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ABSTRACT
Rule-based diagnostics of power generating equipment is an im-
portant task in industry. In this demo we present how semantic
technologies can enhance diagnostics. In particular, we present our
semantic rule language sigRL that is inspired by the real diagnostic
languages in Siemens. SigRL allows to write compact yet powerful
diagnostic programs by relying on a high level data independent
vocabulary, diagnostic ontologies, and queries over these ontolo-
gies. We present our diagnostic system SemDia. The attendees will
be able to write diagnostic programs in SemDia using sigRL over
50 Siemens turbines. We also present how such programs can be
automatically veri�ed for redundancy and inconsistency. Moreover,
the attendees will see the provenance service that SemDia provides
to trace the origin of diagnostic results.

CCS CONCEPTS
• Information systems → Enterprise information systems;
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1 INTRODUCTION
Diagnostic systems play an important role in industry since they
help to maximise equipment’s up-time and minimise its mainte-
nance and operating costs [18]. In the energy sector companies
like Siemens often rely on rule-based diagnostics to analyse power
generating equipment by, e.g., testing newly deployed electricity
generating gas turbines [13], or checking vibration instrumenta-
tion [15], performance degradation [16], and faults in operating
turbines. For this purpose diagnostic engineers create and use com-
plex diagnostic rule-sets to detect equipment abnormalities.

An important class of rules that are commonly used in Siemens
are signal processing rules (SPRs) that allow to (1) �lter, aggregate,
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combine, and compare signals1 coming from sensors installed in
equipment and (2) �re noti�cation messages when a certain pattern
in signals is detected. Authoring and maintaining SPR based rule-
sets is a challenging problem. We now discuss the challenges in
mode details and then present our solution to address them.

Challenges with Authoring SPRs. The main challenge for author-
ing is that SPRs in most modern industrial diagnostic systems in-
cluding the ones used in Siemens are highly data dependent in the
sense that speci�c characteristic of individual sensors and pieces of
equipment are explicitly encoded in SPRs. As the result for a typical
turbine diagnostic task engineers have to write from dozens to hun-
dreds of SPRs that involve hundreds of sensor ids, component codes,
sensor and threshold values as well as equipment con�guration
and design data. E.g., a typical Siemens gas turbine has about 2,000
sensors and a diagnostic task to verify that the purging2 is over in
the main �ame component of a given turbine requires around 300
SPRs, most of which are similar in structure but di�erent equipment
speci�c data values. Thus, there is a need in industry, and in par-
ticular in Siemens for a higher level diagnostic rule language that
allows to express what the diagnostic task should do rather than
how it should do it for speci�c equipment. Such language should
be high level, data independent, while powerful enough to express
in a concise way most of typical diagnostic tasks in Siemens.

Challenges with Management of SPRs. Development of a diagnos-
tic rule-set is typically a collaborative and open-ended process by a
group of diagnostic engineers. Thus, the engineers may introduce
rules that either repeat what other rules already express or con-
tradict them, i.e., by stating that purging is ‘over’ while the other
rules say that is it ‘in progress’. The former problem of redundancy
in diagnostic rule-sets a�ects the performance of diagnostics and
the latter of inconsistency among rules makes diagnostic results
counter-intuitive and unreliable. Moreover, the larger the rule-set
gets, the harder it becomes to trace the provenance of the messages
it �res which again a�ects the reliability of diagnostic results. Thus,
there is a need for semi-automatic rule management support that
includes detection of redundancy and inconsistency in rule sets, as
well as computation of provenance for diagnostic results.

Our Solution. We rely on semantic technologies to address the the
above mentioned challenges. In particular we rely on ontologies [1]
1Signals are are time stamped sequences of measurement values.
2Purging is the process of �ushing out liquid fuel nozzles or other parts which may
contain undesirable residues.



to de�ne a novel SPR language and on reasoning [3] over ontologies
to foster execution and maintenance of diagnostic tasks. In short, an
ontology is a formal conceptualisation of the domain of interest that
consists of a vocabulary, i.e., names of classes, attributes and binary
relations, and axioms over the terms from the vocabulary that, e.g.,
assign attributes of classes, de�ne relationships between classes,
compose classes, class hierarchies, etc. Since ontologies are speci�ed
using a formal logical language such as the W3C standardised
ontology web language OWL 2, one can query ontologies and
check their properties using reasoning that typically corresponds
to logical entailment and implemented in many e�cient state-of-
the-art reasoning systems such as HermiT [17]. We refer the reader
to [1] for more details on ontologies and reasoning and to [5–7, 9–
12] to our previous studies of the semantic diagnostic problem.

