
From Query-By-Keyword to Query-By-Example: LinkedIn
Talent Search Approach

Viet Ha-Thuc, Yan Yan, Xianren Wu, Vijay Dialani, Abhishek Gupta, Shakti Sinha
LinkedIn Corporation

2029 Steirlin Ct, Mountain View, CA 95035, USA
vhathuc@fb.com, {cyan,rwu,vdialani,agupta,ssinha}@linkedin.com

ABSTRACT
One key challenge in talent search is to translate complex
criteria of a hiring position into a search query, while it is
relatively easy for a searcher to list examples of suitable can-
didates for a given position. To improve search efficiency,
we propose the next generation of talent search at LinkedIn,
also referred to as Search By Ideal Candidates. In this sys-
tem, a searcher provides one or several ideal candidates as
the input to hire for a given position. The system then gen-
erates a query based on the ideal candidates and uses it to re-
trieve and rank results. Shifting from the traditional Query-
By-Keyword to this new Query-By-Example system poses a
number of challenges: How to generate a query that best
describes the candidates? When moving to a completely
different paradigm, how does one leverage previous product
logs to learn ranking models and/or evaluate the new system
with no existing usage logs? Finally, given the different na-
ture between the two search paradigms, the ranking features
typically used for Query-By-Keyword systems might not be
optimal for Query-By-Example. This paper describes our
approach to solving these challenges. We present experi-
mental results confirming the effectiveness of the proposed
solution, particularly on query building and search ranking
tasks. As of writing this paper, the new system has been
available to all LinkedIn members.

Keywords
query by example; learning to rank; talent search

1. INTRODUCTION
LinkedIn is the largest professional network on the Inter-

net with more than 450 million members. Its vision is to
create the world’s first economic graph matching talent and
opportunity at a massive scale. Over time, as its member
base increases and its economic graph vision becomes real-
ity, LinkedIn has become the source for corporations around
the world to find new employees. On the financial side,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2017 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.1145/1235

about 64% of the company revenue is from Talent Solu-
tions1, which is a product helping recruiters and corpora-
tions around the world search for talent. Therefore, talent
search problem is extremely important to LinkedIn both in
terms of value propositions it provides to its members as
well as its revenue stream.

On one hand, the main challenge in talent search is to
translate the criteria of a hiring position into a search query
that leads to desired candidates. To achieve this goal, the
searcher has to understand which skills are typically required
for a given position, what the alternatives are, which com-
panies are likely to have such candidates, which schools the
candidates are most likely to graduate from, etc. Moreover,
such knowledge changes over time. As a result, it is not sur-
prising to find that even for experienced recruiters, it often
requires many search trials for formulating a good query, as
observed in the LinkedIn search log data.

Alternatively, it is usually easier for a searcher to pick one
or several examples of good candidates for a given position.
For instance, hiring managers or recruiters can simply source
by using existing team members as ideal candidates. Moti-
vated by such use cases, we propose a new talent search
approach called Search By Ideal Candidates. In this new
approach, instead of specifying a complex query capturing
the position requirements, the searcher provides a small set
of ideal candidates (typically from one to three candidates)
suitable for the position. The system then builds a query
from the input candidates and provides the query to the
searcher. It is worth emphasizing that the query built from
the ideal candidates is not only an intermediate goal used to
find result candidates but something a searcher could con-
tinue to modify. Exhibiting the query allows the searcher to
rationalize why a certain result is shown up in search results
thus making the system transparent to the searcher. Sub-
sequently, the system retrieves the candidates matching the
query and ranks them with respect to the query as well as
the ideal candidates.

However, moving from the traditional Query-By-Keyword
to Query-By-Example paradigm raises a set of technical
challenges. The first challenge is how to extract the key
information from each of the ideal candidates’ profiles and
aggregate them to generate a query best describing the in-
formation need that the candidates collectively represent.
Second, since talent search is highly personalized, the most
typical way to get training data to learn and evaluate rank-
ing functions is from usage logs [8]. With no existing logs for
the new paradigm, we have to invent ways of repurposing

1https://press.linkedin.com/about-linkedin

ar
X

iv
:1

70
9.

00
65

3v
1

 [
cs

.I
R

]
 3

 S
ep

 2
01

7

10.1145/1235

the logs from the Search-By-Keyword paradigm. The final
open question is, given the difference between the two search
paradigms, which new signals we should add to the ranking
function to make it suitable for a Query-By-Example sys-
tem. To the best of our knowledge, there is no prior work
comprehensively addressing these challenges in an industrial
setting.

In this paper, for the query building challenge, we pro-
pose an approach that in addition to taking the ideal candi-
dates’ profiles into account, also leverages a large volume of
semi-structured data and social affiliations on LinkedIn pro-
fessional network. This approach filters out outliers in the
profiles, extracts the relevant information from the profiles,
and infers missing relevant information to generate queries.
To overcome the lack of usage logs of the new Search By Ideal
Candidates system, we propose a generative model to infer
labeled data for Search By Ideal Candidates from usage logs
of the previous Query-By-Keyword system. Even though
our work is rooted in talent search, we believe the approach
is also useful when developing a Query-By-Example from
Query-By-Keyword system in other domains. Finally, in or-
der to adapt the search ranking, we introduce a new set of
features that directly capture the resemblance between the
ideal candidates and the retrieved results on various aspects
including expertise, job title, career-trajectory similarities.

Our experimental results confirm the effectiveness of the
proposed query building and search ranking approaches. In
particular, when evaluated on a randomized test set col-
lected from live traffic, the new ranking model is 13.1% bet-
ter in terms of NDCG@5 than the ranking model currently
used in the Query-By-Keyword system. When compared
with a second baseline that is trained specifically for Query-
By-Example use case but does not use the proposed features,
the new model is still 6.2% better. That demonstrates the
benefit of the aforementioned new feature set.

