X U Z is covered by some
edgef’ € F. The witness off’ is incomparable withX since otherwisef’ C X*. f’ coversX or Z. If
f’ coversZ, thenf’ is chosen instead ef and this case is categorized into the previous one wheris
incomparable withX. Hence,f’ coversX. Then, LemmaBI2 (iii) and 7 indicate that all cores comparabl
with the witness off’ are covered by before X is added ta4, which is a contradiction. O

Lemma 10. When |B| > 2, the edge set S isa spider with | B| feet, and £ isits head.

Proof. Let B = {B,..., B} be the set of witnesses of the edges3inLet M, be the min-core included
by By, and letFy, denoteFp,, for eachy’ € [b]. Lemm&.8 shows thdt;, coversC(My, h) for each’ € [b].
Hence it suffices to prove tha&t(F,,) NV (Fy,) C {h} for eachb;, by € [b] with by # be. Suppose that
e1 € Fy, andey € Fj, share an end-nodewith h # v.

Suppose that; was added td" beforeey. Let Y, be the witness o, andf/l’ be the core that was
added ta4 whenY; was removed fromd. Note thatY; c Y7/, ande; does not covel’; but Y. Hence,
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v € (Y{)*, and the other end-node of is in By,. If v € Y/, thene, covers all cores including;, since
they are strongly disjoint witfy{. Hence, Case (b) occurred whenwas added td”, andv must beh in
this case. Even if ¢ Y7, e; ande, are added td” because of the directed edges leaving his means that
Case (b) occurred when was added td’, andh = v holds. O

Lemmall. Thereexistsw: V' — W suchthat Sisactivated by w,andw(V')/f(S) < > 4., 2(X)/|My).

Proof. Recall that each edge #is undirected, but it has a unique direction in which it esitle inner-part
of its witness. Hence, we regard the edges'ias directed edges in this proof. For each uwv € S,
there existyj., j.) € ¥* such that[(I) is tight fofu, j.) and [10) is tight for(v, /). We can activate
by settingw(u) to a value of at least. andw(v) to a value of at least.. Whene is added taF’, e assigns
Jje touwandj’ tov. If a node has incident edges # we set the weight of the node to the maximum value
assigned from the incident edgesdnlf a node has no incident edge $) then its weight is set t0. Let 7
be the time when the algorithm was completed. Below, we ptioakethe total weight assigned from edges
in S is at mostr f(S) where we do not count the weight assigned to the teaflS multiple times. Since
T =3 ger #(X)/|M], this proves the lemma.

Let M be a foot ofS and.S’ be the set of edges ifi that coverC (M, ). Lete = uv € S'. e assigns
Jje € W tow andj. to v. Moreover,

Je = Z z(X,u,je) (12)

XeLwev\x+

holds becausé (11) is tight f¢u, j.), and

jo= Y X040 (13)

XeLweX

holds becausé (10) is tight fov, ;. ). Let 7. denote the time when (IL1) became tight far j. ).

We first consider the case whete# h. Let us prove that the right-hand side ©of1(12) is contribugd
cores covered by. Suppose that(X,u,j.) > 0 holds for someX € £ with w € V \ X*. Then there
exists an edgew’ that coversX, and [I0) was tight for some/’, j') with (j., ;') € U at timer,. If
X ¢ E(]\Z/), then this means that Case (b) occurred wheras added td'. Since this contradicts # h,
we haveX € L£(M). If X includes the witness of, thene coversX because: ¢ X*. Hence,X is
included by the witness af. However, in this caseyv is not added td” by the algorithm. Hence covers
X.

The right-hand side of{13) is also contributed by cores mveye. To see this, suppose thatX , v, j/) >
0 holds for someX € £ with v € X. If e does not coveiX, thenu € X+ holds, implying that: was
already inF when X enteredA. In other words,X entersA after timer.. However, [ID) was tight for
(v,7.) at timer,. Therefore,z(X,v,.) > 0 does not hold unless coversX. Note that this is the case
even when, = h.