In order to address the authoring challenge we propose:
• an SPR language sigRL that treats signals as �rst class

citizens and allows to process signals (�lter, aggregate,
combine, and compare signals) in a high level, declarative,
and data independent fashion;

• semantic diagnostic programs that combine sigRL rules
with diagnostic background knowledge captured using
ontologies and allow to express complex diagnostic tasks
in an abstract fashion by exploiting both ontological vo-
cabulary and queries over ontologies to identify relevant
information (such as sensor ids and threshold values) about
the equipment that should undergo the diagnostics.

In order to address the management challenge, we developed ef-
�cient algorithms to execute diagnostic programs in bottom-up
fashion, verify redundancy and inconsistency in diagnostic pro-
grams, and to compute provenance that explains the reasons for
diagnostic results. Moreover, we implemented our ideas in a sys-
tem SemDia for diagnostics of power generating equipment that
(1) allows to author diagnostic programs; (2) o�ers a tool-kit for
management of diagnostic programs, that includes detection of
redundancy and inconsistency, as well as provenance computation.

Note that we designed sigRL in such a way that, on the one
hand, it captures the main signal processing features required by
Siemens turbine diagnostic engineers and, on the other hand allows
for e�cient execution and management of diagnostic programs.

Demo Overview. Demo attendees will be able to learn how to do
diagnostics of Siemens turbines with sigRL diagnostic programs. To
this end we prepared a deployment of our SemDia system on data
from 50 Siemens power generating turbines, a diagnostic ontology,
and a catalogue of 15 diagnostic tasks. The attendees will be able to
load precon�gured diagnostic programs, deploy and execute them,
author their own diagnostic programs, and try out our provenance
computation and program veri�cation services. See Section 3 for
details on demo scenarios.

Due to space limit we put some formal de�nitions related to our
sigRL language in the appendix.

2 OUR DIAGNOSTIC SOLUTION
We �rst introduce our diagnostic language sigRL and then describe
our system SemDia.

2.1 sigRL Diagnostic Language
In our setting, a signal is a �rst-class citizen. A signal s is a pair
(os , fs ) where os is sensor id and signal function fs de�ned on R

to R ∪ {⊥}, where ⊥ denotes the absence of a value. We assume
that we are given a �nite set S = {s1, . . . , sn } of basic signals that
are readings obtained from a single sensor (e.g., in a turbine) for
di�erent time points. We now de�ne signal expressions that �lter
and manipulate basic signals and create new more complex signals.
Intuitively, in our language we group signals in ontological concepts
and signal expression are de�ned on the level of concepts. Then, a
signal processing expression is recursively de�ned as follows:

C ← α ◦C1 | agg C1 |

C1 : filterValue(�,α ) | C1 : filterTime(�,α ) |

C1 : �lterAlign C2 | C1 : trend(direction).

where C,C1,C2 are concepts, ◦ ∈ {+,−,×, /}, α ∈ R, agg is one of
min,max, avg, sum, � ∈ {<, >, ≤, ≥},�lterAlign ∈ {within, a�er[t],
before[t]} where t is a period and direction is either {up, down}.
Intuitively, if C = α ◦ C1 then C contains one signal s ′ for each
signal s in C1 with function de�ned with fs ′ = α ◦ fs , or if C1 :
filterValue(�,α ) then C contains one signal one signal s ′ for each
signal s in C1 with fs ′ (t ) = α � fs (t ) if fs (t ) � α at time point t ;
otherwise fs ′ (t ) = ⊥. The formal meaning of signal processing
expressions is de�ned in [9].

A diagnostic program is a tuple Π = (S,O,M) where S is a set
of basic signals, O is an ontology3,M is a set of signal expressions.
Each diagnostic program comes with a set of message rules that are
de�ned on top of Boolean combinations of expressions:

r = msg(m) ← D, where
D := C | not C | D1 and D2

We now illustrate our diagnostic programs on the following
purging diagnostic task:

Verify that the purging is over in the main �ame
component of the turbine T1.

