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ABSTRACT
Property graphs can be used to represent heterogeneous net-
works with labeled (attributed) vertices and edges. Given a
property graph, simulating another graph with same or greater
size with the same statistical properties with respect to the
labels and connectivity is critical for privacy preservation and
benchmarking purposes. In this work we tackle the problem
of capturing the statistical dependence of the edge connec-
tivity on the vertex labels and using the same distribution to
regenerate property graphs of the same or expanded size in
a scalable manner. However, accurate simulation becomes
a challenge when the attributes do not completely explain
the network structure. We propose the Property Graph Model
(PGM) approach that uses a label augmentation strategy to
mitigate the problem and preserve the vertex label and the
edge connectivity distributions as well as their correlation,
while also replicating the degree distribution. Our proposed
algorithm is scalable with a linear complexity in the number
of edges in the target graph. We illustrate the efficacy of the
PGM approach in regenerating and expanding the datasets by
leveraging two distinct illustrations. Our open-source imple-
mentation is available on GitHub 1.
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1 INTRODUCTION
Most real-world datasets that naturally lend themselves to
a graph representation also contain significant amounts of
label (or attribute) information. This situation is promoting
the popularity of property graphs: multi-graphs where the

1https://github.com/propgraph/pgm

vertices and edges are labeled with key-value pairs [10]. For
example, the Microsoft Academic Graph has labels such as af-
filiation, field of study, etc., for every person. These attributes
help answer questions such as: 1) how strong are collabora-
tions between two fields? 2) where is a person with a certain
affiliation and field of study likely to publish most? Simi-
lar motivating examples are abound in other domains such
as bioinformatics (protein-interaction networks), medicine
(clinical records) and cyber-security (network-traffic data).
The need for accurate and scalable simulation arises as an
important capability for property graphs. We often need to
re-generate datasets with equivalent properties for privacy
reasons, or expand a dataset by multiple orders of magnitude
for benchmarking studies.

THE PROBLEM In this work we consider the problem of
capturing the relationships between given and (in general)
correlated vertex labels and edge connectivity in property
graphs through the use of two different joint distributions.
We show that a straightforward approach to capturing the
label-structure relationships can be accuracy-limited when
the given labels cannot explain the structure completely. We
mitigate this problem by modeling the dependence of the
edge connectivity on the vertex labels and the structure itself
via the introduction of an augmented label that categorizes
the vertex degree distribution. We demonstrate the modeling
of graphs with vertices of the same type, connected by one
specific type of relationship. General property graphs with
heterogeneous vertices and multiple relationships can be mod-
eled by introducing vertex types as new labels and building
multiple distributions for the typed edges.

CONTRIBUTIONS Our Property Graph Model (PGM) re-
tains the generative nature of the Multiplicative Attribute
Graph (MAG) model [4] by expressing the probability of
edge connection as a function of the vertex labels. However,
while MAG deals with latent labels, PGM caters to correlated,
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meaningful real-world labels. In this way it is similar to the
Attribute Graph Model (AGM) approach [8]. PGM has the
added benefit of not needing to assume a model for the graph
topology, making it general enough to model property graphs
across domains. The use of label and edge categories to define
multinomial distributions provides for a scalable implemen-
tation linear in the number of edges required in the target
dataset. Finally, we demonstrate our results on two datasets:
a synthetic dataset generated by a role-based approach [3]
and a real-world dataset extracted from the Facebook Social
Graph [5].

2 THE BASIC PGM APPROACH
Consider a source property graph GS = ⟨VS ,ES ,L,L(VS )⟩
with the set of vertices VS and the set of edges ES ⊆ VS ×VS .
L = {Lk }Mk=1 is a set of M vertex label sets. Associated with
the kth label is Lk , the set of possible label values for that
label and nk = |Lk | . For example, in a social graph, the first
label, Income-Range, may have 6 possible values where as the
second label, Education-Level, may have 4 possible values.
Associated with each vertex vi ∈ VS is a random M-vector
L̄(vi ) =

〈
l i1, l

i
2, . . . , l

i
k , . . . , l

i
M

〉
drawing a label value l ik ∈ Lk ,

for each of the M labels. We denote by L(VS ), the set of all
the |VS | label value vectors in one to one correspondence
with the set of vertices VS .The target property graph GT =

⟨VT ,ET ,L,L(VT )⟩ is defined analogously, and is generated by
capturing appropriate statistics on GS . Note that both GS and
GT share the same set of vertex labels L.

