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In survival analysis, regression models are used to understand the e�ects of explanatory variables (e.g., age, sex, weight, etc.) to

the survival probability. However, for sensitive survival data such as medical data, there are serious concerns about the privacy of

individuals in the data set when medical data is used to �t the regression models. �e closest work addressing such privacy concerns

is the work on Cox regression which linearly projects the original data to a lower dimensional space. However, the weakness of

this approach is that there is no formal privacy guarantee for such projection. In this work, we aim to propose solutions for the

regression problem in survival analysis with the protection of di�erential privacy which is a golden standard of privacy protection in

data privacy research. To this end, we extend the Output Perturbation and Objective Perturbation approaches which are originally

proposed to protect di�erential privacy for the Empirical Risk Minimization (ERM) problems. In addition, we also propose a novel

sampling approach based on the Markov Chain Monte Carlo (MCMC) method to practically guarantee di�erential privacy with be�er

accuracy. We show that our proposed approaches achieve good accuracy as compared to the non-private results while guaranteeing

di�erential privacy for individuals in the private data set.
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1 INTRODUCTION

Survival analysis studies and models probability of failure of time-related processes (e.g., time to death of HIV patients,

time to divorce of married couples, time to graduation of Ph.D. students, etc.). Two important concepts in survival

analysis are (1) the hazard rate function h(t ) which is the probability of failure (death) at time t , and (2) the survival

function S(t ) which is the probability of survival to time t . An example of survival data set is the electronic health

records (EHRs) which have been widely used and collected at large scale in modern hospitals (Blumenthal and Tavenner

2010; DesRoches et al. 2008; Jha et al. 2009). �ese health records are very useful for ��ing the regression models to

assist doctors in the medical decision processes for treatment, diagnosis, etc. In general, regression models are used to

analyze the e�ects of explanatory variables (e.g., age, sex, weight, etc.) to the survival probability of patients. However,

these models may also have serious problems of breaching patient’s privacy as there is no guarantee that these models

do not leak any personal information of individual patients in the data set.
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2 T.T. Nguyên et al.

In this work, we focus on the privacy problems of regression models used in survival analysis. We consider the

se�ing in which privacy-preserving algorithms use data in the private data set to �t a survival regression model. �e

model is then published and available to the public for the bene�ts of society. �erefore, in this se�ing, the adversaries

are assumed to know the output model, i.e., the parameters of the regression model. �e goal is to design algorithms

that can �t the survival regression model to the data set with high accuracy while guaranteeing that the adversaries

cannot learn much information about the individuals in the data set when knowing the output model.

�ere are two di�erent kinds of regression models in survival analysis, namely continuous-time models and discrete-

time models. For continuous-time models, time is a continuous variable and failure events can happen at any moment.

Cox regression is a well-known continuous-time model (Andersen and Gill 1982; Cox 1992) which allows estimation

without any assumption on the baseline hazard e�ects. However, we have to assume the proportional hazard property

(i.e., a unit increase in an explanatory variable will cause a multiplicative e�ect on the hazard rate). For discrete-time

models (Allison 1982; Cox and Oakes 1984; Muthén and Masyn 2005), time is discrete and failure events only happen at

discrete values of time. Discrete-time regression models are be�er than Cox regression when dealing with tied events

(i.e., events which have the same value of survival time) and unobserved population heterogeneity (i.e., unobserved

explanatory variables may cause bias to the estimation). Moreover, it does not need the proportional hazard property

assumption as Cox regression does (Hess and Persson 2012).

In this paper, we propose solutions for the problem of guaranteeing discrete-time models not to leak personal

information of the patients. Our proposed approaches guarantee di�erential privacy protection, which is the state-of-

the-art privacy-preserving technique in data privacy research. Informally, a di�erentially private algorithm guarantees

that two neighboring data sets which are di�erent at only one patient’s record are guaranteed to produce two outputs

whose probability densities are very similar. �is prevents an adversary from recognizing a data set from the collection

of its neighbors. �erefore, an adversary cannot infer the personal information of a particular patient in the data set

even in the case when the adversary knew all the information of all other patients in the data set (if otherwise, then the

adversary can easily distinct two neighboring data sets).

In our solutions, we use the maximum likelihood estimation to transform the estimation problem to the optimization

problem of choosing parameters to maximize the log-likelihood of the observed data set with respect to the discrete-time

model. Coincidentally, our problem has a similar likelihood form as a logistic regression problem. �is allows us to use

the Output Perturbation (Out-Pert) and Objective Perturbation (Obj-Pert) proposed by Chaudhuri et al. (Chaudhuri

et al. 2011) for our problem. �ese methods were originally proposed to protect di�erential privacy for the Empirical

Risk Minimization (ERM) problems which include the logistic regression problem. �e Out-Pert approach adds noise

to the optimization solution to protect di�erential privacy. �e Obj-Pert approach randomly perturbs the objective

function, thereby ensuring the randomness of its optimization solution which can guarantee di�erential privacy for

the solution. However, these approaches cannot be applied directly to our problem due to the di�erence in the loss

function. Especially, this is due to the fact that our loss function is not a logistic loss function but a sum of logistic loss

functions as the result of the discrete-time models. �erefore, we propose generalized extensions of the Out-Pert and

Obj-Pert approaches to cater for our loss function.

A disadvantage of the above perturbation approaches is that for them to work properly they require a non-negligible

regularization term in the objective function which incurs bias to the output model. To tackle this, we propose a

sampling approach which protects di�erential privacy by directly sampling parameters from the objective function

without the need of a regularization term to guarantee di�erential privacy. Similar ideas on sampling the objective
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Di�erentially Private Regression for Discrete-Time Survival Analysis 3

functions to provide di�erential privacy are also proposed in (Bassily et al. 2014; Kifer et al. 2012; Wang et al. 2015) for

the ERM problems. However, it is required that the loss function has to have a �nite maximum value. �e previous

works guarantee this property by boxing the output parameters in a �nite-volume space (e.g., a sphere). �is approach

does not work well when the optimal parameter has a large magnitude. In this work, to guarantee the �nite constraint,

we wrap the loss function inside a sanitizer function (i.e., a scaled tanh function) to create a new �nite loss function.

