Fine-Grained Access Control via Policy-Carrying Data*

Julian A. Padget! and Wamberto W. Vasconcelos?**

! Dept. of Computer Science, University of Bath, Bath, BA2 7AY, U.K., j.a.padget@bath.ac.uk
2 Dept. of Computing Science, University of Aberdeen, Aberdeen, AB24 3UE, U.K. jw.w.vasconcelos@abdn.ac.uk

Abstract. We address the problem of associating access policies with datasets and how to monitor compliance
via policy-carrying data. Our contributions are a formal model in first-order logic inspired by normative multi-
agent systems to regulate data access, and a computational model for the validation of specific use cases and
the verification of policies against criteria. Existing work on access policy identifies roles as a key enabler, with
which we concur, but much of the rest focusses on authentication and authorization technology. Our proposal
aims to address the normative principles put forward in Berners-Lee’s bill of rights for the internet, through
human-readable but machine-processable access control policies.

1 Introduction

Recent data-intensive research trends such as the Internet-of-Things (IoT) and Big Data, combined with socio-
technical systems (STS) such as social networking and supported by portable devices (with sensors, GPS, etc.) make
companies, research centres, and all of us, as individuals, both producers and consumers of data. A sensitive issue
for data providers concerns control over access, sharing, dissemination and use of data. We regard control as placing
restrictions on who can access the data, when data can be accessed, how data can be accessed, and so on. Although
Berners-Lee does not provide a shopping-list of features in [Berners-Lee, 1999, Ch.11], he sets out similar informal
(and abstract) normative aims, stating:

The Platform for Privacy Preferences Project (P3P) will give a computer a way of describing its owner’s pri-
vacy preferences and demands, while it gives servers a way of describing their privacy policies, all implemented
so that machines can understand each other and negotiate any differences.

P3P activity suspended in 2007, shortly after the publication of version 1.1 of the platform specification |P3P} citing a
lack of support from browser developers. The aim at the time appears to have been to support privacy in the context
of consumer-to-business (purchasing) transactions via browser (consumer) and web-site (business). What may have
seemed significant at the time, appears with hindsight to have a relatively narrow technological and use-case basis —
to which [P3P| is very specific — but equally, with hindsight, the same vision, issues and principles appear to be
applicable in the emerging environments of IoT and STS.

Consider a scenario in which a health insurance company offers its customers a mobile phone app which collects
data from a fitness wristband. The data collected concern blood pressure, heartbeat, amount of physical exercise
and sleeping patterns; additionally it would also be possible to collect information on what people eat and drink via
the app. The insurance company aims to offer better deals to customers who lead healthy lifestyles and, conversely,
make more adequate provisions for customers with sedentary and disease-prone lifestyles. Users of the app, however,
should have means to decide on the policies governing the data. For instance, even though users might agree to
provide to the insurance company their heartbeat data (because they might get a reduced price when renewing their
insurance) they may deny access to this data to any for-profit third-party (e.g., a pharmaceutical company).

The current data landscape supports relative freedom of movement of data from individuals to the data silos
used in cloud computing and thence between silos; this might contribute to the sense of lack of control which data
providers might feel over their own data, privacy controls aside |Brandimarte et al.| [2013]. This is further complicated
as platforms may enable the collection and interpretation of those data, thus adding value to them. Our proposal
associates data with bespoke policies: for example, framework policies might be defined by legislation, while specific
policies for individual needs would have to satisfy the norms established at the primary level |Li et al.| [2013].

In this paper we present an approach to represent fine-grained controls over data and to associate that inseparably
from the data via what we call “policy-carrying data” (PC[ED. Our PCDs explicitly represent who, when and
how, also establishing what the consumer should (not) do when accessing data. Our proposal is novel in that we

* This document is an alternative format of the paper |[Padget and Vasconcelos| |2018] published on the ACM Transactions
on Internet Technology (TOIT) Journal.

** W. W. Vasconcelos acknowledges the support of the Engineering and Physical Sciences Research Council (EPSRC, UK)
within the research project “Scrutable Autonomous Systems” (SAsSY, http://www.scrutable-systems.org, Grant ref.
EP/J012084/1).

3 PCD also stands for “policy-carrying data collection” and we use PCDs (in the plural) to indicate a set of policy-carrying
data collections.

mailto:j.a.padget@bath.ac.uk
mailto:w.w.vasconcelos@abdn.ac.uk
http://www.scrutable-systems.org

monitors

monitoring

repository

policy
l data l

policy
l data l

accessing
L ERXERREER >

producers ‘ e ‘ consumers

history

publishing
A m—

Fig. 1. Stakeholders, Processes & Information Model

can establish permissions, obligations and prohibitions concerning what the consumer should (not) do when data
are accessed; these permissions, obligations and prohibitions as well as the interconnections among different PCDs
provide a foundation for transparency which is essential to a data-sharing economy. Obligations, prohibitions and
permissions can be seen as transactional units in a non-pecuniary data economy, where access to and use of data may
be traded for obligations, prohibitions and permissions that act as a form of user-definable, liquidity-at-point-of-use
community currency |Litaer| [2002]. These obligations, permissions and prohibitions may pertain directly to actions
of data consumers or — and this is another significant novelty of our approach — indirectly to the policy associated
with the extracted data or the data derived from them.

The main contributions of this paper are (i) a formal representation for PCD, with practicality concerns, and
(ii) a reference implementation of core elements of our proposal. Additionally, we provide a computational context
whereby stakeholders, processes and information model come together to share data via PCD. We build upon and
extend the research presented in [Padget and Vasconcelos [2015]; however, whereas that paper was concerned with
a much simpler propositional formalism, we have developed a more expressive first-order notation with practical
concerns, that is, the mechanisms manipulating the formalisation are decidable and tractable. The implementation
has not been previously reported.

We present in Section [2] how we envisage stakeholders and PCDs will come together in a computational setting.
In Section [3| we present the syntax and (operational) semantics of our PCDs, and sketch some mechanisms using
PCDs. In Section [4 we present a reference implementation of our approach. In Section [5] we discuss related work and
we conclude the paper in Section [6]

2 Policy-carrying Data: Stakeholders, Processes and Information Model

We illustrate in Fig. |1| the stakeholders (squares with round edges), their processes (arrows), and an information
model (boxes within central box) associated with our PCDs. The stakeholders are (i) data owners/producers who
make data/information available (represented as the left-hand square); (ii) data consumers who want to access data
(represented as the right-hand square); (iii) monitor/police who are responsible for monitoring/policing the publica-
tion and access activities (represented by the upper square in the middle). The first two types of stakeholders can be
organisations or individuals as well as devices such as sensors, programs, databases, and so on. The monitor/police
works as a third-party authority ensuring that activities (publishing and accessing) follow policies and dealing with
violations.

Each of these stakeholders has their specific ways to interact via the repository: (i) publishing (represented
by the blue solid arrow) is the process whereby data owners/producers make their data available but “wrapped”
within a policy, that is, they publish, in a repository, some policy-carrying data (ii) accessing (represented by the
red dotted arrow) is the process whereby data consumers attempt to obtain access to data mediated via policies
(iii) monitoring (represented by the green arrow) concerns observing activities and checking for policy compliance
or violation, and dispensing rewards or sanctions.

Our proposal relies on an information model (stored within the “repository” rectangle in the centre of the
diagram) comprising the PCD (a policy and an associated data collection made available through the policy) and
a history (a collection of events, i.e., a record of activities carried out) gathered at particular time points, denoted
as the states of the repository. This information model supports stakeholders carrying out the cycle of publish-
access-monitor activities using a Web server equipped with functionalities to enable the policing of those accessing
and uploading PCDs, keeping records of usage and (non-)compliance, and enforcing the policies’ access control. We
envisage programmatic access to PCDs, whereby programs and functionalities developed with specific technologies
can access any PCD), interacting via pre-established protocols.

A typical PCD would express something like “Research staff can access 200 records of my data”. If an interested
party requested 500 records, the server would (i) check the credentials of the requester (who needs to be registered);
(ii) grant access to 200 records (a message would provide reasons for not providing the 500 records); (iii) update
the record of that requester with respect to that PCD. Further requests from research staff would be rejected with
a suitable justification. For such control to be in place, the server requires a record of events: an explicit account of
the history of the PCD, how they have been used, by whom and when.

There are obvious similarities between our framework and existing approaches. Existing mechanisms to regulate
resource access in distributed systems [Anderson, 2001] have similar provisions as our framework — stakeholders,
activities and (parts of) the information model — however as we show below, our policy language is more expressive,
which in its turn, requires a more sophisticated information model allowing for extra functionalities to be in place.
The language used to express policies clearly plays an important role in acceptability, accessibility and functionality.
We put forward a model language, that is not tied to a concrete and standardised syntax, in Section[3] However, there
are lessons to take from a wide variety of initiatives across the computer science domain as we discuss in Section [3]
and more broadly in related work (Section [f]).

3 A Language for Policies-carrying Data

There has been much research addressing data access policies, dating back from early UNIX file systems |Suhendra
[2011], |Tonti et al. [2003], [Ferraiolo et al.| [2011]. In our approach we include means to refer to a history of events,
as in, for instance, “the first n users can access my data” and “anyone is permitted to use n records of my data”.
We provide fine-grained control over who is to access the data, and under what circumstances; for instance, “user us
is forbidden to access my data” and “anyone from company x may use my data after 6PM”. We can also capture
dynamic aspects of data usage, examples being “whoever accesses D7 should not access Dy” and “anyone who uses
my data should provide data”. Although our formalism does not offer logical implication (to reduce the complexity
of associated reasoning mechanisms), we provide means to relate data access/provision events via activation and
deactivation conditions, which enables us to represent norms such as “anyone who uses my data should provide me
with data”.

We combine, adapt and extend existing proposals on normative (multi-agent) systems Meneguzzi et al.| [2015],
Sensoy et al|[2012], |Garcia-Camino et al.| [2009], |Vasconcelos et al.| [2009], representing data-related events (such
as accessing records or publishing data collections), authorship of events and attempted actions, activation and
deactivation conditions of policies, and the object of the policy, namely, the data collection itself. We introduce in
the subsections below a language for policies and a representation for policy-carrying data, and equip these with a
simple operational semantics using states and histories.