The rest of the paper will be organized as follows. Section
2 reviews related work. Section 3 presents an overview of
the whole system. Sections 4 and 5 discuss the two most
important steps: query building and learning ranking func-
tion. Experimental results are shown in Section 6. Finally,
we conclude our works in Section 7.

Disclaimer: The first version of Search By Ideal Candi-
dates system was previously demonstrated at WWW 2016
[9]. However, in this paper, we rigorously focus on tech-
nical aspects of the work instead of system demonstration.
Moreover, this work also presents significant improvements
recently made. Specifically, we propose an approach to gen-
erating training data as well as novel features specifically
designed for Search By Ideal Candidates paradigm. Finally,
we also conduct analyses to give deeper insights on the sys-
tem effectiveness as well as detail various design tradeoffs
and practical lessons learned during the course of the work.

2. RELATED WORK
Our work in this paper is related to several previous re-

search directions in the literature including: (i) Query-By-
Example; (ii) relevance feedback in text retrieval; (iii) item-
to-item recommendation; (iv) learning to rank. In this sec-
tion, we review these directions and differentiate our work
from previous ones in each direction.

2.1 Query By Example
Query-By-Example (QBE) in image retrieval (also referred

as content-based image retrieval), especially in dermatology
studies, originates from the seminal work in [3, 23] in 1980s
and 1990s. QBE in image retrieval systems typically utilizes
the example images containing objects of interest to generate
visual features which include color and texture for detecting
and identifying the particular objects easily. More recently,
there has been a focus on Query-By-Example in text domain
[30, 28]. Text based QBE systems extract key phrases from
unstructured query documents by using techniques like tf-
idf and also combine them with semantic matching, such as,
LSI and LDA.

Although conceptually similar, the previous work and QBE
in talent search differ significantly. Firstly, from an entity
understanding aspect, QBE in image retrieval and text re-
trieval focuses on semantically simple features, whereas, tal-
ent search relies on entity understanding for richer features
that capture interaction effects between entities. For ex-
ample, people’s professional signatures (e.g., career trajec-
tory, endorsed skills and social connections) are hierarchi-
cally structured and contain complex information compared
to images or text documents. Secondly, from a retrieval sys-
tem’s perspective, the goal of QBE for image retrieval is
to justify the existence of certain objects within an image.
However, in talent search, the goal is to accurately capture
the searchers intent. Thus, talent search not only relies on
the examples themselves but also the search context to pre-
cisely capture what exact skills, experience, etc., that the
searchers are seeking and other perspectives that are con-
textual to their use of the system.

2.2 Item-To-Item Recommendation
Since the seminal work of Sarwar et al. [24] and Bala-

banović et al. [1], item-based collaborative filtering has been
widely used to identify similarity between recommended items.
Later efforts include, but are not limited to [25, 16, 27, 12].
[27] provide probabilistic frameworks which make the col-
laborative filtering more robust when dealing with sparse
data. Schein et al. [25] combine the content-based approach
(Section 2.1) and collaborative filtering together so that the
whole approach could handle the cold-start problem. In [12],
Koren combines collaborative filtering with latent factors to
utilize both the neighborhood information and latent fac-
tors. In our own previous work [29], we use such a technique
to define career-path similarity for similar people recommen-
dation system on LinkedIn. For a comprehensive coverage
of the topic, please refer to the survey [26].

Unlike the item recommendation problem, our case, i.e.,
Search by Ideal Candidates has a strong emphasis on making
the recommendations“explainable”- it is not only important
to generate relevant results but also critical to build descrip-
tive queries. These queries are also presented to searchers
in order to provide transparency on why a certain result
is shown up in search ranking. Moreover, this allows the
searchers to have control on search results by interacting
with the presented queries, which is noted as query edit and
rewrite. Therefore, our case uniquely combines aspects of
search and recommender systems.

2.3 Relevance Feedback in Information
Retrieval

Relevance feedback is a popular approach used in text re-
trieval. It leverages searcher’s feedback on an initial set of re-
trieval results to refine the original query. The query refine-

ment could be in the form of re-weighting the query terms
or automatically expanding the query with new terms. Roc-
chio [21] is widely considered to be the first formalization of
relevance feedback technique, developed on the vector space
model. He proposes query refinement based on the difference
between the average vector of the relevant documents and
the average vector of the non-relevant documents. A subse-
quent approach uses probabilistic models that estimate the
probability a document is relevant to the information need
[20, 13], where the probabilistic models are inferred from the
feedback documents.

Unlike the previous work focusing on free text, both in-
put documents (ideal candidates) and generated queries in
our case are semi-structured. Each field in the documents
and queries has unique characteristics and requires a differ-
ent query building strategy. Moreover, the ideal candidates
(examples in the QBE) are also used to construct various
features in the machine-learnt ranking function.

2.4 Learning to Rank
Learning a ranking function for Search By Ideal Candi-

dates, that incorporates signals from examples in QBE has
shown promising results in our work. Learning to rank
(LTR) has been central to information retrieval (IR), as
most systems typically use many features for ranking and
that makes it difficult to manually tune the ranking func-
tions. There has been a lot of research published in the
area of LTR, typically categorized into one of the three fol-
lowing categories: (a) pointwise approaches view ranking as
traditional binary classification or regression problems. (b)
pairwise approaches take input as a set of pairs of documents
in the form of one document is more relevant than the other
with respect to a specific query. These approaches then learn
a ranking function minimizing the number of incorrectly or-
dered pairs. (c) the state-of-the-art for LTR is listwise ap-
proach. This approach typically views the entire ranked list
of documents as a learning instance while optimizing some
objective function defined over all of the documents, such
as, normalized discounted cumulative gain (NDCG) [2]. We
refer the readers who are interested in more details of LTR
to [4, 17, 14] for more comprehensive reviews.

