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ABSTRACT
In this paper, we focus on fraud detection on a signed graph with
only a small set of labeled training data. We propose a novel frame-
work that combines deep neural networks and spectral graph anal-
ysis. In particular, we use the node projection (called as spectral
coordinate) in the low dimensional spectral space of the graph’s
adjacency matrix as input of deep neural networks. Spectral co-
ordinates in the spectral space capture the most useful topology
information of the network. Due to the small dimension of spectral
coordinates (compared with the dimension of the adjacency ma-
trix derived from a graph), training deep neural networks becomes
feasible. We develop and evaluate two neural networks, deep au-
toencoder and convolutional neural network, in our fraud detection
framework. Experimental results on a real signed graph show that
our spectrum based deep neural networks are e�ective in fraud
detection.
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1 INTRODUCTION
Online social networks (OSNs) have become popular social services
for linking people together. Unfortunately, due to the openness of
OSNs, fraudsters can also easily register themselves, inject fake
contents, or take fraudulent activities, imposing severe security
threads to OSNs and their legitimate participants. Many fraud de-
tection techniques have been developed in recent years [1, 6, 9, 14],
including content-based approaches and graph-based approaches.
Di�erent from content-based approaches that extract content fea-
tures, (i.e., text, URL), from user activities on social networks [4],
graph-based approaches identify frauds based on network topolo-
gies. Often based on unsupervised learning, the graph-based ap-
proaches consider fraud as anomalies and extract various graph
features associated with nodes, edges, ego-net, or communities
from the graph [2, 13].

In practice, a small set of labeled users are often available and
hence supervised learning based detection approaches could be
developed. In this paper, we introduce deep neural network models
for detecting frauds in signed graphs. Deep neural networks have
achieved remarkable results in computer vision, natural language
processing, and speech recognition areas [7, 8, 12]. A deep neural
network can learn di�erent levels of representations on di�erent
layers of neural network [5]. However, one challenge of applying
deep neural networks for fraud detection is lack of su�cient labeled
data. When deep neural networks with a high dimensional input

have a large number of parameters, the deep neural networks need
to be trained with a large training dataset [12]. Hence it is often
infeasible to use the adjacency matrix of the underlying graph as in-
puts of deep neural network models because of the high dimension
of the adjacency matrix and the small number of labeled users.

We propose a novel framework that combines spectral graph
analysis with the deep neural networks. In particular, we �rst
project a graph to its spectral space formed by the principal eigen-
vectors of its adjacency matrix. The spectral space captures the main
topological information of the graph. Each node is then mapped
to a low dimensional point (called spectral coordinate) in the spec-
tral space. We then use each node’s spectral coordinate together
with the aggregate information of its neighbor nodes’ spectral co-
ordinates as the input of two deep neural network models, deep
autoencoder and convolutional neural network.

The advantages of our framework over past e�orts are as fol-
lows. First, using both spectral graph analysis and deep neural
networks, we can avoid de�ning graph metrics (features) to iden-
tify the di�erence between fraudsters and regular users. Second, the
low-dimensional spectral space contains the most useful topology
information of a graph. Comparing with the adjacency matrix, the
dimension of spectral coordinates of nodes is much lower. Thus,
using the node spectral coordinates as inputs to deep neural net-
works is suitable for real cases where the labeled users are limited.
Moreover, most of the existing works for fraud detection focus on
unsigned graphs in which there are only one type of links, while our
framework covers signed networks. In order to capture both posi-
tive and negative edge information of a node in the signed graph,
inputs of the two deep neural networks are composed by combining
spectral coordinates of the node and its positive/negative-connected
neighbors.

