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ABSTRACT

Tensor completion (TC) is a challenging problem of recovering

missing entries of a tensor from its partial observation. One main

TC approach is based on CP/Tucker decomposition. However, this

approach often requires the determination of a tensor rank a pri-

ori. This rank estimation problem is diicult in practice. Several

Bayesian solutions have been proposed but they often under/over-

estimate the tensor rank while being quite slow. To address this

problem of rank estimationwithmissing entries, we view theweight

vector of the orthogonal CP decomposition of a tensor to be anal-

ogous to the vector of singular values of a matrix. Subsequently,

we deine a new CP-based tensor nuclear norm as the L1-norm of

this weight vector. We then propose Tensor Rank Estimation based

on L1-regularized orthogonal CP decomposition (TREL1) for both

CP-rank and Tucker-rank. Speciically, we incorporate a regular-

ization with CP-based tensor nuclear norm when minimizing the

reconstruction error in TC to automatically determine the rank of

an incomplete tensor. Experimental results on both synthetic and

real data show that: 1) Given suicient observed entries, TREL1 can

estimate the true rank (both CP-rank and Tucker-rank) of incom-

plete tensors well; 2) The rank estimated by TREL1 can consistently

improve recovery accuracy of decomposition-based TC methods;

3) TREL1 is not sensitive to its parameters in general and more

eicient than existing rank estimation methods.

KEYWORDS

Tensor Rank Estimation; CP-based Tensor Nuclear Norm; CP De-

composition; Tensor Completion

1 INTRODUCTION

Tensors are generalization of vectors (irst-order tensors) and matri-

ces (second-order tensors). They are ubiquitous (e.g., multichannel

EEGs, images, videos, and social networks) and attract increasing

interests [16]. Tensor completion, a task of recovering the missing en-

tries based on partially observed entries, has drawn much attention

recently in many applications of machine learning [24, 28, 32, 34]

and data mining [29ś31, 36].
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One popular approach to solving tensor completion problems

is tensor nuclear norm minimization, which is extended from ma-

trix [5] to tensor case as a convex surrogate for rank minimization

[18]. Although the nuclear norm approximation leads to good ten-

sor completion performance under typical conditions [7, 11, 19],

there is no theoretical guarantee that it is the tightest convex enve-

lope of a tensor rank. Moreover, this approach is not eicient on

large-scale tensors due to the heavy computation of singular value

decomposition (SVD).

Another popular approach is based on tensor decompositions

including CANDECOMP/PARAFAC (CP) [6, 12]) and Tucker de-

composition [35], which is more promising for large-scale data.

These two main decompositions lead to two common deinitions

for tensor rank: CP-rank and Tucker-rank respectively. This ap-

proach often requires a tensor rank as input. For example, a CP

decomposition with weighted optimization method (CP-WOPT) [1]

and an alternating minimization algorithm for tensors with a (ixed)

low-rank orthogonal CP decomposition (TenALS) [14] can obtain

good completion results for data with missing values under typical

conditions. However, they need to manually choose a CP-rank as

input, which is quite challenging because estimating the CP-rank is

NP-hard [13], especially given incomplete information. On the other

hand, by enforcing orthogonality into Tucker model, a generalized

higher-order orthogonal iteration method (gHOI) [20] is developed

to eiciently solve tensor completion problem, where the Tucker-

rank for their model is obtained via a heuristic rank-increasing

scheme. Furthermore, a simple Tucker decomposition-based ap-

proach (Tucker-WOPT) [10] fails to recover missing data accurately

if the pre-speciied rank is smaller than the true rank. Most recently,

a Riemannian manifold optimization method (FRTC) [15] achieves

good recovery performance on large-scale tensors, while still re-

quiring a good rank value to be pre-speciied. Moreover, its time

cost increases exponentially with increasing input Tucker-rank.

Some studies attempt to estimate the CP/Tucker-rank of incom-

plete tensors automatically. Several Bayesian models have been

proposed to automatically determine the CP-rank [3, 27, 42, 43].

For example, the CP rank of an incomplete tensor can be inferred by

employing a multiplicative gamma process prior in [27], where the

inference is performed by Gibbs sampler with slow convergence.

Most recently, a Bayesian robust tensor factorization (BRTF) [43]

employs a fully Bayesian generative model for automatic CP-rank

estimation. However, BRTF often under/over-estimates the true

rank of incomplete tensors and has high computational cost.

To automatically estimate the Tucker-rank, an automatic rele-

vance determination (ARD) algorithm is applied for sparse Tucker

decomposition (ARD-Tucker) [23]. ARD is a hierarchical Bayesian
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approach widely used in many methods [26, 33, 37]. However, ARD-

Tucker is not applicable to incomplete tensor data and its eiciency

is quite low. Most recently, a robust Tucker-rank estimation method

using Bayesian information criteria is proposed [39], while also

only applicable to complete tensors.

In this paper, we view the weight vector of the orthogonal CP

decomposition of a tensor as analogous to the vector of singular val-

ues of the SVD of a matrix. We then deine a simple CP-based tensor

nuclear norm as the L1 norm of this weight vector. Based on this

new tensor norm, we propose Tensor Rank Estimation based on

L1-regularized orthogonal CP decomposition, denoted as TREL1.

TREL1 can automatically determine both CP-rank and Tucker-rank

accurately given suicient observed entries by removing the zero

entries of the weight vector after optimization. We solve the opti-

mization problem by block coordinate descent, where we optimize

a block of variables while ixing the other blocks and update one

variable while ixing the other variables in each block. In a nutshell,

our contributions are fourfold:

• We propose TREL1 to automatically estimate the CP-rank of

an incomplete tensor via a newly deined CP-based tensor

nuclear norm.

• We automatically estimate the Tucker-rank in each mode by

degenerating TREL1 to matrix case and applying it on the

unfolded matrices of an incomplete tensor.

• We develop an eicient block coordinate descent algorithm

for model optimization.

• We carry out extensive experiments to show that TREL1

is not sensitive to its parameters in general and more ef-

icient than existing tensor rank estimation methods, and

using TREL1 for rank estimation can improve the recovery

accuracy of the state-of-the-art decomposition-based tensor

completion methods.

