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Recently there has been a great deal of interest in the use of “tension” parameters to augment control 
mesh vertices as design handles for piecewise polynomials. A particular local cubic basis called 
/3-splines, which has been termed a “generalization of B-splines, v has been proposed as an appropriate 
basis. These functions are defined only for floating knot sequences. This paper uses the known 
property of B-splines that with appropriate knot vectors span what are called here spaces of tensioned 
splines, and that particular combinations of them, called LT-splines, form bases for the spaces of 
tensioned splines. In addition, this paper shows that these new proposed bases have the variation 
diminishing property, the convex hull property, and straightforward knot insertion algorithms, and 
that both curves and individual basis functions can be easily computed. Sometimes it is desirable to 
interpolate points and also use these tension parameters, so interpolation methods using the LT- 
spline bases are presented. Finally, the above properties are established for uniform and nonuniform 
knot vectors, open and floating end conditions, and homogeneous and nonhomogeneous tension 
parameter pairs. 

Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: Computational Geometry and 
Object Modeling 

General Terms: Algorithms, Verification 

Additional Key Words and Phrases: B-splines, P-splines, CAGD, convex hull property, geometric 
continuity, knot insertion, variation diminishing property, visual continuity, v-splines 

1. INTRODUCTION 

Parametric piecewise polynomials (parametric splines) are used in design and to 
solve interpolation problems since they have more inherent flexibility than single 
polynomials and allow users to avail themselves of a richer family of curves. 

Frequently, second-derivative continuity of the designed parametric spline 
curve is stated as a requirement. For explicit curves, second-derivative continuity 
is directly related to curvature continuity; however, this is not always the case 
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for parametric curves in general, and parametric splines in particular. Sometimes, 
a particular parameterization of a curve will not be second-derivative continuous 
at certain points, but the curve will be curvature continuous. Recall that the 
curvature of a curve is simply the second derivative of a curve with respect to its 
arc length parameterization. Hence, if a curve y is parameterized with respect 
to some arbitrary parameterization t, we know that the curve also has an arc 
length parameterization s such that t = t(s). Thus a curve y(t) is curvature con- 
tinuous if d2-y(t)/ds2 exists and is continuous everywhere. The analogous 
result is true for the tangent vectors. For example, if the straight line, (Y, 
between two points P1 and P2 is arc length parameterized, its form is (Y(S) = 
P, + s(P2 - PI)/11 P2 - PI I]. We may parameterize it differently. Let f(t) and 
g(t) be two twice differentiable functions such that 0 5 f(t) 5 g for t E [0, 11, 
and i 5 g(t) 5 1, for t E [l, 51, with f(0) = 0, f(1) = i, g(1) = f, and g(5) = 1. 

y(t)= i 

(1 - f(t)Pl + f(tP2, t E K4 11, 
(1 - g(t))P, + g(t)P2, t E [l, 51. 

Now y(t) is another parameterization of the line segment between PI and P2. 
However, y’ is not necessarily continuous at t = 1. y’(l-) = f’(l)(P2 - PA, 
but y’(l+) = g’(l)(P2 - PI). If f(t) = ($t and g(t) = (t + 3)/8, then the 
y’(l-) = (f)(P2 - PI), but y’(l+) = ($(P2 - PI). If f(t) = (a)t3, then 
y’(l-) = (4)(P2 - PI). In this second case, $‘(l-) = 3(P2 - PI), but 
y”(l+) = 0. As this example shows, a curve need be neither parametric Cc2) 
nor even parametric C(l) to be curvature continuous. 

The B-spline representation for spline curves has become the predominant 
method of representing spline curves since it has so many interesting and useful 
computational and geometric properties. If S, is a space of splines and y(t) E S,, 
y(t) = C QiBi,k,r(t) is its B-spline representation. y(t) is in the convex hull of (Qi} 
(indeed, an even stronger local convex hull property applies). Also, y(t) is a 
variation diminishing approximation to the piecewise linear curve formed by 
connecting the coefficient points together in order. Although these two concepts 
will be defined below, we note now that these two properties cause the spatial 
extent and behavior of the spline curve to have strong geometric relationships to 
the coefficient control polygon. Also, stable algorithms for evaluation [4, 81 and 
refinement and subdivision [6, 71 exist. The parametric values, and the geometric 
locations on the curve, at which the different polynomial pieces meet are called 
the “knots.” Since, on either side of a knot, the parametric spline is a polynomial, 
it is certainly parametrically continuous for all possible derivatives as it ap- 
proaches the knot. However, since the polynomial pieces meeting at the knot are 
generally different, the parametric derivatives will match only to a certain level, 
frequently made to be the second derivative. This choice of the second derivative 
is to gain curvature continuity. We have seen, however, that this is not necessary. 

The work that uses this flexibility is frequently based on spline spaces of order 
4 (cubic) splines. Unless another degree spline is specifically mentioned, all 
references in this paper are to cubits. 

Manning [ll] and Sabin [14] quite early proposed using this extra flexibility 
for design flexibility. Sabin, although recognizing that one of the tension 
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parameters was basically a parametric resealing, did not use it. However, he 
noted that the other could be varied and still give curvature continuity. Sabin 
wanted to apply this concept to design by specifying points of interpolation. He 
presented not only the concept, but an iterative method for finding good values 
of the discrete tension parameters based on the data and a minimization of the 
resulting curvature. Manning also considered this problem of designing with 
interpolation. He used both of the scalar degrees of freedom afforded by curvature 
continuous, but only G’(O) parametric, cuhics. He also recognized the need and 
derived algorithms for automatically and iteratively determining two tension 
values at each knot that would have good design properties for both open and 
periodic curves. Both, however, used a uniform parameterization and the trun- 
cated power basis. Under these parameterization conditions, the matrix formu- 
lations used by both are the same between each pair of knots. Since the piecewise 
power basis was used directly, the coefficient sequence involved did not have the 
strong geometric relevance that the B-spline coefficient sequence has. Nielson 
[12, 131 proposed using parametrically C (l) but curvature continuous, splines in , 
the plus function basis as a minimum solution of an interpolation problem. He 
presented this material as the solution to a discrete minimization problem 
analogous to the one solved by splines under tension. The extra flexibility occurs 
as a scalar at each knot, the “tension,” and is used to tighten or loosen the curve 
around the interpolation value. The resulting curves, called v-splines, are curva- 
ture continuous. 

More recently, Barsky has proposed using parametrically C(O) piecewise cubic 
polynomials with curvature continuity for design. The idea is to use the additional 
flexibility with local basis functions represented in a piecewise power basis whose 
attributes are styled after the desirable attributes of B-splines. In particular, if a 
curvature continuous curve is represented in such a formulation, there should be 
geometrical properties relating the curve and the sequence of its vector coeffi- 
cients. We shall call this general class of formulations the “design” formulation. 
Although two tension parameters are theoretically allowed at each breakpoint, 
computational complexity for the formulation has meant that uniformly spaced 
breakpoints, floating curves, and most frequently just two tension values per 
curve are used, which he calls pi and ,&. Because of his formulation, the P-spline 
formulation, he has been restricted both theoretically and computationally to the 
use of coefficient polygons with “floating end conditions.” No knot insertion 
algorithms exist in this formulation. It is difficult to understand, define, and 
evaluate the basis functions for the nonhomogeneous conditions using the 
P-spline divided difference representation. Farin [9] investigated developing the 
“interpolating” control polygon points for the piecewise cubic Bezier represen- 
tation given an original control polygon, the “piecewise inner Bezier control 
points,” and a particular way of specifying the two tension scalars. 

In this paper we present a formulation for using the extra degrees of freedom 
allowed by requiring that the cubic parametric splines be only parametrically C(O) 
at the knots, but are still required to be curvature continuous at those points. 
The formulation is based on defining and using appropriate B-splines as the 
foundation for the new functions, called local tensioned (LT) splines, which will 
be shown to be a local basis for the space of tensioned splines. It will be shown 
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that the LT-spline basis supports knot insertion and also supports both floating 
and open end conditions, both uniform and nonuniform knot vectors, and both 
homogeneous and nonhomogeneous tension values as particular instantiations. 
A curve and control polygon representation in the LT-basis has the “design” 
formulation characteristics. The power of B-splines may then be brought to bear 
on problems and functions of this t-ype. 

2. BACKGROUND 

In this section we define several of the desirable properties that B-spline repre- 
sentations of curves convey about the geometry of the curve. They are also, where 
appropriate, shared by the Bezier curve formulation, and some have been shown 
for the P-spline curve formulation [3, lo]. Later in this paper, we shall show that 
the LT-splines also have all of these properties. 

A parametric (vector) curve representation is used for many curve design 
schemes in practice and in theory. We adopt that format. For this investigation 
we suppose y(t) = & Pifi(t), where the coefficients Pi are vectors. 

The vector coefficients (Pi) are often called the “control vertices” and can be 
connected sequentially by subscript to form a piecewise linear curve L,. This is 
frequently called the “control polygon” or the “control net.” 

Definition 1. If a straight line intersects y(t) no more often than it intersects 
L,, for all possible ordered collections of coefficients (Pi), then y(t) is called a 
variation diminishing approximation to L,. 

The effect of this property is that the resulting vector-valued curve has no 
more undulations than the piecewise linear curve of vector-valued coefficients. 
This property also determines many features of the extent of the blended curve. 

Another such property is the convex hull property. 

Definition 2. A convex set, C, is a set of points such that, if U, V E C, then 
CU + (1 - c)V E C for all c E [0, 11. This means that the line segment joining 
U and V must be entirely in the set C. 

Definition 3. The convex hull of a set of points is the smallest convex set 
containing those points. 

Definition 4. The curve approximation of (Pi) and y(t) is said to have the 
convex hull property if the curve y(t) is contained in the convex hull of the 
coefficient set (Pi] * 

If a convex hull property exists, the extent of the curve is known. A more 
stringent form is a local convex hull property that can place the extent of the 
curve over subintervals within the convex hulls of known subsets of the coefficient 
sequence. 

Features that make the basis functions fi(t) easier to work with include 

-nonnegative values over the domain (necessary for the convex hull property); 
and 

--local support of each blending function, which means it is nonzero only over a 
small interval of the whole function domain. 
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2.1 Polynomial Splines 

In everyday use, the functions fi(t) are most often polynomials or piecewise 
polynomials. Every piecewise polynomial is a spline [5]; however, the functions 
fi can be any of many different bases for splines. One such basis for splines is the 
B-spline basis. B-splines are widely used for modeling and defined in many 
different places, so we shall assume the reader is familiar with their properties 
and here just summarize some of their properties. 

