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The emergence of energy harvesting devices creates the potential for batteryless sensing and computing

devices. Such devices operate only intermittently, as energy is available, presenting a number of challenges for

software developers. Programmers face a complex design space requiring reasoning about energy, memory

consistency, and forward progress. This paper introduces Alpaca, a low-overhead programming model for

intermittent computing on energy-harvesting devices. Alpaca programs are composed of a sequence of user-

defined tasks. The Alpaca runtime preserves execution progress at the granularity of a task. The key insight

in Alpaca is the privatization of data shared between tasks. Shared values written in a task are detected using

idempotence analysis and copied into a buffer private to the task. At the end of the task, modified values from

the private buffer are atomically committed to main memory, ensuring that data remain consistent despite

power failures. Alpaca provides a familiar programming interface, a highly efficient runtime model, and places

few restrictions on a target device’s hardware. We implemented a prototype of Alpaca as an extension to C with

an LLVM compiler pass. We evaluated Alpaca, and directly compared to two systems from prior work. Alpaca

eliminates checkpoints, which improves performance up to 15x, and Alpaca avoids static multi-versioning,

which improves memory consumption by up to 5.5x.
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1 INTRODUCTION
The emergence of extremely energy-efficient processor architectures creates the potential for

computing and sensing systems that operate entirely using energy extracted from their environment.

Such energy-harvesting systems can use energy from radio waves [Sample et al. 2008; Zhang et al.

2011a], solar energy [Lee et al. 2012; Zac Manchester 2015], and other environmental sources. An

energy-harvesting system operates only intermittently when energy is available in the environment

and experiences a power failure otherwise. To operate, a device slowly buffers energy into a

storage element (e.g., a capacitor). Once sufficient energy accumulates, the device begins operating
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and quickly consumes the stored energy. Energy depletes more quickly during operation (e.g.

milliseconds) than it accumulates during charging (e.g., seconds). When energy is depleted and the

device powers off, volatile state, e.g. registers and stack memory, is lost, while non-volatile state,

e.g., ferroelectric memory (FRAM), persists. The charge/discharge cycle of an energy-harvesting

device forces software to execute according to the intermittent execution model [Colin and Lucia

2016; Lucia and Ransford 2015; Van Der Woude and Hicks 2016]. An intermittent execution includes

periods of activity perforated by power failures. The key distinction between intermittent execution

and continuously-powered execution is that in the intermittent model a computation may execute

only partially before power fails and must be resumed after the power is restored. Correct and

efficient intermittent execution requires a system to meet a set of correctness requirements (C1-3)

and performance goals (G1-3).

C1: A program must preserve progress despite losing volatile state on power failures.

C2: A program must have a consistent view of its state across volatile and non-volatile memory.

C3: A program must respect high-level atomicity constraints (e.g., sampling related sensors

together).

G1: Applications should place as few restrictions on the processor and memory hardware archi-

tecture as possible.

G2: Applications should be tunable at design time to use the energy storage capacity efficiently.

G3: Applications should minimize runtime overhead, memory footprint, restore overhead, and

re-executed code.

Recent work made progress toward several of these goals. Volatile checkpointing approaches [Bal-

samo et al. 2016, 2015; Mirhoseini et al. 2013; Ransford et al. 2011a,b] ensure progress (C1). Static

multi-versioning [Colin and Lucia 2016] and dynamic versioning [Lucia and Ransford 2015; Van

Der Woude and Hicks 2016] systems selectively create copies of modified data to keep volatile and

non-volatile state consistent (C2). Task-based systems [Colin and Lucia 2016; Lucia and Ransford

2015] allow programmers to express application-level atomicity constraints (C3) and match the

energy cost of a task to the device energy capacity (G2).

However, prior approaches necessarily compromise on some of the goals. Volatile-only check-

pointing does not ensure that volatile and non-volatile data remain consistent (C2). Static and

dynamic versioning systems have high overheads in time [Lucia and Ransford 2015] or space [Colin

and Lucia 2016] (G3). Idempotent compilation [Van Der Woude and Hicks 2016] reduces overhead

(G3), but applies only to devices where all memory is non-volatile, not to off-the-shelf microcon-

trollers with hybrid volatile and non-volatile memory on the market today (G1). The fully-automatic

nature of idempotent compilation deprives the programmer of control over the energy cost of the

resulting tasks (G2) and complicates forcing tasks to respect high-level atomicity constraints (C3).

This paper develops Alpaca
1
, a programming and executionmodel that allows software to execute

intermittently. Like state-of-the-art systems, Alpaca preserves progress despite power failures (C1)

and ensures memory consistency (C2). Alpaca uses a static task model without checkpoints and
explicit restoration of volatile state. Alpaca’s approach to maintaining memory consistency despite

power failures is conceptually similar to transactional memory (TM) [Shavit and Touitou 1995]

with redo-logging. An Alpaca task manipulates privatized copies of data and commits updates to

those data atomically when the task completes. By discarding privatized copies, Alpaca can restart

a task with negligible cost, similarly to Chain [Colin and Lucia 2016], but without the memory

overhead of static multi-versioning (G3). Alpaca dynamically versions non-volatile data, like

DINO [Lucia and Ransford 2015], but without checkpointing volatile state (G3). Alpaca selectively

versions non-volatile memory locations identified by a compiler-based idempotence analysis, like

1
Alpaca: Adaptive Lightweight Programming Abstraction for Consistency and Atomicity
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Ratchet [Van Der Woude and Hicks 2016], but without volatile state checkpoints (G3) and without

being limited to hardware with only non-volatile memory (G1). Alpaca’s design differences, relative

to state-of-the-art systems, translate into performance gains of 4.2x on average (up 15x in some

cases) and a non-volatile memory footprint smaller by 1.3-5.5x. In contrast to a fully automated

compiler-only approach [Van Der Woude and Hicks 2016] and just-in-time dynamic checkpointing

approach [Balsamo et al. 2016, 2015; Mirhoseini et al. 2013; Ransford et al. 2011a,b], Alpaca’s task

model allows the programmer to control where tasks begin and end. With this control, Alpaca

applications can satisfy application-level atomicity requirements (C3) and use tasks sized to device

energy capacity (G2).