We intentionally pick the sanitizer function that can keep the loss function in its original form when the value of the

loss function is small. Meanwhile, the sanitizer function deforms the loss function at large values to make the function

�nite. �e advantage of this approach is that the sampled parameter can arbitrary large while the objective function is

kept almost the same around the optimal parameter which minimizes the objective function.

In order to sample an output parameter from the posterior distribution, Bassily et al. (Bassily et al. 2014) proposed a

polynomial run-time algorithm to sampling the log-concave objective function but their algorithm is still impractical due

to the high degree of its polynomial run-time complexity. On the other hand, Wang et al. (Wang et al. 2015) proposed

to use a stochastic gradient Nosé-Hoover thermostat algorithm (Ding et al. 2014) to sample the posterior distribution.

In this work, we propose to use Preconditioned Stochastic Gradient Langevin Dynamics (pSGLD) sampling algorithm

(Li et al. 2015) to sample the objective function due to its advantages in sampling multi-dimensional parameters with

di�erent scales. It is worth to note that even though the sampling approach gives be�er accuracy (as we will see in

Section 6), due to the property of its Markov chain, it cannot sample the objective function exactly. �erefore, the

sampling approach does not mathematically guarantee di�erential privacy but only guarantees it approximately in

practice.

In summary, the main contributions of this paper are as follows:

• We propose two privacy-preserving approaches, namely the Extended Output Perturbation and Extended

Objective Perturbation, for the discrete-time survival regression problem. �e proposed approaches guarantee

di�erential privacy for the survival regression models. We formally prove these guarantees based on the

de�nition of di�erential privacy.

• We propose a sampling approach to output a random model from its posterior distribution. �e proposed

sampling approach is based on pSGLD, which is a particular kind of the Markov Chain Monte Carlo (MCMC)

method, to e�ciently sample the random output which guarantees di�erential privacy approximately in

practice.

• We show the e�ectiveness of our proposed approaches on four real survival data sets. In addition, we show that

the results obtained from the discrete-time models are very close to the results obtained from Cox regression.

We also show experimentally the convergence of our proposed sampling approach.

�e rest of the paper is organized as follows: In Section 2, we review the related work on di�erential privacy and

discrete-time survival analysis. Section 3 presents the regression models used in this work. Sections 4 discusses the

proposed approaches of the Extended Output Perturbation and Extended Objective Perturbation along with their

privacy guarantees. Section 5 discusses the proposed sampling approach. Section 6 presents the experimental results

from real data sets. Finally, we conclude the paper in Section 7.

2 RELATEDWORK

Even though it is important to protect privacy in medical data, as far as we know the work of Yu et al. (Yu et al. 2008) is

the only work on privacy protection for Cox regression. �eir work considers the se�ing in which Cox regression is

Manuscript submi�ed to ACM



4 T.T. Nguyên et al.

executed on a distributed data set over many institutions. �ey proposed to project patient’s data to a lower dimensional

space by a linear projection. �e projection is satis�ed by an optimization constraint to preserve good properties of the

original data. However, their work is not based on a formal privacy de�nition such as di�erential privacy. Our work on

discrete-time models for survival analysis is the �rst to propose a solution for the privacy problem of discrete-time

survival models and also the �rst to apply di�erential privacy to survival analysis.

2.1 Di�erential Privacy

�e state-of-the-art technique for the data privacy problem is di�erential privacy (Dwork 2009, 2011; Dwork et al. 2014).

Basically, di�erential privacy is a promise to individuals in the data set that their information will not in�uence much

on the �nal published results from the analysis. Di�erential privacy is used in many applications such as histogram

publication (Li et al. 2010; Zhang et al. 2014), graph analysis (Borgs et al. 2015; Kasiviswanathan et al. 2013; Lu and

Miklau 2014), regression and classi�cation (Bassily et al. 2014; Chaudhuri and Monteleoni 2009; Kifer et al. 2012; Wang

et al. 2015), recommender systems (Machanavajjhala et al. 2011; McSherry and Mironov 2009), etc. Here, we give a brief

overview of di�erential privacy, interested readers can refer to (Dwork et al. 2014) for a detailed discussion on this

subject.

To formalize the de�nition of di�erential privacy, we �rst need to introduce the de�nition of two neighboring data

sets.

De�nition 2.1 (Neighboring data sets). Two data sets D and D ′ are neighbors (denoted as d(D,D ′) = 1) if they agree

in all except one record.

From that, we have a formal de�nition of di�erential privacy.

De�nition 2.2 (Di�erential privacy). An algorithmA is ϵ−di�erentially private if for any output value x ofA and for

any pair of neighboring data sets D and D ′:

pdf(A(D) = x ) ≤ exp(ϵ) · pdf(A(D ′) = x )

where ϵ is the privacy budget of the algorithm A.