This paper is organized as follows. We review preliminaries and

backgrounds in Section 2. In Section 3, we deine a CP-based tensor

nuclear norm and propose two tensor rank estimation methods

for both CP-rank and Tucker-rank estimation. We report empirical

results in Section 4, and conclude this paper in Section 5.

2 PRELIMINARIES AND BACKGROUNDS

We irst review the preliminaries and backgrounds [16, 22].

2.1 Notations and Operations

The number of dimensions of a tensor is the order and each dimen-

sion is a mode of it. A vector is denoted by a bold lower-case letter

x ∈ RI and a matrix is denoted by a bold capital letter X ∈ RI1×I2 .

A higher-order (N ≥ 3) tensor is denoted by a calligraphic letter

X ∈ RI1×···×IN . The ith entry of a vector a ∈ RI is denoted by a(i ),

and the (i, j )th entry of a matrix X ∈ RI1×I2 is denoted by X(i, j ).

The (i1, · · · , iN )th entry of an N th-order tensor X is denoted by

X (i1, · · · , iN ), where in ∈ {1, · · · , In } and n ∈ {1, · · · ,N }. The

Frobenius norm of a tensor X is deined by ∥X∥F = ⟨X,X⟩
1/2. Ω ∈

R
I1×···×IN is a binary index set: Ω(i1, · · · , iN ) = 1 if X (i1, · · · , iN )

is observed, and Ω(i1, · · · , iN ) = 0 otherwise. PΩ is the associated

sampling operator which acquires only the entries indexed by Ω:

(PΩ (X)) (i1, · · · , iN ) =

{

X (i1, · · · , iN ), if(i1, · · · , iN ) ∈ Ω

0, if(i1, · · · , iN ) ∈ Ωc ,

(1)

where Ωc is the complement of Ω. We have PΩ (X) +PΩc (X) = X.

Definition 1. Mode-n Product. A mode-n product between a

tensor X ∈ RI1×···×IN and a matrix/vector U ∈ RIn×Jn is denoted by

Y = X ×n U
⊤ ∈ RI1×···×In−1×Jn×In+1×···×IN , with entries given by

Yi1 · · ·in−1 jn in+1 · · ·iN =
∑

in Xi1 · · ·in−1in in+1 · · ·iN Uin, jn , and we have

Y(n) = U
T
X(n)[22].

Definition 2. Mode-n Unfolding. Unfolding, a.k.a., matriciza-

tion or lattening, is the process of reordering the elements of a tensor

into matrices along each mode [16]. A mode-n unfolding matrix of a

tensor X ∈ RI1×···×IN is denoted as X(n) ∈ R
In×Πn∗,n In∗ .

2.2 CP and Tucker Decomposition

2.2.1 Tucker Decomposition and Tucker-rank. A tensor X ∈

R
I1×I2×···×IN is represented as a core tensor with factor matrices

in Tucker decomposition model [16]:

X = G×1U
(1)×2U

(2) · · · ×NU
(N ) , (2)

where {U(n) ∈ RIn×Rn ,n = 1, 2 · · ·N , and Rn < In } are fac-

tor matrices with orthonormal columns and G ∈ RR1×R2×···×RN

is the core tensor with smaller dimension. The Tucker-rank of

an N th-order tensor X is an N -dimensional vector, denoted as

r = (R1, · · · ,RN ), whose n-th entry Rn is the rank of the mode-

n unfolded matrix X(n) of X. Rn is the mode-n rank. Figure 1

illustrates this decomposition.

Figure 1: The Tucker decomposition of a third-order tensor.

Figure 2: The CP decomposition of a third-order tensor X,

where the core tensorW is a super-diagonal tensor.



2.2.2 CP Decomposition and CP-rank. CP decomposition de-

composes a tensor X ∈ RI1×···×IN as the weighted summation of a

set of rank-one tensors:

X =

R
∑

r=1

wr u
(1)
r ◦ · · · ◦ u

(n)
r · · · ◦ u

(N )
r

=W×1U
(1)×2U

(2) · · · ×NU
(N ) ,

(3)

where each u
(n)
r ,n = 1, · · · ,N is a unit vector with the weight

absorbed into the weight vector w = [w1, · · ·wr , · · ·wR ]
⊤ ∈ RR ,

and ◦ denotes the outer product [16]. Figure 2 shows that CP de-

composition is also could be reformulated as the Tucker decom-

position where the core tensorW is a super-diagonal tensor, i.e.,

W (r , · · · , r ) = wr . R is CP-rank as the minimum number of rank-

one components.

3 PROPOSED TENSOR RANK ESTIMATION
METHODS

This section presents new Tensor Rank Estimation methods based

on L1-regularized orthogonal CP decomposition, namely, TREL1.

For simpler notations, we consider third order tensorsX ∈ RI1×I2×I3

only while our methods generalize easily to higher-order tensors.

Orthogonal CP decomposition. In this paper, we consider the

orthogonal CP decomposition, i.e., we enforce u
(n)
p

⊤
u
(n)
q = 0 for

p , q, and u
(n)
p

⊤
u
(n)
q = 1 otherwise. There are two motivations:

(1) CP decomposition can be viewed as a generalization of SVD

to tensors [8]. It seems natural to inherit the orthogonality

of SVD in CP decomposition.

(2) Although orthogonality is considered unnecessary in general

or even impossible in certain cases in exact CP decompo-

sition [4, 9, 40], some recent studies show that imposing

orthogonality in the CP model can turn non-unique tensor

decomposition into a unique one with guaranteed optimality

[2, 14, 17, 40].

Tensor decomposition with missing data is more challenging than

that with complete data in traditional problems. Furthermore, it is

important to estimate a good rank from an incomplete tensor for

accurate tensor completion. Therefore, we believe incorporating

orthogonality into the CP model can help us determine the rank

and further recover the tensor in the context of tensor completion.

Our empirical studies to be presented later will show that the or-

thogonality constraint indeed gives better tensor rank estimation

and completion results. Furthermore, we view theweight vector w

of the orthogonal CP decomposition of a tensor X to be analogous

to the vector of singular values of a matrix.

Definition 3. The CP-based Tensor Nuclear Norm of a tensor

X is deined as the L1 norm of the weight vector w of its orthogonal

CP decomposition: ∥X∥CP = ∥w∥1.
1

In TREL1, we incorporate a regularization of CP-based tensor

nuclear norm while minimizing the reconstruction error to obtain

the estimated rank of an incomplete tensor and a low-rank recovery.