Section 2 provides background on intermittent computing. Sections 3 and 4 describe the Alpaca

programming model and its implementation. Section 5 discusses key design decisions. Sections 6

and 7 describe our benchmarks and evaluation. We conclude with a discussion of related (Section 8)

and future (Section 9) work.

2 BACKGROUND ANDMOTIVATION
Energy-harvesting systems operate intermittently, losing power frequently and unexpectedly.

Intermittent operation compromises forward progress and leads to inconsistent device and memory

states, with unintuitive consequences that demand abstraction by new programming models.

2.1 Energy-Harvesting Devices and Intermittent Operation
Energy-harvesting devices operate using energy extracted from their environment, such as solar

power [Lee et al. 2012; Zac Manchester 2015], radio waves (RF) [Sample et al. 2008], or mechanical

interaction [Karagozler et al. 2013; Paradiso and Feldmeier 2001]. As the processor on such a device

executes software to interact with sensors and actuators or communicate via radio, it manipulates

both volatile and non-volatile memory. An energy-harvesting device can operate only intermittently,

when energy is available. Common energy-harvesting platforms [Sample et al. 2008] use a power

system that charges a capacitor slowly to a threshold voltage. At the threshold, the device begins

operating, draining the capacitor’s stored energy much more quickly than it can recharge. The

system eventually depletes the capacitor, and the device turns off and waits to again recharge to

its operating voltage. These power cycles can occur frequently: RF-powered devices may reboot

hundreds of times per second [Sample et al. 2008].

2.2 Device Model and Hardware Assumptions
Our work makes few assumptions about device hardware. A device’s memory system can include an

arbitrary mixture of volatile and non-volatile memory, unlike prior work that requires all memory

to be non-volatile [Ma et al. 2015b; Ransford et al. 2011a; Van Der Woude and Hicks 2016]. Alpaca

works on devices with non-volatile memories that support atomic read and write operations, e.g.

Ferroelectric RAM [TI Inc. 2017b] and Flash. In commercially available FRAM implementations

that rely on destructive reads (i.e., rewrite-on-read), access atomicity is satisfied by means of an

internal capacitor that buffers sufficient energy to complete an in-progress access. Our model allows

arbitrary peripheral (I/O) devices as detailed in Section 5.

2.3 Intermittent Execution and Memory Consistency
Software on an energy-harvesting device operates intermittently: an intermittent execution does

not end when power fails; instead the execution alternates between active periods and inactive

periods. On each power failure, the register file and volatile memory (i.e., stack and globals) are

erased. Variables in non-volatile memory persist. Prior work [Balsamo et al. 2016, 2015; Mirhoseini

et al. 2013; Ransford et al. 2011a,b] checkpoints volatile state periodically and restores a checkpoint

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 96. Publication date: October 2017.
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after a power failure. Other prior work [Colin and Lucia 2016; Lucia and Ransford 2015; Van

Der Woude and Hicks 2016] found that if an application directly manipulates non-volatile memory,

checkpointing only the volatile state is not enough to guarantee consistency. The problem exists

because some memory operations may repeat after restarting from a checkpoint. Non-volatile

state written before a power failure persists after a restart, and if re-executing code reads the

non-volatile state without first over-writing it, the code may operate using inconsistent values.

The resulting program behavior is impossible if the device were powered continuously. Precisely, a

non-volatile value that may be read and later written (i.e., a “write-after-read”, or W-A-R) between
two consecutive checkpoints can become inconsistent [De Kruijf and Sankaralingam 2013; Lucia

and Ransford 2015; Van Der Woude and Hicks 2016].

Figure 1 illustrates how the combination of aW-A-R dependence and volatile-only checkpointing

can leave data inconsistent. The code, excerpted from our implementation of RSA [Rivest et al.

1978], multiplies two numbers in1 and in2 digit by digit, accounting for carries. The NV prefix

denotes non-volatile data. The code preserves per-digit progress using non-volatile variables d,
carry, and prod[], the output digit index, most recent carry value, and output product. In the

execution, carry is updated, power fails, and after restarting, mult() uses the already-updated

value of carry, producing the wrong result (Figure 1b). The code first reads, then writes carry (a

W-A-R), putting it at risk of inconsistency. While the figure shows a problem with carry only, d is

also read, then written, presenting another potential consistency problem.

2.4 Quantifying the Overhead of Existing Approaches

(a) Sample code from RSA.

(b) Intermittent execution.

Fig. 1. RSA code with intermittent execution.

Intermittent programming systems that handle

volatile and non-volatile memory consistency pre-

serve progress across power failure by either tak-

ing checkpoints [Van Der Woude and Hicks 2016]

or bounding tasks [Colin and Lucia 2016; Lucia

and Ransford 2015]. We use an example to ana-

lyze the overhead incurred by systems in each of

these two categories. Figure 2 shows a program that

manipulates two arrays, A and B, of size N. A task

boundary or a checkpoint is denoted uniformly by

TaskBoundaryOrCheckpoint(). Existing systems

can execute this program correctly but not with-

out considerable overhead, which we quantify in

Table 1, and restrictions on the memory layout.

Coarse, volatile-only checkpointing, e.g. Memen-

tos [Ransford et al. 2011b], Idetic [Mirhoseini et al.

2013], copies registers and the stack to non-volatile

memory. The arrays must reside in volatile mem-

ory to ensure they are part of the checkpoint . Each

checkpoint will copy both A and B to non-volatile

memory, and each restore operation will copy both

arrays from non-volatile back to volatile memory.