3.1 Underpinnings: a Fragment of First-Order Logic

Our building blocks are first-order predicates m of the form pl(¢1,...,¢,) where pl' is a predicate symbol, n is
the arity of the predicate symbol (omitted when the context makes it clear) and ¢;,1 < j < n, are variables
(denoted as v,w,x,y, z, possibly with subscripts) or constants (denoted as a, b, ¢,d, possibly with subscripts). We
make use of two logical operators, namely conjunction A and negation —, and define our formulae ¢ via the grammar
¢ =@ A | | 7. We note that in our language negation is only applicable to predicates 7, and not to sub-
formulae; moreover, negation cannot be nested. This means our language is less expressive than first-order logic
and, in particular, we cannot define other operators such as disjunction V and implication —. This restriction in
expressiveness enables us to provide computational mechanisms which are decidable (unlike first-order logic) and of
practical use, as explained below. We refer to all formulae of this fragment of first-order logic as L.

Typical examples of first-order predicates are access(dy,uy, temperature,500), which intuitively states that the
field “temperature” from data collection d; has been accessed by user u; 500 times; and provide(da, ugss, gps, 20),
which states that user u4s5 provided 20 data items “gps” to data collection ds.

Since we allow variables to appear in our formulae, we must consider their quantification. Let wars(m) =
{zo,...,z,} be a function to obtain the possibly empty and finite set of variables x;,0 < i < n, in predicate 7; we
extend this function to obtain the variables of ¢ formulae: vars(p A¢') = vars() Uvars(¢') and vars(—n) = vars(r).
We extend our ¢ formulae with the existential quantifier 3 and the universal quantifier V, and we introduce a vector

notation as a shorthand for convenience, x def g, ..., Ty, to refer to all quantified variables in a particular order.
Our quantified formulae are thus Jx.¢ and V., where vars(¢) = {xo, ...,z }. This means that all variables of a
formula are in the scope of one same existential or universal quantifier, which prefixes a formula, that is, there is no
nesting of quantifiers, and quantifiers must precede a formula (a quantifier cannot appear within sub-formulae).

In order to define our semantics, we make use of a unification operation “”, associating a substitution ¢ =
{zo/t}, ..., xm/t,,}, that is, a possibly empty and finite set of pairs x;/t;,0 < i < m, as follows |Apt| [1997, [Fitting,
1996]:

1. ¢- 0 = ¢, that is, a constant ¢ unified with any substitution is ¢ itself

x-o=u, iff &/t & o, that is, if = is not associated with any ¢} in o, then its unification with o is z itself.

x-o=t, o, iff x/t, € o, that is, the unification of z with a substitution in which x is associated with a term ¢

(that is, a variable or a constant) is the unification of t; with o.

4. p(ty,...,ty) -0 =p(t1-0,...,t, - 0), that is, the unification of a predicate with ¢ is the predicate with each of
its terms unified with o.

5. (-m) -0 = —=(mw- o), that is, the unification of a negated predicate = with o is the negation of the unification of 7
with o.

6. (pAN¢@')-0=(p-0A¢ -0), that is, the unification of a conjunction (¢ A ¢') with o is the conjunction of the
unification (p -0 A ¢’ - o).

w N

Substitutions can be composed, that is, given o = {x1/t1,...,x,/tntand o’ = {a} /t}, ...,z /t) } (where {z1,..., 2, }N
{z,...,z},} = 0), their composition, denoted as o - ¢’, is the substitution {z;/(t; - ')} Uc’.

The semantics of our formulae is given in terms of a model (or interpretation) S comprising a possibly empty
and finite set of ground atomic predicates, that is, predicates without variables — all their terms/parameters are
constants. We shall denote a ground predicate as 7, and we note that for any predicate m and ground predicate 7',
we can obtain, in linear time, a substitution o such that 7 - o = 7' if the substitution exists; we can also find out, in
linear time, if such substitution does not exist [Fitting| [1996], [Martelli and Montanari [1982].

We define below an interpretation relation I, associating a model S, a formula ¢ and a set of substitutions
Y ={o1,...,0m} as follows:

1. I(S,w, {o}) holds iff there is a @’ € S such that 7 -0 = @', that is, a predicate 7 holds in S under o iff 7-0 = 7’
for some ground predicate 7’ € S.

2. I(S, -, {0}) holds iff there is not one & € S such that 7o = 7, that is, the set of substitutions is just one empty

substitution, as there is not one @ € S s.t. 7 -0 = 7.

I(S, (¢ A¢'),{o}) holds iff I(S, ¢, {c}) and I(S, ¢’, {c}) hold.

I(S, 3xo, ..., xn-p), {o}) holds iff I(S, ¢, {c}) holds for at least one o.

5. I(S, (Vxo, .- ., Zn-),{01,...,0m}) holds iff I(S, p, {0;}),1 < i < m, hold for every possible c;.

i

3.2 Policies as Atomic Deontic Formulae

We make use of first-order atomic deontic formulae McNamaral [2006], Meyer and Wieringa| [1993], Meyer et al.
[1994], von Wright| [1951] in our PCD formulation; these are defined as follows:

Definition 1. A first-order atomic deontic formulae A is any construct of the form Jx.0n and Vax.Or where:

1. ¢ =2xg,...,2Ty S a (possibly empty and finite) vector (sequence) of variables.

2. O € {O,F,P} is one of the 3 deontic modalities O (for “obliged”), F (for “forbidden”), and P (for “permitted”)
representing, respectively, an obligation, a prohibition, and a permission.

3. m is a first-order predicate such that vars(m) = {xo,...,%n}

Typical examples of deontic atomic formulae are Va.Faccess(uq, 1, x), establishing that user w; is forbidden to access
one (any) record from any data collection z, and Jx.Oprovide(uqss, 20,), establishing that user wyss is obliged to
provide 20 records to any one data collection x. Following the conventions of standard deontic logic McNamara

[2006], von Wright| |[1951], the modalities interrelate:

— Fr ¥ O-—m, that is, a prohibition is an obligation on -7

—pr —=0—m, that is, a permission is the negation of an obligation on —r.
Although we only need one deontic modality (as the other two can be formally represented with it and the negation
operator), in line with the body of work on deontic and normative research, we offer all three modalities, namely,
permission P, prohibition F and obligation O, as it is easier to express and understand deontic formulae without
nested negations. Quantification and modalities have been studied elsewhere (e.g., Basin et al|[2010], |Castellini
[2005]). We show below, when we define an operational semantics, how quantifications and deontic modalities come
together.

In our work we model existentially quantified obligations and permissions (Jx.On and Jx.Prw, respectively)
and universally quantified prohibitions (Va.Fr). These deontic formulae capture common patterns of regulated be-
haviour Meneguzzi et al|[2015], namely, an obligation is complied with if at least one instantiation of an action (with
specific values) is carried out; permissions are also over specific values, especially when permissions are interpreted
as exceptions to prohibitions (as in, for instance, [Sensoy et al.,2012]). Prohibitions, on the other hand, are normally
established to rule out any instance of an action. We notice, however, that universally quantified deontic formulae
may containt constants and hence we can also represent prohibitions on specific actions. Finally, it is worth men-
tioning that there is no technical reason not to allow using the deontic operators with any quantification, but for
simplicity, ease of presentation, and pragmatic reasons, we only consider some combinations.

We introduce our policies via Def. [2} these are the “policy” part of our PCDs:

Definition 2. A policy IT is of the form (Vx.p%, 3y.p% A) where:

1. ¢ ¢ € L are formulae of our first-order fragment and which represent activation and deactivation conditions,
respectively;

2. A is an atomic deontic logic formula (cf. Def. .

We do not allow nesting of quantifiers so as to simplify the language which underpins our approach. However, we use
our policies as rules [Buchanan and Duda [1983], |Garcia-Camino et al.| [2009], Meneguzzi et al.| [2015], this becoming
obvious in our operational semantics below. We allow variables appearing in ¢ to also appear in ¢% and A, and
the formalisation above is in fact a shorthand for Va.((¢® A =(3y.¢?)) — A), where — is the standard material
implication, that is, ¢ — ¢’ if, and only if, —¢ V ¢'. Such formulation has been adopted by various approaches to
normative multi-agent systems (e.g., |Garcia-Camino et al.| [2009], |Sensoy et al.[[2012], [Meneguzzi et al|[2015]).

The semantics of policies builds on the interpretation relation for our first-order fragment: I(S, (Vx.¢%, Jy.¢?, A),
{o1,...,0m}) holds iff:

1. I(S, 9% {0:}),1 < i < m, holds for every possible o;, and
2. I(S,¢? - 0;,{c}),1 <i < m, does not hold for any o.

Case 1 above establishes all instances of the activation condition/formula ¢® which arise from the model S. Case 2
states that we must check that none of the various instances of deactivation conditions ?-o; (one for each unification
o; of the activation condition in the model) holds, that is, we cannot find o in S such that I(S, ¢? - oy, {o}) holds.
Additionally, the semantics above captures the instances of the deontic formulae: let A be of the form Jz.0x (cf.
Def. [I)), then the semantics above provides the set of instances {3z.0(- 0;)|I(S, 9%, {0;}),1 < i < m}; a similar set
of instances is defined for A of the form Vz.Or.

3.3 Policy-Carrying Data

PCDs are formally defined as Def. [3f we are not specific about what the data collections are — these can be individual
records of a database, files, readings from a sensor, and so on. Very importantly, rather than having data collections
replicated in every PCD referring to them, there could be only one copy of the data collection and all PCDs regulating
its access would make use of a unique locator such as a URL.

Definition 3. A policy-carrying data (collection) PCD is a pair (II, D) where II is a policy (cf. Def.[3) and D =
{d1,...,dn} is a set of data items.

We use data collection and data interchangeably; PCD stands both for “policy-carrying data” and “policy-carrying
data collection”, although the latter can be used in the plural (PCDs standing for “policy-carrying data collections”).
We make use of a subset of first-order predicates to create a vocabulary of action labels Act which are the target
of the policies. An action predicate w4 is one of the following (with their intuitive meaning)ﬁ
— access(x,y,z) — x has accessed y records of data collection z.
— provide(zx,y, z) — x has provided y records of data collection z.
We adapt Defs. to reflect this: our deontic formulae are represented as AA°t and are of the form Jz.On
or Vz.OrAt; our policies, represented as ITA°, are of the form (Vx.p®, Jy.o?, AAt) and a PCD is of the form
(ITAt, D). When no confusion arises we shall omit the Act superscript for simplicity.
A sample policy using action labels is
(Vz.—access(z, 50, temp), access(x, 50, temp), Paccess(x, 50, temp))
This establishes that anyone (referred to by the universally quantified variable) is permitted to access 50 records
of data collection temp; the norm is activated if the records haven’t yet been accessed, and the norm is deactivated
when 50 records are accessed. We explain below that policies are instantiated to individuals: although the policy is
stated in general terms, for policing/monitoring purposes (and for sanctioning/rewarding when this is the case), we
must keep a record of individuals’ activities and the policies which are applicable to them (via their roles). We explain
below how roles are captured. The deactivation condition and deontic formula above are shown without quantifiers
as their only variable x appears universally quantified in the activation condition.