Each realized vertex label vector L̄(vi ) can be considered as
a draw from the set of joint label assignments L =>M

k=1 Lk .
There are N =

∏M
k=1 nk possible joint label assignments

called label categories and the jth label category is denoted
by c j . In doing so, we flatten the joint distribution to a multi-
nomial label distribution PL over these N categories such that
pj = PL

(
c j
)
, and

∑N
j=1 pj = 1. With the observations of the

vertex labels in the source dataset GS , we can estimate the
parameters pj via the maximum-likelihood method as

PL
(
c j
)
=

∑ |VS |
i=1 1c j (L̄(vi ))
|VS |

. (1)

Here the indicator function is 1 only when the label vector for
vertex i is equal to the joint label category c j .

Next, we model the edge connectivity by a joint distribution
over pairs of label categories

(
c j , c j′

)
which we call edge

categories. We denote this distribution by PC . PC is defined
over the sample space L × L and has one entry per pair of
label vector realizations. PC can be estimated from data as

PC
( (
c j , c j′

) )
=

∑
⟨vi ,vi′ ⟩∈ES 1(c j ,c j′ )

(
L̄(vi ), L̄(vi′)

)
|ES |

. (2)

Here the indicator function is 1 only when the two vertices vi
andvi′ have an edge between them and their label vectors take
on categories c j and c j′ respectively. Note that for undirected
graphs, where the order of c j and c j′ does not matter, PC can
be represented as a more compact multinomial distribution
with N̂ =

(N
2
)

categories. When we draw an edge from PC ,
the successful category gives the vertex label categories cor-
responding to the two end points that form the edge. Using
a data structure such as a map (C2V in Algorithm 1), the
participating vertices can be randomly drawn from the pools
of vertices corresponding to those label categories. Drawing
the edges from the multinomial distribution PC renders the
algorithm linear in the number of edges required as opposed
to a naive implementation over vertex pairs which will lead
to an algorithm that is quadratic in the number of vertices
required. Algorithm 1 describes the basic PGM approach.

Algorithm 1 The input to the algorithm is the source property
graph dataset DS and the number of vertices and edges in the
target property graph - nt = |VT | and mt = |ET |. The output
is the target property graph ⟨VT ,ET ,L,L(VT )⟩.

1: procedure PGM-BASIC(DS ,nt ,mt )
2: ⟨VS ,ES ,L,L(VS )⟩ = processSourceDataSet (DS )
3: GT = SIMATTRGRAPH(⟨VS ,ES ,L,L(VS )⟩ ,nt ,mt )
4: end procedure
5: procedure SIMATTRGRAPH(⟨V ,E,L,L(V )⟩ ,nt ,mt )
6: PL = computeVertexLabelDist (V ,L(V ))
7: PC = computeEdдeConnectivityDist (V ,E,L(V ))
8: VX = ϕ, L(VX ) = ϕ, EX = ϕ
9: for idx = 1 to nt do

10:
(
v, L̄(v)

)
= sampleFromMultiNomialDist (PL)

11: VX = VX ∪ {v}, L(VX ) = L(VX ) ∪
{
L̄(v)

}
12: for i = 1 to N do ▷ Create map C2V for all N

categories
13: C2V [ci ] = Set of all vertices with label category

ci
14: for idx = 1 tomt do ▷ Draw one edge at a time
15: [c1, c2] = sampleFromMultiNomialDist(PC )
16: Draw v1 and v2 at random from C2V [c1] and

C2V [c2]
17: EX = EX ∪ {(v1,v2)}
18: return ⟨VX ,EX ,L,L(VX )⟩
19: end procedure

Lines 6 and 7 compute the label and edge connectivity dis-
tributions PL and PC from the source graph dataset GS . Lines
9-11 sample from the distribution PL , the vertex label set
L(VT ) for the target graph. Lines 14-17 construct the edge set
ET by drawing one edge at a time by sampling from a multi-
nomial distribution over the edge categories. The resultant
vertices to be connected are drawn at random from the sets of
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vertices corresponding to the label categories obtained from
the edge category. Self and repeated edges can be removed
by post-processing.