The copy takes place even if only part of the array

is being manipulated. Most copies of array B are es-
pecially wasteful because B is only written after the

third checkpoint – until then the system wastefully

copies uninitialized values.
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Volatile checkpointing with non-volatile versioning, e.g. DINO [Lucia and Ransford 2015], stat-

ically inserts code to selectively make a copy of, or version non-volatile data that may become

inconsistent before it is overwritten. Guaranteeing consistency for non-volatile data allows storing

A and B in non-volatile memory. Allocating the arrays in non-volatile memory reduces the amount

of copied data to the subset of values that are at risk of inconsistency (e.g., B never needs copying

because it is never read). However, a copy must still be made of all elements of A, because the
updated part of the array is dependent on the inputs to update(), which are not known at compile

time. Versioning all of A is wasteful when only a small array slice is updated, i.e. when (end -
begin) is small.

Fig. 2. An application example with arrays.

Static multi-versioning, e.g. Chain [Colin and

Lucia 2016], has negligible checkpointing or

restoring overhead, at the cost of allocating

multiple non-volatile copies of the data. Chain

allocates memory for a copy of a data struc-

ture (i.e., a “channel”) per each pair of tasks

that share that data structure. In our example,

Chain allocates three channels each with a copy

of array A – one copy for each task boundary

across which A is shared. Since B is not shared,

no channel is allocated to it. In addition to the

memory overhead, on some channel accesses,

Chain incurs runtime overhead to select the

channel that contains the most recently modi-

fied value. Furthermore, Chain application code burdens the programmer with marshaling data

through channels explicitly.

Compiler-automated checkpointing approaches, e.g., Ratchet [Van Der Woude and Hicks 2016],

Mementos [Ransford et al. 2011b], are limited by their static analyses. For example, Ratchet inserts

a checkpoint at every potential idempotence violation, i.e. everyW-A-R dependence, which may

be many more checkpoints than required to preserve progress, given the device’s energy buffer

size. In our example, Ratchet may execute as many as 6N checkpoints (2N for A[i] and 4N for i).
Similarly, Mementos inserts a checkpoint on every loop in ”loop-latch mode”, potentially executing

up to 4N checkpoints, which may be an unnecessarily large number.

Table 1. Overhead of prior approaches.

System # Ckpts. Ckpt. Size NV Mem.
Mementos ~4N

∗ A + B + RF A + B + RF

DINO 4 A + RF A + RF

Chain 4 PC 2A + PC

Ratchet
†

~6N RF RF

RF = all registers; PC = program counter register

∗
Conditional checkpoints.

†
Assumes all memory non-

volatile.

Ratchet absorbs the high cost of frequent

checkpoints by restricting the program to allo-

cate all its state in non-volatile memory. Under
this strict assumption, the only volatile state

that needs to be saved in each checkpoint is the

register file. However, this assumption is lim-

iting in several ways. An access to non-volatile

memory uses more energy and more time com-

pared to access to volatile memory. The differ-

ence in energy ranges from 2-2.5x, in our exper-

iments on TI MSP430FR5969 microcontroller,

to 5x implied by worst-case specifications in

the device datasheet[TI Inc. 2017a]. Latency differs by 5-8x [Takashima et al. 1999] , which increases

the number of cycles for memory access at frequencies above 8MHz on MSP430FR5969. Low-power

microcontrollers suitable for energy-harvesting applications available on the market today, e.g.
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Fig. 3. An application written in Alpaca. The program samples a sensor, calculates an average, and transmits
via radio.

[Sample et al. 2008; TI Inc. 2017b], offer a hybrid memory with volatile and non-volatile regions,

which would be underutilized due to this restriction imposed by the software system.

3 ALPACA PROGRAMMING MODEL
Alpaca is a programming interface that allows programmers to write software that behaves cor-

rectly under an intermittent execution model. Alpaca aims to overcome the limitations of prior

work described in Section 2 and to meet design requirements C1–C3 and design optimization goals

G1–G3 from Section 1. The Alpaca programming model consists of two core concepts, tasks and
privatization. A task is a programming abstraction that is useful for preserving progress, imple-

menting atomicity constraints, and controlling an application’s energy requirements. Privatization

is a language feature that guarantees to the programmer that any volatile or non-volatile memory

accessed by a task remains consistent, regardless of power conditions.

3.1 Task-Based Programming
A task in Alpaca is a user-defined region of code that executes on a consistent snapshot of memory

and produces a consistent set of outputs. An Alpaca task that eventually has sufficient energy

to execute to completion is guaranteed to have behavior (i.e., control-flow and memory reads

and writes) that is equivalent to some continuously-powered execution regardless of arbitrarily-

timed power failures. As Section 4 describes, if power fails during a task’s execution, Alpaca

effectively discards intermediate results and execution starts again from the beginning of the task.

Consequently, a programmer can reason as though tasks are atomic, like transactions in a TM

system. Computations that consume more energy than the hardware can provide between two

consecutive power failures must be split into multiple tasks.

To program in Alpaca, the programmer decomposes application code into tasks, each marked

with the task keyword. Each task explicitly transfers control to another task (or to itself). A

program’s control flow is defined by the execution of tasks in the sequence specified by the transfer

statements. To transfer control from a task to one of its successors, the programmer uses the

transition_to keyword, which takes the name of a task as its argument and immediately jumps

to the beginning of that task. transition_to statements are valid along any control-flow path

within a task, and all paths through a task must end in a transition_to statement or program

termination. The programmer specifies which task should run on when the system powers on for

the first time using entry keyword. Entire list of keywords Alpaca introduces is listed in Section 3.3.