Roles enable the generic reference to individuals with similar social or organisational status, standing or cre-
dentials Biddle| [1979], Turner| [2001]; role-based access control models Sandhu et al.| [1996], Suhendra) [2011] refer
to groups of users via their roles. Some approaches [Padget and Vasconcelos| [2015], [Vasconcelos et al.| [2009} [2012]
annotate the deontic modality with the role r which the policy is aimed at, as in, for instance, O,7w. However, the
same effect can be achieved by adding a predicate role(z,r) (establishing that individual = has role r) in the ac-
tivation condition of a policy, that is, (Va.¢?, Jy.¢?, Iz.0,7) is a shorthand for (Vz.(p A role(x,r)), Iy.¢?, Iz.0r)
(and similarly for Vz.0,7)). We use a finite and non-empty set of role labels R = {ry,...,r:} and we assume a finite
and non-empty set of individuals A = {a1, ..., as} uniquely identified. Some roles can be associated with individuals

Act

4 We note that the action predicates can be more sophisticated, including, for instance, a description of the kinds of records
and fields of a data collection someone can access or provide.

through their membership to organisations (i.e., institutions or companies). We assume that individuals have their
credentials appropriately recorded (in our states or “snapshots” as explained below) by those providing the data
sharing setup, and these credentials are used when checking the applicability of policies.

3.4 Operational Semantics

In this section we explain the operational semantics connecting the syntax and semantics of our policies with an
underlying computational model. Our underlying computational model is a sequence of states. A state is represented
as the model S introduced in our interpretation relation above, and provides a “snapshot” of actual events; each event
is recorded as a ground predicate 7. Similar models have been previously proposed (e.g.,|Garcia-Camino et al.| [2009],
Fisher| [2006]) and, as we show below, are closely related to the formal semantics of modal logics. For compactness
(and to avoid having to check for consistency), we do not record negated predicates in our states, thus adopting the
closed world assumption [Reiter| [1978] which establishes that what is not stated/proven as true is deemed false.

A sequence of states represents a history: histories record sequences of states, providing a linear account of events
and how they are temporally related. A history H = (So,...,Sy) is a possibly empty and finite sequence of states
S;,0 < j < n. We formally connect policies with histories. We define below means to check if a policy was active in
a history.

Definition 4. A policy ITAt = (Vx.o% Jy.o? ARt was active in history H = (S, ...,S,) under substitutions c®
and o if, and only if, the following conditions hold:

1. I(81, V. {c®}) holds for some o®, that is, the policy became active (the activation condition holds) at state 1,
2. I(S,,3y.p%- 0% {a?}) holds for some 0@, that is, the policy became inactive (the deactivation condition holds) at

state n, and

3. I(S;, y.p? - 0%, X),1 < i < n, does not hold, that is, the policy was not deactivated in the intervening states.
We represent policy activation as the relation active(ITAt, H, 0% o). We note that there might be many o® for one
same policy and state, representing the “customisation” of a policy to a specific context.

We establish the conditions for policy compliance with the three definitions below.

Definition 5. A policy T4t = (Vx.0?, Jy.p?, F2.07A°) (an existential obligation) was complied with in history
H = (S1,...,S,), under substitutions o, 0%, denoted as complyo(HACt,’HJ“,Ud), if, and only if, the following
conditions hold:
1. active(ITAt, H, 0%, 0%), that is, the policy was active in the history under o and o?.
2. 1(S;,3z.(mh . 6%), {o2}) holds for some state Sj,1 < j < n, and 0®, that is, there is a 72 € S; such that
ct Act 'Ja) .o

ahAet = (7
As an example {(Vx.access(x,20, D1)), (Jyz.provide(z,y, 2)), (3yz.0Oprovide(x, y, z))) has activation condition “any-
one accessing 20 records of D,”; when the policy is active the same people who accessed the records are obliged
to provide records to some data collection. The policy is deactivated when some records are provided. A history in
which this policy is complied with is:
S1 Sa
H = ({access(bob, 20, D1)}, {provide(bob, 10, D2)})

The policy was active in the history (cf. Def. [4) as S; fulfills the activation condition, Se fulfills the deactivation
condition and there are no intermediary states. Moreover, the activation condition instantiates via o® = {2/bob} the
obligation Jyz.Oprovide(bob,y, z). Sy is also state S; of case 2 in Def. [5| where the obligation is fulfilled, as we have
7 = provide(bob, 10, Dy) and o2 = {y/10,2/Ds}.

Definition 6. A policy ITA = (Va.o® Jy.o? Vz.FrAt) (a universal prohibition) was complied with in history
H = (S1,...,S,), under substitutions c® and o®, denoted as complyF(HACt,H,aa, o), if, and only if, the following
conditions hold:
1. active(ﬂACt,Hma,ad), that is, the policy was active in the history under c® and o®.
2. I(S;,3z.(mA< -), X) does not hold for any state S;,1 < j < n, that is, there is not one 74 € S;,1 < j <n,
such that 78t = (7A°t . 0% . o for any o.

Policy ((Vxyz.—provide(x,y, z)), (3z'y' 2 .provide(z’,y', 2")), (Faccess(x, y, D1))), for example, establishes that anyone
who has not provided any records to any data collection is forbidden to access records from D;. The policy is
deactivated when someone provides some records. A history in which this policy is complied with is:
X >
H={0 ,{provide(bob, 10, D2)})

The policy was active in the history (cf. Def. [4]) as S; fulfills the activation condition, Se fulfills the deactivation
condition and there are no intermediary states. Since there are no states S; in which (access(z,y, D1)-0®) - o occurs,
the policy was complied with.

In data sharing scenarios, permissions are very important as they establish explicit access rights, asserting that
what is not explicitly permitted (that is, there is not an active permission addressing a particular action) is forbidden.
Moreover, permissions can be seen as exceptions to prohibitions and obligations, along the lines of, e.g., |Boella and
van der Torre| [2003], |Governatori et al.[|2013]. We provide a means to check the compliance of a set of permissions:

Definition 7. A set of policies TIA®t = {ITAC . [TAt} [TA = (Va,.0%, y;.pd, Fz;. PrAt) 1 < i < m (all
existential permissions), was complied with in history H = (S1,...,8n), under a set X of pairs of substitutions
(o, 0%, denoted as comply” (TIAt H. %), if, and only if, for every T8t € S;,1 < j < n, the following conditions
hold:

1. there is a ITAt € TIAC [TAt = (Vai.0¢, Jyy. @k,ﬂzk Prict) active(ITA, H', 0, 0l), that is, a policy IT}At
was active in a sub-history H' of H, under off and O’k H =H,eH eH,y, where “o” is the concatenation operator
for sequences of states, and Hi,Ha are possibly empty sub-histories. Moreover, H' = H| & (S;) ® Hj, (where
HY, HYy are possibly empty sub-histories), that is, H,‘?Ct was active in S;.

2. At = (gt . 50) . g, for some o, that is, TAC is the target of IIACY (activated with o) and (possibly) further
instantiated via o;.

If, and only if, of, and crg are as above, <O’k,0'k> e .

Def. |7} Iestabhshes that all 74t € S; (all actions recorded in any state S; of history H) must be unifiable with 7¢t.o¢
of a permission I} Act which was active at S;. There might be more than one such permission active, and there might
be more than one o for one permission and state. We illustrate Def. @wwh permissions TTA°t = {1} Act ,IT4Aet [Tty

ITAt = (Yrz.user(x) A data(z), endOfDay, Jy.Pprovide(z,y, 2))
HACt (Vay.provide(z,y, D1), endOfDay, Paccess(x,y, D2))
HACt (Vzy.provide(x,y, D1), endOfDay, Paccess(x, y, D3))

Where endOfDay is a “flag”, recorded by the administrators of the data sharing framework to indicate the end of
a period of time. ITA°t establishes that any user x is permitted to provide any number of records y to any data
collection z. IT4°t establishes that any 2 who provides y records to data collection D; is permitted to access the
same number of records from Dy. IT£°t is similar, but the permission is for accessing data from Dj. A history H in

which these policies are complied with is:

S
1 S

provide(bob, 10, Dy),
provide(john, 10, Dy)

SS 84
} { access(bob, 10, D) },{endOfDay})

(¢ data(Dy), data(Ds),
data(Ds)

We have active(IT{4¢, H, {x/bob, z/ D1 },0), active(IT{A°, H, {x/john, z/D1},0), as well as other cases when z unifies
with Dy and D3. We also have active(II$, (Sy, Ss, S4), {x/bob,y/10},0), and active(II, (Sy, Ss, S4), {x/john,
y/10},0). The ground predicate 74t € Sy is the target of I12*°t which is active, so the set of policies is complied
with. An interesting situation arises in this scenarlﬂ if the compliance check had been defined for one policy
(instead of a set of policies), then IT4*t active in Sz and establishing Paccess(john, 10, Dy), would not unify with
7hAet = qecess(bob, 10, Do) and a v1olat10n would occur. We avoid such situations with our definition as it establishes
the compliance of permissions as a test to ensure any action performed is the target of an active permission. We
note that we detect the violation of a set of permissions: whereas an obligation or a prohibition can be checked for
compliance in isolation, checking the compliance of permissions requires all permissions to be considered together.