2.2 Discrete-time Survival Analysis

For discrete-time models, let time be divided into intervals [a0,a1), [a1,a2), . . . , [aq−1,aq ],a0 = 0,aq = 1, where q is the

number of discrete times. �e discrete time t refers to the interval [at−1,at ). A discrete random variable T represents

the discrete failure time. T = t denotes the failure within the time interval t = [at−1,at ). �e characteristic function of

T is the discrete hazard function:

h(t ) = Pr(T = t | T ≥ t ), t = 1, . . . ,q

which is the conditional probability for the risk of failure in interval t given the survival in all previous intervals. �e

discrete survival function for reaching interval t is:

S(t ) = Pr(T ≥ t ) =

t−1∏
s=1

(1 − h(s)) (1)

Discrete-time data sets are given by (xi ,δi , ti ), i = 1, . . . ,n, where ti = min(Ti , ci ) is the minimum of the survival

time Ti and censoring time ci , and δi is the indicator variable for failure (δi = 1) or censoring (δi = 0). When δi = 0, the

ith patient is known to survive until time ci but the survival time Ti is not observed (Ti > ci ). xi is a real vector of
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Fig. 1. The illustration of link functions: logit (green), cloglog (blue) and probit (red). We observe that these link functions are very
similar in shape. Notably, the logit link function and cloglog link function are almost identical at x near 0. This explains why the
output models from the logit link function and cloglog link function are very similar in practice when the number of discrete time q is
large, or equivalently, the hazard rate x is small.

explanatory variables (e.g., sex, age, weight, etc.) which a�ect the survival probability. We assume that xi is inside the

unit-sphere, ‖xi ‖≤ 1. �is is actually a common practice in machine learning. Without loss of generality, we assume

that 0 ≤ ti ≤ 1. For convenience, we use yi to refer to the term (2δi − 1) and di to refer to the tuple (xi ,yi , ti ).

3 DISCRETE-TIME REGRESSION MODEL

In this section, we introduce the discrete-time regression models which are used to model the relationship between

explanatory variables and the hazard rate, i.e., the predictive variable. From that, the subsequent sections will discuss

the proposed di�erentially private approaches to guarantee that the estimated parameters from the regression model

satisfy the de�nition of di�erential privacy.

3.1 Generalized Linear Models

We model the e�ects of explanatory variables xi to the survival probability by using a generalized linear model:

д(h(ti | xi )) = γ (ti ) + x ′i β (2)

where д(·) is the link function, β is the parameter vector representing the e�ects of explanatory variables and γ (ti ) is a

time-varying baseline hazard e�ect.

A commonly used link function in survival probability is the logit link function д(x ) = loдit (x ) = log

( x
1−x

)
. �e logit

link function allows the model to have a nice interpretation of the proportional odds ratio. �e other two link functions,

which are also used in survival analysis, are the complementary log-log link functionд(x ) = cloдloд(x ) = log(− log(1−x )),

and the probit link function д(x ) = probit (x ) = Φ
−1

(x ), where Φ(·) is the cumulative distribution function of the standard

normal distribution. Interestingly, the complementary log-log link function has the same interpretation of proportional

hazard ratio as the Cox regression. We refer interested readers to (Allison 1982) for more details.

As illustrated in Figure 1, the three link functions have similar shapes which lead to similar estimation results. In

this work, we have selected the logit link function because it has a bounded derivative for the loss function which is
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6 T.T. Nguyên et al.

required by our proposed Extended Output Perturbation and Extended Objective Perturbation approaches. However,

our proposed sampling approach can work with all three link functions.

3.2 Baseline Hazard E�ect

We model the baseline hazard e�ect γ (t ) using natural cubic spline (Friedman et al. 2001) with e knots equally distributed

over the interval [0, 1], 0 = k1 < k2 < · · · < ke = 1.

Let

dj (t ) =

max(t − kj , 0)
3 −max(t − ke , 0)

3

ke − kj
and

b1(t ) = 1,b2(t ) = t ,bi+2 = di (t ) − de−1(t )

�e baseline hazard e�ect γ (t ) is approximated as a linear combination of e basis functions:

γ (t ) = α1b1(t ) + · · · + αebe (t )

In particular, let Ai = [b1(ti ), . . . ,be (ti )]
′

and α = [α1, . . . ,αe ]
′
, then we can write γ (ti ) = α ′Ai .

3.3 Maximum Likelihood Estimation (MLE)

Traditionally, we use MLE to estimate parameters α and β in our models. �e aim is to maximize the log-likelihood of

the observed data. For simplicity, let f =

(
α

β

)
and xti =

(
At

xi

)
. �e log-likelihood function is:

logL(f ) =

n∑
i=1

log

[
h(ti | f ,xi )δi (1 − h(ti | f ,xi ))1−δi S(ti | f ,xi )

]
Let yi = 2δi − 1, from (1), (2) and substituting д(x ) = loдit (x ), we can rewrite our problem as:

logL(f ) = −
n∑
i=1

[
`LR(yi f

′xtii ) +

ti−1∑
s=1

`LR(−f ′xsi )

]
where `LR(x) = log(1 + exp(−x)) is the logistic loss function. To further simplify the formula, let di = (xi ,yi , ti ), i =

1, . . . ,n, and let

`(f ;di ) = `LR(yi f
′xtii ) +

ti−1∑
s=1

`LR(−f ′xsi ) (3)

be the loss function. �en, we get an ERM problem as follows:

f ∗ = arg min

f

n∑
i=1

`(f ;di ) (4)

In this work, our main goal is to propose algorithms which protect di�erential privacy for f ∗ in Equation (4).

4 PERTURBATION APPROACHES

4.1 Extended Output Perturbation

In this section, we present our proposed algorithm which is the extension of the Output Perturbation approach in

(Chaudhuri et al. 2011). For our problem, the loss function is a sum of logistic loss functions instead of a single logistic

loss function as in (Chaudhuri et al. 2011). �e proposed algorithm is in fact based on the generalized version of the
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Di�erentially Private Regression for Discrete-Time Survival Analysis 7

Algorithm 1 AExt−Out−Pert: Extended Output Perturbation

Input: Data set D = {d1, . . . ,dn }, loss function `(f ;di ), privacy budget ϵ
Output: fpr iv

1: J (f ;D) =
1

n
∑n
i=1
`(f ;di ) +

Λ

2
‖ f ‖2

2: Minimize J (f ;D) by using the BFGS algorithm to get the non-private solution f ∗

3: Compute t ←
∑q
s=1

√
4+‖As ‖2+maxs∈{1, . . .,q}

√
‖2As ‖2+4

n ·Λ
4: Sample a random vector b such that pdf(b) ∝ exp

(
−ϵ ‖b ‖t

)
5: Compute and output fpr iv ← f ∗ + b

Laplace mechanism (Dwork 2008) which is described as follows: Let f ∗ = G(D) be the value that we want to guarantee

di�erential privacy. f ∗ is the result of applying a function G on the private data set D (e.g., it is in our case to minimize

the objective function). We de�ne the sensitivity of the function G as follows:

sen(G) = max

D,D′
‖G(D) −G(D ′)‖

where D and D ′ are two neighboring data sets. �en, the di�erentially private version of f ∗ = G(x ) is:

fpr iv = f ∗ + µ

where µ is a noisy random variable with probability density function pdf(µ) ∝ exp(−ϵ ‖µ‖/sen(G)).