Figure 3 shows a sensing application written using Alpaca. Alpaca tasks are syntactically similar to

Chain tasks [Colin and Lucia 2016], but the memory model for task interactions differs completely.
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Alpaca guarantees to the programmer that a task executes atomically even if power fails during

its execution. When the task completes and the next task begins, changes to memory made by the

completed task are guaranteed to be visible and control never flows backward to the completed

task again, unless an explicit transition_to statement executes. Conversely, if a task does not

complete due to a power failure, control does not advance to any other task, which prevents the

partially updated state from becoming visible. Alpaca allows only a single task sequence and does

not support parallel task execution. This design choice is reasonable because parallel hardware is

extremely rare in intermittent devices due to its relatively high power consumption. Alpaca does

not support concurrent (i.e., interleaved as threads) task sequencing. Concurrency is limited to I/O

routines only, which are addressed in Section 5.3.

Task atomicity guarantees correctness by ensuring that if any of a task execution’s effects become

visible, then all of them are visible, and by ensuring that a completed task’s execution takes effect

only once. Moreover, task-based execution preserves progress, assuming that eventually the system

buffers sufficient energy to complete any task. Alpaca’s atomicity property derives from its memory

model and data privatization mechanism.

3.2 Alpaca Memory Model and Data Privatization
Alpaca’s memory model provides a familiar programming interface allowing tasks to share data via

global variables. At the same time, the memory model design allows an efficient implementation

of the task-atomicity guarantee. The Alpaca memory access model divides data into task-shared
and task-local data. Multiple tasks or multiple different executions of the same task may share

data using task-shared variables. Task-shared variables are named in the global scope and are

allocated in non-volatile memory. Task-shared variables have a typical load/store interface: once

a task wrote a value to a task-shared variable, that same task or another task may later read the

value by referencing the variable name. Task-local variables are scoped only to a single task, must

be initialized by that task, and are allocated in the efficient volatile memory.

As discussed in Section 2.3, directly manipulating non-volatile memory in an intermittent

execution can leave data inconsistent due toW-A-R dependencies. To prevent these inconsistencies,

Alpaca privatizes task-shared variables to a task during compilation. Privatization creates a task-

local copy of a task-shared variable in a privatization buffer. As the task executes, it manipulates the

copies in the privatization buffer. When the task completes it copies data to a commit list that the
task uses to atomically commit all updates buffered in the privatization buffer. Section 4.2 describes

how privatization works and why it is sufficient to keep data consistent. We emphasize, however,

that from the programmer’s perspective, privatization is invisible. To support our privatization

analysis, the programmer need only specify (1) tasks and (2) task-shared variables. With this

information alone, Alpaca provides its consistency guarantee automatically and efficiently.

3.3 Summary of Alpaca Syntax and Semantics
To summarize, Alpaca introduces five new syntactic elements to a C-like base language: task,
transition_to, TS, entry, and init.

• task identifies a function as an Alpaca task.

• transition_to ends one task and redirects control-flow to another task, specified by name or

reference as an argument to transition_to. Recall that tasks cannot be called directly.

• TS identifies a variable as task-shared, which locates the variable in non-volatile memory and

exposes it to Alpaca’sW-A-R dependence and privatization analysis.

• entry is a qualifier on a single task declaration that identifies the entry task, which executes

when the device boots for the first time.
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Table 2. Summary of privatization semantics of Alpaca.

Premise Statement Semantics
x ∈ V ,x < {TS ∩WAR[t]}, r ∈ R r := x r ← M[x]

x ∈ V ,x < {TS ∩WAR[t]}, r ∈ R x := r M[x] ← r

x ∈ V ,x ∈ {TS ∩WAR[t]},B[x] =undef, r ∈ R r := x
B[x] ← M[x];
r ← B[x]

x ∈ V ,x ∈ {TS ∩WAR[t]},B[x] ,undef, r ∈ R r := x r ← B[x]

x ∈ V ,x ∈ {TS ∩WAR[t]}, r ∈ R x := r B[x] ← r

t , t2 ∈ T transition_to t2 from t
∀x ∈WAR[t] : M[x] ← B[x];
pc ← t2

• init is a function qualifier that identifies an init function, which executes first on every reboot,

to reinitialize hardware (e.g., sensors, radios) and interrupt handlers.

Table 2 shows an informal overview of the memory and task transition semantics of the Alpaca

language. Section 4 discusses Alpaca’s implementation in detail. In Table 2, T is a set of tasks, V
is the set of all variables, TS is the set of task-shared variables, R is the set of registers,WAR[t]
is the set of variables involved inW-A-R dependences within a task t , B is a privatization buffer,

B[x] is x ’s entry in the privatization buffer,M is memory,M[x] is x ’s location in memory, pc is the
program counter, and undef is the value of an uninitialized variable. In task t ∈ T , a read or write

to x , a task-shared variable (x ∈ TS) involved in aW-A-R dependence (x ∈WAR[t]), is redirected
to the privatization buffer (row 3, 4, 5); otherwise the read or write has typical load/store semantics

(row 1, 2). Task t ∈ T privatizes a task-shared, W-A-R variable x ∈ (TS ∩WAR[t]) to B[x] before or
at the first read or write to x in t (row 3, 5) and all accesses to x in t are redirected to B[x] (row 3,

4, 5). On completing, t atomically commits each variable x in the privatization buffer B[x] to its

original locationM[x] and jump to t2(row 6).

These privatization semantics reflect our Alpaca prototype’s redo-logging approach, in which

tasks manipulate privatized copies and commit them at the end of a task. We observe, however, that

Alpaca is not fundamentally tied to redo-logging, and could instead use an undo-logging approach
that buffers variables’ original values, directly manipulates memory, and restores variables’ values

after a failure. We leave an undo-logging formulation of Alpaca as future work.

4 ALPACA IMPLEMENTATION
Our prototype implements the programming model defined in Section 3 using a compiler analysis

and a runtime library. The key requirements for an Alpaca implementation are (1) preserving

progress at the granularity of tasks, (2) ensuring that task-shared and task-local data are consistent,

and (3) doing so efficiently.