Whenu = h, e assigngj. to h but more than one edge leavihgn S may assign the same weight/o
By the same discussion as above, if a c8re £ with & Z Xt satisfie&(f(, h, je) > 0, thensS contains an
edge that leavels and coversX . Hence, we here count ONY. % e m) z(X, h, j.) as the weight assigned

frome to h. A core X € E(]\Z[, h) contributing to this value is covered layaccording to the discussion
above. Then the total weight assigned from edge¥’ iis exactly

Sy ((FwirXe) =3 X X

e=wveS’ XeL(M):e€d, (X) e€S XeL(M):e€d, (X)
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Lemmd3 tells that eack € £ is covered by exactly one edges$h Hence the right-hand side of the above
equality is equal t‘ixec(m z(X). Since two cores it (M) do not belong tod simultaneously, this does
not exceedr. SinceS hasf(.5) feet, it implies that the total weight is at masf(.S). O

Theoreni 2 follows from Lemmas 0,110, dnd 11.

5 Potential function on uncrossable biset families

In this section))’ is an uncrossable family of bisets andtands fomax ¢ _,, IT(X)].

For analyzing the greedy algorithm of choosing spiders atguity, we need a potential function that
measures the progress of the algorithm. Nutov [13] Ud€de| as a potential. He claimed that this potential
givesO(log d)-approximation becausgMy| — |[My| > f(5)/3 holds for each uncrossable biset family
V and each spidef of V. However, there is a case witiMy| — |[My,| = 0 as follows. Lety =
{X1,Y1,...,X,,Y,}, and suppose thaX; C Y; for eachl € [n], ¥; andY} are strongly disjoint for each
LI € [n] W|th [ #1', and a nodé: is in F(Yl) \ X;" for eachl € [n]. V is strongly laminar, and hence
uncrossable. Note thatty, = {X1,..., X, }, and henc¢/\/lv] = n. If the head of a spide§ is ~ and its
feetareX,,..., X, (i.e., f(S) = n), thenMVS = {¥3,...,Y,} holds, and hencgMy,,| = n. Therefore,
IMy| = [Myg| = 0.

Vakilian [17] showed that such an inconvenient situatioesloot appear it arises from the node-
weighted SNDP. To explain this more precisely, (let £ ) be the graph to be augmented in an instance of
the prize-collecting augmentation problem. Recall thatptoblem requires to add edges in an edgefset
to Ey. If this instance is obtained by the reduction from the nagéghted SNDP in Theoref 1, théfy is
the subset of}y U F induced by some node sétC V, and each biseX that requires to be covered satisfies
F(X) C U. Moreover, a spider is not chosen if its head i#/irand therefore the heads of chosen spiders are
not included by the neighbor of any biset. This means thdt epitlerS achieveg My | — | My | > f(S)/3
for V arising from the node-weighted SNDP. However this is notctige for all uncrossable biset families,
including those arising from the PCNAP beca(8eE,) may not be an induced subgraph in general.

Because of this, using\y| as a potential function gives no desired approximationantae for general
uncrossable biset families. Hence, we introduce a new patdéanction in this section. For a familyt’ of
cores and corél € X, let Ay(X) denote the set of nodese I'(X) such that there exists another core
Y € X\ {X}with v € T(Y). We define the potential.x(X) of a coreX asy — |Ax(X)|. The potential

¢(X) of X is defined agy + 1)| X[ + > ¢ o p P2 (X).

Lemma 12. Let X € My, S be an edge set, and Y be the min-core in My, such that X C Y where
X=Y possibly holds. Let v be anode with v € AMV(X)\AMVS (Y'),and Z beamin-corein My \ { X'}
withv € T'(Z). Then, S covers all coresin Cy(Z). If there exists a min-core in My, that includes Z, then
itisY'.

Proof. Sincev e P(X) C Y+, vis either inY or I'(Y). Suppose it is the former case (i.e.€ Y). Then,
A g Vg because” and Z are not strongly disjoint in this case, agde Vg contradicts LemmBl2 (iii).
Moreover, Z is included byY since, otherwise, they must be strongly disjoint, contititi the existence
of v. This means that all cores @, (Z) are covered byf.

Suppose it is the latter case (i.e.c I'(Y )) Let Z’ be a min-core vas that includesZ, and assume
that it is distinct fromy". Sincev ¢ AMyg (Y'), no min-core inMy,, \ {Y'} containsv in its neighbor. Hence

v € Z'. However, this means that andY are not strongly disjoint, which contradicts Lemma 2 (ilthis
implies thatS coversCy,(Z) since, ifCy,(Z) contains a core not covered By then the minimal core among
such cores is a min-core iy, distinct fromY". O
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Lemma13. Let S beanedgesetand Y e My \ My. Then, exactly one of the following holds:

e Y includes at least two min-cores in M, \ My, and all cores of V including these min-cores are
covered by S.

e Y isacoreof V that includes a min-corein M, \ Myy.

