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ABSTRACT

In this paper, we propose a novel deep coherence model (DCM)
using a convolutional neural network architecture to capture the
text coherence. The text coherence problem is investigated with a
new perspective of learning sentence distributional representation
and text coherence modeling simultaneously. In particular, the
model captures the interactions between sentences by computing
the similarities of their distributional representations. Further, it can
be easily trained in an end-to-end fashion. The proposed model is
evaluated on a standard Sentence Ordering task. The experimental
results demonstrate its effectiveness and promise in coherence
assessment showing a significant improvement over the state-of-
the-art by a wide margin.
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1 INTRODUCTION

Coherence is a key property of any well-organized text. It evaluates
the degree of logical consistency for text and can help document
a set of sentences into a logically consistent order, which is at the
core of many text-synthesis tasks such as text generation and multi-
document summarization. An example is shown in Table 1 for the
coherence problem.

Although coherence is significant in constructing a meaningful
and logical multi-sentence text, it is difficult to capture and mea-
sure as the concept of coherence is too abstract. The problem of
coherence assessment was first proposed in 1980s, and since then a
variety of coherence analysis methods have been developed, such
as the centering theory [8, 16] which establishes constraints on the
distribution of discourse entities in coherent text, and the content
approaches [2, 7] as the extensions of HMMs for global coherence
which consider text as a sequence of topics and represent topic
shifts within a specific domain.
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Table 1: Examples of a coherent text and an incoherent one.

Text 1
Tom loves reading books.

Text 2
Tom loves reading books.

He prefers reading books at library. | He missed his lunch today.
So he always goes to library.
label=1 (coherent)

So he always goes to library.

label=0 (incoherent)

Another widely used type of approaches in the literature is to
encode input text into a set of sophisticated lexical and syntactic
features, and then apply machine learning methods (e.g., SVM) to
measure coherence between these representations based on the
features. Features being explored include entity-based features [1],
syntactic patterns [12], conference clues to ordering [5], named-
entity features [6], and others. But, identifying and defining those
features are always an empirical process which requires consider-
able experience and domain expertise.

Recently, a promising coherence framework [11] has been pro-
posed based on a deep learning framework, where it adopts recur-
rent and recursive neural networks [13, 14] in computing vectors
for input sentences. However, it pays little attention to essential
semantic interactions between sentences, which are also necessary
in coherence assessment. Furthermore, in the recurrent framework,
terms are simply piled up within a sentence such that long-distance
dependencies are difficult to capture due to the vanishing gradient
problem [3] and on the other hand, the recursive neural network
still suffers from a severe dependence on external resources to
construct its syntactic trees.

To overcome the above limitations, in this work, we present a
novel deep coherence model (DCM) based on convolutional neu-
ral networks to learn coherence for the given text. We study the
text coherence problem with a new perspective of learning sen-
tence distributional representation and text coherence modeling
simultaneously. In particular, word embeddings are first explored to
generate sentence matrix for each sentence [10, 15, 17, 18], and then
sentence models map sentences to distributional vectors in paral-
lel, which are used for learning coherence between them. Further,
interactions between sentences are captured by computing the sim-
ilarities of their distributional representations. Finally, the sentence
vectors and their corresponding similarity scores are concatenated
together to estimate the text coherence.

Our work differs from the existing approaches in several impor-
tant aspects: 1) we propose a distributional sentence model based
on convolutional neural networks (CNNs) to map input sentences
to advanced representations; 2) our architecture uses intermediate
sentence vectors to compute their similarity scores and includes
them in the final representation, which constitutes a much richer
representation of text.
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Figure 1: The sentence model based on a CNN for distribu-
tional representation.

The proposed model is evaluated on a standard Sentence Or-
dering task. The experimental results demonstrate the effective-
ness and promise in coherence assessment showing considerable
improvements over the state-of-the-art literature [11] by a wide
margin.

2 MODEL CONSTRUCTION

In this section, we first introduce how to compute distributional
sentence vectors based on CNNs and word embeddings. Then, a
framework for evaluating the coherence of a sequence of sentences
is proposed with the sentence representations.

2.1 Distributional Sentence Representation

Given a sequence of sentences, as is shown in Figure 1, the proposed
sentence model is able to map each sentence into a distributional
vector, and then the dense sentence representation is transformed
through a wide convolutional layer, a non-linearity and a max
pooling layer into a low-dimensional and real-valued feature vector.
In the following, we describe the main building blocks of our
sentence model in details: sentence matrix and CNN including
convolutional layers, activations and pooling layers.

2.1.1 Sentence Matrix. Since the input sentence is comprised
of several raw words which cannot be directly processed by subse-
quent layers of the network, we adopt distributional word embed-
dings to translate the words into real-valued feature vectors and
then combine them to form a sentence matrix.