2 MODELS
2.1 Framework
Given a signed undirected graphG , each node inG indicates either a
regular user or fraudster. The signed graphG can be represented as a
symmetric adjacency matrix An∗n , where n is the number of nodes.
In An∗n , ai j = 1 (ai j = −1) indicates there is a positive (negative)
edge between nodes i and j and ai j = 0 indicates no edge. A has n
real eigenvalues. Let λi be the i-th largest eigenvalues of A with
eigenvector vi , λ1 ≥ λ2 ≥ · · · ≥ λn . The spectral decomposition
of A is A =

∑
i λivivTi (shown in Figure 1). There usually exist

k leading eigenvalues that are signi�cantly greater than the rest
ones for networks. The row vector αu = (v1u ,v2u , . . . ,vku ) is
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the spectral coordinate of node u in the k-dimensional subspace
spanned by (v1, . . . , vk ).

Figure 1: Spectral decomposition of the adjacency matrix A

In this work, we adopt deep autoencoder and convolutional
neural network to identify fraudsters. Instead of using adjacency
matrix, we adopt spectral coordinates to represent nodes as inputs
to the two deep neural networks since spectral coordinates of nodes
preserve the most useful structure information about nodes. Mean-
while, given a node u in a graph G, it has neighbors in s-steps. For
example, when s = 1, the 1-step neighbors indicate the neighbors
are one step away from the nodeu. Spectral coordinate ofu’s neigh-
bors in s-steps represent broader topological information about the
node u. For example, spectral coordinates of 1-step neighbors have
been successfully used to detect random link attacks from unsigned
graphs [14]. Thus, we further adopt the spectral coordinates of
node neighbors in s-steps. In a signed graph, neighbors of node
u can be divided into 2 categories based on their edge types, i.e.,
neighbors connected by positive edges and neighbors connected by
negative edges. We compute the mean vector of s-step neighbors’
spectral coordinates for each category, denoted as βs

+

u and βs
−

u ,
where s indicates the s-step neighbors. Then, given a node u, to
capture a broad structure information of u, the �nal inputs of two
deep neural networks combine the spectral coordinates of node u
and its two categories of neighbors in s-steps. We use a small part
of labeled nodes to train the deep autoencoder and convolutional
neural network. After training, the deep neural networks are able
to identify fraudsters of the rest nodes in the signed graph.

2.2 Using deep autoencoder (DAE) for fraud
detection

DAE stacks multiple basic autoencoder blocks hierarchically, which
can capture multiple levels of representations of the input data

Figure 2: Architecture of DAE with spectral coordinates of
node u and its 1-step neighbors for fraud detection

[3]. We adopt spectral coordinates of nodes in a signed graph as
inputs to DAE. DAE can preserve the hidden knowledge about the
node from its spectral coordinate. Training DAE for fraud detection
contains two phases: the pre-training phase and training phase. In
the pre-training phase, DAE trains the model in an unsupervised
manner. In the training phase, DAE trains the classi�er and �ne-
tunes the whole model to predict the labels of nodes. Given the
spectral coordinates of node u and its two categories of neighbors
in s-steps, the input xu ∈ R(2s+1)k of DAE is de�ned as:

xu = [αu β1
+

u β1
−

u . . . βs
+

u βs
−

u ]. (1)

Given a DAE, there are L encoders to compute the hidden repre-
sentations z(1)u , z

(2)
u , . . . , z

(L)
u of xu layer by layer. The input of the

(l + 1)-th encoder is the output of the l-th encoder. Specially, the
input of the �rst encoder is xu . Then, there are another L decoders
to compute the reconstructed input x̂. The equations of encoder
and decoder are shown in Equation 2 and 3, respectively.

z(l )u = σ (W(l )z
(l−1)
u + b(l )), (2)

ẑ(L+l )u = σ (W(L+l )ẑ(L+l−1)u + b(L+l )), (3)
where W, b are the parameters of the encoder; σ is a nonlinear
activation function.