As required by the Output Perturbation approach, we consider the following regularized objective function:

J (f ;D) =

1

n

n∑
i=1

`(f ;di ) +

Λ

2

‖ f ‖2 (5)

where D = {di }ni=1
, `(·) is the loss function as de�ned in (3) and Λ is the regularization parameter. In this approach, our

goal is to compute the sensitivity of:

f ∗ = arg min

f
J (f ;D)

�en, we use the sensitivity to control the amount of noise added to f ∗.

4.1.1 Proposed Algorithm. Algorithm 1 shows the proposed Extended Output Perturbation approach. It returns a

vector fpr iv as the minimizer of J (·) while guaranteeing di�erential privacy. At Line 2, we compute the non-private

solution f ∗ = arg minf = J (f ;D) using the well-known BFGS algorithm (Fletcher 2013). f ∗ is guaranteed to exist due

to the strongly convexity of J (f ;D). At Line 3, we compute t which is the sensitivity of f ∗. Lines 4-5 add noise to the

value of f ∗.

In order to sample a random vector b in Algorithm 1 from the distribution pdf(b) ∝ exp (−ϵ ‖b‖/t), we observe that

the length of the vector b follows a Gamma distribution:

‖b‖∼ Γ(d, t/ϵ)

where d is the number of components of b. �us, in order to sample b we �rst sample its length r = ‖b‖ from the

Gamma distribution and then sample b as a uniform random point on the surface of a sphere with radius r .

4.1.2 Privacy Guarantee. In order to prove the di�erential privacy protection, we focus on proving that the sensitivity

of f ∗ at Line 2 in Algorithm 1 is equal to the value of t which is computed at Line 3. Here, we use Lemma 4.1 from

(Chaudhuri et al. 2011) to bound the sensitivity of f ∗.
Manuscript submi�ed to ACM



8 T.T. Nguyên et al.

Lemma 4.1. Let G(f ) and д(f ) be two vector-valued functions, which are continuous and di�erentiable at all points. In

addition, let G(f ) and G(f ) + д(f ) be λ−strongly convex. If f1 = arg minf G(f ) and f2 = arg minf G(f ) + д(f ), then

‖ f1 − f2‖≤
1

λ
max

f
‖∇д(f )‖

From Lemma 4.1, our goal now is to bound the magnitude of the di�erence in the gradients of the objective function

J (·) on any two neighboring data sets.

Lemma 4.2. For any pair of patient’s records di = (xi ,yi , ti ) and dj = (x j ,yj , tj ), and for any f ,

‖∇`(f ;di ) − ∇`(f ;dj )‖≤
q∑
s=1

√
‖As ‖2+4 + max

s ∈{1, ...,q }

√
‖2As ‖2+4

Proof.

∇`(f ;di ) = ∇`LR(yi f
′xtii ) +

ti−1∑
s=1

∇`LR(−f ′xsi )

=

−yixtii
1 + exp(yi f ′x

ti
i )

+

ti−1∑
s=1

xsi
1 + exp(−f ′xsi )

�erefore, we can write ∇`(f ;di ) =

∑q
s=1

lsi , where

lsi =


x si

1+exp(−f ′x si )
, i f s < ti

−yix si
1+exp(yi f ′x si )

, i f s = ti

®0, i f s > ti

Similarly, we can also write ∇`(f ;dj ) =

∑q
s=1

lsj .�erefore,

∇`(f ;di ) − ∇`(f ;dj ) =

q∑
s=1

lsi − l
s
j

We have | −yi
1+exp(yi f ′x si )

| ≤ 1, ‖xi ‖ ≤ 1, ‖x j ‖ ≤ 1, for any s ∈ {1 . . .q}, we consider four possible cases as follows:

Case 1: if s < ti and s < tj , then

‖lsi − l
s
j ‖=







(
(e1 − e2)As

e1xi − e2x j

)




 ≤ √
‖As ‖2+(‖xi ‖+‖x j ‖)2

≤
√
‖As ‖2+4

where e1 =
1

1+exp(−f ′x si )
and e2 =

1

1+exp(−f ′x sj )
.

Case 2: if s > ti or s > tj , then ‖lsi − l
s
j |≤ max(‖xsi ‖, ‖x

s
j ‖) ≤

√
‖As ‖2+1 <

√
‖As ‖2+4.

Case 3: if lsi =

−x si
1+exp(f ′x si )

and lsj =

x sj
1+exp(−f ′x sj )

, then

‖lsi − l
s
j ‖=






−
(
(e1 + e2)As

e1xi + e2x j

)




 ≤ √
‖2As ‖2+4

where e1 =
1

1+exp(f ′x si )
and e2 =

1

1+exp(−f ′x sj )
.