A particular space of piecewise polynomials is completely characterized by its 
maximum degree, the parameter values where the polynomials may have a 
discontinuity in some derivative (also called the breakpoints), and a sequence 
specifying the highest derivative continuity required at each of the breakpoints. 
Call the sequence of B-splines over that space {Bi,k (t) 1, where k - 1 is the maximal 
degree of the polynomial pieces. Then, 

-&k(t) z 0, for all t; 
-xi Bi,k(t) c 1 for all t; 
-each Bi,k(t) is local, and in fact the set of B-splines has the smallest support 

possible for any basis of the space; and 
-if y(t) = Ci PiBi,k(t) is the B-spline representation of a spline curve y(t), then 

the curve and control polygon have both the variation diminishing property 
and the convex hull property. 

2.2 Curvature Continuity: Discrete and Single Value 

Definition 5. A parametric curve C(t) = (x(t), y(t), z(t)) that is continuous in 
its domain is called curvature continuous if in its arc length parameterization C 
is C@). Note that usually one does not have the arc length parameterization, so 
one must find the constraints upon C(t) in the given parameterization. These 
amount to the following conditions: Given a point tk in the domain of C, there 
exist scalars pk > 0 and Vk such that 

c'(t:) = PkC'(tk), 

CN(tk+) = ,.i;c"(t,) + v,$'(tk). 
(1) 

Note that, for any fixed value of t, the scalars can vary arbitrarily and still 
preserve curvature continuity. 

2.2.1 Curvature Continuous Piecewise Cubits. It is known that every piecewise 
cubic polynomial can be expressed as a linear combination of the appropriate 
B-spline basis functions. Hence every piecewise cubic that is C@) in the arc length 
parameterization satisfies eqs. (1) in its current parameterization and can be 
written as a combination of B-splines with triple knots at the desired locations. 
Unfortunately, the use of triple knots requires that the user or the system check 
that the conditions really are met, and change in the tangent or curvature 
parameters (CL and v) requires solving a whole new system to find the appropriate 
coefficients. The reality is that the cubic spline space with that knot configuration 
contains the tensioned splines but is too big. Even worse, the coefficients have 
little geometric meaning. If one uses a truncated power basis, or defines a power 
basis over each interval, redefining the parameterization each time, one still faces 
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the same problems, with the additional problem of needing to also constrain and 
find the appropriate coefficients to keep the global curve continuous [ll, 121. 
The tensioned splines, on the other hand, form a subspace. 

We define a framework for comparing the various bases. 

Definition 6. Given any strictly increasing sequence of real values to, ti, . . . , 
&+I, and sequences {pi) and (vi], i = 1, . . . , n, define the space CCS,,,p[tj, tk] of all 
parametric functions f that are C(O) cubic polynomials on [tj, tk], for 0 I j < lz 5 
n + 1, and that also satisfy eqs. (1) at each ti, where j < i < k. 

This space is the space of cubic tensioned splines. Clearly it is a subspace of 
the space of piecewise cubic, parametric, C(O) splines. We will find a local, minimal 
basis, (Sj], for two types of these spaces. Within each type of space, the values in 
the sequences (PjJ and (uj) are arbitrary, and the spacing between the breakpoints 
ti is arbitrary. 

(1) The curvature continuous piecewise cubits with floating end conditions. The 
functions {Sjj will form a basis over CCSt,,Jt3, tn-2]. 

(2) The curvature continuous piecewise cubits with open end conditions. The 
functions {Sj) will form a basis over CCSt,,,,[to, t,+l]. 

We shall show that the basis for 2 is the basis for 1 augmented by the boundary 
condition basis functions. There will be a distinct geometrical relevance here. 
The bases will have the property that, if y(t) = 2 PjSj (t) is a curve, then 

(1) y(t) will be a variation diminishing approximation to the control polygon; 
(2) y(t) will lie in convex hull of the Pj, and in fact a local convex hull property 

similar to that for B-spline curves will prevail; and 

(3) for open end conditions, y(to) = PO and y(tn+l) = P,. 

In the case that floating end conditions are desired, these functions will form 
an easily computed basis for the curvature continuous splines that allow the type 
of design promulgated by Barsky’s ,8-splines. This basis allows arbitrary or 
uniform spacing at will and still remains easily computed, fitting within the same 
function definition. The ability to use tension with the designing polygon and 
have open end conditions is new. Both spaces have as local bases the appropriate 
collection of {Sj). Hence it is possible to write all curvature continuous cubic 
polynomials as combinations of local functions, which are themselves combina- 
tions of B-splines. The power of B-splines may then be brought to bear on 
problems and functions of this type. 

3. CONVENTIONS 

As yet we have not defined exactly what the functions Sj will look like. We first 
define the formalism for identifying the vector spaces of linear combinations 
of them. As we have seen, these functions are dependent on the coefficients 
ph and Vk, k = 1, . . . , n, which occur in eqs. (1) as well as on the values tk, 
k=O,...,n+l. 

Definition 7. Define 5$ = Z,p,V,P = (Sj (t)). The “openness” or “floatingness” 
is determined by the value of p, where p = f for floating and p = o for open. 
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Clearly these blending functions should be completely defined by the knot 
sequence, the specific values of pi and vi, i = 1, . . . , n selected, and the open/ 
floating decision. We also define A$ = 9(z) = (2 PjSj(t): Pj E R3 and Sj E 
41, the space of locally tensioned (LT-)splines. 

The purpose of this framework is to define LT-splines, show that they are 
linearly independent, and then show that they form a basis for CCS. We shall 
first define the underlying space of B-splines that will be used to define the 
functions Sj. 

For a strictly increasing sequence of real values to, tl, . . . , t,+, , define the knot 
sequence 7 = (Ti), where 

I 
to, i = 0, 1, 2, 3, 

7i=. tj, 
I 

i = 3j + 1, 3j + 2, 3j + 3, for j = 1, . . . , n, (2) 
t n+l, i = 3n + 4, 3n + 5, 3n + 6, 3n + 7. 

Denote the cubic B-spline basis functions over this knot sequence as (NJiZ$‘. 
Then N3j(t) is the C”’ piecewise cubic spline with maximum value 1 at tj and 
having support [tj-1, tj+l], j = 1, . . . , n. 

We seek to define piecewise cubic functions Sj (t) E CCS, j = 0, . . . , n - 3, 
each with support [tj, tj+d], which are single polynomials between tj and tj+l, 

between tj+l and tj+2, between tj+z and tj+a, and between tj+3 and tt+*. The support 
constraint in conjunction with the geometric continuity conditions at t/+k, 

k = 0, . . . . 4, impose the following continuity conditions, which we shall later 
verify: 

I 
is C”’ at tj and t,+4, 

Sj(t) is curvature continuous at ti, 

I 
i=j+l,j+2,j+3, (3) 

that is, satisfies eqs. (1). 

The open end conditions impose further constraints. We need to define six 
additional functions, three at each end, which will enforce the end conditions 
that we prescribe. The purpose of the end conditions is to keep the same geometric 
effects that occur with open B-spline curves and to keep the support as minimal 
as possible subject to curvature continuity constraints. We require that 

I 
have ~uppoti on [to, tJ-i]> 

S-i(t) 

I 

be in P2-” at to, i = 3, 2, 1, 
be curvature continuous at tj, j=1,...,4-i. 

This last condition implies containment in C(‘) at tb-i. Functions Sne2, SneI, and 
S, are defined analogously. 

3.1 S’s as Combinations of B-Splines 

First assume that j E (0, 1, . . . , n = 31 and that Sj is defined on [tj, tj+dJ. That is, 
the function is not one of the boundary functions. Since we seek to write Sj as a 
combination of B-splines (see Figure 1) and the support of Sj is [tj, tj+d], we see 
that, for i 5 3j and for i L 3(j + 4), c,,i = 0, SO that 

3(j+3)+2 
Sj(t) = 2 Cj,iNi(t). 

i=3j+l 
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Fig. 1. The B-splines composing the jth S-function. 

This occurs by matching the supports of the various functions. We must further 
match the end continuities to check if all these coefficients will be nonzero. 

THEOREM 8. If Sj is constrained as defined above, then 

3j+9 

Sj(t) = C cj,iNi(t), j = 0, . . . , n - 3. 
i=3j+3 

PROOF. Since Sj is curvature continuous at tj, 

/.LjS:(t,‘) = Si(tj’)* 

Rewriting in terms of basis functions, 

0 = Cj,3j+lNij+l(tf) or 0 = Cj,3j+l 

since the support of Sj is in [tj, tj+d], and since N{j+q(ti+) = 0, if q > 3j + 1, and 
N$j+,(ti+) # 0. 

Next, since 

&y(t;) = sycti',, 

rewriting in terms of basis functions gives 

0 = Cj,3j+l Nij+l(tj+) + Cj,3j+2N$+2tt.T) 

= CjJj+* N$+2( t;). 

The conclusion, 

Cj,3j+Z = 07 

follows again from the facts that the support of Sj is in [tj, tj+d], that N$+,(tf) = 
0, if q > 3j + 2, and that N$+z(ti+) # 0. 

We have shown that cj,sj+l = cj,3j+2 = 0. Analogously, we may show that 
cj,3(j+3)+1 = cj,3(j+3)+2 = 0 from matching continuity at tj+de 0 

Now consider the boundary functions. The support of X3 is [to, tl]. Also, S.+, 
is Cc2’ at tl and discontinuous at to requires that. c-g,i = 0, i > 0. Thus, S-,(t) = 
c-d%(t). 