A key element of LTR is collecting ground truth labeled
data. Traditionally, ground truth data is labeled by either
professional editors or crowd sourcing [4]. However, the is-
sues with this approach are (i) it is expensive and not scal-
able and (ii) it is very hard for the judges to evaluate the
relevance on behalf of other users, making it challenging
to apply the approach for personalized ranking. For these
reasons, some previous research proposes to extract labeled
data using click logs [11, 5].

However, unlike the previous work, when moving from
Query-By-Keyword to Query-By-Example, the new system
does not have logs to learn from. Instead, we propose an
approach to generating training data for the new search
paradigm by leveraging the logs of the traditional search-
ing scheme.

3. SYSTEM OVERVIEW
Given a set of input ideal candidates selected by a searcher,

the system builds a search query by capturing key informa-
tion in their profiles and utilizes the query to retrieve and
rank results. The overall flow is shown in Figure 1. In the
first step, we extract the raw attributes, including skills,

Figure 1: System Overview

companies, titles, schools, industries, etc. from the ideal
candidates’ profiles individually. These raw attributes are
then passed to a query builder. For each attribute type, the
query builder aggregates the raw attributes across the input
candidates, expands them to similar attributes and finally
selects the top ones that best represent the ideal candidates.

Once the query builder generates a query, the query is
shown to the searcher and used to retrieve results that are
similar to the ideal candidates. The searcher can interact
and modify the query, for instance, adding or removing some
attributes like skills, titles or companies in the query. After
the query is modified, search ranker refreshes the search re-
sults. Unlike the traditional search ranking functions, such
as [17, 8], that are functions of query(-ies), result(s) and
searcher(s) (if personalized), the search ranking function in
our system takes all of them as well as the input ideal candi-
dates into account. In the next sections, we discuss in more
details how to generate a query from input ideal candidates
and how to learn a search ranking function specifically for
Search By Ideal Candidates.

4. QUERY BUILDING
After a searcher selects one or a few ideal candidates, the

query builder generates a query that contains titles, skills,
companies and industries as demonstrated in Figure 2. The
upper part of the figure shows snippets of the two selected
candidates’ profiles. The lower part shows the GUI of the
system. The generated query (on the left rail) contains val-
ues for each of the four attribute types. Skill attribute in-
cludes “machine learning”, “Algorithm”, “Distributed Sys-
tems”, etc. These are the skills that the query builder be-
lieves best represent expertise of the candidates. Similarly,
job title, company and industry fields contain the corre-
sponding entities that results similar to the ideal candidates
are likely to have. In our system, different variations, such
as, “tech lead” and “technical lead” are mapped (standard-
ized) to the same entity. After observing the query, the
searcher can delete entities that he thinks irrelevant. He
can also add new ones by either selecting the ones that the
system suggests (e.g., “Senior Software Engineer” in the fig-
ure) or manually entering them.

Given the query displayed on the UI, the actual search
query sent the backend search engine is simply a conjunc-
tion across the attribute types. In each attribute type, we

Figure 2: Query Building

take a disjunction across the selected entities. For instance,
the search query for the example in Figure 2 would be:
Q = title:(“Staff Software Engineer” OR “Staff Scientist”
OR “Technical Lead”) AND skill:(“Machine Learning” OR
... OR “Big Data”) AND company:(“LinkedIn” OR ... OR
“Oracle”) AND industry:(“Computer Software” OR ... OR
“Online Media”). This query is used to retrieve and rank the
results, which are shown on the right rail in the figure. Due
to space limit, in this paper, we focus on how to generate
skill facet, which is usually the most informative part of a
query.

4.1 Skill Selection
LinkedIn allows members to add skills to their profiles.

Typical examples of skills for an information retrieval re-
searcher would be“search”,“information retrieval”,“machine
learning”, etc. On LinkedIn, there are more than 35 thou-
sand standardized skills. Members can also endorse skills of
other members in their network. Thus, skills are an integral
part of members’ profiles that showcases their professional
expertise. A challenge is that the ideal candidates may not
explicitly list all the skills they have on profiles. On the
other hand, some of their skills might not be relevant to
their core expertise. For instance, an information retrieval
researcher could have “nonprofit fundraising” skill.

To overcome these challenges, we first estimate expertise
scores of a member on the explicit skills and the ones he
might have. Figure 3 describes the offline process to estimate
the expertise scores. In the first step, we use a supervised
learning algorithm combining various signals on LinkedIn
such as skill-endorsement graph page rank, skill-profile tex-
tual similarity, member’s seniority, etc. to estimate the ex-
pertise score, i.e., p(expert|member, skill). After this step,

Figure 3: Member-skill expertise estimation

the expertise matrix (E0) is very sparse since we can be cer-
tain only for a small percentage of the pairs. In the second
step, we factorize the matrix into member and skill matri-
ces in K-dimensional latent space. Then, we compute the
dot-product of the matrices to estimate the “unknown” cells.
The intuition is that if a member has“machine learning”and
“information retrieval” skills, based on skill co-occurrence
patterns from all of our member base, we could infer that
the member is also likely to know “learning-to-rank”. Since
the dot-product results in a large number of non-zero scores
of each member on the 35K skills, the scores are then thresh-
olded. If member’s score on a skill is less than a threshold,
the member is assumed not to know the skill and has that
expertise score corresponding to zero. Thus, the final ex-
pertise matrix (E1) is still sparse but much denser than E0.
We refer interested readers to our recent work [8] for more
details.

f(sk) =
∑
c∈IC

expertiseScore(c, sk) (1)

At runtime, given a set of input ideal candidates IC, we
rank the skills by Equation 1. The top-N skills are then
selected to represent the ideal candidates. Expertise scores
of an ideal candidate on outlier skills are typically very low,
resulting in unselected. Moreover, by taking the sum over all
candidates, we boost the skills that many candidate profiles
contain, to represent the commonality of the skill set.