The objective function of pre-training is to make the recon-
structed input x̂ to be close to the original input x by minimizing
the reconstruction squared error,

L(x, x̂) = |x̂ − x|2. (4)

After pretraining DAE, we stack L encoders layer by layer to
generate the hidden representation z(L)u . z(L)u captures the hidden
information of xu since it can be used to reconstruct the input.
Then, a softmax classi�er is applied on top of the z(L)u to predict the
label of node u.

P(ŷ = c |z(L)u ) =
exp (uTc z

(L)
u + bc )∑C

c ′=1 exp(u
T
c ′z
(L)
u + bc ′)

, (5)

where C is number of classes, uc and bc are the parameters of
softmax function for the c-th class. The parameters of softmax and
deep autoencoder are trained and �ne-tuned by minimizing the
cross entropy loss function,

L = − 1
N

N∑
i=1

yi ∗ log(P(ŷi )), (6)

where yi is the true class of the i-th input, and N is the number of
training data. Figure 2 shows the architecture of DAE with spectral
coordinate of node u and its 1-step neighbors.

2.3 Using convolutional neural network (CNN)
for fraud detection

Convolutional neural networks are widely-used in computer vision
area[10]. A basic convolutional neural network is composed by a
convolution operation and a pooling operation. Given a node u, the
input of CNN Xu ∈ R(2s+1)∗k is represented as

Xu = [αu ; β1
+

u ; β1
−

u ; . . . ; βs
+

u ; βs
−

u ], (7)
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Figure 3: Architecture of CNN with spectral coordinates of
node u and its 1-step neighbors for fraud detection

where ; indicates the vertical concatenation of two vectors. A con-
volution operation which involves a �lter W ∈ Rm∗k is applied on
a sub-matrix of Xu withm continuous rows to generate a hidden
feature:

hj = σ ((W ∗ Xu )j :j+m−1 + b), (8)
where σ indicates a nonlinear function; ∗ is a convolution opera-
tion; b is a bias parameter; and m ≤ 2s + 1. Initially, the �lter is
partially connected to the input matrix Xu . Then, the �lter slides
through the whole input matrix Xu and generates a feature vector
h = [h1, · · · ,h2s−m+2]. After that, an average pooling operation,
which calculates the average value of the feature vector h, is used
to capture all discriminative features of Xu . The average pooling
operation is de�ned as z =mean(h).

For example, when the �lter sizem is 1, the convolution opera-
tion generates a feature vector h ∈ R2s+1 which contains the hidden
information of nodeu and its all positive/negative-connected neigh-
bors in s-steps. Then, an average pooling operation is applied on h
to get the hidden feature z by calculating the average value of h as
the output of current �lter. When the �lter sizem > 1, the model
follows the similar procedure to generate hidden features from Xu .

Meanwhile, because one hidden feature vector h is generated by
one �lter, the feature vector detects the same feature from di�erent
locations of Xu . To identify di�erent aspects of features from Xu ,
the model applies multiple �lters with di�erent sizes ofm to gener-
ate di�erent feature vectors. After applying the pooling operation
on each feature vector, the model encodes the input Xu to a rep-
resentation vector z = [z1, z2, · · · , zq ] , where q is the number of
feature vectors generated by q di�erent �lters. For each �lter sizem,
CNN generates the same number of feature vectors. We then apply
a softmax classi�er on z to predict the node label P(ŷ = k |z) by
Equation 5. The whole model is trained by minimizing the loss func-
tion shown in Equation 6. The architecture of CNN with spectral
coordinates of node u and its 1-step neighbors is shown in Figure 3.

3 EXPERIMENTS
To evaluate the e�ectiveness and e�ciency of our approach, we
conduct experiments on a signed graph for fraud detection.