1For easy reading, we use ∥w∥1 instead of ∥X ∥CP below.

Thus, our objective function is:

min
X,w, {u

(n )
r },R

λ∥w∥1 +
1

2
∥X −

R
∑

r=1

wru
(1)
r ◦ u

(2)
r ◦ u

(3)
r ∥

2
F ,

s.t. PΩ (X) = PΩ (T ), u
(n)
r

⊤
u
(n)
r = 1,n = 1 · · · 3,

u
(n)
r

⊤
u
(n)
q = 0,q = 1 · · · r − 1, r = 1 · · ·R,

(4)

where T ∈ RI1×I2×I3 is the given incomplete tensor with observed

entries in Ω. w = [w1, · · · ,wr , · · · ,wR ]
⊤ is the weight vector and

R is the CP-rank of X. λ is a regularization parameter.

3.1 Derivation of TREL1 by BCD

We employ the Block Coordinate Descent (BCD) (a.k.a., alternat-

ing minimization [14]) method for optimization. We divide the tar-

get variables into R + 1 blocks: {{w1, u
(1)
1 , u

(2)
1 , u

(3)
1 }, · · · , {wr , u

(1)
r ,

u
(2)
r , u

(3)
r }, · · · , {wR , u

(1)
R
, u

(2)
R
, u

(3)
R
},X}.We optimize a block of vari-

ables while ixing the other blocks, and update one variable while

ixing the other variables in each group. After updating the R + 1

blocks, we inally determine the tensor rank.

The Lagrangian function of (4) with respect to the r -th block

{wr , u
(1)
r , u

(2)
r , u

(3)
r } is:

L
wr ,u

(n )
r

= λ |wr | +
1

2
∥Xr −wr u

(1)
r ◦ u

(2)
r ◦ u

(3)
r ∥

2
F ,

s.t. u
(n)
r

⊤
u
(n)
r = 1,n = 1 · · · 3,

u
(n)
r

⊤
u
(n)
q = 0,q = 1 · · · r − 1, r = 1 · · ·R,

(5)

where Xr = X −
∑r−1
q=1wqu

(1)
q ◦ u

(2)
q ◦ u

(3)
q is the residual of the

approximation. We use Lagrange multipliers to transform (5) to

include all the constraints as:

L
wr ,u

(n )
r

= λ |wr | +
1

2
∥Xr −wr u

(1)
r ◦ u

(2)
r ◦ u

(3)
r ∥

2
F

− γ (u
(n)
r

⊤
u
(n)
r − 1) −

r−1
∑

q=1

µqu
(n)
r

⊤
u
(n)
q ,

(6)

where γ and {µq }
r−1
q=1 are the Lagrange multipliers.

3.1.1 Update u
(n)
r . The function (6) with respect to u

(1)
r is,

L
u
(1)
r

=

1

2
∥Xr −wr u

(1)
r ◦ u

(2)
r ◦ u

(3)
r ∥

2
F

− γ (u
(1)
r

⊤
u
(1)
r − 1) −

r−1
∑

q=1

µqu
(1)
r u

(1)
q ,

(7)

Then we set the partial derivative of L
u
(1)
r

with respect to u
(1)
r to

zero and eliminate the Lagrange multipliers, and get:

u
(1)
r =(Xr ×2 u

(2)
r ×3 u

(3)
r )/wr

−
(

r−1
∑

q=1

u
(1)
q

⊤
(Xr ×2 u

(2)
r ×3 u

(3)
r ) u

(1)
q

)

/wr ,
(8)



Algorithm 1 CP-rank Estimation Based on L1-Regularized Orthog-

onal CP Decomposition (TREL1CP)

1: Input: PΩ (T ), Ω, λ, initial rank R̂, maximum iterationsK , and

stopping tolerance tol.

2: Initialization: Set Z = zeros(I1, I2, I3), PΩ (X) = PΩ (T ),

PΩc (X) = 0; Initialize {u
(1)
r , u

(2)
r , u

(3)
r ,wr }

R̂
r=1 of X by RTPM

[2].

3: for k = 1, ...,K do

4: X1 = X;

5: for r = 1, ..., R̂ do

6: if wr , 0 then

7: Update {u
(1)
r , u

(2)
r , u

(3)
r } by (8), (9), (10) respectively.

8: Updatewr by (14).

9: end if

10: Xr = Xr −wru
(1)
r ◦ u

(2)
r ◦ u

(3)
r .

11: end for

12: Update X: SetZ = X − Xr and update the missing entries

by: PΩc (X) = PΩc (Z).

13: If ∥w(k+1) − wk ∥2/∥w(k+1) ∥2 < tol, break; otherwise, con-

tinue.

14: end for

15: CP-rankEstimation:Only keepwr > 0 inwr and then obtain

the CP-rank R = length(w).

16: output: R.

and normalize u
(1)
r =

u
(1)
r

∥u
(1)
r ∥2

. Note that we only update the blocks

with non-zero weights. Similarly, we update u
(2)
r by

u
(2)
r =(Xr ×1 u

(1)
r ×3 u

(3)
r )/wr

−
(

r−1
∑

q=1

u
(2)
q

⊤
(Xr ×1 u

(1)
r ×3 u

(3)
r ) u

(2)
q

)

/wr ,
(9)

and normalize u
(2)
r =

u
(2)
r

∥u
(2)
r ∥2

, and update u
(3)
r by

u
(3)
r =(Xr ×1 u

(1)
r ×2 u

(2)
r )/wr

−
(

r−1
∑

q=1

u
(3)
q

⊤
(Xr ×1 u

(1)
r ×2 u

(2)
r ) u

(3)
q

)

/wr ,
(10)

and normalize u
(3)
r =

u
(3)
r

∥u
(3)
r ∥2

.