5. LEARNING TO RANK FOR SEARCH-BY-
IDEAL-CANDIDATES

5.1 Training Data Generation
As mentioned before, since Search By Ideal Candidates is

a brand new product, it does not have any usage logs from
which we can generate training data at the time the system
is being built. To overcome this, we propose a generative
model to infer training data from the logs of our previous
Query-By-Keyword system. In this generative model, an in-
formation need (hiring position in searcher’s mind) is mod-
eled as a latent variable and denoted as the unshaded node
in Figure 4. Given the information need, the searcher gen-
erates a keyword query in the Query-By-Keyword system
and gets a list of results. The query and results are ob-
served variables, denoted as shaded nodes. If the searcher
decides to reach out to some of the results, these results

Figure 4: Generate training data for Search By Ideal
Candidates from usage logs of a Query-By-Keyword
system

Figure 5: Graded relevance labels derived from
searcher’s actions on results.

are likely to be relevant to the hidden information need.
It is worth mentioning that on our premium talent search
product, searchers are charged some amount when they send
messages, typically called Inmails, to results. So, sending In-
mail is strong evidence of result relevance. Since each of the
inmailed results is a good fit for the hiring position, if (hy-
pothetically) the searcher used Search By Ideal Candidates
instead of the Query-By-Keyword system, one or a few of
these results could be used as ideal candidate(s) representing
the information need. The rest of inmailed results (i.e., co-
inmailed results) could be considered as relevant ones and
the results without inmail are non-relevant (Figure 4).

Given the generative model, we define a labeling strat-
egy as the following: within each search, we randomly pick
one, two or three of the inmailed results as ideal candidates
(Figure 5). The rest of the results with inmail are consid-
ered to be relevant to the ideal candidates (thus assigned to
the highest relevance label, e.g., 5). To make relevance la-
bels more granular, amongst the results without inmails, the
clicked results are considered somewhat relevant (assigned to
a mid-level label, e.g., 2). Finally, the skipped results are
considered non-relevant (assigned to the lowest label, e.g.,
0).

To avoid position bias in searchers’ behaviors, we use a
top-K randomized bucket on the Query-By-Keyword sys-
tem, in which the top-K results are randomly shuffled (K=100),
collect searchers’ actions on the results and infer training
data as described above. When collecting the data, we count
every query issued as a unique search. For instance, if the
query “software engineer” is issued five times, they are con-

sidered as five distinct searches. The reason is that even
though the query contents being searched for are identical
across the five searches, they may have different search con-
texts when considering other dimensions such as searcher,
location or time, etc. Moreover, this keeps the query dis-
tribution of the labeled data the same as of the live search
traffics. We run the randomization bucket as mentioned
above for two full weeks. The reason we keep the period in
the order of weeks is to iron out strong weekly patterns. For
example, if the labeled data is collected only during week-
days, it will be biased towards weekday search patterns but
not to represent weekend search traffics. After two weeks,
the randomization bucket ends up with about one hundred
thousand searches with at least two Inmails from tens of
thousands of unique searchers. The labeled data is then
divided into training, validation and test sets.

5.2 Proposed Features
Typically, a search ranking function orders results by se-

mantic similarity between each result and information need.
In Search By Ideal Candidates, the information need is repre-
sented by a query (generated by the query builder), searcher
information as well as ideal candidates explicitly entered by
the searcher. Given the characteristic, we propose a new set
of features for Search By Ideal Candidates that directly cap-
ture the resemblance between the ideal candidates and re-
sults on various aspects including expertise, title and career-
path similarities.

5.2.1 Expertise Similarity
Skill section in a member profile showcases his or her pro-

fessional expertise and is one of the most important parts
in the profile. To capture the expertise similarity between
ideal candidates and each result, we measure the similarity
between their skill sets, and construct two features for this.
The first one is Jaccard similarity between the skill sets of
each ideal candidate c and each result r. If there are multi-
ple ideal candidates, we take the average across them as in
the equations below.

JaccardSim(c, r) =
|skills(c) ∩ skills(r)|
|skills(c) ∪ skills(r)|

SkillJaccardSim(IC, r) =

∑
c∈IC JaccardSim(c, r)

|IC|

As aforementioned, not every skill in a profile is equally
important to the corresponding member. Indeed, some skills
are more relevant to the core expertise than the others. To
reflect this, in the second feature, we use Cosine similarity
between an ideal candidate and a result in which the skills
are weighted by the expertise scores (denoted as exSc in
Equation 2) described earlier in Section 4.

CosineSim(c, r) =

∑
sk exSc(sk, c)exSc(sk, r)√∑

sk exSc(sk, c)
2
√∑

sk exSc(sk, r)
2

(2)

5.2.2 Title Similarity
Besides skills, current job title is another crucial part in

a profile that concisely describes job function of a member.
To capture the job similarity, we compute Jaccard and Co-
sine similarity between the titles of each candidate and each

result. For these features, we remove stop-words and treat
a title as a bag of words. Similar to expertise similarity,
in the case that a searcher enters multiple ideal candidates,
we take the arithmetic average of all similarities as the final
output.

5.2.3 Career-Path Similarity
The expertise and title similarities described above are

based on the accumulative and current snapshots, respec-
tively, of ideal candidates and results. These features do
not reflect temporal career trajectories of them. Thus, we
propose career-path similarity feature ascertaining similar-
ity between two members by considering their temporal se-
quences of job positions. Specifically, each member is mod-
eled by a sequence of nodes, each of which records all infor-
mation within a particular position the member holds. At
the node level, we use a supervised model combining vari-
ous signals capturing the similarity between two positions.
Bellows are some important features.