The input sentence s consists of a sequence of words: [w, ..., w|g|].
where |s| denotes the total number of words within the sentence.
Word embeddings matrix W € R4V is formed by concatenating
embeddings of all words in a finitely sized vocabulary V, where d
denotes the dimension of this embedding. Each word is mapped
to integer indices 1, .. ., |V| in vocabulary V and then represented
by a distributional vector w € R? looked up in this word embed-
dings matrix. Hence, a sentence matrix S € RAXIs! is established for
each input sentence s, where each i-th column represents a word
embedding w; of the i-th word in the sentence:

~7W|s|] (1)

So far we have obtained a sentence matrix S. In the following,
a CNN is applied to the input sentence matrix to capture higher

S=[wg,ws,..

level semantic concepts, using a series of transformations including
convolution, nonlinearity and pooling operations.

2.1.2  Convolutional Neural Network. The aim of the convolu-
tional layer is to extract useful patterns using different filters which
represent a variety of significant features of the input sentence.

Corresponding to the input S € R4*Is| a convolution filter is
also a matrix of weights F € R4 with width m and has the same
dimensionality d as the given sentence matrix. As shown in Figure 1,
the filter slides along the column dimension of S producing a vector
c e RIsI=m+1 55 an output, where each component is computed as
follows:

¢i = (S*F)i = Y Spizme1a] © P @)

k.j

where S|. ;_p,41.4] is @ matrix slice with size m along the columns
and ® is the element-wise multiplication. Essentially, in order to
capture more features and build a richer representation for the
input sentence, the networks apply a set of filters sequentially
convolved with the distributional sentence matrix S. Such filter
banks F € R™ 4% work in parallel generating multiple feature
maps of dimension n X (|s| —m + 1).

After convolution operations, we apply a non-linear activation
function «() to learn nonlinear decision boundaries and adopt a
rectified linear (ReLU) function defined as max(0, x) which can not
only speed up the training process but also sometimes increase
the accuracy. Furthermore, we add max pooling layer to the distri-
butional sentence model aiming to reduce the representation and
aggregate the information. This max pooling operates on columns
of the feature map matrix C and enables to return the maximum
value of the output from the convolutional layer as follows: pool(c):
RIsl=m+1 _, R which has just passed through the activation func-
tion.

2.2 Coherence Computation

Here we explain how to map several input sentences to the final
coherence probability and provide a full description of the remain-
ing components in the networks, e.g., similarity matrix, join layer,
hidden and softmax layer.

We first define a window of sentences as a clique g and associate
each clique with a label y4 that indicates its coherence, where yq4
takes the value 1 if coherent, and 0 otherwise. Consequently, for
a document D consisting of N sentences D = {s1,s2,...,SN}, it is
comprised of Ny cliques. Taking window size L = 3 for example,
Ny = N — 2, and the cliques we need to consider are as follows:

< $1,2,83 >,<52,83,84 >,...,<SN-2,SN-1,SN > (3)

To articulate clearly the coherence computation methodology, in the
following we use the case of a clique of three neighboring sentences
to present the methodology and the architecture of our model is
shown in Figure 2. The method, however, can be implemented using
a clique of any number of neighboring sentences and in fact in the
experiments we have implemented and evaluated the method in
different clique sizes. It appears that the performance differences
for different clique sizes are not significant.

Similarity computation. Since sentences in coherent text always
talk about a main topic and share some events and emotions in
common, we compute sentence-to-sentence semantic similarity
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Figure 2: The architecture of our deep coherence model
(DCM) for text coherence analysis with two matrices to en-
code similarity between adjacent sentences.

to encode this essential information which can certainly produce
positive effects on coherence assessment. Assume that the output
of our sentence model is three distributional representations: the
first one Xf, the second one x; and the third one x;. Following
the approach used in [4], we define the similarity between any
neighboring sentence vectors as follows:

Sim(fs) = X}Mlxs (4)

the similarity matrix M; is a parameter of the network that can
be optimized during the training. In this model, more common
elements between these two vectors, closer x; = M;x; is to Xy, and
thus the higher similarity score Sim(f's).

Join layer. For the coherence assessment of the three input sen-
tences, similarity computation produces two single scores: Sim(fs)
and Sim(st) capturing syntactic and semantic aspects of the simi-
larity from the input three-sentence text. Additionally, along with
two similarity scores, our architecture also includes intermediate
representations of the three sentences into the final vector

Xjoin = [x},Sim(fs), XST,Sim(st), xtT] (5)

which together constitute a much richer final representation for
computing the final coherence probability.

Hidden layer. The hidden layer performs the following transfor-
mation: h = f(WpXjoin + bp,), where Wy, is the weight matrix of
the hidden layer, by, is a bias vector and f() is the non-linearity
function. The output of the hidden layer h can be viewed as a fi-
nal abstract representation obtained by a series of transformations
from the input layer through a series of convolutional and pooling
operations.

Softmax layer. The output of the hidden layer h is further fed to
the fully connected softmax classification layer, and the coherence
probability of this three-sentence text can be summarized as:

P(yq|xjoin) = sigmod(Wsh + by) (6)

where Wy is a weight matrix and bs denotes the bias.