Case 4: if lsi =

x si
1+exp(−f ′x si )

and lsj =

−x sj
1+exp(f ′x sj )

, then ‖lsi − l
s
j ‖≤

√
‖2As ‖2+4.�is case is similar to Case 3.
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Di�erentially Private Regression for Discrete-Time Survival Analysis 9

We observe that there is at most one value of s, 1 ≤ s ≤ q, belonging to Case 3 or Case 4 in which ‖lsi − l
s
j ‖≤√

‖2As ‖2+4. �erefore, from the triangle inequality:

‖
q∑
s=1

lsi − l
s
j ‖≤

q∑
s=1

√
‖As ‖2+4 + max

s ∈{1, ...,q }

√
‖2As ‖2+4

�erefore, the lemma follows. �

Finally, we can bound the sensitivity of f ∗ = arg minf J (f ;D) by the following lemma.

Lemma 4.3. �e `2−sensitivity of f ∗ = arg minf J (f ;D) is at most
∑q
s=1

√
4+‖As ‖2+maxs∈{1, . . .,q}

√
‖2As ‖2+4

nΛ
.

Proof. Without loss of generality, we assume that two neighboring data sets D and D ′ are di�erent at nth patient

with (xn ,yn , tn ) ∈ D and (x ′n ,y
′
n , t
′
n ) ∈ D ′.

LetG(f ) = J (f ;D),д(f ) = J (f ;D ′)−J (f ;D) =
1

n (`(f ;d ′n )−`(f ;dn )), f1 = arg minf J (f ;D), and f2 = arg minf J (f ;D ′).
Because

1

2
‖ f ‖2 is 1−strongly convex,G(f ) = J (f ;D) is Λ−strongly convex andG(f )+д(f ) = J (f ;D ′) is also Λ−strongly

convex. From Lemma 4.2,

‖∇д(f )‖ =





 1

n

(
∇`(f ;d ′n ) − ∇`(f ;dn )

)




≤

∑q
s=1

√
4 + ‖As ‖2 + maxs ∈{1, ...,q }

√
‖2As ‖2+4

n

From Lemma 4.1,

‖ f1 − f2‖≤
1

Λ

∑q
s=1

√
4 + ‖As ‖2 + maxs ∈{1, ...,q }

√
‖2As ‖2+4

n
�erefore, the lemma follows. �

Theorem 4.1. Algorithm 1 is ϵ−di�erentially private.

Proof. For any pair of neighboring data sets D and D ′ and for any fpr iv ,

pdf(fpr iv | D)

pdf(fpr iv | D ′)
=

pdf(b1)

pdf(b2)

= exp (−ϵ/t (‖b1‖−‖b2‖))

where b1 and b2 are the corresponding noise vectors at Line 4 in Algorithm 1 with respect to the data sets D and D ′.
If f ∗

1
(resp., f ∗

2
) is the solution at Line 2 of Algorithm 1 on the data set D (resp., D ′), then f ∗

1
+ b1 = f ∗

2
+ b2 = fpr iv .

From Lemma 4.3 and the triangle inequality:

‖b1‖−‖b2‖≤ ‖b1 − b2‖= ‖ f1 − f2‖≤ t

where t =

∑q
s=1

√
4+‖As ‖2+maxs∈{1, . . .,q}

√
‖2As ‖2+4

n ·Λ . �erefore,
pdf(b1)

pdf(b2)
≤ exp(ϵ). �us, Algorithm 1 is ϵ−di�erentially

private. �

4.2 Extended Objective Perturbation

In this section, we present a solution based on the Objective Perturbation approach proposed in (Chaudhuri et al.

2011). Similarly to the Extended Objective Perturbation approach, we also consider the objective function as described

in Equation (5). In this approach, instead of adding noise to the solution of the optimization problem as the output

perturbation does, it adds noise to the objective function.
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Algorithm 2 AExt−Obj−Pert: Extended Objective Perturbation

Input: Data set D = {d1, . . . ,dn }, objective function J (f ;D), privacy budget ϵ , parameter Λ

Output: f ∗

1: ∆← 0

2: Compute ϵ ′ ← ϵ − 2

∑q
s=1

log

(
1 +

1

4

√
‖As ‖2+1

n(Λ+∆)

)
3: if ϵ ′ < ϵ/2 then

4: Binary search value of ∆ such that 2

∑q
s=1

log(1 +

1

4

√
‖As ‖2+1

n(Λ+∆) ) = ϵ/2 and set ϵ ′ ← ϵ/2

5: Compute t ← ∑q
s=1

√
4 + ‖As ‖2 + maxs ∈{1, ...,q }

√
‖2As ‖2+4

6: Sample a random vector b such that pdf(b) ∝ exp (−ϵ ′‖b‖/t)
7: f ∗ ← arg minf J (f ;D) +

1

n 〈b, f 〉 +
1

2
∆‖ f ‖2

8: Output f ∗

4.2.1 Proposed Algorithm. Algorithm 2 shows the solution in pseudo-code. At Line 2, we compute ϵ ′ which is

used to calibrate the magnitude of a random variable b. Here, the regularization parameter is equal to Λ. At Line 3, if

ϵ ′ < ϵ/2, then it indicates that Λ is not large enough. In this case, an additional positive regularization parameter ∆ is

picked to set the value of ϵ ′ equals to ϵ/2 (Line 4). At Line 5, we compute t which is the sensitivity of ∇J (f ;D). Line 6

samples a random vector b using the same method described in Subsection 4.1.1. Lines 7-8 return the solution of the

noisy objective function using the BFGS algorithm.

4.2.2 Privacy Guarantee. In this section, we will prove that the probability density of f ∗ from Algorithm 2 satis�es

the di�erential privacy de�nition.

Theorem 4.4. Algorithm 2 is ϵ−di�erentially private.