A generic definition of compliance, comply(TT,H,), TI = TI° U TIF U II? (obligations IT®, prohibitions TT"
and permissions IIP), holds if, and only if, the following hold: 1. comply®(II°, H, £°), 2. comply™ (IIF, 1, TF),
and 3. complyP(HP,H, XP); moreover, ¥ = X° U XFuU ZP We extend Def. [5| for sets: complyo(HO H,x0), 110 =
{119, ..., 119}, holds if, and only if, comply® (1P, 'H (0.4 Oi.4]° ZJ]) for all 4,1 < ¢ < n, and all sub-histories 7—[’ pl<
§ < my, of H in which IT® was active, active(IT? ’H[i,j ,a[i,j],a[i,j]), X0 =ur,u J: {<J[i,j ,J[m '} Def.|§|15 extended
in a similar fashion. A set of policies has been violated, violated(II, H, X) if, and only if, comply(II, H, X) does not
hold, that is, for at least one I € II the first condition (respectively, for obligations, prohibitions and permissions)
of Defs. BH7l holds and the second condition does not hold]

In open systems autonomous software agents are free to actually perform forbidden actions, but in a data-sharing
context we want to rule out any policy-violating behaviour. We thus consider an attempt to access data as evidence
of policy violation: consumers may try to access data they are not entitled to, and this attempt counts as if the data
had been accessed, even though our PCD will prevent this from happening. Our policy violation above is interpreted
under this light: the prohibited event is recorded but it did not actually happen.

user(bob), user(john), {

5 We thank an anonymous reviewer for pointing this out to us.

5 We note that prohibitions and permissions can be checked for violation without a history — it is sufficient to check that
the policy was active when the violation occurred (that is, a forbidden or a non-permitted action was carried out when the
policy was active). To check the violation of an obligation, however, requires the history during which the policy was active
and expired as only then we can establish that the obliged action was not carried out within the period of activation.

3.5 Deontic Logic and Operational Semantics

The operational semantics provides a counterpart to the usual Kripke semantics used in (modal) deontic logics [Mc-
Namaral, [2006]. This enables us to draw parallels between deontic equivalences and relationships among our policies.
We show that our operational semantics preserves an important result of our quantified deontic logic:

Claim 1. If 32.07 does not hold then Va.Fr holds:

Proof:
1. =(32.07) holds, then

(premise Jx.07 does not hold, hence its negation holds)
2. =(3z.—~0~-7) holds, then (axiom 3 of Standard Deontic Logic [McNamara| [2006])
3. =(=Vx.0-m) holds, then (negation over quantification)
4. Vx.O—r holds, then (cancellation of double negation)
5. V.Fm holds (by definition)
|
We prove below that this result also holds in our operational model. The wviolated relation in our operational
model corresponds to “not holding”. Without loss of generality, we assume that our policies have the same activation
condition and deactivation conditions and thus are active or not in exactly the same histories. This means condition
1 (active(Il,H, 0%, o)) of Defs. holds, and so does active(Il,H,o® %) in the definition of violation; thus we
only need to check if compliance happened (or not).
Claim 2. If an existential obligation II° = (Vz.¢? Jy.p% 32.07) was violated (does not hold) in history H =
(S1,...,8y), violated(IT®,H, 0%, o%), then the universal prohibition IT" = (Vx.p?%, Jy.¢¢, Vz.Fr) was complied with
(holds), comply(IT¥,H, 0%, o%).
Proof: If I1° has been violated then comply®(I1°,H, 0", o) does not hold (case 2, Def. |5, that is, I(S;,3z.(m
0%),{o4}) does not hold for any state Sj,1 < j < n, this means that there is not one @ € §;,1 < j < n, such that
7 = (m-0% -0? for any 2. This is precisely condition 2 of Def. |§| describing when IIF = (Vz.p%, 3y. god Vz.Fr) is
complied with. [|

3.6 PCDs and Individual Agents

PCDs are ultimately aimed at individuals, although they are specified in general terms. The credentials (roles)
referred to in a policy are ultimately of individual agents; actions are performed by agents, this being captured by
the first argument of predicate 72t Since we only consider states with fully ground atomic predicates, we can define
a function to provide the agent a responsible for performing 74t € S:

1. perf(access(a,n,d),S) = a, if access(a,n,d) € S

2. perf(provide(a,n,d),S) = a, if provide(a,n,d) € S
The compliance definitions (Defs. can be extended to obtain the identity of individual agents responsible for
complying with the policy. Given IT = (Va.p%, Jy.¢?% 32.07) (an existential obligation) and a history H = (S, ...,
Sy) such that complyo(ﬂ,’;‘-l, 0% 0%); we have 7 € S; such that 7 = (7 - 0?) - 02, perf(7,S;) = a, and similarly for
permissions. For prohibitions, however, the agents who complied are all those which did not perform a prohibited
action. We denote the compliance of an individual a to a set of policies II in history H as comply(II, H,a). Since
more than one agent may comply with the policies, we can compute them all as complyAll(II,H, A"), A’ C A, such
that, for all @ € A’ comply(IL, H, a).

In realistic settings we need to consider longer histories in which a policy is complied with or violated many times.

Using the operator “e” to merge/split histories, we say that H = H; e Ho e --- @ H,, holds iff H; = (S¢,...,S!), 1<

i <n,and H =(St,....8,,,8%,...,8%,,....,SF, ..., S},). With this operator we can compute, given a hlstory,
all the sub-histories in whlch a set of policies was Comphed with (or violated): comply™ (XL, H,{H1, ..., Hp}) holds iff

H=H oeH;oH" comply(IL, H;,).

A similar computation can be defined for violations: violated” (II, H,{H1,...,H,}) holds if, and only if, H = H'e
H; e H", violated (I1, H;, X). We also define means to compute those individuals responsible for policy compliance/vi-
olation: comply™ (XL, H,{H1,..., Hp},{an,, .. a3, }) if, and only if, for all 4,1 < i < p, comply(I1,H;, ay,). Again,
there might be more than one agent respounsible for policy compliance/violation in each sub-history, and we can obtain
these as complyAll" (XL, H, {H1, ..., Hp}, {Ap,, ..., Ay, }) where forall i,1 < i < p, Ay, C A, complyAll*(I1, H;, Ay,).
With these basic operations, we can define policing mechanisms to dispense rewards and sanctions to individuals,
based on histories of states and policies; we discuss one such mechanism below.

We make use of our formalism to represent typical examples of PCD; these are shown in Fig. [2 PCD (1) captures
a simple permission for anyone to access all records of a data collection. The activation condition establishes that
the permission is in place if no records have yet been accessed, and the policy is deactivated if anyone accesses any
records, that is, the policy stipulates a “one-off” access to the data. PCD (2) illustrates a useful way to inter-relate
policies. It states that anyone who accesses Dy is forbidden to access Ds. In the PCDs in Fig. [2] we omitted quantifiers
whose variables are already quantified, i.e., , y in the deontic formula of PCD (2), and z in the deactivation condition
and in the deontic formula of PCD (3). This creates a “chain” of events relating PCDs: if someone makes use of the
permission to access D; (established by PCD (1)) then it is forbidden to access Ds. We also specify PCD (3), stating

policy data
~~
((Vxy.—access(x,y, D1), 3"y .access(x',y', D1),3x"y" .Paccess(z”,y", D1)), D1) (1)

activation deactivation target

((Vay.access(xz,y, D1), endOfDay, Faccess(x,y, D2)), D2) (2)
((Vxy.access(z,y, D1), provide(x, 300, D2), Oprovide(x, 300, D2)), D2) (3)

Fig. 2. Sample PCDs

that those who access D; are obliged to provide 300 records to (be added to) Ds. The obligation is deactivated after
the agent who accessed D; provides some data.

3.7 Reasoning with/about PCDs

In Padget and Vasconcelos|[2015] we present three mechanisms to enable stakeholders to reason with and about their
PCDs. Although those mechanisms were aimed at a simpler (propositional) language, we claim that they can be
easily extended to accommodate our first-order logic. Our argument to support this claim lies in the fact that our
states are sets of fully ground predicates, and that detection of policy compliance/violation amounts to checking if
predicates occur (or not occur) in states.

In that paper, we describe a process whereby publishers of PCDs can obtain the identity of individual agents who
have access to data collections. The algorithm uses input parameters comprising a set of PCDs, a set of agents and
their roles (roles associated to agent can be obtained via the roles function introduced earlier). The function returns
a possibly empty set of pairs (D, Ap), D being a (reference to a) data collection of a PCD, and Ap C A a (possibly
empty) set of individual agent identities; these are the agents which have access to the various data collections.

Our PCDs and their operational semantics can be used in policing. We relate permissions and prohibitions for
data sharing in a pragmatic fashion. Permissions explicitly indicate who can access the data; if the agent is not
permitted, then it will not have access to the data and any attempt to access the data will be recorded as a potential
violation. According to this view, one would think that prohibitions would no longer be needed since anything that
is not explicitly permitted is forbidden. However, prohibitions can be interpreted as permissions being revoked under
special circumstances. In this interpretation, prohibitions take precendence over permissions, thus making permissions
void under certain circumstances. An example would be a permission to access D and a prohibition to rule out its
access at certain times.

A mechanism to police data access factoring in this relation was also presented in |Padget and Vasconcelos| [2015].
It takes as input a set of PCDs, an agent id a, the set R of roles, an action 74°t, a target data collection D and a
history H. The history is used as a “sliding window” from a state in the past to the current state. The mechanism
initially assumes access is prevented, then it carries out an analysis of existing PCDs: it checks if, in the set of PCDs,
there is a permission on action 74t concerned with data D (given as a parameter) and with associated role ; it
also checks if the permission is currently valid within a window. The mechanism then checks if the permission is
applicable to agent a (via one of its roles r,); if it is, then access is granted (provisionally). We then check if a
prohibition on action 72t over D and with associated role 7 exists in the set of PCDs; it also checks that the policy
is active within the relevant window. If such a PCD exists, then we check if the prohibition applies to a (via one of
its roles r,); if it is applicable, then access is denied, and we record a’s attempt to perform 74t in D.

Alternatively, we can regard permissions as exceptions to prohibitions and obligations, that is, they are strong
permissions Boella and van der Torre|[2003]. We extend our previous definitions of policy compliance to cater for this.
A prohibition IT = (Vx.¢%, Jy.¢?,Vz.Fr) was complied in H = (Sy,...,S,), under ¢ and ¢, if, and only if, these
hold: 1. active(II, H, 0%, o), and 2. I(S;, Iz.(7-0?), X) does not hold for any state Sj, 1 < j < n.If (2) is not met, that
is, there is a ground action 7 € §;,1 < j < n, 7 = (7-0*)-0 for some o (it unifies with the target of the prohibition), we
check if there is an active permission allowing this: if there is a ITy, = (V&y.¢%, Jyk.¢%, Iz1.Pr), active(Ix, H', o, o)
H=HioH oHy, H =H|e(S;)eH},, 7= (m-0}) -0’ (-0} is unifiable with 7), then there was no violation. For
those cases when an obligation and a permission overlap (their activation periods and targets), then if the obligation
is deactivated while the permission was still active and the target action was not performed, then there is no violation
(the permission makes the obligation optional).