To meet these requirements, our Alpaca implementation uses two techniques. The first technique

is data privatization, which ensures that data remain consistent by transparently copying selected

values into temporary buffers and redirecting the task’s accesses to the buffer. The second technique

is two-phase commit, which both preserves progress and guarantees that a completed task’s updates

to its privatized values are all rendered consistently in memory. Alpaca’s use of task-based execution
is the foundation of its efficient support for privatization and two-phase commit.

4.1 Task-Based Execution
Alpaca tasks are void functions with arbitrary code identified with the task keyword. Alpaca

maintains a global cur_task pointer in non-volatile memory that records the address of the task
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that began executing at the last successful task transition. Alpaca also maintains a global non-

volatile 16-bit counter, cur_version, which is initially 1, is incremented on each reboot or task

transition, and is reset to 1 when it reaches its maximum value. The counter is used to privatize

arrays efficiently (Section 4.4). To transition from one task to the next at a transition_to statement,

Alpaca assigns cur_task to the address of the next task and jumps to the start of that task. When

task execution resumes after a power failure, control transfers to the start of cur_task.

4.2 Privatization
Alpaca privatizes a subset of task-shared variables in a task to keep them consistent in case power

fails as the task executes. We describe privatization of scalar (i.e., non-array) data first. Privatization

of arrays is described later in Section 4.4. To privatize a variable, Alpaca statically allocates a

privatization buffer and copies the variable that may become inconsistent to its local privatization

buffer. Alpaca re-writes subsequent memory access instructions to refer to the privatization buffer

instead of the original memory location of the variable. At the end of the task, right before the

transition to the following task, Alpaca commits any changes made to the privatized copy to

its original location, using the two-phase commit procedure (Section 4.3). Privatization ensures

that tasks execute idempotently because updates to memory are committed only after a task has

completed. Idempotent execution ensures that a task’s effects are atomic, which is one of Alpaca’s

main language-level guarantees.

The correctness and efficiency of Alpaca’s privatization analysis rely on several key properties of

Alpaca’s design. For efficiency, Alpaca does not privatize all task-shared variables. Instead, Alpaca

detects W-A-R dependencies during compilation and privatizes only the variables involved in

the dependencies (Section 2). To identify affected variables, Alpaca performs an inter-procedural,

backward traversal of each task’s control-flow graph, tracking accesses to each task-shared variable

along each path. If a write and then a read to the same task-shared variable are encountered along

any path in the backward traversal, Alpaca privatizes that task-shared variable.

Alpaca’s compiler generates the instructions for privatizing a variable. The compiler first allocates

a privatization buffer in non-volatile memory for each variable that needs to be privatized. At the be-

ginning of the task, the compiler inserts code that copies the variable value from its original location

to its privatization buffer. Then, the compiler replaces each reference to the original value inside the

task with a reference to the privatization buffer. Before each transition_to statement, the com-

piler invokes the first phase of the two-phase commit operation, pre_commit (Section 4.3), passing

as arguments the addresses of the original variable and its privatization buffer along with its size.

Fig. 4. Privatization and commit. transition_to calls
commit.

Figure 4 shows a sketch of Alpaca’s instru-

mentation for an example task code. Compiler-

inserted privatization code is in green and code

deleted by the compiler is struck-through. As

in Line 1, the user defines task-shared variable

by annotating it as TS. TS variables are saved in
non-volatile memory. The code in this example

requires only c to be privatized because it is the
only W-A-R variable; code accessing all other

data requires no instrumentation. Variable c
is privatized on Line 3, and the access to it on

Line 6 is re-written to refer to the private copy

c_priv (Line 7). After privatization, only the commit operation can modify the location c. Selective
instrumentation avoids runtime overhead and is the key to Alpaca’s high performance.
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Our implementation of the compiler analysis privatizes variables in functions called frommultiple

tasks, assuming the variable requires privatization in some of its callers. During analysis of a task

that calls a function that accesses such a variable, the compiler rewrites the function’s body to refer

to the variable’s privatized copy. Consequently, the variable will remain privatized for any other

caller of the same function, even if that caller does not involve the variable in a W-A-R dependency.

This “contagious” privatization is safe, conservative, and could be eliminated by replicating the

function body, creating a version for each combination of privatized and non-privatized variables

that the function refers to. We allow contagious privatization in favor of the code bloat from

replication. In practice, redundant privatization is rare in the benchmarks that we studied.

Algorithms 1—3 depict Alpaca’s privatization analysis. The analysis identifies variables potentially

involved inW-A-R dependences, adds code to privatize those variables, and adds code to atomically

commit privatized copies when a task completes. The code at the end of Algorithm 1 identifies the

largest possible number of variables that may need to be committed by a single task and statically

allocates a commit list that accommodates them all. Section 4.3 explains in detail how Alpaca uses

its commit_list to commit privatized data.

Algorithm 1 Pseudo-code for Alpaca Compiler.

1: function AlpacaCompiler(ModuleM)

2: for t ∈ M .tasks do
3: warSet ← AlpacaFindWAR(t ) ▷ FindW-A-R variables

4: AlpacaTransform(t ,warSet ) ▷ Modify code forW-A-R variables

5: maxCommitListSize ←Max(maxCommitListSize ,warSet .size)

6: SetCommitListSize(maxCommitListSize) ▷ Determine commit_list size

Algorithm 2 Function Finding W-A-R Variables for Each Tasks.