Since the support of Se2 is [to, te2], the function is G’(O) at to, and S-, is C(‘) 
at t2, c-2,0 = 0, and c-p,i = 0, for i > 3 (for the same reasons that cj,i = 0 for 
i > 3j + 9, in the general case). So S-,(t) = Cd, C-q,iNi(t). 
ACM Transactions on Graphics, Vol. 6, No. 2, April 1987. 
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Since the support of S1 is [to, t3], the function is C’(l) at to, and the function 
is C2’ at t3, c-l,i = 0 for i = 0, 1, and c-l,i = 0 for i > 6. Hence S-,(t) = 
~~~2 C-l,iNi(t). 

The conditions at the upper end of the domain are analogous, and so we have 
shown the following: 

THEOREM 9. If tension splines with open end conditions are needed, then the 
basis functions that show the effects of the boundary are written 

s--3(t) = c-3,on70(tL 

3 

S-,(t) = 1 C-2,iNi(t)t 
i=l 

6 

s-l(t) = C C-l,iNi(t), 
i=2 

3(n-2)+7 

S,-,(t) = ir3(n12)+3 cn-2.iNi(t), 

3tn-11+5 

%-1(t) = i=j,nTl,+3 Cn-l,iNi(t), 

S,(t) = cn,3n+3N3n+3(t), 

where Ni = Ni,, is the r sequence defined above. 

3.2 Normalization Conditions 

The final unknowns develop from the normalization requirement that 

2 Sj(t) = 1, for all t in the domain. (4) 

This condition adds global constraints on finding the coefficients cj,i. However, 
for a fixed j, the coefficients cj,i can be uniquely solved and will be shown to 
depend only on ,.Lk, Vk, tk, k = j, . . . , j + 4. That is, the function Sj is defined 
uniquely by values contained totally within its support. 

Over the interval [ti, ti+l], the normalization condition, eq. (4) will provide the 
final constraint for unique solution. For values of t in the interval [ti, ti+l], the 
only S functions that can be nonzero are the four functions Sk, k = i - 3, . . . , i, 
and with the knot vector 7, the only B-splines that can be nonzero are NP, 
p = 3i, . . . , 3i + 3. Thus 

1 = i: S,(t) 
k=i-3 

= i: ‘y CkpNp(t) 
k=i-3 p=3k+3 

z 
;f3; {kje3 %.o)%(t). 
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But, since over that interval 
3i+3 

1 = c 1 x A$@) 
p=3i 

and the (N,) form a basis, the two equations must have the same coefficients. 
Hence we obtain 

1 = Ci-3,3i + Ci-2,3i + Ci-l,Bi, (5) 

1 = Ci-2,3i+l + Ci-1,3i+lt (6) 
1 = Ci-2,3i+2 + Ci-1,3i+29 (7) 
1 = Ci-2,3(i+l) + Ci-1,3(i+l) + Ci,3(i+l). (8) 

If we consider the normalization conditions over the interval [ti+l, ti+z], we 
arrive at the following equations: 

1 = Ci-2,3(i+l) + Ci-1,3(i+l) + Ci,3(i+l)7 

1 = Ci-l,B(i+l)+l + Ci,3(i+l)+l, (9) 

1 = Ci- 1,3(i+1)+2 + Ci,3(i+l)+Z, (10) 

1 = Ci-1,3(i+2) + Ci,3(i+2) + Ci+1,3(i+2)* (11) 

Over the interval [ti+2, ti+3], the normalization conditions require that 

1 = Ci-1,3(i+2) + Ci,3(i+2) + Ci+1,3(i+2)9 

1 = Ci,3(i+2)+1 + Ci+1,3(i+2)+19 (12) 

1 = Ci,3(i+2l+Z + Ci+1,3(i+2)+29 (13) 
1 = Ci,3(i+3) + Ci+1,3(i+3) + ci+Z,3(i+3)* (14) 

From these equations we see that eq. (8) occurs as the first equation on the 
next interval, and (11) occurs as the first equation over the next interval. 
Equations (9) and (10) are unique to the (i + 1)st interval and will be used to get 
the last degree of freedom resolved. 

These equations are different in the case of the open end conditions only near 
the boundaries and are treated in the discussion of that case. 

4. SOLVING THE SYSTEM AWAY FROM THE BOUNDARIES 

To find the coefficients of Ni defining Sj, for a fixedj, we need only solve for the 
seven coefficients of the Ni. If either the p and I, are not all the same values or if 
the values of tj are not uniformly spaced, Sj and S,, p # j, will have different 
coefficients for their respective B-splines. 

For a fixed j, we can determine six linearly independent conditions on the 
function Sj by considering the two constraints of eqs. (1) at the points tk, 
k=j+l,j+2,j+3.Thatis, 

s;(6) = PkSj(tk), 

y(tk+) = p;s;(t,) + VkSj)(&), 

wherek=j+l,j+2,j+3. 
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These equations become 
3j+9 3j+9 

i=g+3 Cj,iNtf(tk+) = pk 1 cj,iNi(tk), 
i=3j+3 

3j+9 3j+9 3j+9 

irFd+3 Cj,iNYtti) = pL2k c cj,iN/(tk) + uk 
i=3j+3 

i=z+3 cj,iN((tk)9 

wherek=j+l,j+2,j+3. 
In order to set up these six linear equations in the seven unknowns, we must 

symbolically evaluate the appropriate left- and right-sided first and second 
derivatives. 

At tj+l: 

6 
N$+3(G-d = (tj+l _ tj)2 ’ 

At tj+2: 

N$j+5(tj+Z) = - 3 
tj+2 - tj+l ’ 

Nij+6ttj+2) = 3 
t J+2 - tJ+l ’ 

Nij+3(t:+l) = - 
3 

tj+Z - tj+l 
9 

3 
Nij+l(tj++l) = t, _ t, 9 

1+2 1+1 

6 
NG+3@JL) = (tj+2 _ tj+1)2 ’ 

12 
N$+4(t:,1) = - (tj+2 _ tj+1)2 ’ 

6 
N~+dtj++d = (tj+* _ tj+,)2 * 

Nij+6(t:+2) = -t- " t- 9 
1+3 J+2 

6 
NG+dtJ;d = (tj+2 _ tj+l)z 7 

12 
N$+&j+z) = -(tj+2 _ tj+1)2 9 

6 
N$+6(tj+2) = (tj+2 _ tj+,)z 7 

6 
W+dth) = (tj+3 _ tj+2)2 f 

12 
N$+At:,z) = -(tj+3 _ tj+2)2 7 

6 
NG+a(tj++z) = (tj+3 _ tj+2)2. 
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At tj+3: 

3 

- tj+3 ’ 

6 
W+&+3) = (tj+3 _ tj+*)2 9 

12 
W+&.h3) = -(tj+3 _ tj+2)2 > 

6 
G+s(t>d = (tj+3 _ tj+2)2 2 Nj;.+&i++3) = (tj+4 

6 

- tj+3)' ’ 

Evaluating eq. (15) explicitly and regrouping: 

Cj,3j+4 - Cj,3j+3 = Pj+l 

-Cj,3j+G + Cj,3j+l = Pj+2 

-Cj,3j+S = Pj+3 

Equation (16) after regrouping gives more complicated equations: 

(17) 

(18) 

(19) 

cj,3j+5 - 2cj,3jC4 + cj,3j+3 t20) 

Cj,3j+8 - 2Cj,3j+7 + Cj.3jC6 (Cj,3j+G - 2Cj,3j+5 + Cj,3j+*) 

(21) 

(22) 

Clearly some simplification is necessary. We shall let 

xk = b+l - tk ok, 
tk - tk-1 

(23) 

(tk+l - tk12 

9k = 2(tk - tk-1) vk9 
(24) 
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(25) 

Aj,k = cj,k+l - cj,k, (26) 

for all k. 
Substituting eqs. (23), (24), and (26) into (17)-(22) and rearranging within 

equations and order of equations once again gives 

Aj+lcj,3j+3 = Aj,3j+3 
CA:+1 + Vj+l)Cj,2j+3 

= -Aj,3j+3 + Aj-.3j+4 
o= -4,3j+5h+2 + Aj,3,+6 
o= + A/-,3j+&+7. - Aj,3j+s(Af+2 + Vj+J - Ajj,3j+6 +Aj.sj+T 

Cj,3j+9 = -Ajj,3j+7x7+3 + Aj,3j+s(xj2+3 + vj+3) 
Cj,3.+9 = - Aj,3j+&+3. 

We can easily get each Aj,aj+k, k = 3, . . . , 8, in terms of Cj,3j+3 and cj,3j+g. Then, 
using the fact that cj,sj+s - Cj,3j+3 = c2$+3 A,,, and letting 

Lk = Ak+l + Ak+,Ak + Ak+lb + %+dk + &A,, (27) 

we solve the system to get 

cj,3j+3 (28) 

and 

Aj,y+a = $+lCj,3j+3 9 (29) 

Aj+sji+b = Aj+lCj,3j+3 > (30) 

Aj+3 &+I 
#+2 F - - - 

J+2 
Aj+2 ~~~~ cjp3j+3* 

Aji+l Aj+g Lj+l 
Xj”+2 - - $+2 - - 

Aj+2 Aj+2 Lj+2 
cj,3j+3, 

Lj+l 
Aj,3j+7 = -Aj+3 c Cj33j+3, 

J+2 

(31) 

(32) 

Lj+l 
Aj,3j+s = -x7+3 ~j+2 Cj,3j+3- (34) 

Since Cj,3j+p+l = Cj,3j+3 + Cfc3 Aj,sj+i, for &I = 3, . . . , 8, we can easily obtain all the 
coefficients of the B-splines once cj,aj+3 is known. 

This value must be obtained from the normalization equations. Subtracting 
eq. (9) from (10) gives 

Aj-l,a(j-l)+7 = -Aj,y+r- (35) 
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If one replacesj byj - 1 in eq. (33), eqs. (29), (33), and (35) can be used to obtain 

Aj+l Lj+l --- 
Cj-1,3(j-1)+3 - nj+2 Lj Cj,3j+3* 

In an analogous fashion, subtracting eq. (12) from eq. (13) gives 

Aj,3j+l = -Aj+l,a(j+l)+r* 

Using eqs. (29), (33), and (37), but replacingj by j + 1 in eq. (33) gives 

(37) 

Aj+3 Lj+l 
Cj+1,3(j+1)+3 = - ~~~~ L,,, cj23j+3* (38) 

It seems now that S-1 and Sj+i can be written in terms of the coefficients of Sj, 
which indeed they can. Using eq. (11) now gives that final condition to uniquely 
solve the system for normalized functions. To do this, we must first obtain 
cj-1,3(j-l)+9, cj,aj+st and C. I+l,z(j+1)+3 as functions of cj,sj+a. However, we can replace 
j by j - 1 in eq. (28) and use eq. (36): 

- LL hj+2Cj-1,3(j-1)+3 cj-1.3(J-1)+9 - Lj+, 

Since 

cj,3j+6 = Aj,3j+5 + Aj,3j+4 + Aj,3j+3 + Cj,3J+3 
Aj+3 Lj+l 
- - + Aj+l + xj+l + 
Aj+Z Lj+2 

1 Cj,3j+3, 

combining eqs. (11) and (38)-(40) gives 

1 = Cj-1,3(j-1)+9 + Cj,3j+6 + Cj+1,3(j+1)+3 

Cj,3j+3 + + Aj+l + Xj+l + 1 Cj,3j+3 

I h+3 Li+l c, 
Aj+z Lj+2 J'3J+3 

+ Aj+l + &+I + 1 Cj,3j+3. 

Finally, 

cj,3j+3 = 
A,+2 

AT.+.,Aj+, + Aj+zAj+l + Aj+lAj+2 + $+lAjj+2 + Aj+L. 
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Using eqs. (27), (29)-(34), and (41), and the fact that cj,sj+p+l = cj,sj+s + 
zf+ Aj,sj+i, for p = 3, . . . , 8, we easily obtain 

Aj+2 
cj,3j+3 = L,,1 Y 

Cj,3j+4 = (xj+l + 1)?9 
I+1 

Cj,3j+5 = (Aj+l + xj+l + I)? 7 

J+l 

Cj,3j+6 = (Aj+3 + Aj3+3 A7+3)? + Aj+2 F - Aj3+2 F 

J+2 1+2 Jfl 

Aj+3 
= 1 - - - p$+2 +, 

Lj+2 J+l 

Aj+2 
cj,3j+7 = (Aj+3 + A!+3 + “‘:3)~ 3 

(42) 

CjJj+S = (A,“+3 + Aj?+a)F , 
J+2 

Aj+2 
Cj,3j+9 = x7+3 Lj,, 7 

where 

Lk = A/s+, + A/z+,& + Ak+lhk + %+dk + Ak&i+l 

and 

iik = hi + i,k + qk. 

It is straightforward to show that this value for c;,3j+3 will lead to values for all 
the other coefficients that satisfy the normalization requirements. Since they I 
follow from straight substitution, but take some algebraic manipulation and 
space, they are omitted here. 

4.1 The Floating Arbitrary Knot Curvature Continuous Spline 

We wish to use the polygon PO, . . . , Pne3 to define a curve using the basis 
functions S; for which the domain is [ts, t,-21 and with tension pairs (pi, r]J, for 
i=l * . t n. There are a variety of questions that can be asked near the ends, 
but in general they follow the line of “Are Sj (t), j = 0, 1, 2, completely defined?” 
and the corresponding functions for the functions whose support intersect the 
interval [tnd2, t,+1]. Conditions (3), which were used to determine the interior 
functions, apply for the floating end conditions, and hence Theorem 8 is still 
applicable. The remaining questions concern the normalization conditions on 