Proof. �e noisy objective function from Algorithm 2 is:

f ∗ = arg min

f

1

n

n∑
i=1

`(f ;di ) +

1

n
〈b, f 〉 +

1

2

(Λ + ∆) ‖ f ‖2

Due to the convexity of `(·), the gradient is zero at the minimal point f ∗, equivalently,

b = −n(Λ + ∆)f ∗ −
n∑
i=1

∇`(f ∗;di )

Due to the strongly convexity of the objective function, there is a bijective (injective and surjective) mapping from

f to b (denoted as f → b). �erefore, we can transform the probability density function of random variable f to the

probability density function of random variable b by a multiplication factor of the Jacobian determinant (Billingsley

2008). From that, the probability density ratio in di�erential privacy can be rewri�en as:

pdf(f | D)

pdf(f | D ′) =

pdf(b | D)

pdf(b ′ | D ′) ·
|det (Jacob (f → b | D)) |−1

|det (Jacob (f → b ′ | D ′)) |−1
(6)

We �rst bound the ratio of the Jacobian determinants. Without loss of generality, we assume that the two data sets

D and D ′ are di�erent at nth record with dn ∈ D and dn′ ∈ D ′. Let

A = −Jacob(f → b | D) = n(Λ + ∆)I +
n∑
i=1

∇2`(f ∗;di )
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and E = ∇2`(f ∗;dn ) − ∇2`(f ∗;d ′n ), then

|det (Jacob (f → b | D)) |−1

|det (Jacob (f → b ′ | D ′)) |−1
=

|det (A + E)|
|det (A)| = |det (I + A−1E)|

Moreover, E =

∑q
s=1

Esn −
∑q
s=1

Esn′ where

Esn =


(x sn )(x sn )

′

(1+exp(f ′x sn ))(1+exp(−f ′x sn ))
, i f s < tn

−y2

n (x si )(x sn )
′

(1+exp(yn f ′x sn ))(1+exp(−yn f ′x sn ))
, i f s = tn

0, i f s > tn

Similarly, we can de�ne Esn′ by replacing n by n′. From (Seiler and Simon 1975), for any square matrices A and B,

det (I + A + B) ≤ det (I + |A|) · det (I + |B |)

where |A|= (A′A)

1

2 . Moreover, A−1Esn and A−1Esn′ are symmetric, thus

det (I + A−1E) ≤
q∏
s=1

det (I + A−1Esn ) · det (I + A−1Esn′ )

We now prove that |det
(
I + A−1Esn

)
|≤ 1 +

1

4

√
‖As ‖2+1

n(Λ+∆)
. Because

��� −y2

n
(1+exp(yn f ′x sn ))(1+exp(−yn f ′x sn ))

��� ≤ 1

4
, and Esn is either a

zero matrix or 1-rank matrix. �e only non-zero eigenvalue of Esn if exist satis�es |λ1(Esn )|≤ 1

4
‖xsn ‖≤ 1

4

√
‖As ‖2+1. As

the objective function is (Λ + ∆)−strongly convex, A is a full-rank matrix with each eigenvalue greater than n(Λ + ∆).

�erefore, |det
(
I + A−1Esn

)
|≤ 1 +

1

4

√
‖As ‖2+1

n(Λ+∆)
. Similarly, |det (I + A−1Esn′ )|≤ 1 +

1

4

√
‖As ‖2+1

n(Λ+∆)
.�erefore,

|det (Jacob (f → b) | D) |−1

|det (Jacob (f → b ′) | D ′) |−1
≤ exp

(
2

q∑
s=1

log(1 +

1

4

√
‖As ‖2+1

nΛ

)

)
(7)

Next, we bound the ratio of the probability density of random vector b with respect to two neighboring data sets. We

have:

b − b ′ = ∇`(f ∗;dn ) − ∇`(f ∗;d ′n )

From Lemma 4.2,

‖b − b ′‖≤
q∑
s=1

√
‖As ‖2+4 + max

s ∈{1, ...,q }

√
‖2As ‖2+4

�erefore,

pdf(b | D)

pdf(b ′ | D ′) ≤ exp(ϵ ′‖b − b ′‖/t ) ≤ exp(ϵ ′) (8)

From (6), (7), (8), and ϵ = ϵ ′ + 2

∑q
s=1

log

(
1 +

1

4

√
‖As ‖2+1

nΛ

)
, the theorem follows. �

5 PROPOSED SAMPLING APPROACH

In this section, we propose a solution which guarantees di�erential privacy by directly sampling a random output from

a modi�ed version of the posterior distribution. In this work, we pick a normal distribution as the prior distribution.

�is is equivalent to using:

U(f ;D) = −1

2

σ ‖ f ‖2−
n∑
i=1

`(f ;di )
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Fig. 2. The illustration of the sanitizer function (blue) with maximum value 20 and the identity function (red).

as the utility function in the exponential mechanism (McSherry and Talwar 2007) where the parameter σ is used to

control the variance of the prior normal distribution. �en, the di�errentially private output is sampled from the

following distribution:

pdf(f ) ∝ exp

(
ϵU(f ;D)

2∆U

)
where ∆U = maxd (D,D′)=1,f ‖U(f ;D) − U(f ;D ′)‖ is the sensitivity of U . �e reason we pick a normal prior

distribution instead of a uniform prior distribution is not because our proposed solution required so to guarantee

di�erential privacy but we observe that with a normal prior distribution the sampling algorithm converges be�er and is

more stable.

Moreover, this approach requires the utility functionU(f ;D) has to have a bounded sensitivity. However, the loss

function `(·) is not bounded. �erefore, the functionU(f ;D) has unbounded sensitivity. In order to overcome this

di�culty, we propose a smooth sanitizer functionC(x ) which is used to control the maximum value of the loss function

`(·). �e de�nition of C(x ) is given as follows:

Cv (x ) = v · tanh
(x
v

)
which is illustrated in Figure 2. We now take the composition ofCv (·) with `(f ;di ) to have a bounded-sensitivity utility

function:

U(f ;D) = −1

2

σ ‖ f ‖2−
n∑
i=1

Cv (`(f ;di ))

We intentionally pick the tanh(·) function as the sanitizer because it nicely keeps the loss function in its original

form when the value of the loss function is near 0. Meanwhile, it deforms the loss function at large values to make the

function �nite. �e advantage of this approach is that the sampled parameter can arbitrary large while the objective

function is kept almost the same around the optimal parameter which maximizes the posterior probability. We describe

the pseudo-code of our approach in Algorithm 3.
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Algorithm 3 ASanitized−EXP: Sanitized Loss Mechanism

Input: Data set D = {di }ni=1
, loss function `(f ;di ), privacy budget ϵ , maximum value v , parameter Λ

Output: f
1: U(f ;D) = − 1

2
σ ‖ f ‖2−∑n

i=1
Cv (`(f ;di ))

2: Sample a random vector f with the probability density

pdf(f ) ∝ exp

( ϵ
2v
U(f ;D)

)

Theorem 5.1 (Privacy guarantee). Algorithm 3 is ϵ−di�erentially private.