Proof. SinceY ¢ My, there exist min-cores iy, included byY'. Suppose that the number of such
min-cores is one, and we call the min-core Ky Then,Y is a core ofY. SinceY € My, X is covered
by S, and henceX € My \ Myy. If the number of such min-cores is at least two, then thescof&/
including such min-cores are covered $yecausd” is minimal inVs. O

Lemma 14. Let S be a spider for V. If f(S) = 1, then ¢(My) — ¢(Myy) > 1. Otherwise, p(My) —
d(Myg) = (f(5) —1)/2.

Proof. Let(S) denote the number of min-corés € M, such thatS covers all bisets i€y, (X), and let
£(S) denote the number of min-cords € M, such thatS coversY but not all bisets irCy,(Y). Note
thaty(S) + £(S) = f(5S) holds. If Y is a min-core counted i8(.5), then there exists a unique min-core
Y € My, that includes”. Let P denote the set of pairs of suthandY”.

Let X € My, be a min-core counted in(S). If a core of Vs includesX, then the core includes at least
two min-cores inM»y,. Let M; be the set of sucl that is included by a min-core g, and letM- be
the set of suckX that is included by no min-core afs (although it may be included by a coreli). Note
that| M| + |Ma| = v(S).

By Lemma 13, each min-core ity \ My, includes at least two members.bi; or belongs ta, (V")
defined by a min-cor& € My, covered byS. Hencel My, \ My| < |M;|/24£(S). From this, it follows

that
/\/l
Myl < [Mye \ M| + M| — (8) — £(5) < [My| — 2

— [Ma].

Recall thatp(My) is defined agy + 1)|Mvy| + 3 5 v, O (2 7), anqu(MVS) is defined agy +
1)|MVS|+EZEMVS My (Z 7). The first term ofs(My) is larger than that ab(M ) by (v+1)(|My| —
|IMyg|). Amin-coreZ € My, \ My either includes at least two members./of; or belongs taCy (V)
defined by a min-cor&” € My \ My (i.e., (Y,Z) € P). There are at mogiM;|/2 min-cores of the
former type, and hence the sum of their potentials is at miost; | /2. Let Z belong to the latter type. Note
that

Oty (V) = bty (2) = Bty ()] = [An (V)] = 1A (2)\ Aty (V)] = 1800, (V) \ Aty (D).

If there existsy € Ap,, (V) \ Apry,, (£), then there existé’ € My, counted inv(S) such that € T'(C),
andC' € Mj by LemmaIPR. We maké' give one token tdZ. Then,Z obtains| A, (V) \ Ay, (£)]

tokens. Note that onlyZ containsv in its outer-part among aII min-cores iMy,; If v € Z, then it is
implied by the strong disjointness of min-cores, and i€ I'(Z ) then it is implied byv ¢ AMV (Z )

Hence, eacl’ € M releases at most one token for each node I'(C)). Therefore, the total number of
tokens is at most| M|, and hence,

o 1AM )\ Ay, (2)] < A Mo).
(V,2)eP
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Summing up,

P(My) — d(Myyg)

> (4 (M| = IMyg) — DL S ar, (2)\ A )]~ 1800 )\ e, (2))
(V,2)eP
> 0 (B aael) - 250 a4 3 18, (2)\ Aa (D)
(V,2)eP
=P o 1Bu, (D) A ()
(Y,Z)eP
’AMVS \ AMV (Y)‘ (14)

(V,2)eP

If f(S) = 1, thenv(S) > 1, and hencep(My) — ¢(Myg) > 1/2 by (I4). Since potentials are
integers, this means tha{My) — ¢(My,) > 1. Suppose thaf(S) > 2. Consider the case where the
head ofS is included by the inner-part of some min-cake e My,. If afoot C of S is strongly disjoint
from X, thenCy,(C) is covered byS, and hence’ is counted inv(S). If X includes at least two feet
of S, then all cores ol including these feet are covered By Thereforev(S) > f(S) — 1, and hence
S(My) — d(Myg) = (£(S) — 1)/2 by (12).