4 A computational model

The computational counterpart of the formal model set out in Section [3]and specifically the operational semantics in
Section [3.4]is realised using the Institutional Action Language (InstAL) [Padget et al.| [2016], [Cliffe et al [2005], which
in turn is implemented in Answer Set Prolog (AnsProlog). The justification is twofold: (i) InstAL is a domain-specific

language for building institutional models, such as, in this case, the regulations governing access to some data, and
(ii) InstAL has an underpinning mathematical model and a formal specification |Cliffe| [2007] that connects the formal
model to the translation of language fragments into AnsProlog, thus providing a sound formal foundation for the
policy model.

We summarize the main features of Inst AL here to make this article self-contained, but for an extended discussion,
see [Padget et al.| [2016]. InstAL is inspired by the social institutions described by North| [1990] and the institutional
action arena set out in [Ostrom)| [2005]. Secondly, it draws on two key notions from the literature, namely “counts-
as” \John R. Searle| [1995], which leads to the distinction between external and institutional events, and institutional
power [Jones and Sergot| [1996], which determines whether an institutional event affects the institutional state or not,
that is, does it really happen, depending on whether the actor has not just the permission but also the power to
bring it aboutﬂ Thirdly, it builds on Action Languages |Gelfond and Lifschitz| [1998], the event calculus [Kowalski
and Sergot| [1986] and the situation calculus [Pinto and Reiter| [1995], which establish the idea of fluents — being facts
that are true if present and false if not (i.e. closed-world assumption) — where inertial fluents persist from initiation
to termination (addressing the frame problem), while non-inertial fluents only hold as long as the condition on which
they depend is true.

Thus, InstAL has external and institutional events, and (institutional) states comprising (i) inertial fluents rep-
resenting domain, permissiorﬁ, power and obligation facts, and (ii) non-inertial fluents representing conditions over
facts in given state. Hence, by expressing the definitions of the elements of policy-carrying data language in terms
of InstAL, we obtain the benefits both of its formal and computational model. Taking each of the PCD language
elements in turn:

1. A state S corresponds to a list of inertial and non-inertial facts as identified above, such as individual(i285),
user(u455)

2. An event 74°t corresponds to an (external) InstAL event, such as access(Agent, Dataset)ﬂ which depending
on the extant permissions and any other conditions over the policy state at the time, may lead to the occurrence
of the corresponding (institutional) event, such as intAccess(Agent,Dataset), or if the event is not permitted
to the violation event viol(access(Agent,Dataset)).

3. A history H corresponds to a set of (institutional) states, typically labelled by an instant — usually an integer —
that denotes the time at which an event was observed and at which time a collection of (institutional) facts hold.
Instants simply provide an ordering and are not necessarily connected to a precise notion of the passage of time.
The history is the computational consequence of an event trace (operations on the resource as interpreted in
terms of the governing policy), as determined by the rules that initiate and terminate fluents or establish the
presence or absence of non-inertial fluents.

4. A policy (Def. : corresponds to an institution definition in InstAL, which comprises type declarations, event
and fluent declarations, generation rules (that determine whether external events count-as institutional events),
initiation and termination rules (that determine the consequences for the policy state) and non-inertial rules
(that capture dynamic conditions over the policy state). We use the three examples of Fig [2[from Section to
illustrate how PCDs can be captured in the InstAL framework:

(a) A permission (definition [7)): corresponds to InstAL’s institutional permission fact, written perm(action). In
the case of PCD(1) in FigJ2] this is expressed as:

initially perm(access(A,D;1)), perm(intAccess(A,D1));
intAccess(A,D;) terminates perm(intAccess(B,D1))

where the first line expresses the permission for any agent A to access all of the records in resource D1,
because the permission is universally quantified through the variable in the first position, where access is
the exogenous event and intAccess is the corresponding institutional event. The second line indicates that
the occurrence of the intAccess event terminates permission to access all the records in resource D; for
every agent.

(b) A prohibition (definition @): corresponds to the absence of permission to do something in the default Inst AL
behaviour. Thus, for the example in PCD (2) in Fig. we might assume that initially all agents have
permission to read from D; and from D, but if an agent access the first resource, it may not access the
second so that for example the situation described regarding the resource D; and Dy can be captured as:

initially perm(access(A,D;)), perm(intAccess(A,D1));
initially perm(access(A,D>)), perm(intAccess(A,D3));
intAccess(A,D;) terminates perm(intAccess(A,D>))

" Just as the chair of a meeting is only one who can the start and end of business.

8 InstAL offers by default a model in which all actions (events) are prohibited unless explicitly permitted, although the
converse is easily defined as demonstrated in [King et al.| [2015]

9 We follow the convention in logic programming that a literal starts with a lower case letter, while a variable starts with a
capital.

institution example;

type Agent;
type Dataset;
type PCD;
type Role;

fluent role(Agent ,Role);
fluent pcd(Dataset ,PCD,Role);
10 fluent accessed(Agent ,Dataset ,PCD,Role);

© 00Uk WN

12 exogenous event access (Agent,Dataset);
13 inst event intAccess (Agent ,Dataset);

14

15 access(A,D) generates intAccess(A,D);

16

17 intAccess(A,D) initiates accessed(A,D,P,R)

18 if role(A,R), pcd(D,P,R);

19 intAccess (A,D) terminates

20 perm(access(B,D)), pow(intAccess(B,D)), perm(intAccess(B,D))
21 if role(A,R), pcd(D,P,R);

22 intAccess(A,dl) terminates

23 perm(access (A,d2)), pow(intAccess(A,d2)), perm(intAccess(A,d2))
24 if role(A,R), pcd(D,P,R);

26 fluent provided(Agent ,Dataset ,PCD,Role);
27 exogenous event provide (Agent ,Dataset);
28 inst event intProvide (Agent ,Dataset);

30 exogenous event forever;
31 violation event never;
32 obligation fluent obl(provide(Agent ,Dataset),forever ,never);

33

34 intAccess(A,dl) initiates

35 obl (provide (A,d1) ,forever ,never),

36 perm(provide(A,d1)), perm(intProvide(A,d1)), pow(intProvide(A,d1))
37 if role(A,R), pcd(D,P,R);

38

39 provide(A,D) generates intProvide(A,D);

40

41 intProvide (A,D) initiates provided(A,D,P,R)

42 if role(A,R), pcd(D,P,R);

Fig. 3. The example policy specification

which is very similar to the previous example in terms of the initial permissions, but the revocation of
permission applies to A in respect of Ds.

(c) An obligation (definition [5): the counterpart in InstAL takes the form of an obligation fluent which in its
full form is a triple associating a compliance action with a deadline event and a violation event, to indicate
that the action must occur before the deadline or a violation occurs. InstAL also allows the specification of a
compliant state, whose achievement satisfies the obligation, or a “deadline” state that triggers the violation
event. In this fragment, we use a shorthand form of obligation in which we only specify the action that
discharges the obligation, since there is no deadline:

intAccess(A,D;) initiates obl(provide(A,D3))

The purpose of the above is to provide an intuition for the representation of the formal language presented in
Section [3] through a mapping of some examples to fragments of InstAL. We now explain the ways in which we use
Answer Set Programming, continuing with the examples described in Section

4.1 Policies and Answer Set Programming

Before deployment, a policy author would like to know whether the policy does what it is intended to do — in effect,
whether it satisifies its requirements. This is a kind of testing, in which (for policies informally described on paper)
walk-throughs with use-cases determine whether desired outcomes are achieved and undesired ones avoided. A policy
specification in InstAL supports the policy author in two ways: by enabling policy validation off-line (using single-shot
solving) and to monitor compliance on-line (using incremental solving)m

One form of validation takes specific use cases (presented as traces) that capture desired outcomes, namely
the correct handling of policy-compliant behaviour and the detection of non-compliant behaviour (see examples in
Section . This approach however does only validate policy for situations that the policy-maker can anticipate.

19 We use the Potsdam Answer Set Solving Collection (Potassco), specifically clingo, available from http://potassco.
sourceforge.net/} accessed 2016-09-16.

http://potassco.sourceforge.net/
http://potassco.sourceforge.net/

This may work for simple policies in isolation, where all the possibilities are clear, but loopholes and unintended
consequences can all too easily arise as the policy becomes more complicated or interacts with other policies (more
on this in Section @

A second form of validation helps the policy author address this problem: instead of presenting particular traces,
the solver can compute all possible traces of a given length (i.e. a number of instants), for the events defined in the
model. Without any constraints, that is all the permutation sequences of length n, many of which may make no sense
in the light of domain knowledge, such as whether an event can occur more than once and whether one event can
only occur after another (see, for example, [Pieters et al. [2015]). Consequently, the author can specify constraints
that capture such domain knowledge and reduce the search space, while also specifying conditions in order to be
presented with, say, all traces that lead to good or bad states.

A third form of validation is compliance monitoring, where the same model as above is presented with one event at
a time and the solver computes the next state of the model (hence multi-shot or incremental solving). Consequently,
violations can be detected and appropriate actions taken when revising the PCD specification.

As we noted in the previous section, a policy IT is expressed as an institutional model using Inst AL, which we
then instantiate to create a PCD (II, D), where IT is grounded with respect to the dataset D and the policy provides
the actions access and provide, through which an individual operates on the dataset. A sequence of actions and
the states they establish are captured as answer sets — using either single or multi-shot solving — which in turn
encapsulate each PCD history . In the next section, we use single-shot solving to explore the behaviour of some
illustrative policies, as described in Section [3.6] against some sample traces.