Proof. For two neighboring data sets D and D ′,
∆U = maxf ,d (D,D′)=1

|U(f ;D) −U(f ;D ′)|≤ v . �erefore, at any point f , we have

pdf(f | D)

pdf(f | D ′) =

exp

( ϵ
2vU(f ;D)

)
/∫

exp( ϵ
2v U(f ;D))df

exp

( ϵ
2vU(f ;D ′)

)
/∫

exp( ϵ
2v U(f ;D′))df

≤ exp

(
2ϵ

2v

��U(f ;D) −U(f ;D ′)
��)

≤ exp(ϵ)

�erefore, Algorithm 3 is ϵ−di�erentially private. �

�e problem with Algorithm 3 is that there is no run-time e�cient algorithm to sample the distribution of f exactly.

Bassily et al. (Bassily et al. 2014) proposed a polynomial run-time sampling algorithm. However, their proposed

algorithm is still impractical due to the high degree of the polynomial run-time complexity and only apply for the

log-convex function. Recently, there are developments (Ahn et al. 2012; Chen et al. 2014; Ma et al. 2015) in Markov

Chain Monte Carlo (MCMC) method which can be applied to machine learning problems with large data sets. �e idea

is to construct Markov chains to simulate dynamical systems with stochastic gradients. At each step, we compute the

gradient at the current location, then add a controlled amount of noise to the gradient and follow the noisy gradient

to a new location. Asymptotically, the stationary distribution of this process converges to the true distribution from

which the gradient is computed.

In this work, we propose to use an MCMC sampling algorithm, namely Preconditioned Stochastic Gradient Langevin

Dynamics (pSGLD) (Li et al. 2015), to approximately sample the posterior distribution. pSGLD is good at sampling

variables with di�erences in scale which is useful for our problem because the parameter α is usually much larger in

magnitude than the parameter β (recall that f = [α , β]
′
). �e pseudo-code of pSGLD is described in Algorithm 4. At

Line 1, we initialize the values ofV0 and f1. Line 3 computes the learning rate ϵt . It is required that limt→∞
∑
t ϵt →∞

and limt→∞
∑
t ϵ

2

t < ∞ to guarantee the convergence. We sample uniformly k records from D for estimating the

average gradient д̄t (Line 5). We then compute the variance of the gradient at Line 6 (� is the element-wise product) and

convert it to the preconditioned matrixGt
at Line 7. We update the parameter at Line 8 with a noise variableN (0, ϵtG

t
).

It is worth to note that there is a permanent bias in pSGLD due to excluding a correction term in the updating step

(Line 8). However, this bias is negligible and excluding the correction term helps to speed up the sampling algorithm

which then helps to reduce the �nite-sample bias as more steps are executed in a �nite amount of time.
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Algorithm 4 ApSGLD: pSGLD Sampling Algorithm

Input: Data set D = {di }ni=1
, loss function `, privacy parameter ϵ , µ, k , bounded value v and learning rate τ

Output: f T +1

1: V0 ← ®0, f1 ← ®0
2: for t = 1 to T do
3: Compute ϵt ← t−τ

4: Uniformly sample Ω
t
k =

{
dt1
, . . . ,dtk

}
⊂ D

5: Compute д̄t =
ϵ

2v (
σ f t
n +

1

k
∑k
i=1
∇Cv (`(f t ,dti )))

6: V t ← µV t−1
+ (1 − µ)(д̄t � д̄t )

7: Gt ← 1/
(
λI + diaд(

√
V t

)

)
8: f t+1 ← f t − ϵt

(
Gt · nд̄t

)
+N (0, ϵtG

t
)

9: Output f T+1

6 EXPERIMENTAL EVALUATION

In this section, we present the results of our experiments on four real data sets. We focus on answering the following

three important research questions: (1) Does the sampling approach converge to its stationary distribution? (2) What

is the trade-o� between privacy and accuracy as compared to the non-private estimation? (3) Are the discrete-time

regression models good alternatives to the Cox regression model? In the following sections, we address the above

research questions accordingly.

6.1 Data Sets

Table 1. Statistics of the data sets.

Data set Size #uncensored #explanatory variables

FL 7874 2169 8

TB 16116 1761 3

WT 21685 18615 3

SB 53558 16341 3

We use four real data sets in our experiments. Table 1 gives the statistics of these data sets.

• �e FLchain data set (FL) - It is obtained from a study on the association of the serum free light chain with

higher death rates (Dispenzieri et al. 2012; Kyle et al. 2006). �e survival time of a patient is measured in

days from enrollment until death. �e censored cases are patients who are still alive at the last contact. �e

explanatory variables are age, sex, creatinine, mgus, etc.

• �e time-to-second-birth (SB) and time-to-third-birth (TB) data sets - �ey are obtained from �e Medical Birth

Registry of Norway (Irgens 2000). �e survival time is the time between the �rst and second births, and between

the second and third births respectively. �e censored cases are women who do not have the second birth, and

the third birth respectively, at the time the data are collected. �e explanatory variables in SB (resp., TB) are

age, sex and death of earlier children (resp., age, spacing and sibs).
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Fig. 3. An illustration of the probability densities of the sampling posteriors a�er 250 epochs at privacy budget ϵ = 6.4.
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Fig. 4. An illustration of MRE as a statistical test for samples from the pSGLD sampling algorithm.