3.1.2 Updatewr . The function (6) with respect towr is:

Lwr
= λ |wr | +

1

2
∥Xr −wr u

(1)
r ◦ u

(2)
r ◦ u

(3)
r ∥

2
F . (11)

Then we set the partial derivative
∂Lwr
∂wr

to zero and obtain,

wr = Xr ×1 u
(1)
r ×2 u

(2)
r ×3 u

(3)
r −

λ |wr |

∂wr
. (12)

Based on the soft thresholding algorithm [25] for L1 regularization,

we updatewr in (12) by:

wr = shrinkλ (⟨Xr , u
(1)
r ◦ u

(2)
r ◦ u

(3)
r ⟩), (13)

Algorithm 2 Tucker-rank Estimation Based on L1-Regularized

Orthogonal CP Decomposition (TREL1Tucker)

1: Input: PΩ (T ), Ω, λ, initial Tucker-rank r̂ = [R̂1, R̂2, R̂3], max-

imum iterations K , and stopping tolerance tol.

2: Set PΩ (X) = PΩ (T ), PΩc (X) = 0.

3: for i = 1, ..., 3 do

4: X(i )= unfold (X, i ).

5: Ω(i ) =ones (size(X(i ) )), Ω(i ) (X(i ) == 0) = 0.

6: Tucker-rank Estimation: Compute the Tucker-rank r =

[R1,R2,R3] via Ri = TREL1CP (X(i ) ,Ω(i ) , λ, R̂i ,K , tol).

7: end for

8: output: r = [R1,R2,R3].

where shrink is the soft thresholding operator [25], and we denote

S = ⟨Xr , u
(1)
r ◦ u

(2)
r ◦ u

(3)
r ⟩:

wr = shrinkλ (S ) =





S − λ (S > λ)

0 ( |S | ≤ λ)

S + λ (S < −λ)

. (14)

3.1.3 Update X. The objective function (4) with respect to X is,

min
X

1

2
∥X−

R
∑

r=1

wr u
(1)
r ◦ u

(2)
r ◦ u

(3)
r ∥

2
F ,

s.t. PΩ (X) = PΩ (T ),

(15)

By deriving the Karush-Kuhn-Tucker (KKT) conditions for function

(15) [20], we can update X by X = PΩ (X) + PΩc (Z), whereZ =
∑R
r=1wr u

(1)
r ◦ u

(2)
r ◦ u

(3)
r .

3.2 TREL1 for CP-rank Estimation

Applying TREL1 directly for CP-rank estimation, we obtain a new

CP-rank estimation method, namely, TREL1CP, summarized in Al-

gorithm 1. Here we specify an initial medium rank value R̂ for

eiciency though we could also automatically set it to some high

rank value, e.g., min(I1, I2, I3). Besides, to obtain a good initializa-

tion, we initialize the CP decomposition of an incomplete tensor

using Robust Tensor Power Method (RTPM) [2] following [14].

RTPM makes TREL1CP less sensitive to parameter λ than using

random initialization.

3.2.1 Estimate CP-rank. InAlgorithm 1, after iteratively updat-

ing all the R + 1 blocks till convergence or reaching the maximum

iterations, we inally determine the CP-rank: checking the weight

vector w, we only keep the weights greater than zero. The number

of the remaining weights in w is the estimated CP-rank.

3.3 TREL1 for Tucker-rank Estimation

Since the Tucker-rank r consists of the mode ranks of unfolded

matrices of X along each mode, we can compute the rank of each

unfolded matrix X(i ) , i = 1, 2, 3, by degenerating TREL1 to matrix

case. For the mode-i unfolded matrix X(i ) of a tensorX ∈ R
I1×I2×I3 ,



we have:

min
X(i ),w, {u

(n )
r },Ri

λ∥w∥1 +
1

2
∥X(i ) −

Ri
∑

r=1

wr u
(1)
r u

(2)
r

⊤
∥2F ,

s.t. PΩ (X) = PΩ (T ), u
(n)
r

⊤
u
(n)
r = 1,n = 1 · · · 2,

u
(n)
r

⊤
u
(n)
q = 0,q = 1 · · · r − 1, r = 1 · · ·Ri ,

(16)

where Ri is the rank (i-th entry of Tucker-rank) of mode-i unfolded

matrix X(i ) of X. Here, each unfolded matrix is approximated by

an orthogonal CP decomposition, which is actually the SVD of the

unfolded matrix as the orthogonal CP decomposition is a general-

ization of SVD from matrices to tensors.

3.3.1 Estimate Tucker-rank. We degenerate the TREL1 to matrix

case to estimate the mode ranks {Ri }
3
i=1 of unfolded matrices along

each mode, and inally determine the Tucker-rank r = [R1,R2,R3].

We denote this TREL1 for Tucker-rank estimation as TREL1Tucker
and summarize it in Algorithm 2. Here, we use random initial-

ization for weights and factors of X(i ) because RTPM is only for

third-order tensors.

Remark: This mode-wise estimation in TREL1Tucker shares

the same spirit as the Tucker-based nuclear norm (i.e., sum of the

nuclear-norms of all the matricizations) and many other existing

Tucker-based works. However, the key diference is that our TREL1

objective is to estimate the true Tucker-rank while Tucker-based

nuclear norm is used to minimize the Tucker-rank. As to be shown

in the empirical studies (e.g., Figs. 7 and 8), a smaller rank is not

necessarily better and a rank smaller than the true rank often dete-

riorates the recovery performance.

3.4 Complexity Analysis

We analyze the complexity of TREL1 following [21], which mainly

includes the shrinkage operator and some multiplications. At each

iteration, the time complexity of performing the shrinkage op-

erator in (13) is O (R (
∏3

j=1 Ij ). This is also the time complexity

of computing {u
(n)
r }

3
n=1 and (15). The overall time complexity is

O (KR (
∏3

j=1 Ij ).

4 EXPERIMENTAL RESULTS

We implemented TREL1 inMATLAB to evaluate the rank estimation

and tensor completion/recovery performance. All experiments were

performed on a PC (Intel Xeon(R) 4.0GHz, 64GB).

4.1 Experimental Setup

4.1.1 Compared Methods. We mainly consider decomposition-

based methods with two steps: (i) rank estimation, and (ii) tensor

completion with the rank estimated in (i). In addition, we tested

three popular baseline methods (SiLRTC, FaLRTC and HaLRTC) in

[18, 19]. FaLRTC performs the best among the three, but inferior to

gHOI with TREL1 on the whole. Thus, their results are not included

below for more compact presentation.

(i) Rank estimation.We study four existing methods:

• MGP-CP [27]: a Bayesian method for low-rank CP decom-

position of incomplete tensors, which infers the CP-rank

using a multiplicative gamma process.