the functions Sj. 

The Sj, j = 0, . . . , n - 3, are all defined by conditions (28)-(34) and all must 
satisfy normalization conditions (5)-(l4), over intervals [t3, t4], . . . , [tne3, t,-2]. 
Looking at eqs. (9)-(14), letting i = 3, gives the normalization conditions for cz,j, 
in terms of C3,j. Since S3 S t f a is ies the interior function conditions for 
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! 
I 

(4 (b) 

Fig. 2. Examples of varying v parameter. 

(a) (b) 

Fig. 3. The same tensions as Figure 2; different knot vector. 

normalization, so must S,. Analogously, Si, i = 1, and i = 0 also satisfy the same 
conditions. At the opposite end, symmetric conditions hold, and those end 
functions satisfy the same conditions as the interior functions. 

Hence, just evaluating the coefficients for the appropriate values of j in eqs. 
(42) gives the correct coefficients for the end functions in the floating end 
conditions. However, it is unnecessary to use all these functions. Since So is 
needed only on [t3, t,], we need only evaluate c~,~, and since Si is needed on 
[ta, t5], we need only evaluate cl,i, i = 6, . . . , 9. 

In Figures 2 and 3, all the polygons are the same. However, below we list the 
different knot vectors and tension pairs used for the two figures. 

Figure Knot vector p tension vector u tension vector 

2a (0, 2, 3, 5, 6, 8, 9, 11, 12, 15, 16) 10.5, 0.5,0.5, 0.5, 0.5, 0.5,0.5, 0.5) {O, 0, 0, 0, 0, 0, 0, 0) 
2b (0, 2, 3, 5, 6, 8, 9, 11, 12, 15, 16) 11, 1, 1, 1, 1, 1, 1, 1) 12, 2, 2920, 2, 20, 2, 2, 21 
3a (0.5, 1, 5, 6, 8, 9, 11, 14, 14.5, 15) (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5) (0, 0, 0, 0, 0, 0, 0, 0) 
3b {0.5, 1, 5, 6, 8, 9, 11, 14, 14.5, 15) (1, 1, 1, 1, 1, 1, 1, 1) 12, 2, 2, 20, 2, 20,2, 2, 2) 

4.2 Trade-Offs between Uniform Knots and Single Tension Values 

We have seen that the values for the coefficients, the cj,k’s, depend entirely on 
the various values of uk, Xk, Ah, and Lk. These in turn depend on the values for 
the tension parameters at each value of tj, as well as the distance between each 
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of the tj’se Refreshing the reader’s memory, 

Lk. = Ak+, + hk+lhk + hk+lXk + &dk + hkh%+l, 

hk = A; + xk + qk, 

where 

Xk = y - tk pk, 
- tk-1 

(tk+l - tk)’ 
ok = 

tk - tk-1 
vk. 

Hence the values of the various X, v, and A can differ at two different knots in 
one of two ways: Either there is a difference in the tension values at the two 
knots-that is, the pair of values (pk, vk) differs from (pj, vj)-or else the pairs 
of ratios 

tk+l - tk (tk+l - tkj2 

tk - tk-1 ’ tk - tk-, ) and (E, (ti,+Lij)2) 

are different. The effects on the resulting spline are analogous. Note that, even 
if the first ratio in the pairs is 1, the second may not be, and hence the pairs 
themselves may not be equal. 

4.3 Example: A Uniform Floating Tensioned Spline 

For this example it is assumed that tj+l - tj = 1, j = 0, . . . , n, and that there is 
only one distinct value for each of the sequences (PjLjl and (vj]. Under this knot 
configuration, all the B-splines over the domain are just translations of each 
other, and the tension constraint means that there exists one scalar p = /.ljcLj, 
j = 1, . . . . n, and one scalar u = vi, j = 1, . . . , n. These conditions are 
the most common hypothesis for actually using Barsky’s p-splines. For our 
LT-functions, it means that Sj(t) = Sj+l(t + 1). 

For this special case, Xj = X1 = II, for all j, SO set Xj = X = g. Similarly, vj = 
q1 = u, for all j, so set qj = 7 = v. Then applying eqs. (42), 

A=Aj=A’+X+q for all j 

and 

L = Lj = A + A2 + Ax + X2A + X3A. 

This leads to the following coefficients: 

A 1 
Cj,3j+3 = - = 

L l+A+x+x”+x”= C, 

Cj,3j+4 = (1 + X)C, 
Cj,3j+5 = (1 + 2X + X2 + q)C, 
cj,3j+6 = (2X + 2X2 + q)C, 
Cj,3j+7 = (A + 2X2 + X3 + q)C, 
Cj,3j+8 = (X2 + X3)C, 
Cj,3j+3 = X3C. 
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5. OPEN END CONDITIONS 

In this case we shall have domain [to, t ,,+I], over which we will have n + 4 Sj 
basis functions, j = -3, . . . , n. Given a polygon P-3, . . . , PO, . . . , P,,, we wish to 
determine the class of tensioned spline curves, y(t) = C& PiSi(t), which will 
have similar properties to open B-spline curves. That means the curve should 

(1) interpolate Pa and P,,, that is, y(tO) = Pp3 and ~(t~+~) = P,; and 
(2) have a tangent direction tangent to the first and last “legs” of the polygon, 

that is, y’(t~) = a(P-2 - Pvl) and y’(~+~) = /3(Pn - Pnml), where (Y and p 
are some scalars determined by the functions Si. 

We must establish, if possible, the values of the coefficients of the boundary 
Si functions and ensure that they still satisfy and are consistent with the 
normalization conditions that tie all the functions together, and the geometry 
conditions. 

Since 

r(to) = p-3 
= P-3S-3(to) 
= P-3c-3,&I(~d 

= P-3c-3,0, 

c-3,0 = 1. Se3 is then completely determined. Next, consider 

y’(to) = a(P-s - P-3) 

= P-3s;3(to) + P-,S’,(to) 

= P-3N;(to) + P-2 ; c-z,Jv( (to) 
i=l 

= P-,N;(to) + P--2C-2,JN; (to). 

Since IV; (to) = -Ni (to), this means 

= (c-*,1p-2 - P-3)NiOo) 

= (c-ZJP-2 - P-3) &. 
1 0 

The only way that the first and last forms of this equation can be satisfied is if 
c-2,1 = 1. Analogously, c,,sn+3 = 1 and ~,-1,3~+2 = -1. 

We consider the geometric constraints for the boundary functions individually 
and then consider the applications of modified normalization constraints. Clearly, 
this must be done over all intervals that involve the boundary functions to ensure 
consistency. Further, since the normalization conditions also lead to absolute 
determination of the coefficients, if the same values for c-2,1, c-3.0, c,,~~+~, and 
~,-1,3"+2 are arrived at, the consistency check is complete. 

We initially constrain ourselves to the case for which n 2 2; that is, the number 
of internal knots is at least two. We consider the special case of the fewer internal 
knots after this derivation. We first consider the boundary at to. 

We shall develop the normalization conditions on all the intervals containing 
boundary functions-the intervals [to, tl], [tl, t2], and [t2, t3]. Over [tz, t3], 
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Sj, j = -1, . . . , 2, are nonzero based on their contributions from Ns, NT, Ns, 
and N9, so 

1 Z C Sj(t) 
;=-I 

s i2 c-l,inTi(t) + 5 co,iNi(t) + T cl,iNi(t) + z ca,iNi(t) 
i=3 i=6 i=9 

= [C-M + co,6 + Ed% + [co,7 + CLTIN@) 
+ [co,8 + cd%(t) + [co,9 + ~1,s + cl,9 + c~.,slNs(t). 

These equations lead to eqs. (5)-(8) when i = 2 is substituted into those equations. 
Thus the normalization conditions over [t2, t3] are the same as over the interior 
intervals. 

NOW consider [tl, tp]. Sj, j = -2, . . . , 1, are nonzero based on their contributions 
from N3, N4, N,, and N,, so 

s iil c-z,iivi(t) + ii2 c-l,iNi(t) + 5 co,iNi(t) + F cl,iNi(t) 
i=3 i=6 

= k-2,3 + c-1,3 + ~0,3lN3(t) + [C-IA + CO,~IN~(~) 
+ k-w + co,&‘Js(t) + [c-v + co,6 + ~1,dG(~). 

Again, these equations lead to eqs. (5)-(8) w h en i = 1 is substituted into those 
equations, and so the normalization conditions over [tl, t2] are the same as over 
the interior intervals. 

We are left with the interval [to, tl], which has functions Sj, j = -3, . . . , 0, 
nonzero with contributions from No, N1, N,, and N3. 

1 s i Sj(t) 
j=-3 

s C-3,oNo(t) + i c-p,iNi(t) + i c-l,iNi(t) + i co,iNi(t) 
i=l i=2 i=3 

= C-3,oNoU) + c-,,,N,(t) + [c-2,2 + c-1,2lN2@) + [c-2,3 + c-1.3 + c0,3lN3(t). 

Several of the normalization conditions over this end interval are different. They 
are 

1 = c-3,0, (43) 
1 = c-2,1. (44) 

The other two conditions are the same as eqs. (7) and (8) with i = 0. 
Equations (43) and (44) were already known from interpolation considerations, 

but the normalization constraints also ratify the validity of those values and 
interpolation constraints. 

Next we must set up the linear system to solve for the coefficients by looking 
at the geometric constraints. We note that SV3 is already completely determined 
and has no additional geometric constraints. Applying eqs. (1) to S-, at twl and 

ACM Transactions on Graphics, Vol. 6, No. 2, April 1987. 



100 l Elaine Cohen 

tm2 result in the following equations: 

At tz: 

‘+j(- A) = p2(&--k-l,6 - C-1,5), 

c-l.6((t3 _” t2,2) = h&2 _” tl,2)(e,, - 2C-1,5 + C-1,4) 

At tl: 

(C-1.4 - C-‘,3)(&q = Pl(&)~c-l,3 - %2), 

(C-1,5 - 2C-1,4 + C-1,3) = /.L: 

Thus the geometric tension constraints give 

A-1,3 = Al A--1,2, 

A-l,4 - A-1,3 = A:@-,,, - c-1,2) + 71A-1,2, 
-C-1,6 = h2A-1,5, 

C-1,6 = hZ(A-1.5 - A-1.4) + ~~2A-1,5. 

Solving this system gives 

A- --7 1,5 - 

82 
A-l.4 = - 3 C-1,6, 

A2 

A- 
A: A2 Xl 

1,3 = - 
Al 

C-l.2 - z z C-1,6, 

(b)2 A2 1 
A- -- 1,2 - 

Al 
C-1,2 - & (x,)3 C-1,6. 

Since 

C-l,6 = C-l,2 + cj”=2 AeIj, 

X;(h,‘+ xf + XT) 
C-1.6 = 

Ll 
C-1,2, 

we may substitute that in the equations above to determine A-,,j, j = 2, . . . ,5 in 
terms of c-~,~. Then we can solve for celj, j = 3, . . . ,6, in terms of c-l,2 by using 
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celj = c-I,2 + C<L~ A-,,i. One obviously first solves for cdl,3 and then for c-~,~, etc., 
to get 

c-1,3 = 
[ 

AZ xy + XT + 
1 + : - h 

A1 

1 1 Ll I 
c-1,2, 

A: + hq + Al 

c-1,4 = 
[ 

1 _ a2u + Xl) 

Al Ll 1 c-1,2, 

c-l5 = 0: + x9 + AlKG + G) c-12 

Ll 
I 9 

G(Xf + x: + Al) 
C- 1,6 = 

d 
c-1,2. 

We now use the normalization constraints on [t2, t3], in particular eq. (5), and 
the values of co,& cl,6 to get 

c-1,6 = l- CO,6 
- Q6 = 1 - 

=+ 