4.2 Policy validation by use case

To demonstrate the computational model of the formalisation presented in section [3] the three example PCDs from
Fig. [2| are combined in a single specification (Fig. |3)) and usage scenario where Fig. EI gives an event-oriented view

intAccess(al,d1) @examplee
access(al,d1) @example®
access(al,d1) @example &
viol(access(al,d1)) @example @
viol(access(a2,d1)) @example -
access(a2,d1) @example <
viol(access(al,d2)) @example >
access(al,d2) @example <>
access(a2,d2) @example -
intAccess(a2,d2) @example -
intProvide(al,d1) @example L 2
provide(al,d1) @example -
accessed(a2,d2,pcd2,user) @example [|
accessed(al,d1,pcdl,user) @example T T T 1
obl(provide(al,d1),forever never) @example SIS
pcd(d2,pcd2,user) @example s e
pcd(dl,pecdl,user) @example s)
perm(intProvide(al,d1)) @example T
perm(provide(al,d1)) @example I EE——
perm(intAccess(al,d2)) @example mm
perm(intAccess(al,d1)) @example mmi
perm(intAccess(a2,d2)) @example IS
perm(intAccess(a2,d1)) @example m
perm(access(al,d2)) @example mml
perm(access(al,d1)) @example mm
perm(access(a2,d2)) @example EEEIE—
perm(access(a2,d1)) @example m
provided(al,d1,pcdl,user) @example S e
role(a2,user) @example EEEEEE———
role(al,user) @example EEETEEEEEE—T

Fig. 4. The example policy event occurrence (denoted by diamonds) and fluent duration chart (grey blocks), time
steps run left to right.

of the events that occur and at which instants given fluents hold, while Fig. [5| gives a state-oriented view, showing
which fluents are initiated, hold and are terminated in each state. We note that for an event that occurs at time i,
any fluents that it initiates show as holding from time i+ 1 onward. The @ notation shows the name of the institution
(in this case example) that recognises the event and in which the fluents hold. Here there is only one institution, but
the visualization tools account for models with multiple institutions.

As described earlier, PCD(1) captures the permission to access all records of a data collection. The activation
condition specifies that the permission is in place if the records have not yet been accessed, and the policy is
deactivated when the records are accessed (lines Fig. ; the policy stipulates a “one-off” access to the data,
so whereas A is bound to the accessing agent, B is universally quantified with respect to all agents. All agents
associated with the role of user may take advantage of this policy. As the trace shows (Fig. , the first access to di
by al succeeds — logged by the presence of the fluent accessed(al,d1) in the policy state history — but subsequent
attempts (both by a; and as) result in a violation, because all the permissions have been struck out after the first
read (see state Sp, where the struck through fluents identify those that are not present in the next state (because
they are terminated in this one).

access(a2, d1)
viol(access(a2, d1)) @example
access(a2, d1) @example

access(al, d1)
intAccess(al, d1) @example
access(al, d1) @example

access(al, d1)
access(al, d1) @example
viol(access(al, d1)) @example

Sy

S2

S3

perm(access(a2, d2))

pcd(d2, ped2, user) @example
role(al, user) @example
role(a2, user) @example
accessed(al, d1, pcdl, user)

pow(example, intAccess(a2, d2))
|

@example
@example
pow(intAeeess(al—d1)} @example
Qexample
{ tointA (a1
powt (st

d1))-Cexample
pcd(dl, pcdl, user) @example
pcd(d2, pcd2, user) @example
perm(intAccess(a2, d2))
@example

@example
perm{intAceess(a2—d1l))
pow(example, intAccess(a2,

d2)) @example

role(al, user) @example
role(a2, user) @example

obl(provide(al, d1), forever,
never) @example

perm(provide(al, d1))
@example

perm(intProvide(al, d1))
@example

perm(access(a2, d2)) @example

perm(intAccess(a2, d2))
Qexample

ped(d1, pedl, user) @example

pow(example, intProvide(al,
d1)) @example

perm(provide(al, d1)) @example

perm(intAccess(a2, d2))
@example

perm(access(a2, d2)) @example

pow(example, intAccess(a2, d2))
Qexample

pow(example, intProvide(al, d1))
@example

perm(intProvide(al, d1))
Qexample

accessed(al, d1, pcdl, user)
Qexample

role(al, user) @example

role(a2, user) @example

ped(dl, pedl, user) @example

pcd(d2, ped2, user) @example

obl(provide(al, d1), forever,
never) @example

role(a2, user) Qexample

ped(d2, ped2, user) @example

accessed(al, d1, pcdl, user)
@example

ped(dl, pedl, user) @example

role(al, user) @example

pow(example, intProvide(al, d1))
@example

perm(access(a2, d2)) @example

perm(provide(al, d1)) @example

perm(intProvide(al, d1))
Qexample

pow(example, intAccess(a2, d2))
@example

perm(intAccess(a2, d2))
Qexample

obl(provide(al, d1), forever,
never) @example

access(al, d2)
viol(access(al, d2)) @example
access(al, d2) @example

access(a2, d2)
access(a2, d2) @example
intAccess(a2, d2) @example

provide(al, d1)
intProvide(al, d1) @example
provide(al, d1) @example

Se

®

role(a2, user) @example

pcd(d2, ped2, user) @example

accessed(al, d1, pcdl, user)
Qexample

ped(d1, pedl, user) @example

role(al, user) @example

pow(example, intProvide(al, d1))
Qexample

perm(access(a2, d2)) @example

perm(provide(al, d1)) @example

perm(intProvide(al, d1))
@example

pow(example, intAccess(a2, d2))
Qexample

perm(intAccess(a2, d2))
@example

obl(provide(al, d1), forever,
never) @example

pow(example, intProvide(al, d1))
@example

accessed(al, d1, pcdl, user)
Qexample

perm(intProvide(al, d1))
@example

ped(d1, pedl, user) @example
perm(provide(al, d1)) @example
L

ped(d1, pedl, user) @example

accessed(al, d1, pedl, user)
Qexample

role(a2, user) @example

perm(provide(al, d1)) @example

pow(example, intProvide(al, d1))
Qexample

perm(intProvide(al, d1))
@example

o At

role(al, user) @example

role(a2, user) @example

ped(d2, ped2, user) @example

obl(provide(al, d1), forever,
never) @example

d(a2, d2, pcd2, user)
@example

role(al, user) @example

ped(d2, ped2, user) @example

provided(al, d1, pcdl, user)
@example

pcd(d2, ped2, user) @example

role(a2, user) @example

role(al, user) @example

accessed(a2, d2, ped2, user)
@example

perm(intProvide(al, d1))
Qexample

ped(d1, pedl, user) @example

pow(example, intProvide(al, d1))
Qexample

perm(provide(al, d1)) @example

accessed(al, d1, pedl, user)
@example

Fig. 5. The example policy trace: states 0-6

PCD(2) illustrates how to inter-relate policies (see lines Fig. It states that anyone who accesses d1 is
forbidden to access d2. The policy will never be deactivated once it is activated. Thus, once al makes use of the
permission established by PCD(1) to access d1, its permission to access d2 is revoked (along with the permissions
for any access d1, as per PCD(1)), but a2 can still access d2 as seen in S5 of Fig[5|

Finally, PCD(3) states that an agent that accesses d1 is obliged to provide records (to be added) to d2. The
obligation is initiated in state S; and is deactivated after the agent who accessed d1 provides some data in state Sg
(thus it is struck out in Sy to highlight that it is not present in Sg).

We illustrate above how to validate a policy against given traces that lead to known outcomes. The same model
can also be used to validate normative properties of a policy by checking for the (non-)existence of traces that lead
to (un)desirable outcomes, by expressing as conditions over events and states, as described in [Hopton et al.| [2009).
The details for the scenario set out above are omitted here for lack of space, but the application of the principle can
be seen in [Pieters et al|[2015].

5 Related Work

At the macro-level, we are inspired by Berners-Lee’s [Berners-Lee, [1999] vision of the semantic web as a collection of
connected resources that, remarkably for a text about future developments in computing, remains relevant nearly two
decades later. More recently, Berners-Lee has called for a bill of rights or magna carta to address issues
of privacy, censorship and control of the internet. That is an on-going and evolving debate in the febrile political
environment of early 2017, stimulated by the cases of Manning, Snowden and the Democratic National Committee
(in the USA), amongst others and the Draft Communications Data Bill (in the UK) which was eventually enacted as
the Investigatory Powers Bill Investigatory Powers Billl The proposal here seeks to provide a formalism, associated
mechanisms and a computational framework to capture specific features that reflect the principles capturing the
notions of privacy preferences and policies as described in [Berners-Lee| [1999], but taking into account the broader
context that is being created by IoT and STS in the years since.

Research on security and privacy explored alternatives for authentication and authorisation, including the popular
role-based access control (RBAC) models [Sandhu et al| [1996], [Suhendral [2011], building on role theory
[1979], |Turner| [2001). These assume, however, that the principal can only act on the subject in a context where the
principal’s actions can be observed and controlled. This clearly does not hold in an environment in which data is
shared and propagated largely without oversight, although |Cheng et al.| [2012], Karjoth et al|[2003] begin to address
this scenario. Nevertheless, once the data is outside the domain in which the policy can be enforced, the guarantees
that a security framework such as RBAC provides almost certainly cannot be upheld and encryption probably only
delays access. Thus, expectations about the treatment of data must be revised to accept transparency in place of
privacy, although this too cannot necessarily be assured. Some of the practicalities arising from this are discussed
in [Sackmann and Kahmer| [2008]. Hansen| [2012] sets out higher level requirements: “unlinkability when possible and
desired, transparency on possible and actual linkages, and the feasibility for data subjects to exercise control or at
least intervene in the processing of data.” We notice “where possible”: there cannot be absolute guarantees, only
best efforts.

Others have independently used the term “policy-carrying data”. The research presented in [Wang et al| [2013]
and |Saroiu et al.| [2015] introduces concepts by the same name, but their focus is on encryption aspects, architecture
and information models, and how their approaches can be implemented/integrated with specific technologies. There
is very little detail about the policy languages they might support and no discussion of their semantics, formalisation
or the scope for reasoning about policy as a normative framework, as described here. As mentioned before, we build
upon, expand and adapt our work presented in [Padget and Vasconcelos| [2015], in which a much simpler formalisation
in propositional logic was presented. Our present research offers a first-order logic formalism, with practical concerns —
our language is not as expressive as full first-order logic, but the associated mechanisms are decidable.

Our work draws upon research on normative multi-agent systems |Andrighetto et al.| [2013], especially on pro-
posals for norm specification [Savarimuthu et al. [2013], [Sensoy et al.| [2012], [Vasconcelos et al.| [2009] and normative
(practical) reasoning Balke et al.| [2013], |Garcia-Camino et al.| [2009], [Meneguzzi et al.[[2015]. Our notation is heavily
inspired by existing work |Garcia-Camino et al.| [2009], [Sensoy et al.| [2012], [Vasconcelos et al.| [2009] but we simplify
the components of our policies, leaving out aspects such as deadlines and sanctions/rewards. A rule-based language
such as |Garcia-Camino et al.| [2009], being Turing-complete, would allows us to represent arbitrary concepts, but its
expressiveness would render reasoning mechanisms more complex. We note that our semantics — the explicit record-
ing of states of the computation — has been used in the literature, either as Kripke structures (providing the usual
underpinning of modal deontic logics [McNamaral [2006]) or as operational semantics |Garcia-Camino et al| [2009],
[Vasconcelos et al|[2012].