2.3 Training

Parameters in our deep neural network include: the word embed-
dings matrix W, filter weights and biases of the convolutional layers
in sentence model, two similarity matrices M; and My, and param-
eters of the hidden and softmax layers. We use 6 to represent them:

0 = {W;Fx;;bx s Fr s b s Fap by, s M1y Mas Wy by s Wes bs o (7)

and the negative conditional log-likelihood of the training set is:

N:
C = -log[ | p(yqle™; 0) (®)
i=1
where gl = (xL,xI, x}) denotes the i-th training clique of three
neighboring sentences and N; indicates the number of training
cliques. We train the overall model to minimize this function and
optimize parameters in the network by computing their gradients

within shuffled mini-batches based on back propagation algorithm.

3 DOCUMENT COHERENCE ASSESSMENT

In this section, we apply the proposed framework to evaluate coher-
ence for any documents with varying lengths. With the definition
of a clique in Section 2.2, the function to compute the coherence
score for a whole document is given by [11]:
sp=[]prwg=1 ©)
qeD
It is reasonable to choose product operations rather than plus
operations as the coherence of the whole document is related to the
coherence of each clique, and any incoherent clique would have an
extremely adverse impact to the entire document. For document
pair < D1, Ds >, if Sp, > Sp,, we would say document D; is more
coherent than Ds.

4 COHERENCE EXPERIMENTS

We evaluate the proposed coherence modeling framework on a
common evaluation task usually adopted in the existing literature:
Sentence Ordering.

Data. We employ two corpora which are widely used in this task
[1, 2,5, 6, 12]. The first is a collection of aviation accident reports
written by officials from the National Transportation Safety Board
and the second contains Associated Press articles from the North
American News Corpus on the topic of earthquakes. The size of
the word vocabulary V for the experiments using accident corpus
is 4501 and with approximately 11.5 sentences per document on
average. For the earthquake corpus, |V| = 3022 with about 10.4
sentences per document on average. Following the setup of [11],
100 source articles are used for training, and 100 (accidents) and
99 (earthquakes) are used for testing. A maximum of 20 random
permutations were generated for each test article to create the pair-
wise data. Positive cliques are directly obtained from the original
training document and negative examples are created by random
permutations of its sentences within the document. Moreover, like
the method in [17], we employ the word2vec tool to compute the
word embeddings for sentence matrix construction.

Baselines. To demonstrate that the CNN truly improves the coher-
ence assessment performance in comparison with the state-of-the-
art methods, we compare DCM with the following representative



Table 2: Survey of the results with average accuracy in two
corpora on the Sentence Ordering task.

Model Accident Earthquake Average
DCM 0.950 0.995 0.973
DCM_Nosim 0.925 0.986 0.956
Recursive 0.864 0.976 0.920
Recurrent 0.840 0.951 0.895
Entity Grid 0.904 0.872 0.888
HMM 0.822 0.938 0.880
HMM-+Content 0.742 0.953 0.848
Conference+Syntax 0.765 0.888 0.827
Graph 0.846 0.635 0.741

methods: Recursive [11], Recurrent [11], Entity Grid [1], HMM [12],
HMM-+Content [12], Conference+Syntax [1], and Graph [9].

In addition, to verify the effectiveness of the similarity building
blocks in the deep learning architecture, we also study a configu-
ration of the proposed model without the similarity component:
DCM_Nosim.

4.1 Training and Hyper-parameters

We train our deep learning architecture on a training set using
stochastic gradient descent (SGD) and tune parameters of the net-
work on a development set. The word embeddings matrix W has
dimension 50 and the width of convolution filters is 4. There are
100 convolutional feature maps, such that each intermediate vector
obtained in the sentence model has also dimension 100. Batch size
is set to 500 examples and the network is trained for 20 epochs with
early stopping.

4.2 Results and Discussion

Table 2 reports the results of DCM and all the competing methods in
the evaluation task. The experimental results are averaged with 10
random initializations. As we see, DCM achieves a much stronger
performance than all the existing methods by a large margin, show-
ing a significant improvement of about 5.3% gain on average for
the accident and earthquake corpora.

Compared with HMM and Entity Grid, DCM requires no manual
feature engineering anymore and can automatically learn better
sentence representations using distributional word embeddings.
Further, the abstract sentence representations computed by DCM
are more meaningful in exactly capturing the relevant semantic,
logical and syntactic features in coherent context than all the com-
peting models.

Different from recursive neural network [11], which asks for
expensive preprocessing using syntactic parsers to construct syn-
tactic trees and then builds the convolution on them, CNN does
not require any NLP parsers for preprocessing or external semantic
resources.

The superior performance of DCM over DCM_Nosim demon-
strates the necessity of the similarity computation in coherence
assessment, while both recursive and recurrent neural networks
[11] ignore this point and cannot achieve perfect results.

5 CONCLUSION

In this paper, we develop a deep coherence model, DCM, based on
convolutional neural networks for text coherence assessment. The
text coherence problem is investigated with a new perspective of
learning sentence distributional representation and text coherence
modeling simultaneously. In particular, DCM captures the inter-
actions between sentences by computing the similarities of their
distributional representations. Further, it can be easily trained in an
end-to-end fashion. DCM is evaluated on a standard Sentence Or-
dering task. The experimental results demonstrate its effectiveness
and promise in coherence assessment showing significant improve-
ments over the state-of-the-art models by a wide margin.
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