• BRTF [43]: a Bayesian robust tensor factorization which

employs a fully Bayesian generative model for automatic

CP-rank estimation.

• ARD-Tucker [23]: an automatic relevance determination

algorithm for sparse Tucker decomposition using the gra-

dient based sparse coding algorithm.

• SCORE [39]: a robust Tucker-rank estimation method us-

ing Bayesian information criteria for complete tensors.

Among the four methods, BRTF and ARD-Tucker performed

much better than MGP-CP and SCORE, respectively. Thus,

we only report the comparison of TREL1 against BRTF and

ARD-Tucker to save space.

(ii) Tensor completion.We study two representative CP decomposition-

basedmethods and three representative Tucker decomposition-

based methods:

• CP-WOPT [1]: CP decomposition with missing data is

formulated as a weighted least squares problem and solved

by a gradient descent optimization approach.

• TenALS [14]: decomposing of incomplete tensors is for-

mulated as a low-rank orthogonal CP decomposition prob-

lem, solved by an alternating minimization algorithm.

• gHOI [20]: a generalized higher-order orthogonal iter-

ation tensor completion method, based on orthogonal

Tucker decomposition.

• Tucker-WOPT [10]: a nonlinear conjugate gradientmethod

that solves Tucker decomposition with missing data in a

similar way as CP-WOPT.

• FRTC [15]: a Riemannian manifold preconditioning ap-

proach for tensor completion with rank constraint.

4.1.2 Synthetic Data. We generated four synthetic tensors of

size –50×50×50, 100×100×100, 100×100×100, 200×200×200˝ with
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Figure 3: (a-b) Estimated CP-ranks of two tensors (100 × 100 × 100 with R = 5 and 200 × 200 × 200 with R = 50) by TREL1CP with

λ ∈ [50 : 10 : 250]; (c-d) the corresponding time costs.
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(b) Estimated ranks on mode-2: R1 = 18
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(c) Estimated ranks on mode-3: R3 = 20
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Figure 4: (a-c) Estimated Tucker-ranks in each mode of a 200 × 200 × 200 (r = [15, 18, 20]) tensor by TREL1Tucker with λ ∈ [50 : 10 :

250]; (d) The corresponding time costs.
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Figure 5: (a) Estimated CP-ranks of the 100× 100× 100 (R = 5)

tensor with 50%missing entries by TREL1CP given diferent

initial ranks R̂ ∈ [10 : 10 : 200] (b) Estimated Tucker-ranks of

the 200×200×200 (r = [15, 18, 20]) with 50%missing entries by

TREL1Tucker given diferent initial rank R̂ ∈ [50 : 10 : 250].
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Figure 6: Convergence curves of TREL1CP in terms of

weights error: ∥w(k+1) −wk ∥2/∥w(k+1) ∥2 on two tensors.

CP-ranksR = {5, 5, 25, 50}, respectively, following [43].We also gen-

erated three synthetic tensors of size –50×50×50, 80×100×120, 200×

200 × 200˝ with Tucker-ranks r = {[5, 5, 5], [8, 10, 12], [15, 18, 20]},

respectively, following [15].

4.1.3 Real Data. We evaluate tensor rank estimation and com-

pletion on six real tensors: Hall sequence (144 × 176 × 300) [43],

Knix medical images (256 × 256 × 24) [38] and Basketball video

(144 × 256 × 40) [41] for CP-rank estimation; Amino Acid data

(5 × 61 × 201) [27], Flow Injection data (12 × 100 × 89) and Ocean

video (160×112×32) [19] for Tucker-rank estimation. We uniformly

select 10% − 90% entries of each tensor at random as missing data

and use łMR" to denoteMissing Ratio.

4.1.4 Parameter Setings. We set the maximum iterations K =

500, tol = 1e−5 for all methods and the initial rank R̂ = round(1/2×

mean(I1, I2, I3)) for TREL1. We set other parameters of the com-

pared methods following guidance from the original papers. We

compare the estimated rank against the true rank to evaluate the

rank estimation error. We measure tensor completion performance

by Relative Square Error (RSE) [18]: ∥Z − T ∥F /∥T ∥F , whereZ

is the recovered tensor given a few entries from the (ground truth)

T . We repeat each run 10 times and report the average results. We

report the running time as well, in seconds. The setting of λ in

TREL1 will be discussed in the following sensitivity study.

4.2 Parameter Sensitivity

4.2.1 Rank Estimation Sensitivity on λ. Figures 3 and 4 show the

rank estimation results on various synthetic tensors by TREL1 with

diferent λs. As seen from Figs. 3(a) and 3(b), the rank estimation

performance of TREL1CP is stable and not sensitive to the values

of λ in most cases. Only for very high missing ratios (e.g., MR

= 90%), a large λ (e.g., λ = 110) can make the L1 regularization

dominate the whole objective function (4) and result in zero rank.

In addition, the time costs of TREL1CP are stable with most of λ

values (e.g., λ ∈ [70, 200]), as shown in Figs. 3(c) and 3(d).

Figure 4 shows that TREL1Tucker is not sensitive to λ either on

tensors with no more than half of data missing (i.e., MR ≤ 50%).

However, for larger MRs, the rank estimation performance will de-

teriorate, which is not shown in the igures for clarity. Nevertheless,

this is not surprising by noting that TREL1 is formulated based on

CP decomposition so it suits the CP model better than the Tucker

model. Nevertheless, for small to medium MRs, TREL1 can mostly

produce an accurate estimate of the Tucker-rank for a wide range

of λ. In addition, it is interesting to show that the time cost with a

lager λ is lower, as shown in Fig. 4(d).

In summary, CP/Tucker rank estimation performance does not

require careful tuning of λ. The CP-rank estimation is accurate even

for some challenging high MRs. Furthermore, the selection of λ is

largely insensitive to data. For example, good λ values for synthetic

tensors are good values for real tensors as well (to be shown in

the following). Thus, we can ix λ = 100 in both CP/Tucker-rank

estimation for both synthetic and real tensors. Note that in Tucker-

rank estimation, we only need to set a single λ and there is no need

to set separate λ values for each mode. Therefore, setting λ is much

more user-friendly than manually setting the rank values.