1: function AlpacaFindWAR(Task t )
2: warSet ← ∅
3: for i ∈ t .instructions do
4: for v ∈ i .possibleWriteAddress do ▷ Find writes

5: if v ∈ taskSharedVariables then
6: i .writeSet ← i .writeSet ∪v
7: for v ∈ i .possibleReadAddress do ▷ Find reads

8: if v ∈ taskSharedVariables then
9: i .readSet ← i .readSet ∪v
10: for i ∈ t .instructions do ▷ DetectW-A-R
11: for j ∈ i .possiblePreviousInst do
12: for v ∈ i .writeSet ∩ j .readSet do
13: warSet ← warSet ∪v
14: if i .isFunctionCall then ▷ For function call (See Section 4.2)

15: f ← i .дetCalledFunction
16: for v ∈ f .usedTaskSharedVariables do
17: warSet ← warSet ∪v
18: returnwarSet
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Algorithm 3 Function Inserting Privatization and Pre-commit Code When Needed.

1: function AlpacaTransform(Task t , SetwarSet )
2: for v ∈ warSet do
3: if v .isPrivatizationBu f f erAbsent then ▷ Create privatization buffer

4: CreateBuffer(v)

5: InsertPrivatizationCode(t , v) ▷ Insert privatization code

6: for i ∈ t .instructions do
7: if v ∈ i .usedOperands then ▷ Redirect accesses
8: RedirectUsageToBuffer(i , v)

9: if i .isTransitionTo then ▷ Insert pre-commit code
10: InsertPrecommitBefore(i , v)

4.3 Committing Privatized Data
At the end of a task’s execution (i.e., upon reaching a transition_to statement) Alpaca performs a

two-phase commit of updates made to privatized data by that task. The commit operation atomically

applies all updates to variables’ original locations. The operation is divided into two phases: pre-
commit and commit. The pre-commit operation is implemented by the pre_commit function in

Alpaca runtime library. This function takes the variable information as an argument and records it

in an entry in the commit_list table, depicted in Figure 5a. The commit_list is a table with exactly
one entry for each privatized variable. A variable’s commit_list entry contains the variable’s

original address, privatization buffer’s address, and size. Calls to pre_commit are inserted by the

compiler at transition_to statements, as was described in Section 4.2.

The commit_list generated in the first phase records updates to privatized data that must be

committed in the second phase. Alpaca stores an end-index that always points to the entry after the

last valid entry in the commit_list. The commit_listmust be stored in non-volatile memory since

its contents must persist if a failure happens during the second phase. As seen in Algorithm 1, our

implementation statically allocates a region of memory large enough to fit the maximum number

of entries that may be required by any task in the program (i.e., the maximum number of calls to

pre_commit at any transition_to statement in any task). After the last pre_commit call before
each transition_to, the compiler inserts an instruction to set a non-volatile commit_ready bit
that marks the task ready for the second phase, as shown in Figure 5b. Alpaca runtime checks

commit_ready on boot. If commit_ready is unset, the previously executing task was either in

progress or had completed only a partial pre-commit, so that task is re-executed from its start,

discarding the partial execution or the partial pre-commit. Otherwise, the second phase is invoked.

The second phase, commit, is implemented in the Alpaca runtime library by a void function,

commit. The function iterates over entries in the commit_list from the first up to end-index. For
each entry, the variable value is copied from its privatization buffer to its original memory location.

The commit operation succeeds when it copies all entries in the commit_list and sets end-index
to zero. After a successful commit, the runtime clears the commit_ready bit and proceeds to the

following task (Figure 5c). If power fails during commit, commit_ready remains set. Since the

runtime checks the bit on boot, it will retry the commit operation until it completes successfully.

If power fails after commit but before transition_to completes the transition to the next task,

then commit will re-execute on next boot and will trivially complete since end-index is zero. The
transition_to that failed to complete will then run again.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 96. Publication date: October 2017.



96:12 Kiwan Maeng, Alexei Colin, and Brandon Lucia

(a) Executing task 1 (b) Committing task 1 (c) Executing task 2

Fig. 5. Making progress in Alpaca. Each panel shows the execution at left and the system state at right. The
current phase is shaded. We omit privatization instructions for clarity. The system state shows that a in
Task 1 and b in Task 2 are privatized into privatization buffers marked pb. Initially, a=1 and b=0. (a) Task
1 writes to b directly and writes to a’s privatization buffer because a is involved in a W-A-R dependence.
Updates to privatized variables are written to the commit_list during the pre-commit phase of the task. A
power failure during execution or pre_commit restarts at the beginning of the task. (b) Task 1 proceeds to the
commit phases where Task 1 applies its update to a. A power failure during commit restarts in commit. (c) The
transition_to operation atomically begins Task 2, which privatizes b because Task 2 reads then writes it.

4.4 Privatizing and Committing Arrays
Alpaca privatizes and commits array variables differently from scalar variables because naively

privatizing an entire array (i.e., copying the entire array to a privatization buffer as a task starts) is

unnecessary if the task accesses only part of the array. Alpaca statically pre-allocates a privatization

buffer for each array that may be read then written (i.e., may be involved in a W-A-R dependence).

The array’s privatization buffer contains the same number of entries as the original array. Privati-

zation takes place at the granularity of an array element. In the example in Figure 6, to privatize

array C, the compiler allocates C_priv buffer (Line 2) and inserts the instrumentation code that is

highlighted in green (and explained below).

Like a scalar variable, privatizing an array element involves initializing a copy in the privatization

buffer (Line 11), redirecting accesses to the buffer (Lines 12-13), and adding the variable to the

commit_list via a call to pre_commit (Line 16). Alpaca uses the compiler to redirect array element

accesses to their privatization buffers the same as for scalars, but initializing privatization buffers

and pre-commit for arrays are different. Alpaca initializes an array element’s privatization buffer

the first time an execution accesses the element: either explicit instrumentation inserted by Alpaca

initializes the buffer before the element’s first read or the element’s first write directly writes to the

privatization buffer. Alpaca does pre-commit for an array element only once after the first write to

the element.