Intuitively this task requires to check in the turbine T1 that: (i) the
main �ame was on for at least 10s and then stopped, (ii) 15s after
this, the purging of rotors in the starting-component of T1 started,
(iii) 20s after this, the purging stopped. The fact that the purging
of a rotor started or ended can be detected by analysing its speed,
i.e., by comparing the average speed of its speed sensors with purg-
ing thresholds that are speci�c for individual rotors. The purging
diagnostic program can then consist of an ontology with one axiom:

SubClassOf (RotorSensor SpeedSensor).

two signal processing expressions and one message rule:
PurgingStart = avg rotorStart : value(>, purgingSpeed),
PurgingStop = avg rotorStart : value(<, nonPurgingSpeed),

msg(“Purging over”) = FlameSensor : duration(>, 10s ) :
after[15s] PurgingStart : after[20s] PurgingStop

2.2 SemDia Diagnostic System
The main functionality of our semantic rule-based diagnostics sys-
tem SemDia is to author and maintain sigRL diagnostic programs, to
deploy them in turbines, to execute the programs, and to visualise
the results of the execution. We now give details of our system
by following its architecture in Figure 1 where the solid arrows
indicate data �ow and dashed—access to ontologies and mappings.
There are three essential layers in the architecture: application,
3In order to guarantee e�ciency of diagnostics with sigRL, we consider a tractable
ontology language OWL 2 QL [3] that is standardised by W3C.
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Figure 1: Architecture of SemDia.

rule execution, and signal and data layers. Our system is mostly
implemented in Java. We now discuss the system layer by layer.

Application Layer. On this layer, the system o�ers two front ends
and several back end components. The �rst front end component
allows engineers to author, store, load, and maintain diagnostic
programs by formulating sets of SPRs as well as message rules in
sigRL and sensor retrieving queries. Such formulation is guided by
the domain ontology stored in the system. In Figure 2 (left) one
can observe a screenshot of the diagnostic program editor which
is embedded in the Siemens analytical tool-kit. Another front end
component is the semantic Wiki that allows among other features
to visualize signals and messages (triggered by programs), and to
track deployment of programs in equipment. In Figure 2 (right) one
can see visualisation of signals from two components of one turbine.
The back end of the application layer consist of components that
rely on HermiT [17] ontology reasoning and support consistency
and redundancy veri�cation as well as provenance computation.
Diagnostic programs formulated in the application layer are con-
verted into XML-based speci�cations and sent to the rule execution
layer that returns back messages and signals. We rely on REST API
to communicate between the application layer and the execution
layer of our system and OWL API to deal with ontologies.

Execution Layer. On this layer we support semantic signals that
are either native, that is, represented in terms of the diagnostic ontol-
ogy as RDF triple, or virtual, that is obtained through the Ontology
Based Data Access (OBDA) [14] component of SemDia. This com-
ponent allows to present signals stored in relational databases as if
they were native semantic. This requires to connect the relational
signals to an ontology via declarative mappings. For the OBDA layer
we rely on the Ontop system [2] and its extension developed within
the Optique project [4, 8] that takes care of transforming diagnostic
programs written in sigRL into either SPRs written in the Siemens
data-driven rule language or SQL. This transformation has two
steps: rewriting of programs and queries with the help of ontolo-
gies (at this step both programs and queries are enriched with the
implicit information from the ontology), and then unfolding them
with the help of mappings. Moreover, the execution layer takes care
of planning and executing rules and queries received either from the

Figure 2: Screenshots: SPR editor (top), Diagnostic visualisa-
tion monitor (bottom)

rule management or OBDA component. If the received rules are in
the Siemens SPR language then the rule executor instantiates them
with concrete sensors extracted with queries and passes them to
the Drools Fusion (drools.jboss.org/drools-fusion.html) the engine
used by Siemens. If the received rules are in SQL then it plans the
execution order and executes them together with the other queries.

Signal and Data Layer. On this layer we store all the relevant data:
turbine design speci�cations, historical information about services
that were performed over the turbines, previously detected events,
and the raw sensor signals. Currently SemDia support PostgresQL,
Teradata, as well as Sparksee.