4.2.2 Rank Estimation Sensitivity on Initial Rank R̂. Figures 5(a)

and 5(b) study the sensitivity of rank estimation on R̂. We can see

the rank estimation results by TREL1 with diferent of λ values are

not sensitive to R̂ for both CP and Tucker models. Thus, we set

R̂ = round(1/2 ×mean(I1, I2, I3)) for all tests.
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Figure 7: RSE of recovering a tensor (trueCP-rank R = 25) via
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[8, 10, 12]) via Tucker decomposition-basedmethods given (a)
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4.3 Convergence Study

Since TREL1Tucker can be viewed as performing TREL1CP multiple

times on unfolded matrices, we only study the convergence of

TREL1 for CP-rank estimation in terms of weights error : ∥w(k+1) −

wk ∥2/∥w(k+1) ∥2. Figure 6 shows that TREL1CP converges within

100 iterations except for a large MR (> 70%), which needs more

iterations to converge.

4.4 Efects of Rank Value on Completion
Performance

Here, we present studies that investigate the efects of rank estima-

tion accuracy on tensor completion performance of decomposition-

based methods. All ive decomposition-based tensor completion

methods (i.e., CP-based CP-WOPT and TenALS, and Tucker-based

gHOI, Tucker-WOPT and FRTC) listed in Sec. 4.1.1 (ii) are stud-

ied. We compare tensor completion performance with two ways of

rank determination: (i) setting the rank manually; (ii) setting λ in

TREL1 to estimate the rank. We show the results of recovering two

synthetic tensors with MR = {30%, 50%, 70%} in Figs. 7 and 8.

• As seen from Figs. 7(a) and 8(a), the completion performance

(in RSE) of all ive methods is highly sensitive to the man-

ually set rank value. Even a slight error in the rank value

(particularly lower-than-true ranks) can lead to serious per-

formance degradation. Only given the true tensor ranks, all

the ive methods can achieve their best completion results in

all cases. For CP-WOPT, TenALS and gHOI, setting any rank

value diferent from the true rank gives much worse perfor-

mance than their best results. Tucker-WOPT and FRTC can

achieve good results given a higher-than-true rank although

still worse than their best results.

• In contrast, Figs. 7(b) and 8(b) show the corresponding results

with TREL1 rank estimation by setting λ to a limited number

of values only. We can see a wide range of λ values lead to

the best performance of all methods. Such range is particular

wide for CP-based methods and narrower for Tucker-based

methods, which is not surprising since TREL1 is designed

based on a CP model.

This study shows the advantage of TREL1 in rank estimation,

compared to manually specifying the rank. TREL1 greatly simpliies

parameter tuning where a simple setting of λ from a wide range of

feasible values works for a wide range of methods and data. This

not only improves the completion performance but also reduces

the time cost in parameter tuning.

4.5 Tensor Rank Estimation and Completion
Performance

Here, we report the results for MR = {30%, 50%, 70%} in four tables.

We highlight the correctly estimated rank in italic and bold fonts,

smallest RSE results in bold fonts and the second smallest RSE in

underline. Here, the corresponding CP-rank estimated by TREL1CP
and BRTF are denoted as TREL1-R and BRTF-R respectively, and

the corresponding Tucker-rank estimated by TREL1Tucker and ARD-

Tucker are denoted as TREL1-r and ARD-r respectively. Further-

more, the estimated tensor ranks are fed into decomposition-based

tensor completion methods to compare the recovery performance.

4.5.1 CP-rank Estimation and Tensor Completion.

On synthetic tensors: As shown in the left half of Table 1,

TREL1CP correctly determines the true CP-ranks of the synthetic

tensors in all cases, while BRTF over-estimates the ranks (it only

succeeds in one case). More importantly, with TREL1-R, both CP-

WOPT and TenALS achieve their best recovery results, as seen

from the left half of Table 2. Moreover, TenALS outperforms CP-

WOPT both given the true ranks (TREL1-R), which demonstrates

the beneits of orthogonal CP decomposition for tensor completion.

On real tensors: We cannot directly evaluate the estimated CP-

ranks since we do not know the ground-truth of CP-ranks for real

tensors. Thus, we alternatively compare the tensor completion

results afected by the estimated CP-ranks. As seen from the right

half of Table 1, TREL1-R improves the completion performance of

CP-WOPT and TenALS with around 25% than that of using BRTF-R.

Moreover, with TREL1-R, TenALS still achieves better results than

CP-WOPT on the whole.

4.5.2 Tucker-rank Estimation and Tensor Completion.

On synthetic tensors: As reported in the left half of Table 3,

TREL1Tucker can correctly determine the true Tucker-ranks of

the synthetic tensors in all cases, while ARD-Tucker fails (over-

estimates or under-estimates) in these cases. Furthermore, with

our estimated true ranks (TREL1-r), the Tucker decomposition-

based tensor completion methods (gHOI, Tucker-WOPT and FRTC)

outperform the cases of using Tucker-ranks estimated by ARD-

Tucker (ARD-r) by several orders, as shown in the left half of Table

4. Besides, FRTC fails to recover the tensors with more than 39



Table 1: CP-rank estimation on synthetic and real tensors with MR = {30%, 50%, 70%} missing entries. Est.R is the estimated

CP-ranks and Time in seconds.

Synthetic Synthetic Synthetic Real Real Real

Data 50 × 50 × 50 100 × 100 × 100 200 × 200 × 200 144 × 256 × 40 256 × 256 × 24 144 × 176 × 300

R = 5 R = 25 R = 50 Hall Sequence Knix Medical Images Basketball Video

MR 30% 50% 70% 30% 50% 70% 30% 50% 70% 30% 50% 70% 30% 50% 70% 30% 50% 70%

TREL1CP Est.R 5 5 5 25 25 25 50 50 50 4 3 3 5 3 2 7 7 5

Time 1.59 1.61 2.41 29.17 33.04 43.74 487.60 526.28 568.47 399.30 366.20 363.08 98.83 76.70 79.87 74.13 70.34 69.34

BRTF[43] Est.R 9 6 5 36 42 32 85 79 73 2 1 1 1 1 1 2 2 1

Time 165.57 100.35 88.47 4178.78 5901.48 3462.21 1.80E+05 1.87E+05 1.30E+05 2944.40 2239.89 2089.96 960.78 784.26 766.29 280.61 265.87 226.36

Table 2: Tensor completion results by CP-based methods given estimated CP-ranks on synthetic and real tensors with MR

= {30%, 50%, 70%}missing entries. TREL1-R and BRTF-R refer to the corresponding CP-ranks estimated by TREL1CP and BRTF.