• �e Wichert data set (WT) - It contains records on unemployment duration of people in Germany (Wichert and

Wilke 2008). �e survival time is the duration of unemployment until having a job again. �e censored cases

are the ones who do not have a new job at the time the data are collected. �e explanatory variables are sex,

age and wage.

�e survival times in these four data sets are normalized to the interval [0, 1]. We set the number of discrete-time

intervals q = 200. All the vectors of the explanatory variables are normalized to have zero mean and ��ed inside the

unit sphere. We use the natural cubic spline with e = 3 knots to model the baseline hazard e�ect.

6.2 Convergence of the Proposed Sampling Approach

�is section reports on the convergence of our proposed sampling approach. �e aim is to check whether it converges

to the stationary distribution. �e loss function is bounded by the value v = 2 log(n) where n is the size of the data set.

We set the parameter σ = 10
−2 · 2v/ϵ . At each step of the Markov chain, we randomly pick k = 200 records from the

data set to compute the gradient. We set the parameters τ = 0.51, λ = 10
−5

and µ = 0.99 in Algorithm 3. In Figure 3, we
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Fig. 5. The performance of our proposed approaches in MRE with privacy budget ϵ from 0.1 to 6.4.

plot the estimated probability densities of the two �rst parameters (β (1)
and β (2)

) a�er 250 epochs from the sampling

process. We remove the �rst 10
4

steps as the Markov chain does not reach the stationary distribution at the beginning.

We can observe that the probability densities of the samples are very similar to the normal distributions which are

actually what we expect when sampling from the posterior distributions.

For a more formal test, we use the mean relative error (MRE) as a statistical test of convergence. MRE is de�ned as

follows:

MRE =

1

t

t∑
i=1

‖ fi − f ∗‖
‖ f ∗‖ (9)

where fi is the parameter vector from the sampling process, f ∗ is the optimal parameter vector which maximizes the

likelihood in non-private se�ing and t is the number of samples. We plot the MRE as the function of epochs with three

di�erent privacy budgets in Figure 4. Each epoch is a bundle of n steps. We observe that a�er 250 epochs, MRE becomes

stable which indicates that the sampling procedure converges to its stationary distribution.

6.3 Trade-o� between Privacy and Accuracy

Table 2. The performance in MRE of Ext-Out-Pert approach for di�erent regularization parameters with privacy budget ϵ = 6.4. The
best performance results are in bold.

Λ 10
−5

10
−4

10
−3

10
−2

10
−1

10
0

FL 981.635 98.135 9.828 1.195 0.837 0.882

TB 90.994 9.113 1.273 0.964 0.975 0.983

WT 342.939 34.297 3.456 0.763 0.765 0.81

SB 9.59 1.224 0.957 0.993 0.998 0.999

In this section, we investigate the trade-o� between privacy and accuracy in our proposed approaches. We �rst

need to pick the value of regularization terms for the perturbation approaches (Ext-Obj-Pert and Ext-Out-Pert) as the

accuracy of these approaches are very much depend on the regularization parameter Λ. We report in Table 2 the MREs

of Ext-Out-Pert with di�erent values of Λ and privacy budget ϵ = 6.4. For consistency in performance comparison, we

will use the best values of Λ, which lead to the smallest relative error per data set.

To measure the accuracy of the proposed approaches at di�erent privacy levels, the privacy budget is varied from 0.1

to 6.4. We also use MRE for the measurement. �e results are shown in Figure 5. Overall, pSGLD outperforms both
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Ext-Out-Pert and Ext-Obj-Pert approaches. Moreover, we observe that the accuracy of Ext-Out-Pert and Ext-Obj-Pert

does not improve much at high privacy budgets. It is due to the large regularization parameter that causes the output

parameter moving towards the zero vector instead of the optimal parameter as the regularization term is the dominant

factor of the objective function. Meanwhile, our proposed sampling approach (pSGLD) does not su�er from this e�ect

which leads to much be�er results at high privacy budgets.

6.4 Comparison with Cox regression

Table 3. Relative error of the discrete-time survival regression as compared to the Cox regression.

Data set Relative error (%)

FL 2.589%

TB 9.039%
WT 3.617%

SB 2.618%

Here, we want to con�rm that the discrete-time regression models are good alternatives to the Cox regression model.

We compare the results obtained from the non-private discrete-time regression models without regularization term to

the results obtained from Cox regression. We use the relative error (RE) which is de�ned as:

RE =

‖β − β∗‖
‖β∗‖

where β is from the discrete-time regression with logit link and β∗ is from Cox regression. �e results are shown in

Table 3. We observe that the results obtained from the discrete-time regressions are very similar to the results obtained

from the Cox regression with relative errors ranging from 2% − 9%. At the worse case of the data set TB, the parameter

obtained from the discrete-time model β = [0.0122443,−0.849823,−0.239539]
′

is still a good approximation of the

parameter obtained from the Cox model β∗ = [0.0585478,−0.790977,−0.23906]
′
. As such, these results con�rm that the

discrete-time regression models are good alternatives to the Cox regression in practice.

7 CONCLUSION

In this work, we propose solutions for the problem of protecting di�erential privacy for discrete-time regression models

used in survival analysis. In particular, we extend the perturbation approaches to a generalized form in which the

loss function is a sum of logistic loss functions. In addition, we propose a sampling approach to practically protect

di�erential privacy by sampling a scaled posterior distribution with the pSGLD sampling algorithm. Even though we

focus our work on discrete-time survival regression, our proposed approaches can be applied to other problems with

similar loss functions as well. Moreover, our proposed approaches can be easily extended to discrete-time regression

models in which the explanatory variables are changed over time. For further work, a di�erentially private version of

Cox regression would be a good complement to our work.
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