3 WHEN LABELS FALL SHORT
We use two example graphs with contrasting properties to
illustrate the strengths and limitations of the PGM method.
The first example is a role-based graph [3] such as an enter-
prise network where the connectivity depends on roles that
the vertices serve [2]. Thus, it is possible that there is a high
chance of an edge between a SERVER-CLIENT pair while
the chance of an edge between a SERVER-SERVER or a
CLIENT-CLIENT pair is small. By considering two binary
labels that can explain the edge connectivity, we synthesized
a role-based graph with 2000 vertices and 90,000 undirected
edges. Our next example consists of an anonymized Facebook
social graph from the SNAP website [5]. The data is available
as a number of ego-nets, each associated with a large number
of binary vertex features that vary across the ego-nets. We
collected the 4 labels that were common to all vertices across
the ego-nets and leveraged the combined graph for our ex-
periments. The graph has around 4000 vertices and 88,000
undirected edges with nearly a power-law degree distribution.

We then run the steps presented in Algorithm 1 to re-
generate target property graphs of same size as the source
property graphs. We compare the distributions PL and PC .
The design of the algorithm ensures that PL and PC for the
source and target distributions will match well in expectation
and the same was verified. We also quantify the comparison
with respect to the degree distributions between the ground
truth graph and the regenerated graph by means of the Jenson-
Shannon Divergence (JSD) measure [6]. JSD is small when
the distributions are closer to each other.

The results for both the example datasets are shown in
Figure 1. The top sub-figure shows the degree distribution
comparisons between the source and regenerated versions of
the role-based graph, for which there is a very good match.
The degree distribution is plotted as a complementary cumu-
lative distribution function (CCDF). The bottom sub-figure
shows comparisons for the Facebook graph (on a log-log
scale) for which we don’t see a good match.

The joint distribution based approach that we described in
Algorithm 1 assumes that the edge connectivity is a function
of label values alone.This assumption is often violated in the
case of real-world datasets rendering the basic PGM approach
ineffective in recovering the structural properties such as the
degree distributions. It might be impossible to identify and
collect all the vertex labels that can explain the graph structure.
Even if all the possible labels can be collected, it is possible
that the graph is grown temporally and as a result, when
new vertices arrive and form edges, the connectivity is not
only dependent on the label combination pairs but also on

Figure 1: Top: Degree distribution comparison (linear
scale) for the scenario where the graph structure is fully
explained by the given labels. (JSD = 0.036). Bottom: De-
gree distribution comparison (log-log scale) for the Face-
book graph where the graph structure is not fully ex-
plained by the given labels (JSD = 0.354)
the structure of the graph itself at the time point of their
arrival. The next section bridges this gap and extends the
PGM approach to replicate the topological features under
limited label information.

4 LABEL AUGMENTATION TO RESCUE
In [7], the authors introduce the notion that the probability
of edge formation between a new vertex and a vertex already
present in the graph is dependent on both the similarity be-
tween the two vertices and the popularity of already present
vertex. The similarity notion refers to affinity based on vertex
attributes. The popularity notion captures phenomena such as
preferential attachment where vertices tend to get attached to
popular vertices which are vertices with existing high degree
values. Strict role-based networks such as communication
networks will favor similarity while networks such as social
networks will favor a combination of similarity and popular-
ity. In the case of the PGM approach, the joint distribution
implicitly encodes and generalizes the notion of similarity
by quantifying the average likelihood of edge connectivity
between all possible pairs of label categories (not necessarily
between vertices having the same label categories). The label
augmentation process that we describe next, will bring in the
popularity aspect into the PGM approach.

Adopting the above philosophy, in order to better match
the degree distribution of the given graph, we propose to aug-
ment the given set of labels with an additional label La that
describe the vertex popularity. The number of values that this
additional label can take on is denoted by na , corresponding
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to the division of the range of the degree values for the given
graph GS into na intervals. Vertex-specific label values for
are assigned based on the interval in which a given vertex
degree falls. We then run an iterative procedure by increment-
ing na by 1 at each step till an error measure over the source
and target distributions of structural properties of interest is
acceptable. In each iteration, the interval lengths can be opti-
mally adjusted by means of an optimizer to minimize the error
metric. Note that both the distributions PL and PC without La
will be retained as before due to the marginalization property
of the joint probability mass functions. Algorithm 2 reflects
the updated flow.

Algorithm 2 The updated approach that uses label augmen-
tation. This algorithm calls the simAttrGraph procedure in
Algorithm. 1.