We also report on [Karjoth et al| [2003], which describes a platform to enforce individual enterprise privacy
“promises” across multiple enterprises. The work presents useful practical examples of obligations, such as “we delete
collected data if consent is not given within 15 days”, and 4 stakeholders/roles are identified, namely (i) data subject,
(ii) data users, (iii) privacy officer, and (iv) security officer. A mapping translates application-independent obligations

into available actions, so there is an abstract (institution-like) layer, but this is not recognised explicitly as a concept.
A useful contribution is the notion of “sticky policies” associated with data in the same way as metadata. Their
formalisation adopts the Authorization Specification Language of |[Jajodia et al., 2001].

6 Conclusions, Discussion and Future Work

This paper draws upon the extensive body of research on normative (multi-agent) systems to propose a formal
framework based on Deontic first-order logic to represent and reason with/about data access policies. The application
of principles from normative systems gives rise to a language that can be seen as “sufficiently rich” — in that it is
known to be adequate to capture norms — as well as one that is “agent-oriented”, making the approach suitable for
complex socio-technical systems.

The main idea is that a policy conceptually encapsulates a data resource, to give the notion of policy-carrying
data (PCD). This does not imply physical encapsulation, since that would then preclude making a single resource
subject to multiple policies (e.g. depending on the role of the accessor or other factors). Furthermore, we assume
and do not address data en/decryption, but observe that the combination of policy and (encrypted) data offers a
kind of quasi-homomorphic encryption (the policy enforces the operations that can be carried out), in contrast to
full homomorphic encryption (the form of the encryption is what ensures only permitted operations work).

Some elements of future work are quite straightforward and follow from recent work on connected and interacting
institutions [Padget et al. [2016], and on hierarchical institutions King et al| [2015]. The examples presented in
sections and show a policy that associates access to one dataset with access to another. This illustrates how
a single policy might be used to control access to two resources. In contrast, an important aspect to address in future
work is policy interaction, where actions taken in the context of one policy have an effect in one or more others,
such as expanding or limiting an actor’s range of permitted actions or incurring obligations. Provision for policy
interaction is a practical necessity, because one policy for everything has no sense and because it is both desirable
and inevitable that policies will be developed and revised independently and incrementally.

We must also draw attention to some limitations in our proposal. In particular, we acknowledge there are situations
for which our formalism is not adequate or simply not expressive enough. For instance, for situations in which policies
are addressed to groups of users, as studied in, e.g. |Aldewereld et al.| [2016], our formalism and its (operational)
semantics may be awkward. More concretely, if we need to represent, say, an obligation on m individuals to provide
as a group n records (that is, the obligation is fulfilled if one or more individuals in the group provide n records, and
not m X n records), we will need to create m obligations — one for each individual — and their deactivation conditions
would be if anyone (possibly more than one individual) provides n records. We also note that more subtle normative
aspects, e.g., differentiating permissions and rights — where a right (of someone) implies in an obligation for someone
else — would require “chains” of policies whose violation/compliance may prove hard to detect.

We would like to extend our formalism to represent rewards/sanctions when policies are complied with or violated.
These rewards/sanctions add a game-theoretic aspect through utilities, which should be factored in when stakeholders
design and reason with/about policies. This is currently being investigated within a peer-to-peer scenario |Cauvin
et al|[2016]. Additionally, we are aware that active policies can be useful when establishing the context (activation
and deactivation conditions) of other policies, as explored in, for instance |Garcia-Camino et al.|[2009]. We will explore
means to extend our formalism to enable us to represent active policies as part of the activation and deactivation
conditions.

An important issue that we have not addressed in this presentation is the technical means to ensure that actions
and events are reliably logged for auditing or use in postmortem analyses. |Basin et al|[2013] among others point
out various problems with incomplete and disagreeing logs and provide means to handle these in a centralised
fashion. Although we introduced our approach using a centralised model in Section [2| and assumed we have access
to complete (ever-growing) histories of events, these are not realistic, failing to scale up and creating bottlenecks
and single-points of failure. Alternative distributed approaches such as the one reported in, for instance, |Vasconcelos
et al.|[2012], could be adapted/extended for our purposes. Additionally, properties of various experimental forms of
distributed ledger — those focussing on data and contracts, rather than value transfer like Blockchain [Underwood
[2016] — appear promising and are being investigated |Cauvin et al.| [2016], so that participants hold encrypted copies
of relevant events and histories thus bypassing central servers/repositories.

Finally, although the computational representation of our policies are declarative, authoring such specifications
requires experience and specialist knowledge. We are therefore exploring the possibility of using controlled natural
language to write regulations, inspired by narrative theory Thompson et al.| [2015].

Bibliography

H. Aldewereld, V. Dignum, and W. W. Vasconcelos. Group norms for multi-agent organisations. ACM Trans. Auton.
Adapt. Syst., 11(2), 2016. ISSN 1556-4665.

R. J. Anderson. Security Engineering: A Guide to Building Dependable Distributed Systems. John Wiley & Sons,
New York, NY, USA, 1st edition, 2001.

G. Andrighetto, G. Governatori, P. Noriega, and L. W. N. van der Torre, editors. Normative Multi-Agent Systems,
volume 4 of Dagstuhl Follow-Ups. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2013.
K. R. Apt. From logic programming to Prolog. Prentice Hall international series in computer science. Prentice Hall,

London, 1997.

T. Balke, M. D. Vos, and J. A. Padget. Evaluating the cost of enforcement by agent-based simulation: A wireless
mobile grid example. In Boella et al. [2013]. doi: 10.1007/978-3-642-44927-7_3. URL https://doi.org/10.1007/
978-3-642-44927-7_3.

D. Basin, F. Klaedtke, and S. Miiller. Policy monitoring in first-order temporal logic. In Procs. 22nd Int’l Conf. on
Computer Aided Verification (CAV 2010), volume 6141 of LNCS, pages 1-18. Springer Verlag, 2010.

D. Basin, F. Klaedtke, S. Marinovic, and E. Zalinescu. Monitoring compliance policies over incomplete and disagreeing
logs. In Runtime Verification, volume 7687 of LNCS. Springer, 2013.

T. Berners-Lee. Weaving the Web: The Past, Present and Future of the World Wide Web by its Inventor. Orion
Business, 1999. ISBN-13: 978-0752820903.

B. J. Biddle. Role Theory. Academic Press, San Diego, 1979. ISBN 978-0-12-095950-1.

G. Boella and L. van der Torre. Permissions and obligations in hierarchical normative systems. In Procs. 9th Int’l
Conf. on A.I. € Law, ICAIL ’03, pages 109-118. ACM, 2003. ISBN 1-58113-747-8. doi: 10.1145/1047788.1047818.
URL http://doi.acm.org/10.1145/1047788.1047818.

G. Boella, E. Elkind, B. T. R. Savarimuthu, F. Dignum, and M. K. Purvis, editors. Procs. Principles & Practice of
Multi-Agent Systems (PRIMA), volume 8291 of LNCS, 2013. Springer.

L. Brandimarte, A. Acquisti, and G. Loewenstein. Misplaced confidences: Privacy and the control paradox. Social
Psychological and Personality Science, 4(3):340-347, 2013.

B. G. Buchanan and R. O. Duda. Principles of rule-based expert systems. In M. C. Yovits, editor, Advances In
Computers, volume 22 of Advances in Computers, pages 163 — 216. Elsevier, 1983. doi: http://dx.doi.org/10.1016/
S0065-2458(08)60129-1. URL http://www.sciencedirect.com/science/article/pii/S0065245808601291.

C. Castellini. Automated Reasoning in Quantified Modal and Temporal Logics. PhD thesis, School of Informatics,
University of Edinburgh, 6 2005.

S. R. Cauvin, M. J. Kollingbaum, D. Sleeman, and W. W. Vasconcelos. Towards a distributed data-sharing economy.
Int’l Workshop on Coordination, Organizations, Institutions and Norms (COINQECAI-2016), 2016.

Y. Cheng, J. Park, and R. S. Sandhu. A user-to-user relationship-based access control model for online social
networks. In N. Cuppens-Boulahia, F. Cuppens, and J. Garcia-Alfaro, editors, Data and Applications Security
and Privacy XXVI - 26th Annual IFIP WG 11.8 Conference, DBSec 2012, volume 7371 of LNCS, pages 8-24.
Springer, 2012. ISBN 978-3-642-31539-8. doi: 10.1007/978-3-642-31540-4 2. URL https://doi.org/10.1007/
978-3-642-31540-4_2.

O. Cliffe. Specifying and analysing institutions in multi-agent systems using answer set programming. PhD thesis,
University of Bath, June 2007. URL http://opus.bath.ac.uk/16762/.

O. Cliffe, M. D. Vos, and J. A. Padget. Specifying and analysing agent-based social institutions using answer set
programming. In O. Boissier, J. A. Padget, V. Dignum, G. Lindemann, E. T. Matson, S. Ossowski, J. S. Sichman,
and J. Vazquez-Salceda, editors, Agents, Norms and Institutions for Regulated Multi-Agent Systems, ANIREM
2005, and Organizations in Multi-Agent Systems, OOOP 2005, Revised Selected Papers, volume 3913 of LNCS,
pages 99-113. Springer, 2005. ISBN 3-540-35173-6. doi: 10.1007/11775331_7. URL https://doi.org/10.1007/
11775331_7.

M. Sensoy, T. J. Norman, W. W. Vasconcelos, and K. Sycara. OWL-POLAR: A framework for semantic policy
representation and reasoning. Web Semantics: Science, Services and Agents on the World Wide Web, 12-13, 2012.

D. Ferraiolo, V. Atluri, and S. Gavrila. The policy machine: A novel architecture and framework for access control
policy specification and enforcement. Journal of Systems Architecture, 57(4), 2011.

M. Fisher. METATEM: The story so far. In Procs. of 8rd Int’l Conf. on Programming Multi-Agent Systems (Pro-
MAS’05), volume 3862 of LNAI, pages 3-22. Springer-Verlag, 2006. ISBN 3-540-32616-2, 978-3-540-32616-8. doi:
10.1007/11678823_1. URL http://dx.doi.org/10.1007/11678823_1!

M. Fitting. First-order Logic and Automated Theorem Proving. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2 edition, 1996. ISBN 0-387-94593-8.