• Company match: whether or not the two positions are
at the same company.

• Company similarity: if the two positions are at dif-
ferent companies, we consider similarity between the
companies. For instance, LinkedIn is more similar to
Facebook than Shell. This is estimated by co-viewing
relationship, e.g., people viewing LinkedIn company
page also view Facebook.

• Industry match: whether or not the two positions be-
long to the same industry. Some examples of industries
include Internet and Human Resource.

• Industry similarity: since each company usually be-
longs to an industry, industry similarity can also be de-
rived from the company browse map described above.

• Title match: whether or not the two positions have
the same title.

• Title similarity: for instance, “Software Engineer” and
“Software Developer” are similar titles.

• Position description similarity: this feature extracts
keywords from the two position descriptions then com-
putes cosine similarity between the two.

• Seniority similarity: each position is mapped to a se-
niority level, e.g., “Senior Director of Engineering” is
more senior than “Director of Engineering”. Then, we
compute the similarity based on the levels.

Given two career paths P = [p1, p2...pn] andQ = [q1, q2...qm],
the distance between them Dseq is the sum of node pair dis-
tances in the optimal alignment between the two sequences
(here we use distance and similarity interchangeably since
one is just the reserve of the other). The optimal alignment
could be determined by a dynamic programming algorithm
based on Equation 3. In this equation, parameter λ is a gap
penalty that allows dissimilar nodes to be skipped with some
penalty for the non-contiguity.

Dseq(P i, Qj) = max


Dseq(P (i−1), Q(j−1)) +Dnode(pi, qj)

Dseq(P (i−1), Qj) + λ

Dseq(P i, Q(j−1)) + λ

(3)

5.3 Existing Features and Learning Algorithm
Besides the new features designed specifically for Query-

By-Example paradigm, we also use standard features used
in Query-By-Keyword talent search systems. These existing
features are generally divided into the following categories.

Skill expertise feature: one of the most important sig-
nals on talent search is to match each result’s expertise with
the required one [8]. To capture the match, we use a skill
expertise feature, which is a sum of each result’s expertise
scores on the skills in the query.

Text matching features: the most traditional type of
features in information retrieval is textual features. These
features match the keywords in queries with different sec-
tions of each result’s profile, such as, title, company, etc.

Entity-aware matching features: for this kind of fea-
tures, we first semantically tag each query with entity types,
such as title, company and skill. Then, match the keywords
with the corresponding field in results (member profiles).

Result prior scores: these features are query-independent.
They are designed to capture result quality, such as spam
score, profile quality, historical CTR (popularity), etc.

Geographic features (personalized features): talent
search on LinkedIn is highly personalized. For instance, a
query like “software developer” will produce very different
results if the searcher is in New York City, USA as opposed
to (say) Perth, Australia. Location plays an important role
in personalizing the results.

Social features (personalized features): another im-
portant aspect of personalization is to capture how the re-
sults socially relate to the searcher. We leverage a variety of
the signals on LinkedIn, such as, how the searcher socially
connects with the company posting the job, e.g., if he or she
follows the company or the searcher has friends working at
the company, etc. to generate the features in this category.
We refer readers to [8, 15] for a more detailed description of
the existing features.

Given the training data and the features, we apply Co-
ordinate Ascent [19], a listwise learning-to-rank algorithm,
to search for an optimal model. For efficiency purpose, we
use linear models in our work. Coordinate Ascent algorithm
has also been shown to be effective for learning linear rank-
ing functions in some other search domains [19]. One key
benefit of listwise learning-to-rank approach over pointwise
and pairwise ones is that the listwise approach can optimize
ranking-based metrics directly [14, 17]. The objective func-
tion we optimize in the learning process is normalized dis-
counted cumulative gain (NDCG@K) defined on the graded
relevance labels as described above. Parameter K is set to
15, which is the average rank of the last seen/interacted
results in the search result pages.

6. EXPERIMENTS

6.1 Skill Selection Evaluation
Evaluating query building strategies is challenging because

ground truth data is difficult to collect. A typical way to get
ground truth data is human judgment. Given a set of ideal
candidate profiles and alternative generated queries, annota-
tors are asked to judge which queries can lead to good search
results with respect to the ideal candidates. However, this
is a complicated task even for professional recruiters. More-
over, given the highly diverse nature of LinkedIn members
that are from many companies, countries and industries with

Rand-10 Top-5 Top-10 Top-15
Accuracy 0.591 0.643 0.645 0.638
Improvement - +8.8% +9.1% +8.0%

Table 1: Skill Selection Performance

various skill sets, getting human annotation for a collection
of ideal candidate queries with decent coverage is expensive.

In this work, we leverage the Co-Inmail data (presented
in Section 5.1) to evaluate the skill selection strategy de-
scribed in Section 4. Given a set of ideal candidates IC
(randomly sampled from the results with Inmails), relevant
results R+ (the Co-Inmailed results) and non-relevant re-
sults R− (the ones without Inmails), we evaluate the skills
selected by a query builder S = {sk1, sk2...skK} from the
candidates. These skills are good ones to represent the ex-
pertise of the ideal candidates if they put the relevant results
higher than non-relevant ones. In other words, the set S is
considered to be good if relevant results have higher exper-
tise scores on these skills than non-relevant results. This can
formally be described in the inequality below.

AvgExpertise(R+, S) > AvgExpertise(R−, S)

AvgExpertise(R∗, S) =

∑
ski∈S,r∈R∗ exSc(ski, r)

|R∗|

Accuracy of a skill selection strategy is then the percent-
age of the searches in Co-Inmail data that satisfies the in-
equality above, i.e., correctly differentiates relevant results
vs. non-relevant ones. We compare the skill selection ap-
proach in Section 4 that picks Top-K skills with a baseline
of randomly picking K = 10 explicit skills from the ICs’
profiles (denoted as Rand-10).