1 

(45) 

Since all the rest of the coefficients are in terms of c-~,~, we should solve for c-l,2 
next: 

Ll Ll 

'-lr2 = X:(X; + A:: + Al) c-1'6 = X;(h: + A; + A,) 
Al 

= (A: + A:: + A,)' 

Substituting in the appropriate equations gives 

Al + X: A2 

'-ls3 = A; + X:: + A, 
-- 

~51' 

c-l,4 = (A; + A; + A2) $, 
1 

(46) 

(47) 

c-1,5 = (Xl + A;) $. (49) 
1 

We continue toward the boundary by now considering S-,(t). Since it has 
exactly one additional geometric constraint, at tl, we substitute into eqs. (1) to 

get 

3 -- 
t2 - t1 

c-2,3 = pl & (c-i?,3 - c-2,2), 
1 0 

6 6 
(t2 - t1j2 

c-2,3 = k‘: (tl _ toj2 k-2.1 - 2c-2,2 + c-2,3) + vl -?- k-2,3 - c-2,2). 
t1 - to 
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From these equations we get that 

A- --$ 2,l - c-2,3, 
1 

A-2,2 = - y . 

1 

Since ce2,i = 1 and c- ~3 - C-2,1 = A-J -k A-2,2, we can solve to get 

(51) 

To check for consistency, we can find these coefficients by using the normaliza- 
tion constraints over [ti, t2], just as we solved for the coefficients for 25-i. In 
particular, 

c-2,3 = 1 - CO.3 - c-1,3 

=I- $2 - 

0 ( 

Al + AT A2 -- 

1 x; + A: + a, Ll 1 

cl- Al + x: 

XT + xl + Al 

AT 
= xf + xf + Al ’ 

which is the same answer as obtained using the normalization conditions from 
the other direction. Thus the functions are well defined and sum to one. 

Symmetric geometric constraints and normalization conditions at the upper 
end of the knot value domain yield 

Cn,3n+3 . = 1, (52) 
1 

Cn-1,3(n-1)+3 = 1 + .& + *n, (53) 

1 + A, 
GL-1,3(n-1)+4 = 1 + x” + & 7 (54) 

Cn-1,3(n-1)+5 = 1, (55) 
A 

Cn-2,3(n-2)+3 = c, (56) 

- A!!- (1 + L-I), Cn-2,3(n-2)+4 - L,-l (57) 

- 4% (1 + x,-1 + A,-,), Cn-2,3(n-2)+5 - L,-l (58) 

1 
Cn-2,3(n-2)+6 = 1 - - 1 + x, + A, ’ 

Ll 
Cn-2,3(n-2)+7 = 1 + x, + *, . 

(59) 

(60) 
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(a) (b) 

Fig. 4. The use of tension with open polygons with a uniform-open knot sequence; knot vector = 
{O, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4). (a) p = 10.5, 0.51, Y = 10, O}. (b) cc = 14.0, 4.01, v = (6.0, 6.01. 

(a) (b) 

Fig. 5. The use of tension with open polygons with a nonuniform-open knot sequence; knot vector 
= 10, 0, 0, 0, 3, 4, 7,8, 8, 8, 8); (a) P = 10.5, 0.51, v = (0, 01. (b) cc = (4.0, 4.01, v = (6.0, 6.01. 

Hence, in the general case, the coefficients are known. Figures 4 and 5 illustrate 
the use of tension with open polygons. In Figure 4 the knot sequence is uniform 
open; in Figure 5 the sequence is nonuniform open. 

5.1 Open Tensioned Splines with Small Numbers of internal Knots 

In the last section, it was presumed that two or more internal knots are needed 
for these coefficients to hold. Here we determine the effects of having just one 
internal knot and justify the above stated assumption. 

When n = 1 there are only three breakpoints in total, (to, t,, tz), and just five 
blending functions, (Se3, &, S1, So, S1 ). We consider the modified geometric 
constraints on these five equations. S-a’s constraints are unchanged, as are S-2’s. 
Since 0 = n - 1 and 1 = n, So and S1 satisfy the geometric constraints of S,-, 
and S, in the discussion above. Thus these functions are combinations of the 
same B-splines as in the general case. 

S-s(t) = c4,oNo(t), 
S-*(t) = CL1 C-,,iNi(t)y 

SO(t) = Xi)=3 CO,inT(t), 

S,(t) = c1,sN(t). 
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However, Se1 must serve dually as S-, , a lower “boundary” function, and as S,,+ 
an upper “boundary” function. The geometric conditions on it become that 

Using those conditions 

S-1 

i 

has support on [to, tz], 
is C1 at to, 
is C1 at t2, 
satisfies eqs. (1) at t, . 

S-,(t) = i C-l,iNi(t). 
i=!2 

Once again, the normalization conditions on the intervals give, 

over [to, hl, 
1 = S-,(t) + S+?(t) + S-,(t) + S,(t) 

= c-3,oNo(t) + C-2,lNl (t) + [c-2,2 + c-I,z!lN(t) + [c-2,3 + c-1,3 + c0,3lN30); 

over [h, &I, 
1 = S-,(t) + S-,(t) + S,(t) + S,(t) 

= [c-2,3 + c-1,3 + Ccl,3lN3(t) + k--l,4 + Co,m4(t) + c0,5N5(t) + cd%(t). 
Finally, 

1 = c-3,0, 

1 = c-2,1, 

1 = c-2,2 + c-1,2, 

1 = c-2,3 + c-1,3 + cO,3, 

1 = c-1.4 + co,4, 

1 = co,5, 

1 = $6. 

We see that these conditions are identical to the first and last interval 
conditions in the general case, using n = 1. Since the geometric conditions on 
Se3 are unchanged and c-3,0 = 1 is the same as the general case, Sm3 is the same. 
Similarly, the geometric conditions on S-2, So, and S1 are unchanged, and from 
the fact that each has one coefficient unchanged, we can deduce that all the 
coefficients are unchanged and thus that the functions X3, S2, So, and S1 are 
all identically the same. However, the function X1 has a different definition, 
so we cannot use the same reasoning to obtain its coefficients. Since all the 
other functions are known, S1 is completely determined by the normalization 
conditions. 

Using the normalization equations and the known values for the coefficients 
of Se2 and So gives 

c-1,2 = 1 - c-2,2 = 1 - 
A; + A:: 

xf + XT + Al by eq. (50) 
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c-1,4 = 1 - co.4 = 1 - 
1 + x1 

1 + x1 + Al 

Al 
= 1 + x1 + Ai ’ 

A? 1 
c-1,3 = 1 - c-2,3 - co.3 = 1 - 

xf + A:: + Al - 1 + x1 + Al 

AI(~I + A: + AI) 
= (1 + X1 + Al)(x; + h:: + A,) * 

We can check that these functions satisfy the geometric constraints at tl. 
ST1 must satisfy 

A-1.3 = Al A--1,2, 

-c-1,4 - A-l,3 = X%-l,2 - c-1,2) + 771A-~2, 

c-1,4 - c-1,2 = A-1.3 + A-l,,. 

Solving for the other coefficients in terms of c-1,2, 

X1 + A: + A, A: + A: + A1 
C- l,3 = 1 + x1 + Al C-l,29 c-1,4 = 1 + hl + A, c-1,2* 

Using the normalization value arrived at for c-l,2 in the above two equations 
gives the same answer as using just the normalization equations for all the 
coefficients, thus verifying consistency. 

If there are two internal knots, then there are six blending functions that turn 
out to be the “boundary” blending functions of the general case. In that case, 
solving the geometric constraints gives the same A’s as the general case, and the 
normalization constraints are the same. Hence all the coefficients are identical 
to those arrived at in the general case for the boundary functions. 

If there are more than two internal knots, then one starts to arrive at the 
“interior” functions. Since their geometric constraints are all the same as for the 
general case, the normalization constraints are the same, and the boundary 
functions are all the same, these functions are the same, and the problem is 
solved. 

Note that the only special case function for the open conditions occurs when 
there is just a single internal knot. For all other knot configurations, the blending 
functions are standard. 

6. COMPLETENESS OF THE REPRESENTATION 

Remember that 7, = Z&,y,P = (Sj(t)). The “openness” or “floatingness” is 
determined by the value of p, where p = f for floating and p = o for open. Also 
the span (7,) = PP = 9(SP) = (C PjSj(t): Pj E R3 and Sj E 7,). It is clear that 
YP is contained in the space CC&,,, defined with appropriate end conditions. It 
is now appropriate to ask whether 

(1) CCS is also contained in YP. That is, is the span of S, the whole space of 
curvature continuous piecewise cubic polynomials satisfying eqs. (l)? 

(2) 5$ is a basis for this space ? That is, are the functions (Sj(t)) linearly 
independent? 
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(3) These functions are minimal support functions with the required geometric 
properties? 

We investigate these questions in this section. 
Suppose p is any curvature continuous piecewise cubic polynomial over the 

domain of the space. Since the functions (Ni} form a basis for all parametrically 
C’(O) piecewise cubic polynomials, there exists a unique sequence of vectors (Qi) 
such that 

P(t) = C QiNi(t). 
Let us first show the independence of the elements of S,. Over [t3, tnm2] 

3n-6 

0 E C PjSj(t) z C QiNi(t). 
i=9 

Since the Ni’s form a basis, Qi = 0 for all i. Thus, for each k, 

h-l 

Q 3k+l = 0 = i=Fe, Ci,Gk+lPit 

k-l 

Q 3k+2 = 0 = C Ci,Bk+2Pi* 
i=k-2 

Solving for Pk-2 and P&l then becomes a question of solving this homogeneous 
system of two equations in two unknowns. The four values of Ci,m, i = k - 2, 
k - 1, m = 3k + 1, 3k + 2, are not all zero, and since 

‘&-!2,3k+l Aktl + A;+1 + A:+, _ 

Ck-2,3k+2 x2+1 + x2+1 ’ 

Ck-1,3k+l _ iik + 1 

Ck-1,3k+2 Ak + xk + 1 ’ 

the ratios of the coefficients of the respective Pi’s are different. This means that 
one equation cannot be a constant scalar multiple of the other, and the equations 
are linearly independent. The only solution to a homogeneous system of m 
equations in m unknowns of rank m is the trivial solution, that is, Pi = 0, i = k 
- 2, k - 1. Since this follows true for all k, we are done. The open end conditions 
require slightly different ratios near the ends, but the proof is analogous. Hence 
the functions (Sj) are independent over this space. 

Now consider the case when p = f, that is, the space Yf with floating end 
conditions. Since the functions Sf are independent, the space 9’* has dimen- 
sion n - 2, the number of elements in the set 7f. Since 9r is contained in 
CCS{t3, tne2], we need only show that the dimension of CCS[&, tnm2] is n - 2 
to have equality. 

Over [t3, tnd2] there are n - 5 distinct intervals partitioned by the knot set tj, 
j=4,..., n - 3. Suppose we want to construct a curvature continuous piecewise 
cubic function @. Let us count the degrees of freedom. Suppose /3 is completely 