In the remaining cas¢/,(S) > 2 and no min-core in\,,; contains the headd of S in its inner-part. By
definition of spiders, each fodt is covered bys. HenceC is counted inv(S) or £(S). If v(S) > f(S) —
then we are done. Hence, suppose that) < f(S) — 2. f(5) —v(5) feet of S are counted igf(.5). LetY
be a foot ofS that is counted ig(S). Then, there exist& e My, with (Y Z) e Pandh e T(Z)\T(Y).
Since My, contains at least two such, we haveh ¢ Amyy (Z) \ Am,, (Y). Therefore,

v(S)+ D 1By (D) \ Ay (V)] = £(S),
(Y,2)eP
and [14) implies thap(My,) — p(My,) > f(S)/2. O
Theorem 3. Let V be an uncrossable family of bisets. Thereexist w: V' — W, a spider S activated by w,
and a strongly laminar family £ of cores of V such that
w(V) SimpleLP(L)
P(My) — ¢(Myy) p(My)

Proof. Theoreni 2 shows that there exist V' — W, a spiderS activated byw, and a strongly laminar
family £ of cores such that

= O(max{y,1}) -

w(V) < SimpleLP(L)
f8) = Myl
Sincep(My) < (27 + 1)|My|, we have
w(V) _ SimpleLP(L) _SimpleLP(L)
) 5l - 0w e

If £(S) =1, thengp(My)—d(Myg) > f(S) by LemmdTIH, and hence, the required inequality follows
from (15). Otherwisep(My) — d(Myg) > (f(S) — 1)/2 by Lemme_ 14, and hence,

wV) . w(V) w(V)
7(5) = 2((S) 1) = A00My) — 6(My.))|
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where the first inequality follows fronfi(S) > 2. Combining with [I5), this gives

w(V)
p(My) — p(Myy)

SimpleLP(L)
p(My)

<42y +1)-

O

Our algorithm presented in Sectioh 4 computes the node vegeighnd spidelS claimed by Theorernl 3
in polynomial time. Alternatively, one can use the simpligloaithm in [15], which approximates within
a factor of2.

6 Algorithm

We first present our main theorem.

Theorem 4. Suppose that V is a biset family such that | J,., V; is uncrossable for each D C [d]. Let
Y = maxX gy, IT(X)| and v/ = max{~, 1}. The prize-collecting biset covering problem with V admits an
O(+'log(+'d))-approximation algorithm.

Proof. Let (x,y) be an optimal solution foPCLP(V). We first computez,y). We eliminate all demand
pairs{s;,t;} such thaty(i) > 1/2, and eliminate each biset that separates no remaining depzanfrom
V. Let)' be the biset family obtained after this operatioNBCLP(V') < 23" zjer - x(v, j) holds
becausez is feasible talPCLP()').

Applying TheoreniB ta)’, we obtainw, S and £ such thatw(V)/(¢(Myr) — ¢(Myr)) = O(') -
SimpleLP(L)/¢(My), and the right-hand side is at mas{y’) - NPCLP(V')/p(M,y») by Lemma®. If
qﬁ(MVS) > 0, then we apply Theoref 3 td;. Letw’ and S’ be the obtained node weights and spider,
respectively. We add edges i to .S, increase the weight(v) by «’(v) for eachv € V. We repeat this
until ¢(MV’S) becomes 0. By a standard argument of the greedy algorithitihéoset cover problem, we
havew(V)) = O(y'log(¢(M,))) - NPCLP(V') when the above procedure is completed. Sipcéty/) =
O(v'd), itimplies thatw(V') = O(y'log(v'd)) - NPCLP(V').

The penalty ofw is at most2 Zie[d} m;y(1) becauseS covers all bisets separating each demand pair
{si,ti} with y(i) < 1/2, andS C E,. w(V) = O(y'log(y'd)) - NPCLP(V') = O(v'log(v'd)) -
> jew 2vev J - (v, 7). Therefore the objective value af is O(v' log(7'd)) timesPCLP(V). Lemmal$
shows thaPCLP(V) is at most the optimal value of the prize-collecting bisetezing problem. O

Corollary 1. Let ¥’ = min{k, |V'|}. The edge-connectivity PCNAP admits an O(k log d)-approximation
algorithm, and the element-connectivity PCNAP admits an O(kk’ log(k’d))-approximation algorithm.