3 DEMONSTRATION SCENARIOS
Demo Setup. For the demonstration purpose we prepared the
following ingredients:
• diagnostic tasks: 15 tasks (see Table 1) were de�ned during brain-

storming sessions with Siemens diagnostic engineers and R&D
personnel from Siemens Corporate Technology;

• anonymised Siemens data: from 50 power generating gas turbines
gathered for 2 years that contains sensor signals, equipment
speci�cations and con�gurations and maintenance data; all the
data was anonymised for the demo purpose;

• Siemens diagnostic ontology: the ontology was inspired by the
Siemens Technical System Ontology (TSO), Semantic Sensor Net-
work Ontology (SSN), and the international standards IEC 81346
and ISO/TS 16952-10; the main module of our ontology in par-
tially depicted in Figure 3 where in grey we present SSN and with
white TSO terms. This module has 48 classes and 32 object and
data properties. The other three modules are respectively about
equipment, sensing devices, and diagnostic rules. They provide
detailed information about the machines, their deployment pro-
�les, sensor con�gurations, component hierarchies, functional
pro�les and logical bindings to the analytical rule de�nitions.

• SemDia deployment in Siemens: over both materialised and ontol-
ogy mediated Siemens data; SemDia is deployed on Teradata for
signals and MS SQL for other information; for rule processing
SemDia uses Drools Fusion; for the OBDA setting we developed
376 R2RML mappings.

drools.jboss.org/drools-fusion.html


Task Nr Complexity Diagnostic Tasks

T1 Low Variable guided vanes analyses
T2 Low Multiple start attempts
T3 Low Lube oil system analyses

T4 Medium Monitoring turbine states
T5 Medium Interduct thermocouple analyses
T6 Medium Igniter failure detection

T7 High Bearing carbonisation
T8 High Combustion chamber dynamics
T9 High Gearbox Unit Shutdown
T10 High Surge detection

T11 Does the turbine T100 reach purging and ignition speed for 30 sec?
T12 Is the purging over in the main �ame component of the turbine T1.
T13 Does the turbine T100 reach purging and ignition speed for 30 sec?
T14 Does the turbine T100 go from ignition to stand still within 1min

and then stand still for 30 sec?
T15 Is the turbine T100 ready to start?

Table 1: Demo diagnostic tasks for Siemens gas turbines.

During the demo we can either remotely connect to our deployment
at Siemens or to run demo on a laptop. We now explain demo
scenarios in details.
Scenario 1: Precon�gured Diagnostics. We plan to present the
demo starting from this scenario where the attendees will get ac-
quainted with sigRL and the main functionalities of SemDia. For
this purpose we prepared 10 tasks of di�erent complexity, where
complexity is de ned using the number of ontological terms and
lines of code. These tasks can be found in Table 1, they are indicated
as T1–T10. The attendees will start with the tasks of low complexity
by loading the corresponding diagnostic programs in the SemDia
rule editor, learning the basic signal processing operations of sigRL,
and then deploying the programs over the turbines. Then, the atten-
dees will study the diagnostic results on the visualisation monitors.
From the visualisation monitor the attendees will be able to request
the provenience for speci�c answers. After the tasks with low com-
plexity the attendees will proceed to the tasks with medium and
high complexity. We have intentionally introduced inconsistencies
and redundancy in the tasks so that the attendees will be able to
detect them using the tooling support of SemDia.
Scenario 2: User De�ned Diagnostics. In this scenario we as-
sume that the demo attendees have already learned the basics of
sigRL and now they are ready to author diagnostic programs in our
editor depicted in Figure 2. For this purpose we prepared �ve tasks
T11–T15 that can be found in Table 1. Note that for simplicity we
phrased the tasks T11–T15 in such a way that the wording follows
the actual grammer of sigRL. Moreover, most of semantic terms rel-
evant for these tasks are explicitly mentioned in the tasks. Observe
that the �rst four tasks are independant from each other, while the
last task, T15, combines the other four. This will show the attendees
the compositionality of our language sigRL. For illustration consider
the following diagnostic program that corresponds to the task T13:

Ignition = avg RotorSensor : value(<, ignitionSpeed).
PurgeAndIgnition = PurgingStart : duration(>, 30s ) :

after[2m] Ignition : duration(>, 30s ).
msg(“Purging and Ignition”) = PurgeAndIgnition.

And now the diagnostic program corresponding to T15:
msg(“Ready to Start”) = RampChange : after[5m] PurgingOver :

after[11m] PurgingAndIgnition :
after[15s] IgnitionToStand.
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Figure 3: A fragment of the Siemens ontology that we devel-
oped to support turbine diagnostic SPRs.

While the attendees formulate the �ve diagnostic tasks as di-
agnostic programs to check they will be asked to verify them for
redundancy and consistency. After they �nish formulation and
veri�cation, they can run the programs and check provenance.
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