specified on [ti, ti+l]. At t. 1+1 it must be continuous and given fixed values of 
pi+1 and vi+l, it must satisfy eqs. (l), and hence if p is specified by pi = ei,o = 
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ail(t - ti) + aiz(t - ti)’ + ~(t - Q3 over [ti, ti+,], then the equations require 
that 

R+l,O = i G,j(ti+l - ti)j, for continuity 
j=O 

Q+l,l = Pi+1 j% (j + l)G,j+l(k+l - ti)j, 

2&+1,2 = Pi2cl i (j + Z)(j + lJR,j+2(ti+l - ti)’ + vi-r-1 $ (j + l)Rj+l(ti+l - tiJj* 
j=O 

We see that three of the four coefficients for the next interval are completely 
specified, and the last remains completely unconstrained. Hence, counting de- 
grees of freedom starting with i = 3, 

Interval Degrees of freedom 
1t3, t41 4 
Lb, &I 1 

it59 4 1 

[k-3,’ cl-21 1 

Since there are n - 5 intervals, one of which has 4 degrees of freedom, and 
n - 6 of which have just 1 degree of freedom, CCS[t3, tnd2] has dimension 
n - 2, the dimension of 9f. Hence Pr = CCS[t,, .L2]. 

For the open case, since 7, is independent, s”, has dimension n + 4, 
the number of elements of 7,. Once again, if we show that the dimension of 
CCS[to, tn+l] is n + 4, we are done. However, exactly the same arguments as 
above apply, except here there are n + 1 intervals on which to apply them. It fol- 
lows directly that the dimension of CCS[to, t,+l] is n + 4, and 9, = CCS[to, t,+l]. 

Finally we consider the question of minimal local support. Suppose there is a 
function T E CCS that has a smaller support than the elements of S,. Suppose 
first that this function T does not meet the boundary. By the properties of 
polynomials and continuity, T must have support over [tk, tk+m] where m < 4. 
Satisfaction of eqs. (1) requires that T is Cc2) at tk and tk+,,,. Also, this means that 
T(t) = C;b;j$-‘) diNi( If m = 1 or m = 2, it is impossible to fulfill the geometric 
constraints unless .T(t) = 0, the trivial function. If m = 3, there would be just 
four B-splines that would enter into the definition for T. However, from the 
geometric constraints at tktl and tk+2, one would get fOUr homogeneous linear 
equations in four independent unknowns. The only solution again is the trivial 
solution. Thus, if T is not near the boundary, its support must include [tk, tk+4]. 
Now suppose that T has support over [to, t,] where m < 4; that is, T is a boundary 
function. We have S functions with exactly those conditions. We must show that 
T can have no higher continuity class than S,,,-4 at each of its knots. T(t) = 
C?$” diNi( where the upper end is constrained by the geometric continuity 
conditions, leading to Cc2’ continuity at t,. If m = 1, T(t) is just a scaled version 
of Se3 (t), so it is consistent. For m > 1, if do # 0, then T(t) can be decomposed 
as a sum of S--8 and another function in the class, and is again not minimal. 
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Thus, for m > 1, T(t) = C:iy-” dinTi( The continuity constraints on T, 
however, at to now match the constraints for S+, and the support of T contains 
the support of &. Thus, if d1 # 0, then T(t) can be decomposed as a scaled 
version of a sum of S+ and another function in the class, and is again not 
minimal. Hence, if m = 2, T is a scaled version of S-2, or else di = 0. If m = 3, 
the final class then has form T(t) = CL2 diNi( with continuity constraints 
matching the constraints on S.-i. Thus only one degree of freedom remains, the 
normalization factor, and T then becomes a scaled version of S-i. It is impossible 
then to have a function in CCS with support smaller than those defined in S,. 
In that sense the basis is minimal. 

7. CONVEX HULL AND VARIATION DIMINISHING PROPERTIES 

The discussion earlier in the paper has already indicated why the convex hull 
and variation diminishing properties are important and useful to any design 
scheme. Here we show that the curve forms that use the blending functions that 
we have developed, the Sj (t), lie within the convex hull of the coefficient polygon 
and are a variation diminishing approximation to it. 

7.1 Convex Hull Properties 

We make the assumption that Aj = Aj’ + Aj + vj > 0 for all j. Note that Aj must 
be greater than 0 to have geometric first-derivative continuity. Hence we require 
that vj > -(Xj” + Aj). 

THEOREM 10. The curue y(t) = CZf PiSi(t) 1 ies in the convex hull of the points 
{Pi, i = 0, . . . , n - 31. 

This is the result for the floating end conditions. The statement for the open 
end conditions is obvious, and the proof is closely analogous to the following 
proof for the floating end conditions. In the floating case, the domain for the 
curve is t[t3, t,+J. 

PROOF. The curve lies in the convex hull of the points (Pi) if 

(1) each Si 2 0, and 
(2) xi Si(t) e 1. 

We have used condition (2) to arrive at the normalization conditions, and hence 
it is automatically satisfied. In order to have the convex hull property, we must 
show only that ci,j I 0, for all i and j. 

From eqs. (42) it can be seen that, for a given i, ci,si+k > 0, for k = 3, 4, 5, 7, 8, 
9. Hence we must show that ci,si+G > 0. 

By eqs. (ll)-(14), 

Cj-1,3(j-1)+8 + Cj,3j+5 =l 

Cj-1,3(j-1)+9 + Cj,3j+S + Cj+1,3(j+1)+3 = l: 

Cj,3j+7 + C3(j+1)+4 = 1. 
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Now, 

n-3 

y(t) = C PiSi(t) 
i=O 

n-3 3i+S 

= C Pi C S,jNj (t) 
i=O j=3i+3 

3(n-2) fl(j/3)-1 

= jzs N.(t) C SjPi 
ce(j/3)-3 

3(n-2) 

= jzs QN,(t), 

where 

cc(a) = min(k: k L a and k is an integer) 

and 

fl(a) = max{k: k 5 a and k is an integer]. 

Thus 

k-l 
Q3k = C Ci,di, 

i=k-3 

k-l 

Q 3k+l = i=Fw, Ci,Bk+lPi> 

k-l 

Q 3kC2 = i=Fw2 Ci,3k+2Pi, 

where k = 3, . . . , (n - 3), and 
k-3 

Q3(n-2) = .km Ci,B(n-2)Pi. 
i=n-5 

Now, 

and 

Ck-2,3(k-2)+7 = - ;; (hi+1 + x:+1 + Ak+l) > 0, 

Ck-1,3(k-1)+4 - - F (A, + 1) > 0, 
k 

Ck-2,3(k-2)+7 + Ck-1,3(k-I)+4 = 1. 

Hence &.+I is a convex combination of Pk-2 and Pk-I and lies on the line segment 
between them. 
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Similarly, 

iik--l (Xi + A:) > 0, Ck-3,3(k-3)+8 = Lk-l 

Ck--2,3(k-2)+5 = + (hk--l + Xk-, + 1) > 0, 
k 1 

and 

Ck-3,3(k-3)+8 + Ck-2,3(k-2)+5 = 1. 

Thus &k-l)+2 = &Sk-1 is a convex combination of Pk-3 and Pkm2 and lies on the 
line segment between them. 

Finally, since Ck-3,3(k-3)+9 > 0, ck-1,3(k-1)+3 > 0, and ck-3,3(k-3)+9ck-2,3(k-2)+6 + 

ck-1,3(k-I)+3 = 1, we need Only have that ck-2,3(k-2)+6 > 0 to make Q3k a convex 
combination of Pk-3, Pk-2, and P&l. We show positivity of ck-2,3(k-2)+6. 

Ck-3,3(k-3)+9 = htk-3)+3 
A(k-3)+2 
-= 

&k-3)+2 
xl 

%I xk =--- -- 

x; + x; 
Ck-3,3(k-3)+8 - xk + 1 Ck-3,3(k-3)+8 

and 

A(k-I)+2 -- 
Ck--1,W-l)+3 - Lck-l)+l 

1 
= - Ck-1,3(k-1)+4. 

iik + 1 

Thus, using the normalizing equation, 

Ck-2,3(k-2)+6 = 1 - Ck-3,3(k-3)+9 - Ck-1,3(k-1)+3 

Xk + 1 
= - - Ck-3,3(k-3)+9 - Ck-1,3(k-1)+3 

xk + 1 

Ak 1 =-- -- 
Xk + 1 Ck-3,3(k-3)+9 + xk + 1 Ck-1,3(k-1)+3 

= & t1 - Ck-3,3(k-3)+8) + & (1 - Ck-1,3(k--1)+4). 

Since 0 < ck-3,3(k-3)+8, Ck-1,3(k-1)+4 C 1, ck-2,3(&2)+6 is a convex combination of 
numbers between zero and one, and hence must also lie strictly between zero and 
one. Thus each of the coefficients of the Nj’s used to form Sk is nonnegative, and 
by choice of the normalizing equations, C Sj = 1. Hence the curve y(t) lies in the 
convex hull of the vertices (Pi). 0 

COROLLARY 11. For t E [tj, tj+l], y(t) is in the conuex hull of (Pj-3, Pj-2, 
Pi-13 Pjl- 
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This follows from the convex hull property and the localness of the LT-spline 
representation. 

In order to approach the variation diminishing issue, we look at one more 
consequence of Theorem 10. 

COROLLARY 12. QSk is a convex combination of Q3k-l and Q3k+l. 

This result must in fact be true for the curve to be geometrically derivative 
continuous. We show the result using Theorem 10. 

PROOF 

xk 
= - Ck-3,3(k-3)+8Pk-3 

iik + 1 

+ & (1 - Ck-3,3(k-3)+8) + & (1 - Ck--1,3(k--1)+4) Pk-2 
k k 

1 
+hk+l Ck-1,3(k-1)+4 k-l P 

= & (Ck-3,3(k-3)+8Pk-3 + Ck-2,3(k-2)+5Pk-2) 

+ & (Ck--2,3(k--2)+7Pk--2 + Ck--1,3(k--1)+4Pk--1) 

= * Qak-1 + L Qs.k+l- 
k hk + 1 

We see that Q3k must fall on the interior of the line segment joining &-i and 
Q •I 3k+l. 

7.2 Variation Diminishing Property 

It is well known that 

THEOREM 13. If f (t) is a continuous curve, and v(t) is a continuous, piecewise 
linear interpolant to f(t), then v(t) is a variation diminishing approximation to f. 

THEOREM 14. Suppose {B&k(t)] are the B-splines of order k defined over a knot 
vector T, and y(t) = C QiBi,k(t). Consider the piecewise linear curve 8(t), which is 
defined by connecting the points Qi in order. Then y(t) is a variation diminishing 
approximation to 0(t). 

We state without proof the transitivity of variation diminishing relationships: 

THEOREM 15. If v1 is a variation diminishing approximation to f(t), and vz(t) 
is a variation diminishing approximation to VI(t), then vz(t) is a variation dimin- 
ishing approximation to f(t) . 
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Fig. 6. Uniform tensions with negative A. 

Let 71 = (Ti+i + Ti+z + 7i+3)/3, and consider a piecewise linear function Q(t) 
such that Q(~3*+d = QM+, and Q( T$+~) = Q3k+2. If this function is parameterized 
linearly, Q(7$) = Q3k also. The Q function is a continuous, piecewise linear 
interpolant to the P-control polygon of the curve y(t). Hence Q is a variation 
diminishing approximation to the P-control polygon. But, since y(t) is just the 
B-spline curve with control polygon {Qj\, y(t) is a variation diminishing approx- 