Proof. ;g V298 is an uncrossable family of bisets with = 0. Hence, Theorem| 1 afid 4 give an

O(k log d)-approximation algorithm for the edge-connectivity PCNAPR_ [d] Vele is an uncrossable family
of bisets withy < k¥’ — 1. Hence, Theorenis 1 andl 4 give @tkk’ log(k’d))-approximation algorithm for
the element-connectivity PCNAP. O

We note thatd = O(|V|?). Hence, the above corollary gives &rk log |V|)-approximation algo-
rithm for the edge-connectivity PCNAP, and &r{k? log |V |)-approximation algorithm for the element-
connectivity PCNAP.

The next corollary provides approximation algorithms fog hode-connectivity requirements. Since it
is reasonable to suppoge< |V| for the node-connectivity requirements, the next corglidmes not have
k" in contrast with Corollary]1.
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Corollary 2. (i) Thenode-connectivity PCNAP admitsan O(k® log |V'| log(kd))-approximation random-
ized algorithm.

(i) The rooted node-connectivity PCNAP admits an O (k3 log(kd))-approximation algorithm.

(iii) The subset node-connectivity PCNAP admits an O (k3 log(kd))-approximation algorithm.

Proof. Theoreni L reduces the node-connectivity PCNAP to the mallecting biset covering problem with
the biset familyy = Uie[d} ynode py paying factork. Chuzhoy and Khannal[4] presented a randomized
algorithm for decomposing an instance of the node-convigcNDP into O (k3 log |V|) instances of the
element-connectivity SNDP such that the union of solutifmsthe O(k3 log |V|) instances is feasible to
the original instance. This algorithm can be applied for pating O (k3 log |V|) uncrossable subfamilies
of V such that an edge set covering the union of the subfamiliesrs®. By Theorenl 4, we compute
O(klog(kd))-approximate solutions for instances of the prize-caihecbiset covering problem with the
subfamilies. We then return the union of the obtained smhsti This achieve® (k® log(kd)log |V |)-
approximation for the original instance of the node-conimigg PCNAP.

For the rooted node-connectivity PCNAP, we replace the migosition result due to Chuzhoy and
Khanna [4] by the one due to Nutav [13], which proved thatan be decomposed int@(k) uncrossable
subfamilies. This achievel(k? log(kd))-approximation for the rooted node-connectivity PCNAP.

Strictly speaking, Theoreim 1 cannot be applied to the sulseé-connectivity PCNAP because it is
not a special case of the PCNAP, but we can similarly provettieasame claim holds for the subset node-
connectivity PCNAP. Using a decomposition result in Nuidd][ the augmentation problem obtained by
the reduction can be decomposed into one instance with thtedaode-connectivity requirements and
OBIT|/(|IT| — k))* - 1og(3|T|/(|T| — k)) instances with single demand pairs. The former instance can
be approximated within a factor 6#(k? log(kd)) as above. Each of the latter instances admits a constant
factor approximation using the algorithm presented in.[Thlese give) (k2 log(kd))-approximation for the
original augmentation unlegs= |T'|—o(|T|). When|T'| = O(k) (including the case witk = |T'|—o(|T)),
the augmentation problem can be decomposedd@tc’) instances with single demand pairs, resulting in
anO(k?)-approximation for the augmentation problem. Recall thapay factork for reducing PCNAP to
the prize-collecting augmentation problem. Thereforehaee anO(k? log(kd))-approximation algorithm
for the subset node-connectivity PCNAP. O

Note thatlog(kd) = O(log |V|) in Corollary(2.

7 Conclusion

We have presented approximation algorithms for PCNAP. @arihms are built on new formulations of
LP relaxations, the primal-dual algorithm for computingdsps, and the potential function for analyzing
the greedy spider cover algorithm.

Our algorithms must solve the LP relaxation in order to deeidhich demand pairs should be satisfied
by solutions. In contrast, several primal-dual algoritheush as those in [1, 10] can manage this without
solving LP by generic LP solvers. In other words, these dlgmis are combinatorial. We believe that it is
challenging to design combinatorial algorithms for PCNAP.
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