1: ⟨VS ,ES ,L,L(VS )⟩ = processDataSet (DS )
2: na ← 1 ▷ na is the number of intervals in degree range
3: error ←∞
4: procedure PGM-AUGMENTED(⟨VS ,ES ,L,L(VS )⟩ ,nt ,mt )
5: while (error > tolerance) do
6: na ← na + 1
7: Divide degree range of the source graph into na

intervals
8: for each v ∈ VS do
9: Assign la(v) value based on the degree(v)

10: Append the label vector L̄(v) with la(v)
11: GT = SIMATTR-

GRAPH(⟨VS ,ES ,L,L(VS )⟩ ,nt ,mt )
12: error ← computeError (GS ,GT )
13: end procedure

Figure 2: Degree distribution comparison (log-log) be-
tween the Facebook graph and the simulated graph with
augmented label La and for various values of na .

In our experiments, for a given value of na , we assigned
the interval lengths based on a logarithmic scale and the end-
points of the intervals were fixed. For the Facebook graph, the
results of augmenting with La with na = 0,2,4,8 are shown
in Figure 2. As seen the reproduction of the degree distribu-
tion is very poor without augmentation (na = 0) and gets
progressively better with augmentation and by increasing na .

The same is reflected in the observation that the JSD measure
decreases with increasing na .

5 DATASET EXPANSION
Next we consider the expansion of the dataset by using the
estimated joint distributions of the vertex labels and the edge
connectivity, PL and PC respectively. The results are illus-
trated in Figure. 3 for both the role-based and the Facebook
graphs. The number of vertices were expanded by 10X where
as the number of edges were expanded by 12.5X. It’s clear
from the observed results that the PGM approach in its ba-
sic or extended form works well in expanding the attributed
graphs and preserves the degree distribution shapes. Lever-
aging a serial implementation, we generated graphs with 1
million vertices, 31 million edges and total of 16 vertex label
categories (2 binary labels and an augmented label with 4
values) in about 42 minutes on a 2.6GHz Mac workstation.
Drawing of independent edges facilitates easy parallelization
of the code which is ongoing.

Figure 3: Comparing degree distributions shapes for a
10X dataset expansion. Top : Role-based graph. Bottom
: Facebook graph with 8 label values for the augmented
label (log-log scale).

6 RELATED WORK
Synthetic generation of property graphs is a nascent area of
research when compared to models for network topologies.
Approaches based on exponential random graph (ERG) [9]
model the link probability as a linear model in a number of
topological features. While such formulations are general
enough to accommodate vertex labels, these methods have
high computational cost beyond a few thousand vertices [8].
The Multiplicative Attribute Graph (MAG) approach models
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the link probability between two vertices in terms of affinities
along a number of independent vertex level latent labels. How-
ever, MAG’s drawback also lies in its reliance on latent labels.
Generating vertex labels as observed in the data becomes
difficult in a latent label based approach [8]. An alternate
approach is presented in Attributed Graph Model (AGM) [8]
that combines two sources of information: a) it learns the
correlation between vertex labels and the graph structure, and
b) exploits a known generative model for the graph topol-
ogy in the form or Kronecker Product Graph Model or the
Chung-Lu model. The AGM approach can perform well in
replicating the graph topology and the correlation with the
label values for any given set of labels. However the approach
is agnostic to the explanatory power of the labels. Further,
modeling and expanding arbitrary property graph datasets
can be a challenge with the AGM approach that relies on
specific models for the graph topology. In a recent work [1]
the authors focus on the problem of cloning social networks
in a privacy preserving fashion. The authors use preferential
attachment model to generate the graph, followed by genetic
algorithms to align the statistical distribution of attributes
in the source and derived dataset. The use of optimization
process in conjunction with the preferential attachment based
model limits the applicability and scalability of this approach.

7 CONCLUSIONS AND ONGOING WORK
We present a property graph generation algorithm that bridges
two state of the art approaches, [4] and [8], by leveraging on
their strengths, and addresses their respective weaknesses in
modeling realistic property graphs. We initiate the simulation
with observed labels and then introduce an augmented label
to explain when the connectivity is not explained by the given
set of labels. Our approach reproduces or expands property
graphs with a single edge relation and homogeneous vertices
while being able to match the degree distributions closely.
We are addressing several theoretical and implementation
challenges as part of ongoing research. They include sup-
porting heterogeneous vertices and relationships, better label
augmentation strategies for large-scale dataset expansion and
preservation of properties beyond degree distribution.
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