Synthetic Synthetic Synthetic Real Real Real

Data 50 × 50 × 50 100 × 100 × 100 200 × 200 × 200 144 × 256 × 40 256 × 256 × 24 144 × 176 × 300

R = 5 R = 25 R = 50 Hall Sequence Knix Medical Images Basketball Video

MR 30% 50% 70% 30% 50% 70% 30% 50% 70% 30% 50% 70% 30% 50% 70% 30% 50% 70%

CP-WOPT[1] RSE 1.20E-07 1.43E-07 6.12E-07 1.94E-07 3.42E-07 4.79E-07 7.27E-08 9.56E-08 1.37E-07 1.97E-01 2.09E-01 2.11E-01 3.45E-01 3.80E-01 4.22E-01 1.87E-01 1.88E-01 2.05E-01

with TREL1-R Time 6.16 3.12 1.65 1015.99 636.24 629.92 3.46E+04 1.53E+04 1.19E+04 5118.82 1779.43 1114.47 1746.97 207.79 57.33 1060.02 971.85 299.95

CP-WOPT[1] RSE 9.96E-05 3.82E-05 6.12E-07 1.94E-04 1.87E-04 6.49E-05 3.39E-04 1.86E-04 1.04E-04 2.35E-01 2.62E-01 2.62E-01 4.72E-01 4.72E-01 4.73E-01 2.49E-01 2.49E-01 3.06E-01

with BRTF-R Time 23.62 9.69 1.66 6149.26 4631.69 1725.27 1.72E+05 1.15E+05 5.33E+04 751.29 44.66 24.08 11.66 6.90 3.81 73.39 44.35 2.95

TenALS [14] RSE 7.11E-09 1.65E-09 9.74E-09 1.36E-09 2.81E-09 8.26E-09 3.26E-09 5.96E-09 1.52E-09 1.97E-01 2.08E-01 2.11E-01 3.43E-01 3.80E-01 4.22E-01 1.87E-01 1.89E-01 2.04E-01

with TREL1-R Time 1.19 1.22 1.26 97.59 104.84 108.93 1493.04 1829.04 2178.05 1755.47 1454.21 1381.88 541.85 280.75 182.67 736.83 712.95 430.92

TenALS[14] RSE 1.61E-08 1.32E-08 9.74E-09 3.32E-07 1.48E-08 9.06E-04 1.13E-05 5.50E-06 9.58E-05 2.35E-01 2.62E-01 2.62E-01 4.72E-01 4.72E-01 4.73E-01 2.48E-01 2.49E-01 3.06E-01

with BRTF-R Time 24.02 14.78 1.23 2290.32 1876.08 1805.51 5.18E+04 5.49E+04 5.46E+04 1002.08 424.07 419.32 103.92 103.95 98.67 124.50 124.66 66.59

hours time costs in ive cases as its computational cost increases

exponentially given over-estimated Tucker-ranks (ARD-r).

On real tensors: Unlike synthetic data with true Tucker-rank

because we constructed them via QR decomposition and can control

the dimensions of its core tensor (Tucker-rank), the real tensors

naturally do not have exact low Tucker-ranks. We can unfold a real

tensor along each mode and then truncate its mode rank (R1,R2 and

R3) to be exact low-rank. However, because the unfolded matrices

are interdependent, we can only control the low-rank in one mode

exactly. Therefore, we studied the cases of truncating the unfolded

matrices of a tensor into exact low-rank in one of the three modes,

and report the results for the mode with the highest dimension.

In this way, we can directly evaluate the estimated Tucker-rank

exactly in one mode at least. As shown in the right half of Table

3, our method can correctly estimate the mode-1 rank (R1 = 22) of

Ocean video, the mode-2 rank (R2 = 7) of Flow Injection and the

mode-3 rank (R3 = 4) of Amino Acid in all cases, while ARD-Tucker

fails to get the exact mode ranks for these real tensors. In addition,

the results shown in the right half of Table 4 demonstrate that: with

TREL1-r, the three Tucker decomposition-based tensor completion

methods improves recovery performance than that of given ARD-r.

Nevertheless, with ARD-r, Tucker-WOPT achieves the second best

recovery results in two cases because it assumes the true ranks can

be over-estimated.

4.5.3 Time Cost of Rank Estimation and Tensor Completion.

Time cost of TREL1 rank estimation: As seen from Table 1:

TREL1CP is much faster than BRTF and only needs less than 1% and

18% of BRTF’s time cost on synthetic and real tensors on average

respectively. Especially on the larger tensors with higher ranks, for

example, TREL1CP is about 300 times faster than BRTF on average

on the 200 × 200 × 200 tensor with R = 50. Table 3 shows that

TREL1Tucker is about 9 times faster than ARD-Tucker on average

on the synthetic and real tensors. Thus, due to the expensive time

costs of the compared methods, it is not feasible to report results of

the lager tensors here.



Table 3: Tucker-rank estimation results on synthetic and real tensors with MR = {30%, 50%, 70%} missing entries. Time in

seconds. Est.R1, Est.R2 and Est.R3 are the estimated Tucker-ranks in mode-1, mode-2 and mode-3, respectively.

Synthetic Synthetic Synthetic Real Real Real

Data 50 × 50 × 50 80 × 100 × 120 200 × 200 × 200 5 × 61 × 201 12 × 100 × 89 160 × 112 × 32

r = [5, 5, 5] r = [8, 10, 12] r = [15, 18, 20] Amino Acid (R3 = 4) Flow Injection (R2 = 7) Ocean Video (R1 = 22)

MR(%) 30% 50% 70% 30% 50% 70% 30% 50% 70% 30% 50% 70% 30% 50% 70% 30% 50% 70%

Est.R1 5 5 5 8 8 8 15 15 15 5 5 5 11 11 11 22 22 22

L1TRETucker Est.R2 5 5 5 10 10 10 18 18 18 7 6 4 7 7 7 51 51 51

Est. R3 5 5 5 12 12 12 20 20 20 4 4 4 23 22 31 32 32 32

Time 1.86 3.10 6.87 32.14 56.87 99.73 430.95 788.72 1442.56 1.63 2.82 5.31 3.83 5.87 19.71 35.37 54.46 101.10