Accuracy of different skill selection strategies are shown
in Table 1. First, it is worth noting that even the base-
line achieves accuracy well above 50%. That means ran-
domly selected skills from the profiles of ideal candidates can
still separate relevant results from non-relevant ones. More
specifically, these skills are closer to the expertise of relevant
results than the expertise of non-relevant ones. When the
skills are selected by expertise scores of the ideal candidates
on them, the accuracies, with the values of K equals to 5,
10 and 15, are 8.8%, 9.1% and 8.0% higher than the base-
line, respectively. That demonstrates the effectiveness on
the expertise scores for skill selection task.

An alternative way to evaluate query building is to con-
duct A/B tests on various strategies on live traffic. Then,
evaluate each of them based on searchers’ interactions with
generated queries and overall search performance. We leave
this direction for future work.

6.2 Search Ranking Evaluation

6.2.1 Feature Analysis
To understand feature effectiveness, we compute Pear-

son correlation coefficient between feature values and labels
of the corresponding results within each search (list), then
take the average across the searches in Co-Inmail training
set. The average correlation is used to evaluate features.
Table 2 shows five most important features. Interestingly,
the first three are the features directly capturing the simi-
larity between ideal candidates and results. That confirms

Rank Feature
1 Career Path Similarity
2 Cosine Skill Similarity
3 Jaccard Skill Similarity
4 Entity-Aware Title Match
5 Result Historical CTR

Table 2: Top Ranking Features

NDCG@5 NDCG@15 NDCG@25
Over baseline 1 +16.9% +12% +9.9%
Over baseline 2 +6.7% +5.3% +4.4%

Table 3: Ranking performance on Co-Inmail data.
All of the improvements are statistically significant
with p−value < 0.01 using the Student’s paired t-test.

the importance of the proposed features in Search By Ideal
Candidates. Between the two skill similarity features, Co-
sine similarity is ranked higher. That shows the benefit of
weighting skills by expertise scores. Finally, the next two
features are existing features including Entity-Aware Title
Match (matching query terms tagged as a title with title
field in each result) and result historical CTRs (a proxy of
result popularity). This is inline with our observation from
past Query-By-Keyword experiments.

6.2.2 Ranking Performance on Co-Inmail Data
After training a ranking model for Search By Ideal Can-

didates using all new features as well as existing ones, we
evaluate the model on a held-out test set, by comparing
the model with two baselines. The first baseline is the cur-
rent model in production for the Query-By-Keyword system.
This model uses all existing features described in Section
5.3. The second baseline also uses all existing features, but
is trained on the Co-Inmail training data. This baseline does
not use the new features in Section 5.2.

Table 3 presents relative improvements of the new ranking
model compared to the two baselines, respectively. We use
Normalized Discounted Cumulative Gain at K (NDCG@K)
metrics, where K equals to 5 (focus on the top results), 15
(the average rank of the last seen/interacted results) and
25 (the number of results on the first page). Between the
two baselines, even though using the same features, baseline
2 which is trained for Query-By-Example paradigm yields
better results across the metrics (i.e., the improvements of
the new model over baseline 2 are smaller than the improve-
ments over baseline 1). This demonstrates that it is im-
portant to train ranking models specifically for Query-By-
Example paradigm. The reason is that the queries extracted
from ideal candidates (which typically have 10 skills + 10
companies + several titles) are different from queries entered
by searchers in the traditional Query-By-Keyword system
(which usually contain from 5 to 10 keywords).

Focusing on the new ranking model, it is significantly bet-
ter than both baselines across all metrics. For instance, on
NDCG@5, the new model is 16.9% and 6.7% better than
baselines 1 and 2, respectively. The difference between the
new model and baseline 2 (both are trained on the same
training data) confirms the effectiveness of the proposed fea-
tures that are specifically designed for Query-By-Example
paradigm.

NDCG@5 NDCG@15 NDCG@25
Over baseline 1 +13.1% +8.4% +6.5%
Over baseline 2 +6.2% +4.4% +3.4%

Table 4: Ranking performance on Randomized data.
All of the improvements are statistically significant
with p−value < 0.01 using the Student’s paired t-test.

6.2.3 Ranking Performance on Randomized Data
Post launch of the new Search By Ideal Candidates sys-

tem, in retrospect, we re-evaluate these three models in a
more direct way. Instead of generating the test set from
Co-Inmail data, we launch a randomized bucket in a small
random fraction of live traffics of the Search By Ideal Candi-
dates system for two weeks. In this bucket, top K (K = 100)
results are randomly shuffled before showing to searchers.
Our previous experiments in the context of LinkedIn search
suggest that with K sufficiently large (e.g., 100), offline ex-
periment results on top-K randomized data are direction-
ally inline with online A/B test results [15, 8]. We collect
searchers’ actions on the results and assign labels to them
in the same way as before. Since this bucket is collected
directly from the product usage, this dataset is superior in
regard to model evaluation. The final test set includes more
than two thousand and five hundred searches from hundreds
of unique searchers.

Given the randomized data, we evaluate the models using
the same metrics as shown in Table 4. Similar results be-
tween Table 3 and Table 4 (baseline 1 < baseline 2 < the new
model) show an agreement between Co-Inmail data and the
randomized data, which confirms the merit the Co-Inmail
approach that infers training data for Search By Ideal Can-
didates from usage logs of the previous Query-By-Keyword
system.