One key design choice in Alpaca was to decide when instrumentation on a read operation should

initialize an array element’s privatization buffer. Read instrumentation should not initialize the

privatization buffer after a previous write in the task because the initialization would overwrite

the written value. Instead, the read instrumentation can initialize the privatization buffer either

once before the first read that happens before the first write or (possibly redundantly) at every read
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before the first write. We chose the latter option to avoid the overhead of dynamically tracking the

first read, which incurs a high runtime overhead.

Fig. 6. Privatization and commit for arrays.

We avoid invoking pre-commit unconditionally

after every write because multiple writes to the

same element would append duplicate entries to the

commit_list, which is inefficient and precludes

a statically sized commit_list. Furthermore, pre-

commits cannot be batched and executed before a

task transition (like for scalar variables), because

the set of elements dynamically accessed is un-

known statically. Batching would require dynam-

ically tracking the set of modified elements in a

data structure that supports efficient insertion and

traversal which is complex. Executing pre-commit

after the first write obviates the complexity of batch-

ing and only requires Alpaca to identify the first

write to an array element.

Correctly handling array privatization and pre-

commit requires some instrumentation to execute

conditionally, only on an element’s first write. To

identify an element’s first write, Alpaca must track

the set U of array elements that have been written

since the beginning of the task in the current exe-

cution attempt. A write of an element is first if and

only if the element is not in this setU at the time of

the access. The data structure that representsU needs only to provide efficient insertion and lookup,

which our version-backed bitmask data structure does. A version-backed bitmask is a bitmask that

supports a constant-time clear operation using a versioning mechanism described later in this

section. We representU by setting logical bits (i.e., “entries”) in a version-backed bitmask that is

statically allocated for each array being privatized. In Figure 6, the version-backed bitmask for C is

C_vbm allocated on Line 3.

Each version-backed bitmask entry is a 16-bit integer version. To set an entry (vbm_set), Alpaca
copies the global cur_version counter into the entry. To test an entry (vbm_test), Alpaca compares

the version stored in that entry to the global cur_version counter; equality indicates the entry

is set, inequality indicates unset. Consequently, when the global cur_version counter changes,
all version-backed bitmasks are implicitly cleared. When the cur_version counter overflows and

rolls over, the runtime explicitly resets all entries in all version-backed bitmasks to zero.

To track the set U of array elements updated in the current task execution attempt, the Alpaca

compiler instruments reads and writes to array elements with code to set and test entries in the

array’s version-backed bitmask. When reading from an array element that has not been modified

yet, i.e. its entry in U is unset (Line 10), then the runtime initializes the element copy in the

privatization array (Line 11). When writing to an array element for the first time, after checking

that its entry in U is not set (Line 14), it inserts the element into U by setting its entry (Line 15),

and appends the written array element to the commit_list by calling pre_commit (Line 16). The

setU is cleared at the next task transition or reboot, since the cur_version counter increments on

each task transition and reboot (Section 4.1), which implicitly clears the version-backed bitmask.
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5 ALPACA DISCUSSION
Alpaca’s programming model guarantees that tasks will execute atomically. Our Alpaca imple-

mentation efficiently provides this atomicity guarantee by selectively privatizing data. Besides

programmability, efficiency, and consistency, Alpaca supports I/O operations and allows modular

re-use of code. This section discusses these aspects of Alpaca and characterizes its main limitations.

5.1 Low Overhead
A key contribution of this work is that our Alpaca implementation has low overhead compared

to existing systems to which we can directly compare (we quantify the difference in Section 7).

Alpaca’s overhead is low, because privatization is simple and because Alpaca privatizes variables

selectively. Privatization has a low cost, primarily because it rarely occurs: most variables are not

privatized because they are either local to a task or shared but not involved in W-A-R dependences.

Furthermore, Alpaca’s task-based execution avoids all checkpointing cost. Alpaca needs to retain

only the information about which task was last executing. Alpaca does not incur the cost of tens of

writes to non-volatile memory to save registers, like Ratchet [Van Der Woude and Hicks 2016], nor

the even higher additional cost to save the stack, like DINO [Lucia and Ransford 2015]. By reducing

copying and privatizing only when necessary, Alpaca saves time and energy.

5.2 Memory Consistency
Alpaca preserves memory consistency despite arbitrarily-timed power failures by making each

attempt to execute a task idempotent. Task idempotence guarantees that if any attempt has sufficient

energy to complete, the effects of a single, atomic execution of the task are made visible in memory.

The memory state immediately after a task transition is equivalent to the corresponding state

in execution on continuous power. Alpaca guarantees idempotence by privatizing non-volatile

variables involved in W-A-R dependences and requiring volatile state to be task-local.

5.2.1 Non-volatile Memory Consistency. Taking a cue from prior work [De Kruijf and Sankar-

alingam 2013; de Kruijf et al. 2012; Lucia and Ransford 2015; Van DerWoude and Hicks 2016], Alpaca

privatizes only non-volatile variables involved inW-A-R dependencies. We show that privatizing

only this subset is sufficient by proving that only memory accesses related byW-A-R can cause a

value written by the task before a power failure to be read by the same task after the power failure.

Consider one task and assume that control flows along the same path each time the task re-

executes, which is true of all code that does not perform I/O operations (we discuss I/O later

in this section). Consider one memory location and let R j
i andW j

i respectively denote the ith

memory read and write to that location during the jth attempt to execute the task. If power fails

in attempt j after k accesses and the task re-executes, then the sequence of memory accesses is:

X j
0
, . . .W j

p . . .X
j
k − [power failure] − X

j+1
0
. . .R j+1

q . . ., where X stands for either read or write and

our hypothesis postulates a writeW j
p before the power failure and a read R j+1

q that returns the same

value. The hypothesis implies that q < p, otherwise,W j+1
p would overwrite the value written by

W j
p before R j+1

q reads it. The order q < p implies that R j
q precedesW j

p in the task code, which is the

definition of a W-A-R dependence.