Est.R1 6 23 25 2 41 48 26 87 94 5 5 5 12 12 11 11 23 27

ARD-Tucker Est.R2 6 25 25 3 50 50 78 100 100 25 18 30 12 29 34 15 35 41

[23] Est.R3 6 25 25 3 50 50 87 100 100 25 17 18 20 34 34 19 32 34

Time 50.58 90.27 93.08 127.82 310.78 260.07 1021.62 1398.99 1584.68 19.23 36.27 55.35 66.93 83.17 80.16 86.44 161.09 201.89

Table 4: Tensor completion results by Tucker-based methods given estimated ranks on synthetic and real tensors with MR

= {30%, 50%, 70%} missing entries. Time in seconds and łś" indicates that the results cost more than 50 hours. TREL1-r and

ARD-r refer to the corresponding Tucker-ranks estimated by TREL1Tucker and ARD-Tucker.

Synthetic Synthetic Synthetic Real Real Real

Data 50 × 50 × 50 80 × 100 × 120 200 × 200 × 200 5 × 61 × 201 12 × 100 × 89 160 × 112 × 32

r = [5, 5, 5] r = [8, 10, 12] r = [15, 18, 20] Amino Acid (R3 = 4) Flow Injection (R2 = 7) Ocean Video (R1 = 22)

MR(%) 30% 50% 70% 30% 50% 70% 30% 50% 70% 30% 50% 70% 30% 50% 70% 30% 50% 70%

gHOI [20] RSE 1.50E-06 4.50E-06 3.51E-05 9.87E-08 1.82E-07 1.12E-04 3.61E-07 2.09E-04 1.98E-03 3.34E-03 3.38E-02 5.84E-02 1.07E-02 4.63E-02 1.23E-01 3.56E-02 4.78E-02 6.40E-02

with TREL1-r Time 1.17 1.23 1.30 2.33 2.58 5.37 1271.58 1301.92 1128.82 0.66 1.08 0.83 2.26 2.34 3.03 8.33 9.73 12.03

gHOI [20] RSE 1.85E-02 8.69E-02 2.02E-01 3.95E-03 7.07E-02 1.94E-01 1.01E-02 5.18E-02 1.24E-01 1.15E-01 1.47E-01 2.58E-01 1.76E-02 1.78E-01 3.45E-01 7.26E-02 6.73E-02 7.68E-02

with ARD-r Time 1.77 2.98 5.12 2.65 19.72 16.06 27.30 63.27 107.69 1.97 1.95 3.03 2.80 3.48 3.64 5.14 9.38 12.41

Tuker-WOPT RSE 3.22E-06 3.43E-06 4.22E-06 2.49E-06 2.97E-06 1.99E-05 6.81E-05 3.24E-04 5.86E-04 3.30E-03 5.56E-03 9.28E-03 1.38E-02 2.16E-02 2.57E-02 6.09E-02 6.30E-02 6.74E-02

[10] with TREL1-r Time 399.44 184.96 154.48 681.72 1187.41 300.53 1271.58 1301.92 1128.82 81.91 87.30 83.69 183.23 207.14 107.88 221.40 301.67 265.43

Tuker-WOPT RSE 1.38E-02 2.54E-04 2.96E-04 8.68E-03 2.01E-04 2.95E-04 3.13E-03 3.34E-03 3.90E-03 1.15E-02 1.03E-02 1.12E-02 1.47E-02 2.18E-02 5.20E-02 1.28E-01 8.51E-02 7.90E-02

[10] with ARD-r Time 79.83 105.96 118.69 184.78 493.82 438.93 3157.47 3409.49 4741.76 203.81 227.49 469.54 175.08 56.91 76.29 141.98 218.34 259.79

FRTC [15] RSE 2.05E-04 1.98E-04 2.26E-04 2.12E-05 1.49E-05 1.60E-05 5.56E-06 5.06E-06 6.09E-06 3.01E-03 5.31E-03 8.95E-03 5.22E-02 3.36E-01 6.60E+00 5.51E-01 3.54E+00 2.14E+01

with TREL1-r Time 2.12 2.00 1.77 71.34 55.46 39.98 2624.47 2172.52 1691.71 3.80 10.91 5.30 12.54 34.14 545.78 4.26E+04 3.59E+04 2.92E+04

FRTC [15] RSE 1.10E-02 7.67E-01 4.44E+00 7.22E-03 2.17E-01 2.65E+00 ś ś ś 3.05E-02 3.75E-02 1.16E-01 1.78E-01 5.34E+01 2.98E+02 1.77E+00 1.10E+01 2.22E+01

with ARD-r Time 6.45 3517.56 3053.61 24.00 1.78E+05 1.43E+05 ś ś ś 1341.69 604.89 471.05 28.78 2486.80 2205.16 1.58E+04 2.87E+04 2.63E+04

Time cost of tensor completion using TREL1: As shown in

Table 1: unlike on synthetic tensors, CP-WOPT and TenALS with

TREL1-R cost more time than those with BRTF-R on real tensors be-

cause TREL1-Rs are larger than BRTF-Rs, though leading to better

accuracy. This increased time cost is inherent for the tensor com-

pletion algorithms rather than TREL1. On Tucker-rank estimation,

FRTC with TREL1-r is much faster than FRTC given ARD-r in most

cases, as observed in Table 4.

5 CONCLUSION

In this paper, we deined a simple CP-based tensor nuclear norm

and proposed two novel tensor rank (both CP-rank and Tucker-

rank) estimation methods, TREL1CP and TREL1Tucker, based on

orthogonal CP decomposition. In the proposed methods, we im-

pose an L1 regularization on the weight vector of the orthogonal

CP decomposition, served as the CP-based tensor nuclear norm,

while minimizing the reconstruction error. This leads to automatic



rank determination for incomplete tensors. As demonstrated in

our experimental results, TREL1 can correctly determine the true

tensor ranks (both CP-rank and Tucker-rank) of synthetic tensors,

and also can estimate the rank of real tensors well given suicient

observed entries. More importantly, our estimated tensor ranks

consistently improved the recovery performance of decomposition-

based tensor completion methods. Besides, TREL1 is not sensitive

to its parameters in general and much more eicient than existing

tensor rank estimation methods.
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