imation to the control polygon, which is the function Q(t). Hence, by the 
transitivity result, y(t) is a variation diminishing approximation to the control 
polygon Ipile 

This whole section has been based on the premise that Aj > 0 for all j. (This 
implies that Lj > 0 for all i also.) When that premise is not true, it is possible 
that the curve will not lie in the convex hull, as Figure 6 illustrates. 

8. COMPUTING WITH TENSIONED SPLINES 

As was suggested in the introduction, one of the benefits of using B-splines to 
represent the local tensioned basis is that the computational benefits of B-splines 
may be invoked. In both this section and the next, we discuss techniques for 
using B-splines to help in computation and refinement of tensioned splines for 
rendering and hierarchical modeling. 

Since all piecewise polynomials with knots at the tj’s can be represented as 
combinations of the Ni’s, for all y(t), 

y(t) = i Pi$(t) = 3s+3 
i=r 

j=3F+3, QjNj (07 

where r = 0 and s = n - 3 for the floating ends, t E [t3, tn+], and r = -3, s = n 
for the open end conditions, t E [to, t,+J; and where the Q’s are computed by the 
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following equations: 

Qo = P-3, 

Ql= P-z, 

Qz = P-s--1,2 + P-zc-2.2 

Q3i = Pi-sci-s,si + Pi-zci-z,si + Pi-lci-l,3i, i=l 9 * . * 9 n, 

= Pi-2 + (Pi-3 - Pi-*)X! F + (Pi-1 - Pi-z) 9 3 i=l,...,n, 
rl L 

by the proof of Corollary 12, 

Q3i+l = Pi-2ci-2,3i+l + Pi-1Ci-l,3i+ly i= 1,. . . , n, 

= Pi-2 
[ 
(Ai+, + Xf+l + hf+l) z + Pi-l (Xi + 1) 7 9 *j [ Aiy] i=l,...,n, 

Q3i+2 = Pi-2cim2,3i+2 + Pi-lCi-l,3i+g, i=l , . . . , n - 1, i = 1, . . * 2 TZ - 1, 

= Pi-2 (A:+, + A!+*) 2 
[ I 1 [ + Pi-1 (Ai + Xi + 1) 9 7 1 i=l ) . . * ) n - l, 

I 

Q 3n+2 = pm-l, 

Q - P,. 3n+3 - 

Further, if we define end values for AO, Lo, L,, and A,+,, then we can write all 
conditions, floating and open, in the same way. 

A0 = 1, 

Lo = XT + A:: + Al, 

L, = 1 + A, + An, 

A n+l = 1, 

lo = 0; {i = (1 + Xi) 9 9 i=l 9 * * s 9 n, 
I 

80 = P-3, Q3n+3 = Pm, 

Q3i = Pi-2 + (Pi-3 - Pi-2)X: 2 + (Pi-1 - Pi-z) 9 9 
Ll I 

= & Q3(i-l)+2 + & Q3i+l, i = 1, . . . 9 n, 

Q3i+l = (1 - S;.)Pi-2 + <iPi-1, i=O 3 * * * 7 n, 

Q3i+2 = 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

i=l , * * - , n, (6’9 

(68) 

i=O ,...,n. (69) 
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For floating end conditions, just PO through Pnm3 exist, and just Q9 through 
Qsn+ are computed. 

Thus one can see immediately two approaches for evaluating points on a 
tensioned spline. First, one can evaluate all the c coefficients in order to be able 
to evaluate each tensioned spline basis function and then evaluate a point on the 
curve by evaluating each of the tensioned basis functions at that domain value. 
Second, one can selectively evaluate just those c coefficients necessary to evaluate 
the Q coefficients. The Q coefficients are the control points for the corresponding 
B-spline curve. One can evaluate points on the curve by evaluating this B-spline 
curve. 

An even more efficient strategy is to directly evaluate the Q coefficients from 
the sequences of values of Xi, Ai, and Lie This is the recommended strategy. Since 
there are many algorithms available for evaluating B-splines, this is a relatively 
simple procedure. An even more interesting procedure is not to evaluate points 
on the tensioned spline, but to simply render the corresponding B-spline curve 
using a refinement approach and the Oslo Algorithm for computation. This 
approach allows for adaptive rendering, putting more line segments where the 
curve has more complexity and curvature, and fewer segments where the curve 
has less curvature variation [7]. 

9. INTERACTIVE MODIFICATION OF TENSIONING PARAMETERS 

Consider the impact on all these rendering techniques that occurs from modifying 
an element in the tensioned pair at a single particular knot. In particular, suppose 
that either pJ or VJ is modified. It is known that only SJ-1, SJ-2, and SJ-3 are 
effected by such a change. If we again consider rendering by evaluating the Q’s, 
we need only ask which Q’s change value. Since XJ and AJ change value, so do 
4-1 and LJ. Hence all Q coefficients that depend on those four scalars also 
change. In particular, just Qw+, QuV2, . . . , Q3J+2, and Q3J+3 are modified-just 
seven coefficients for the underlying B-splines. Hence one can implement com- 
putation of real-time modifications by simply evaluating the seven appropriate 
Q’s and then rerendering the modified spans of the B-spline curve. Note that the 
curve is affected only over the interval [tJ-, , tJ+l]. 

Note that the approach that uses the Q coefficients for rendering the tensioned 
splines carries a dual polygon to the P polygon. While this second polygon can 
be computed from the first, while having an interactive design session with the 
tensioned splines, interaction time is faster if only the modified Q coefficients 
must be recomputed for display. It is also faster to keep stored the values of Xi, 
Ai, and Li, i = 0, . . . , n. 

10. KNOT INSERTION WITH TENSIONED SPLINES 

Even with tensioned splines, there are times when it is desirable to add degrees 
of freedom. Here we discuss the meaning of knot insertion for tensioned splines 
and provide a computational solution to finding the new design polygon. 

Given sequences of real values and tension parameters, t = (to, . . . , t,+J, 
P = h, * - *, LL,), and v = (vi, . . . , v,J, consider another collection of vectors, 
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i, i, and v*, each with one additional element such that 

ii = ti, i = 0, . . . , J, 
ii = ti-1) i = J + 2, . . . , n + 2, tJ < iJ+l < tJ+l, I 

I4 = Pi, i= 1, . . . . J, 

kJ,l = 1, 
CLi = Pi-12 i = J + 2, . . . , n + 1, 
-- 
Vi - Vi, i= i, . . . . J, 

1 
vJ+l = 0, 

Ci = Vi-17 i = J + 2, . . . , n -t 1. 

This means that 

ij = 
-I 

f;lr jsJ-1, 
J 19 jrJ+3. 

ij = 
i 

2; jsJ-1, 
J 19 jrJ+3. 

* 
Lj = -I 

Lj, jsJ-2, 
Lj-1, j?J+3. 

Initially, ii~+~ = 1 and ;J+, = 0, and the space CCS,,,[to, t,+J and 
CCS,,Jt3, tne2] are identical to CCS;;;[to, t,+J and CCS;;;[t3, tn.-& respectively. 
However, jiJ+l and ;J+l can be modified, and this changes the tension space of 
the resulting curve. So, just as with design strategies for regular B-splines, one 
first represents the tensioned spline as one with an additional knot and tension 
parameters, but for which the tension parameters keep the required C(‘) conti- 
nuity at the new knot. After the new representation is found, these new tension 
values can also be adjusted, thus locally modifying the curve. 

If one is given x(t) = x PiSi(t) E CC&+,, one wants to find the points Pj such 
that y(t) = C PjSj E CC&i,;. We shall use the computational ideas derived in 
eqs. (68) and (69). 

First, note that the knot sequence for generating the basis functions for the 
newly defined space is 

I 
Tj3 j 5 35 + 3, 

qj=- tJ+l, 

1 

j = 35 + 4, 3J + 5, 3J + 6, 
Tj-3, j > 35 + 6, 

and since tJ < iJ+, < tJ+l, this means that 

,. 
4(t) = 

4 (t), j I 3J- 1, 
Nj-3(t), j > 35 + 6. 

From discrete spline computations, however, it becomes evident that 

4 = j 5 35, 
j L 35 + 6. 

Thus one has to compute only five new values Q3J+k, It = 1, . . . ,5. These values 
are easily determined using B-spline knot insertion algorithms. 
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However, to consider this function as a tensioned spline and to be able to 
interactively manipulate the values of jIiJ+l and GJ+l, we must find the pi’s. Since 
the knot insertion only affects those tensioned basis functions overlapping the 
interval [tJ, tJ+J, one new tensioned basis function is introduced, but it is clear 
that 

$j((t) = 

j<J-4, 
jzJ+2. 

Hence we need to determine only fiJm3, pJ-2, pJ-l, $J, and pJ+,. We shall 
determine these new coefficient values by alternating inwards from the ends. 

For appropriate scalars 5; 

QXJ-a+1 = &~-a+1 = (1 -fJ-,>PJ-4 + fJ-SJ-3 
= (1 - i-J--2PJ-4 + i-J-2PJ-3 
= (1 - sj-2P~--4 + sj-2pJ-3. 

By uniqueness of representation, 
A 

PJ-3 = PJ-3. 

Analogously, 

Q 3(5+2)+1 = 43(5+3)+1 = (1 - fJ+,,~J+l + fJ+3pJ+2 

= (1 - ~J+sPJ+~ + S;+Z~J+I 

= (1 - 3j,M~ + S;+=~'J+I. 

By uniqueness of representation, 

ijJ+l = PJ. 

We have discovered that there are only three coefficients in the new control 
polygon that need to be computed: PJ-2, PJ-1, and PJ. 

Q~(J--~)+I - Q3u-0+2 = 43(J--1)+1 - 43(J-I)+2 
LI A 

= y [riJ-3 - PJ-,] 

I ,. 

Reassociating yields 

= y [PJ-3 - PJw,]. 

= PJ-3 + - LJ-f *J (PJ-2 - PJ-3). 

AJ--lhJ LJ-1 

Analogously, 

Q 3(J+l)+l - Q~(J+I)+z = @3(J+2)+l - Q3(5+2)+2 
A I 

= AJi;ty [PJ - PJ]. 
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(a) (b) 

Fig. 7. Knot insertion. (a) Original polygon and curve. (b) Original and modified polygon. 

Fig. 8. Knot insertion with new ~J+I, :J+I; 
both old and new curves are drawn. 

Reassociating yields 

3(5+1)+1 - Q3v+u+21 

= pJ + ii+2&+3 LJ+l 

AJ+1hJ+2 (PJ-, - PJ). 

The last unknown polygon point is PJ-1, which can be found through two 
different applications of the same principles as above, using the already deter- 
mined values for i)J or p;-,. Except for floating-point error, they should give the 
same result: 

pJ-, = JtJ + (~J+,/(~J+,~J+~))[~~J+~ - &+d 

\pJ-2 + @J/(~J~J+d[&Jf2 - &+I]. 

With the new P-polygon completely determined, the values of iJ+1 and iJ+1 can 
be interactively modified, and the curve redrawn as suggested in the computa- 
tional section. Figures 7 and 8 show knot insertion. 