3.1 Experimental Setup
Datasets. We conduct our evaluation on a signed network, WikiEd-
itor, which is extracted from the UMD Wikipedia dataset[11]. The
dataset is composed by 17015 vandals and 17015 benign users who

edited the Wikipedia pages from Jan 2013 to July 2014. Di�erent
from benign users, vandals edit articles in a deliberate attempt to
damage Wikipedia. One edit may be reverted by bots or editors.
Hence, each edit can belong to either revert or no-revert category.
WikiEditor is built based on the co-edit relations. In particular,
a positive (negative) edge between users i and j is added if the
majority of their co-edits are from the same category (di�erent
categories). We remove those edits on meta pages (i.e., with titles
containing “User:”, “Talk:”, “User talk:”, “Wikipedia:”) because the
editings on those pages are not reverted by bot or administrators.
We further remove from our signed network those users who do
not have any co-edit relations with others. In WikiEditor, each user
is clearly labeled as either benign or vandal. Hence, we can evaluate
our models for fraud detection on WikiEditor.

Table 1: Statistics of WikiEditor

# of Users (+,-) # of Links (+,-)
WikiEditor 18992 (6086, 12906) 81316 (52139, 29177)

Experimental settings. In our experiments, after projecting the
signed graph to the spectral space, we �rst normalize the spectral
coordinates of nodes. We then combine nodes and their 1-step
neighbors’ spectral coordinates as inputs to deep neural networks.
DAE contains two encoders. The dimensions of two encoders are
128 and 64. In CNN, the �lter sizem ∈ [1, 2, 3] and the number of
�lters q is 300. The training epochs of DAE and CNN models are
30 with early stopping. We randomly sample di�erent percentages
of nodes for training and use the rest of the nodes for testing.
Since the labeled fraudsters in real cases are usually small, we only
adopt a small percentage of nodes as training data. We use the
accuracy to evaluate the performance of di�erent approaches for
vandal detection. We report the mean values of 10 di�erent runs
by sampling di�erent training data.
Baselines. We compare deep neural networks with two classical
classi�ers, k-NN and SVM. In k-NN, we set k = 3. In SVM, we adopt
the RBF kernel and set the regularization parameter c = 1. The
inputs of k-NN and SVM are the same as DAE.

Table 2: Accuracy of vandal detection with various sizes of
training dataset

Input Algorithm Ratio of the training dataset
5% 10% 15% 20%

A

k-NN 66.16% 68.82% 69.66% 74.00%
SVM 67.81% 67.82% 67.88% 67.92%
DAE 76.31% 78.55% 79.56% 80.59%
CNN 76.70% 78.95% 80.09% 81.33%