Compared with the baselines, the new model is also sig-
nificantly better. For instance, the new model is 6.2%, 4.4%
and 3.4% better than baseline 2 in terms of NDCG@5,
NDCG@15 and NDCG@25. These gains are attributed to
the new features. It is worth re-emphasizing that in our
design, the retrieval and ranking steps are dependent on
the generated queries. While the queries are essential to
the searchers in terms of understanding and controlling over
the results, translating the ideal candidates to the queries
is likely to result in some information loss since the queries
cannot perfectly represent the candidates (this is a design
trade-off). Thus, another way to view the proposed features
is that they present a way to recover the information loss
since they capture the similarities between results and the
input candidates directly. The difference between our model
and baseline 2 again re-confirms the importance of them.

6.3 Error Analysis
To gain further insight on the system performance, we

conduct an error analysis on the cases where the end-to-end
system does not work well. Specifically, we randomly sample
100 searches from 100 unique searchers where they abandon
the searches, i.e., have no actions on the results. Then, we
manually identify the failure reasons.

In about two thirds of the cases, the searches are aban-
doned because of the generated queries. A deep dive into
these queries and their corresponding ideal candidates sug-
gests that the most frequent root cause of this is because

the ideal candidates use non-standardized job titles, such as,
“ethical iOS hacker”, “senior rocket scientist” or “lead data
werewolf”. These titles are infrequent, thus they match few
results. Moreover, since they cannot be mapped to stan-
dardized titles in the database, the system fails to expand
them to similar titles. As a result, there are few or even none
results returned for these queries (recall that we take a con-
junction across attribute types in each query, as described in
Section 4). Moving forward, a solution for this kind of errors
is to improve the coverage of the titles that can be standard-
ized. Moreover, in the case that all of the titles extracted
from the ideal candidates are non-standardized, we can ex-
periment with the idea of totally ignoring this attribute type
in queries in the retrieval phase.

In the rest of the cases, the problem is on result rankings.
A common pattern in this category is that the input ideal
candidate is an engineer from a big tech company and also
happens to be the founder (or CEO/CTO, etc.) of a startup.
Thus, the generated query would be: Q = title:(“engineer”
OR “founder”) AND company:(big company OR startup) ...
In this pattern, occasionally the ranker mistakenly ranks
the founder (or CEO/CTO, etc.) of the big company on
top because the result well matches the query. The root
cause of this error is that after the queries are generated,
the associations between entities across attribute types (e.g.,
title and company of the same position of an ideal candidate)
are lost in the queries. The career-path similarity feature
directly capturing similarities between ideal candidates and
results is designed exactly to recover for the loss. However,
in some cases, it is out-weighted by many query-document
matching features. This is left as a future direction.

7. CONCLUSIONS
This paper introduces the next generation of talent search

at LinkedIn, which drives about 64% of the company rev-
enue. Throughout the paper, we present a comprehensive
solution for the problem of how to transition from Query-
By-Keyword to Query-By-Example for talent search. In par-
ticular, we detail how to resolve practical challenges when
building such system in an industrial setting, including: im-
perfection of profile data (e.g., outlier and missing skills),
the lack of personalized training data when transitioning to
a new search paradigm and how to customize ranking fea-
tures for Query-By-Example.

We summarize the major design choices, tradeoffs and the
lessons learned throughout the course of this work:

• Given that the biggest challenge for our users is how to
translate the criteria of a hiring position into a search
query, we design a new system allowing searchers to
just input one or a few ideal candidates instead. In
most of the cases, they can simply pick existing team
members, thus this design significantly reduces their
efforts.

• In recruiting process, system transparency and the abil-
ity to control on results are essential to users. Thus,
we decide not to take a “black box” item-to-item rec-
ommendation approach. We instead approach this as
a search problem by explicitly generating queries and
allowing searchers to modify them. Even though this
approach would limit some relevance modeling power
(as analyzed in Section 6.2.3), it achieves a better bal-

ance between system transparency and user control vs.
relevance.

• To alleviate the limit, we propose an additional set of
features capturing the similarities between results and
the input candidates directly, thus recovering the infor-
mation loss in the process of translating the candidates
into queries.

• Another lesson is for highly complicated signals like
skill expertise scores and career path similarity, a two-
phase architecture including an offline and an online
phase achieves a balanced tradeoff between effective-
ness and efficiency. The offline phase runs on dis-
tributed computing platforms like Hadoop, thus allows
processing very large datasets with complex methods.
It periodically generates new versions of the signals
offline. The online phase then simply consumes the
latest version of the signals in real time.

Our experiments confirm the effectiveness of the proposed
approach. Specifically, on skill selection, our approach is
9.1% more accurate than the baseline. On search ranking,
the new ranking model is significantly better than the other
two baselines across all metrics on both Co-Inmail and ran-
domized test sets. That demonstrates the value of the train-
ing data generation approach as well as the new features.
Currently, the query building approach and the search rank-
ing model serve all live traffics of Search By Ideal Candidates
at LinkedIn. Although we focus on talent search in this pa-
per, we believe that these lessons are also useful when mov-
ing from Query-By-Keyword to Query-By-Example in other
domains.

ACKNOWLEDGMENT: We would like to thank Ye
Xu, Satya Pradeep Kanduri, Shan Zhou and Sunil Nagaraj
for their contributions during the course of this work.

8. REFERENCES
[1] M. Balabanović and Y. Shoham. Fab: content-based,

collaborative recommendation. Communications of the
ACM, 40(3):66–72, 1997.

[2] Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li. Learning
to rank: from pairwise approach to listwise approach.
pages 129–136, 2007.

[3] S.-K. Chang and S.-H. Liu. Picture indexing and
abstraction techniques for pictorial databases. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, (4):475–484, 1984.

[4] O. Chapelle, Y. Chang, and T. Liu. Future directions
in learning to rank. In Proceedings of the Yahoo!
Learning to Rank Challenge, 2011.