11. INTERPOLATION WITH TENSIONED SPLINES 

Since much of the original work in the use of tensioning with piecewise polyno- 
mials was done in the framework of interpolation methods, this work would be 
incomplete without treating that case. 
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We have discussed to this point the use of LT-splines as the blending functions 
in a “Bkzier”-type, or “B-spline”-type, curve formulation, noting that the geo- 
metrical aspects served by the LT control polygon are exactly analogous. When 
considering the use of the LT-splines to provide a basis for parametric interpo- 
lation, we must find the coefficients of the LT-spline that will interpolate specific 
points in space. Note that in using the “design” formulation one could change 
either the control polygon or the tension parameters at either one or many points 
to change the curve. In fact, a fixed control polygon led to different curves, one 
for each (p, V) sequence pair. The interpolation case is different. Here specific 
points that the curve must pass through are given, and the (w, V) pair is also 
given. Then one must solve for the LT-polygon and use computational methods 
for rendering. If one wants to retain interpolation at the specified points and yet 
change some values in the tensioning sequences, one must resolve for yet another 
new LT-polygon. Below we discuss how to find the LT-polygon in this context, 
and then present several examples. 

The hypothesis is, given a sequence of increasing parameter values, to < . . . < 
t n+l, tension sequences CL and Y, and n + 4 vector values RA, Riy i = 0, . . . , n + 1, 
R’ n+l, we need to solve for a tensioned spline y(t) such that 

r(h) = Ri, i=O 9 ***, n + 1, 
y’(to) = 85, 

-/(tn+d = &,+I. 

We also want y(t) to satisfy eqs. (1) using the specified tension sequences at the 
given t-sequence values. This formulation of the problem leads to an open end 
condition LT-spline. 

From B-spline properties, if y(t) = C QjNj(t), where the knot sequence 7 is 
defined as in eq. (2), and using eqs. (61)-(69) we see that 

Q3i = Ri = r(ti), i=O,...,n+l, 

which also means that 

P-3 = Ro, 
3 

-P-3 ___ 
3 

t1 - to 
+ P--p - 

t1 - to 
= R,$, 

Pi-$i-3,3(i-3)+9 + pi-2ci-2,3(i-2)+6 + Pi-lCi-l,3(i-l)+3 = Ri, i=l , . . . . n, 

- P,-l 3 + P 3 
t = RX,, 

n+l - t, Iz tn+1 - tn 

p, = &+I. 

The coefficients values c.- I 3,3(i-3)+9, ci-2,3(i-2)+6, and ci-l,3(i-l)+3 are easily deter- 
mined from their defining equations. This is a linear system of (n + 4) equations 
in (n + 4) unknowns. Further, the system is a tridiagonal system such that each 
element in each triple is nonnegative and each row sums to 1. This sparse system 
may quickly be solved for each different pair of tension sequence values, and 
then the LT-polygon and interpolation curve can be rendered using the earlier 
presented computational methods. In Figures 9 and 10, both the LT-polygon and 
the interpolating curve are shown; the data are shown with +‘s. If just some 
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y 4=---Ll (a) (b) 
Fig. 9. (a) Interpolated curve. (b) Adjusted tensions. 

Fig. 10. Comparison of two interpolated 
curves. 

tension pairs are modified, the data will look unchanged, but the LT-polygons 
and resulting curves are different. 

12. TENSIONED SURFACES 

Surfaces that may be straightforwardly computed from the LT-splines are of the 
form 

St% U) = C C Pi,j Si,uCU)Sj,vCU), 
j i 

where the functions Si,, are based on the u breakpoint sequence, and the functions 
Sj,, are based on the v breakpoint sequence. 

Computationally one can turn this equation into an appropriate one with the 
correct B-spline functions in both u and u. Fixing j, determine the B-spline 
coefficients for Ni,“, calling them Qi(j). This is done by using eqs. (61)-(69) and 
the tension pair sequences for the u direction: 

S(U, U) = C C Qi(j)Ni,u(u)Sj,v(u)* 
j i 

Then using Qi(j) in place of Pj, the tension pair sequences for the u direction, 
and the same equations, 

S(U, 0) = C N+(u) C Qi(j)Sj,v(u), 

S(U, u) = Ih C Qi.jN:.(~)Nj,v(u). 
i j 
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Clearly, both open and floating tensioned surfaces are straightforwardly com- 
puted and can be modified by modifying the appropriate Q values. Note that, if 
a single tension pair in the u direction is modified, then a strip of coefficients 
will be modified. 

13. OTHER POSSIBLE BASES 

As has been mentioned, others who have proposed using curvature continuous 
piecewise cubic functions have proposed a variety of other bases. The plus 
function formulation is very convenient for proving many interpolation and 
tangency properties. Computationally, their global characteristics are undesira- 
ble. However, the plus function formulation does carry the continuity constraints 
implicitly. Unfortunately, the coefficients of the plus functions do not seem to 
convey any geometric intuitions on the behavior of the curve. 

Also proposed is the use of the power basis, with reparameterization over every 
interval. Barsky in 1981 [2] wanted to use the extra tensioning freedoms as 
design parameters and hence wanted to have a control polygon of blending 
function coefficients that conveyed geometric intuitions, as occurs with B-splines 
(convex hull property and variation diminishing property). His initial approach 
was analogous to the early approach to B-splines. Uniform floating knot vectors 
were required. Also, all the elements in the p sequence had the same value, and 
all the elements in the v sequence had to have the same value. For these 
conditions, as for B-splines, as we have shown, all the local blending functions 
are just translations of each other. This being the case, he could solve for the one 
function in its power basis formulation over the interval [0, l] and then just 
translate it along. These functions are called /3-splines. Further, solving for this 
function required the solution of a linear system that initially had 16 unknowns. 
He reduced it to 11 unknowns. This formulation does not seem to easily allow 
for open end conditions, nonuniform knot vectors, multivalued p and u sequences, 
or refinement. Rendering is done by function evaluation and cannot be dynami- 
cally determined by the particular curve geometry, unless the curve is later 
converted to piecewise Bezier formulation. 

The general /?-spline formulation proposed by Barsky uses a generalized divided 
difference formulation for the general floating case with multivalued P and v 
sequences (called the B1 and pZ sequences, respectively) and nonuniform knots. 
The divided difference used requires several steps and is not the standard 
definition. If the functions defined in that way are nonnegative, sum to one, and 
are variation diminishing with respect to the coefficient polygon, then they 
represent the same functions as the floating LT-splines, by uniqueness of bases. 
The variation diminishing property was proved for the v-spline design formula- 
tion by Goodman [lo], who also studied other properties of the nonuniform case. 

Although it is common practice to simulate the effects of open end conditions 
by placing multiple vertices at the ends, the two curves generated are not 
equivalent. If the lower end is made a triple vertex, then the first span of the 
curve will be in the convex hull spanned by the first four points, three of which 
are identically the same. This means that the first nondegenerate span is a 
straight line. The effect then of simulating open end conditions by multiple 
vertices is to embed straight line segments into the curve near the ends. Use of 
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the open end condition formulation allows selection of arbitrary curvature near 
the ends, and no straight lines are embedded unless the designer wants to do so. 
Note that the multiple vertex approach leads to bilinear patches at the four 
corners of the tensor product surface and leads to cubic-by-linear (and linear-by- 
cubic) patches along all four sides. 

Recently others have looked at writing /3-splines as piecewise Bezier curves, as 
noted earlier. Finally, one could just try to use the B-spline basis directly. 
Discovering the relationship between the B-spline basis and a control polygon 
with the characteristics of the LT-polygon might be difficult without the 
LT-formalism. 

14. CONCLUSIONS 

This work has provided a unifying conceptual and computational framework 
with which to attack the designing curves and surfaces with tensioned splines. 
Now one can use a control polygon for design with tensioned splines using 
standard open end conditions, and also there is an ability to add knots at arbitrary 
locations to either floating or open-ended tension splines. This last property 
allows the capability of performing hierarchical design with tensioned splines in 
a straightforward manner. The use of B-splines as the underlying formulation, 
instead of the piecewise power basis expansion or a plus function expansion, 
permits one to use the computational and theoretical properties of B-splines. 
They have been used in behalf of deriving properties of tensioned splines and 
their coefficient control polygons, and also to directly access and employ subdi- 
vision techniques for dynamic rendering based on the curve characteristics. This 
same approach can be used to derive curves with geometric continuity of a higher 
degree. 
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