A. Garcia-Camino, J. A. Rodriguez-Aguilar, C. Sierra, and W. W. Vasconcelos. Constraint rule-based programming
of norms for electronic institutions. Autonomous Agents and Multi-Agent Systems, 18(1):186-217, 2009.

https://doi.org/10.1007/978-3-642-44927-7_3
https://doi.org/10.1007/978-3-642-44927-7_3
http://doi.acm.org/10.1145/1047788.1047818
http://www.sciencedirect.com/science/article/pii/S0065245808601291
https://doi.org/10.1007/978-3-642-31540-4_2
https://doi.org/10.1007/978-3-642-31540-4_2
http://opus.bath.ac.uk/16762/
https://doi.org/10.1007/11775331_7
https://doi.org/10.1007/11775331_7
http://dx.doi.org/10.1007/11678823_1

M. Gelfond and V. Lifschitz. Action languages. Electron. Trans. Artif. Intell., 2:193-210, 1998.

G. Governatori, F. Olivieri, A. Rotolo, and S. Scannapieco. Computing strong and weak permissions in defeasible
logic. Journal of Philosophical Logic, 42(6):799-829, 2013. URL http://www.jstor.org/stable/42001261.

M. Hansen. Top 10 mistakes in system design from a privacy perspective and privacy protection goals. In Privacy
and Identity Management for Life, volume 375 of IFIP Adv. in Inf. & Comm. Techn., pages 14-31. Springer, 2012.

L. Hopton, O. Cliffe, M. D. Vos, and J. A. Padget. AQL: A query language for action domains modelled using answer
set programming. volume 5753 of LNCS. Springer, 2009. ISBN 978-3-642-04237-9. doi: 10.1007/978-3-642-04238-6_
39. URL https://doi.org/10.1007/978-3-642-04238-6_39.

Investigatory Powers Bill. UK Legislation, 2016. http://www.legislation.gov.uk/id7title=Investigatory+
Powers+Act+2016, retrieved 2017-02-27.

S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. Flexible support for multiple access control policies.
ACM Trans. Database Syst., 26(2):214-260, June 2001. ISSN 0362-5915. doi: 10.1145/383891.383894. URL
http://doi.acm.org/10.1145/383891.383894.

John R. Searle. The Construction of Social Reality. Allen Lane, Penguin Press, 1995.

A. J. 1. Jones and M. J. Sergot. A formal characterisation of institutionalised power. Logic Journal of the IGPL, 4
(3):427-443, 1996.

G. Karjoth, M. Schunter, and M. Waidner. Platform for enterprise privacy practices: privacy-enabled management
of customer data. In Procs. 2nd Int’l Conf. on Privacy-enhancing technologies (PET’02. Springer, 2003.

T. C. King, T. Li, M. D. Vos, V. Dignum, C. M. Jonker, J. Padget, and M. B. van Riemsdijk. A framework for
institutions governing institutions. In Procs. Int’l Conf. on Autonomous Agents & Multiagent Systems (AAMAS),
pages 473-481, 2015. URL http://dl.acm.org/citation.cfm?id=2772940.

J. Kiss. An online Magna Carta: Berners-Lee calls for bill of rights for web. Web content, March 2014. http://www.
theguardian.com/technology/2014/mar/12/online-magna-carta-berners-lee-web, retrieved 20141218.

R. A. Kowalski and M. J. Sergot. A logic-based calculus of events. New Generation Comput., 4(1):67-95, 1986.

T. Li, T. Balke, M. De Vos, J. A. Padget, and K. Satoh. A model-based approach to the automatic revision of
secondary legislation. In E. Francesconi and B. Verheij, editors, International Conference on Artificial Intelligence
and Law, pages 202-206. ACM, 2013. ISBN 978-1-4503-2080-1. URL http://doi.acm.org/10.1145/2514601.
2514627.

B. Litaer. The Future of Money: Creating New Wealth, Work and a Wiser World. Century, 2002.

A. Martelli and U. Montanari. An efficient unification algorithm. ACM Trans. Program. Lang. Syst., 4(2):258-282,
Apr. 1982. ISSN 0164-0925.

P. McNamara. Deontic logic. In Logic and the Modalities in the Twentieth Century, volume 7. North-Holland, 2006.

F. Meneguzzi, O. Rodrigues, N. Oren, W. W. Vasconcelos, and M. Luck. BDI reasoning with normative considerations.
Eng. App. of Art. Int., 43:127 — 146, 2015.

J.-J. C. Meyer and R. J. Wieringa. Applications of deontic logic in computer science: A concise overview. In Deontic
Logic in Computer Science: Normative System Specification. John Wiley & Sons, 1993.

J.-J. C. Meyer, F. P. M. Dignum, and R. J. Wieringa. The paradoxes of deontic logic revisited: a computer science
perspective. Technical Report UU-CS-1994-38, University of Utrecht, Utrecht, 1994.

D. C. North. Institutions, institutional change and economic performance. Cambridge university press, 1990.

E. Ostrom. Understanding Institutional Diversity. Princeton Universiy Press, 2005. ISBN: 9780691122380.

P3P. The Platform for Privacy Preferences 1.1 (P3P1.1) Specification. World Wide Web Consortium (W3C),
November 2006. URL https://www.w3.org/TR/P3P11/. Retrieved 2017-02-27.

J. Padget and W. W. Vasconcelos. Policy-carrying data: A step towards transparent data sharing. Procedia Computer
Science, 52:59 — 66, 2015. ISSN 1877-0509.

J. Padget, E. ElDeen Elakehal, T. Li, and M. De Vos. InstAL: An Institutional Action Language, pages 101-124.
Springer International Publishing, 2016. ISBN 978-3-319-33570-4. doi: 10.1007/978-3-319-33570-4_6.

J. A. Padget and W. W. Vasconcelos. Fine-grained access control via policy-carrying data. ACM Trans. Internet
Technol., 18(3):31:1-31:24, Feb. 2018. ISSN 1533-5399. doi: 10.1145/3133324. URL http://doi.acm.org/10.
1145/3133324.

W. Pieters, J. Padget, F. Dechesne, V. Dignum, and H. Aldewereld. Effectiveness of qualitative and quantita-
tive security obligations. Journal of Information Security and Applications, 22:3-16, 2015. ISSN 2214-2126.
doi: http://dx.doi.org/10.1016/j.jisa.2014.07.003. URL http://www.sciencedirect.com/science/article/
pii/S2214212614000805.

J. Pinto and R. Reiter. Reasoning about time in the situation calculus. Ann. Math. Artif. Intell., 14(2-4):251-268,
1995.

R. Reiter. On closed world databases. In Logic and Databases. Plenum Press, NY, USA, 1978.

S. Sackmann and M. K&hmer. ExPDT: A policy-based approach for automating compliance. Wirtschaftsinfor-
matik/Angewandte Informatik, 50:366-374, 2008.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control models. Computer, 29(2):
38-47, Feb. 1996. ISSN 0018-9162.

http://www.jstor.org/stable/42001261
https://doi.org/10.1007/978-3-642-04238-6_39
http://www.legislation.gov.uk/id?title=Investigatory+Powers+Act+2016
http://www.legislation.gov.uk/id?title=Investigatory+Powers+Act+2016
http://doi.acm.org/10.1145/383891.383894
http://dl.acm.org/citation.cfm?id=2772940
http://www.theguardian.com/technology/2014/mar/12/online-magna-carta-berners-lee-web
http://www.theguardian.com/technology/2014/mar/12/online-magna-carta-berners-lee-web
http://doi.acm.org/10.1145/2514601.2514627
http://doi.acm.org/10.1145/2514601.2514627
https://www.w3.org/TR/P3P11/
http://doi.acm.org/10.1145/3133324
http://doi.acm.org/10.1145/3133324
http://www.sciencedirect.com/science/article/pii/S2214212614000805
http://www.sciencedirect.com/science/article/pii/S2214212614000805

S. Saroiu, A. Wolman, and S. Agarwal. Policy-carrying data: A privacy abstraction for attaching terms of service to
mobile data. In HotMobile’15. ACM Press, February 2015.

B. T. R. Savarimuthu, J. Padget, and M. Purvis. Social norm recommendation for virtual agent societies. In |Boella,
et al.| [2013], pages 308-323.

V. Suhendra. A survey on access control deployment. In Security Technol., volume 259 of Comm. in Comp. & Inf.
Science. Springer, 2011.

M. Thompson, J. Padget, and S. Battle. Governing narrative events with institutional norms. In M. A. Finlayson,
B. Miller, A. Lieto, and R. Ronfard, editors, 6th Workshop on Computational Models of Narrative, CMN 2015,
volume 45 of OASICS, pages 142-151. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. ISBN 978-3-
939897-93-4. doi: 10.4230/OASIcs.CMN.2015.142. URL https://doi.org/10.4230/0ASIcs.CMN.2015. 142,

G. Tonti, J. M. Bradshaw, R. Jeffers, R. Montanari, N. Suri, and A. Uszok. Semantic web languages for policy
representation and reasoning: A comparison of KAoS, Rei, and Ponder. In Procs. ISWC 2003, volume 2870 of
LNCS. Springer, 2003.

R. H. Turner. Role Theory, pages 233-254. Springer US, Boston, MA, 2001.

S. Underwood. Blockchain beyond Bitcoin. Commun. ACM, 59(11):15-17, Oct. 2016. ISSN 0001-0782. doi: 10.1145/
2994581. URL http://doi.acm.org/10.1145/2994581!

W. W. Vasconcelos, M. J. Kollingbaum, and T. J. Norman. Normative conflict resolution in multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 19(2):124-152, 2009.

W. W. Vasconcelos, A. Garcia-Camino, D. Gaertner, J. A. Rodriguez-Aguilar, and P. Noriega. Distributed norm
management for multi-agent systems. Expert Syst. & Appl., 39(5):5990-5999, 2012.

G. H. von Wright. Deontic logic. Mind, 60(237), 1951.

X. Wang, Q. Yong, Y. Dai, J. Ren, and Z. Hang. Protecting outsourced data privacy with lifelong policy carrying. In
IEEFE Int’l Confs. on High Perf. Comp. & Comm. and Embedded & Ubiquitous Comp. (HPCC-EUC), Nov 2013.

https://doi.org/10.4230/OASIcs.CMN.2015.142
http://doi.acm.org/10.1145/2994581

	Fine-Grained Access Control via Policy-Carrying Data
	Julian A. Padget cl@@auth and Wamberto W. Vasconcelos