[5] N. Craswell, O. Zoeter, M. J. Taylor, and B. Ramsey.
An experimental comparison of click position-bias
models. In Proceedings of ACM WSDM, 2008.

[6] J. S. De Bonet. Image classification and retrieval
system using a query-by-example paradigm, Dec. 22
1998. US Patent 5,852,823.

[7] M. Deshpande and G. Karypis. Item-based top-n
recommendation algorithms. ACM Transactions on
Information Systems (TOIS), 22(1):143–177, 2004.

[8] V. Ha-Thuc, G. Venkataraman, M. Rodriguez,
S. Sinha, S. Sundaram, and L. Guo. Personalized
expertise search at linkedin. In Proceedings of the 4th
IEEE International Conference Big Data, 2015.

[9] V. Ha-Thuc, Y. Xu, S. P. Kanduri, X. Wu, V. Dialani,
Y. Yan, A. Gupta, and S. Sinha. Search by ideal
candidates: Next generation of talent search at
linkedin. In ACM WWW, 2016.

[10] T. Hofmann. Latent semantic models for collaborative
filtering. ACM Transactions on Information Systems
(TOIS), 22(1):89–115, 2004.

[11] T. Joachims. Optimizing search engines using
clickthrough data. pages 133–142, 2002.

[12] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In
Proceedings of the 14th ACM SIGKDD, pages
426–434. ACM, 2008.

[13] V. Lavrenko and W. B. Croft. Relevance-based
language models. In Proceedings of the 24th ACM
SIGIR, pages 120–127, 2001.

[14] H. Li. A short introduction to learning to rank. IEICE
Transactions, 94-D(10):1854–1862, 2011.

[15] J. Li, D. Arya, V. Ha-Thuc, and S. Sinha. How to get
them a dream job?: Entity-aware features for
personalized job search ranking. In Proceedings of the
22nd ACM SIGKDD, pages 501–510, 2016.

[16] G. Linden, B. Smith, and J. York. Amazon. com
recommendations: Item-to-item collaborative filtering.
IEEE Internet computing, 7(1):76–80, 2003.

[17] T. Liu, T. Joachims, H. Li, and C. Zhai. Introduction
to special issue on learning to rank for information
retrieval. Information Retrieval, 13(3):197–200, 2010.

[18] F. Long, H. Zhang, and D. D. Feng. Fundamentals of
content-based image retrieval. In Multimedia
Information Retrieval and Management, pages 1–26.
Springer, 2003.

[19] D. Metzler and W. B. Croft. Linear feature-based
models for information retrieval. Information
Retrieval, 10(3):257–274, 2007.

[20] S. E. Robertson and K. S. Jones. Relevance weighting
of search terms. JASIS, 27(3):129–146, 1976.

[21] J. J. Rocchio. Relevance feedback in information
retrieval. In The SMART Retrieval System.
Prentice-Hall, Englewood Cliffs NJ, 1971.

[22] Y. Rui, T. S. Huang, and S.-F. Chang. Image
retrieval: Current techniques, promising directions,
and open issues. Journal of visual communication and
image representation, 10(1):39–62, 1999.

[23] Y. Rui, T. S. Huang, M. Ortega, and S. Mehrotra.
Relevance feedback: a power tool for interactive
content-based image retrieval. IEEE Transactions on
circuits and systems for video technology,
8(5):644–655, 1998.

[24] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms. In Proceedings of the 10th ACM WWW,
pages 285–295. ACM, 2001.

[25] A. I. Schein, A. Popescul, L. H. Ungar, and D. M.
Pennock. Methods and metrics for cold-start
recommendations. In Proceedings of the 25th ACM
SIGIR, pages 253–260. ACM, 2002.

[26] X. Su and T. M. Khoshgoftaar. A survey of
collaborative filtering techniques. Advances in
artificial intelligence, 2009:4, 2009.

[27] J. Wang, A. P. De Vries, and M. J. Reinders. Unifying

user-based and item-based collaborative filtering
approaches by similarity fusion. In Proceedings of the
29th ACM SIGIR, pages 501–508. ACM, 2006.

[28] L. Weng, Z. Li, R. Cai, Y. Zhang, Y. Zhou, L. T.
Yang, and L. Zhang. Query by document via a
decomposition-based two-level retrieval approach. In
Proceeding of the 34th ACM SIGIR, pages 505–514,
2011.

[29] Y. Xu, Z. Li, A. Gupta, A. Bugdayci, and A. Bhasin.
Modeling professional similarity by mining
professional career trajectories. In Proceedings of the
20th ACM SIGKDD. ACM, 2014.

[30] Y. Yang, N. Bansal, W. Dakka, P. G. Ipeirotis,
N. Koudas, and D. Papadias. Query by document. In
Proceedings of the 2nd ACM WSDM, pages 34–43,
2009.

	1 Introduction
	2 Related Work
	2.1 Query By Example
	2.2 Item-To-Item Recommendation
	2.3 Relevance Feedback in Information Retrieval
	2.4 Learning to Rank

	3 System Overview
	4 Query Building
	4.1 Skill Selection

	5 Learning To Rank for Search-By-Ideal-Candidates
	5.1 Training Data Generation
	5.2 Proposed Features
	5.2.1 Expertise Similarity
	5.2.2 Title Similarity
	5.2.3 Career-Path Similarity

	5.3 Existing Features and Learning Algorithm

	6 Experiments
	6.1 Skill Selection Evaluation
	6.2 Search Ranking Evaluation
	6.2.1 Feature Analysis
	6.2.2 Ranking Performance on Co-Inmail Data
	6.2.3 Ranking Performance on Randomized Data

	6.3 Error Analysis

	7 Conclusions
	8 References