xu

k-NN 76.60% 77.38% 77.83% 78.19%
SVM 71.60% 80.40% 80.82% 81.15%
DAE 80.89% 81.13% 81.45% 81.92%
CNN 80.57% 81.40% 82.02% 82.61%
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3.2 Results
We �rst compare each model with di�erent sizes of training datasets
using spectral coordinates and the adjacency matrix. The default
dimension of spectral coordinate k is 30. When using the adjacency
matrix A, the input of each algorithm is each row of A. In this
scenario, CNN has only one size �lter w ∈1∗n .
Deep neural networks vs. Baselines. Table 2 shows the accu-
racy of vandal detection using the adjacency matrix A and spectral
coordinates xu . We can observe that DAE and CNN models outper-
form the baselines signi�cantly in all settings at the 10−8 level with
a t-test. In the spectral space, the performance of SVM has a big
jump when the percentage of training data increasing from 5% to
10%. In the adjacency matrix space, the performances of SVM do
not improve while increasing the size of training data. It indicates
that the SVM cannot be well-trained with a small training dataset,
especially when the input has high dimensions. The accuracies of
k-NN increase steadily while increasing the training data, but the
accuracies of k-NN are also much worse than our DAE and CNN.
Spectrum vs. Adjacency matrix. In Table 2, we further observe
that using the spectral coordinates as inputs (xu ) achieves signif-
icantly better performance than using the adjacency matrix, es-
pecially when the percentages of training data are 5% and 10%.
Meanwhile, in the spectral space, when the percentage of training
dataset is 5%, DAE performs better than CNN since DAE pre-trains
the model �rst. The pre-training phase of DAE encodes the informa-
tion of nodes into hidden layers, which make the classi�er predict
the node labels with small training data. On the contrary, when the
percentage of training dataset is larger than 5%, CNN outperforms
DAE in the spectral space. It indicates CNN has better performance
with enough training data. In the adjacency matrix space, the perfor-
mances of DAE are worse than CNN with various sizes of training
data. This is because DAE has much more parameters than CNN
when using the adjacency matrix. DAE cannot be well-trained in a
high-dimensional space with a small training dataset.
E�ect of the dimension of spectral coordinate k . Table 3 com-
pares the deep neural networks with k-NN and SVM on varying
the dimension of spectral coordinate k . In this experiment, we use
20% of nodes as training data and the rest of nodes as testing data.
When inputs of algorithms are xu , we can observe that DAE and
CNN models outperform classical classi�ers with various dimen-
sions of spectral coordinates. We can further discover that DAE
and CNN also achieve the most stable accuracy with various dimen-
sions of spectral coordinates. However, the performance of SVM
signi�cantly drops while increasing the dimension of the spectral
coordinate. This is because both DAE and CNN learn the hidden rep-
resentations of nodes from their spectral coordinates. The hidden
representations of nodes are useful for predicting the labels.
Neighbor inclusion vs. Neighbor exclusion. In our experiment,
the inputs of DAE and CNN combine spectral coordinates of nodes
and their 1-step neighbors. We further compare the performance of
algorithms that adopt the node spectral coordinate with and without
combining the 1-step neighbors’ spectral coordinates as inputs in
Table 3. We can observe that when using the information of the 1-
step neighbors’ spectral coordinates, the accuracies of all algorithms
achieve around 1%-2% improvement. Therefore, combining the

Table 3: The accuracy of vandal detection with various
dimensions of spectral coordinate k when 20% of nodes
are used as the training dataset. We further compare algo-
rithms using node spectral coordinatewith/without combin-
ing neighbor spectral coordinates as inputs to algorithms.

Input Algorithm Dimension of spectral coordinate k
10 20 30 40 50

xu

k-NN 79.90% 78.85% 78.19% 78.33% 77.52%
SVM 81.00% 81.40% 81.15% 80.70% 76.28%
DAE 81.86% 81.65% 81.92% 81.87% 81.61%
CNN 82.24% 82.26% 82.61% 82.42% 82.47%

αu

k-NN 78.00% 77.49% 76.75% 76.55% 76.92%
SVM 79.79% 79.65% 80.19% 80.31% 77.94%
DAE 80.47% 81.10% 81.17% 81.20% 81.40%
CNN 80.52% 81.22% 81.48% 81.44% 81.39%

information of node neighbors can improve the performance of
fraud detection.
Execution time. We also compare the execution time of deep neu-
ral networks using spectral coordinates and the adjacency matrix.
The DAE and CNN models are trained on a Nvidia Tesla K20 GPU.
We observe that when the ratio of training data is 20%, the training
time of each epoch for CNN and DAE models with adjacency matrix
is 2 seconds. On the contrary, the training time of each epoch for
CNN and DAE models with spectral coordinates is less than 1 sec-
ond. Therefore, using the spectral coordinates with low dimension
is also more e�cient than using the adjacency matrix.

4 CONCLUSIONS
We have presented a novel framework that applies deep neural
networks on the spectral space of a signed graph to identify frauds.
In particular, we �rst conduct graph spectral projections on a signed
graph to obtain node spectral coordinates. The node and its s-step
neighbors’ spectral coordinates are combined together as inputs to
the deep autoencoder and convolutional neural network models
for fraud detection. The experiment results show that both deep
neural networks achieve promising results on fraud detection. Our
empirical evaluation further shows that combining the information
of node neighbors can improve the e�ectiveness of deep neural
networks on fraud detection.
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