5.2.2 Volatile Memory Consistency. In Alpaca, the only volatile data are task-local variables.

Since all local variables must be initialized before use in a task, local reads after a power failure

will never access uninitialized memory. Since volatile memory clears on reboot, local reads will

never observe a value written before the power failure.
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Like prior work [Van Der Woude and Hicks 2016], Alpaca conservatively assumes that compiler

optimizations cannot introduce memory read or write instructions and Alpaca safely interacts with

any compiler optimization that adheres to this assumption.

5.3 I/O

Fig. 7. I/O in Alpaca.

Code that interacts with sensors and actuators poses three

difficulties: (1) some I/O-related actions must execute atom-

ically, (2) external inputs introduce non-determinism, and

(3) actuation or output cannot be undone. Alpaca allows the

programmer to express (1) and (2) through careful coding

patterns that we describe below. Alpaca targets applications

that can tolerate repeated outputs, where (3) is acceptable.

Some applications include I/O-related code that should

execute atomically, such as the code in Figure 7. The

code reads temperature and pressure sensors and sets the

heaterOn or coolerOn flag, based on the sensed data. The

temperature and pressure values should be consistent. Al-

paca lets the programmer ensure that the values will be

consistent by putting the actions in the same task. In con-

trast, a system with dynamic [Balsamo et al. 2015; Ransford

et al. 2011b] or compiler-inserted [Van Der Woude and

Hicks 2016] task boundaries gives the programmer no way

to ensure that the input operations execute atomically.

The code in the example asserts that heaterOn and coolerOn are never both true. The code
misbehaves if a power failure occurs after assigning one of the flags (e.g., heaterOn). If the sen-
sor’s result is different in the following execution attempt, the code could set the other flag (e.g.,

coolerOn), violating the assertion. The core issue is that non-volatile memory updates are con-

ditionally dependent on sensed inputs. If control-flow depends on the input, then conditional
non-volatile memory updates can violate task idempotence. We note that this problem also afflicts

prior efforts [Colin and Lucia 2016; Lucia and Ransford 2015; Van Der Woude and Hicks 2016]. A

programmer can preserve idempotence by using intermittence-safe I/O programming patterns.

Concretely, one programming pattern that avoids the problem in this example is to use a dedicated

task to read and store both temp and pres, and to use another task to do the conditional updates to

heaterOn and coolerOn. Alternatively, a programmer could avoid the problem by ensuring that

both execution paths access the same set of memory locations: inserting coolerOn = false; on
the if branch and inserting heaterOn = false; on else branch.

5.4 Forward Progress
Guaranteeing forward progress in an intermittent, energy-harvesting system is a difficult problem

that is orthogonal to the problems solved by Alpaca. The key challenge is that a system buffers

a fixed amount of energy before it begins operating and if the energy required by a task exceeds

the buffered amount, the task will never complete executing, preventing progress. A task’s energy

cost can be input dependent, adding further complexity. This progress issue is not unique to

Alpaca, afflicting prior task-based systems as well [Colin and Lucia 2016; Lucia and Ransford 2015;

Mirhoseini et al. 2013; Ransford et al. 2011b; Van Der Woude and Hicks 2016].

Prior work has used ad hoc techniques that attempt to ensure progress, to the detriment of other

system characteristics. Ratchet [Van Der Woude and Hicks 2016] inserts a dynamic checkpoint

between static checkpoints after repeatedly failing to make progress. Other systems [Balsamo et al.
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Fig. 8. Task modularity. Task add is parametrized and reused by task fibonacci and sum. Task-shared
variables are used to pass arguments (input), return value (retval), and the successor task (successor).

2016, 2015; Ransford et al. 2011a] dynamically checkpoint in response to an interrupt when energy

is low. Dynamic checkpointing requires capturing enough state to restart from an arbitrary point,

which can take a prohibitive amount of time [Colin and Lucia 2016], especially with hybrid volatile

and non-volatile memory. Dynamic checkpointing may also violate I/O atomicity (see Section 5.3).

We opted not to include a dynamic checkpointing fall-back in Alpaca. Instead the programmer

must ensure for sizing tasks such that tasks in their program do not require more energy than

their target device can buffer. As long as this condition is satisfied, Alpaca always avoids atomicity

violations and guarantees correctness. None of the tasks in our test programs have a forward

progress problem. It would be straightforward to incorporate a dynamic checkpointing fall-back

into our Alpaca prototype.

5.5 Reusability of Tasks
In a task-based programming model for intermittent execution, code re-use via functions is insuffi-

cient, because functionality that requires multiple tasks cannot be encapsulated in a function. Any

function called from a task must fit within the task’s energy budget, which is constrained by the

energy capacity of the device. Alpaca supports modular re-use of task groups that contain common

functionality. Multiple predecessor tasks in the program can invoke the same task group by passing

a distinct successor task identifier and input data through task-shared variables to an entry task

in the group. The task that runs last in the group transfers control to the passed successor task.

Alpaca’s simple approach to modularity is a contrast to Chain’s approach, which requires complex

mechanisms for indirect access to channels.

Figure 8 shows an example of how different tasks can reuse code encapsulated in an Alpaca task.

In the example, the add task is parametrized and invoked from the fibonacci task and from the

sum task. The re-used task accepts two inputs via a task-shared variable and writes their sum into

another task-shared variable. A more sophisticated implementation than ours could eliminate the

need to explicitly specify task-shared variables for the input arguments and the return value and

support syntax similar to traditional function calls.
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5.6 Prototype Limitations
Our Alpaca prototype supports a useful subset of the C language, handling most uses of pointers

and complex data structures. Our prototype has a few implementation-specific limitations, which

we emphasize are not fundamental limitations of Alpaca.

We implemented a limited pointer alias analysis and our prototype requires that a TS pointer
only ever be assigned the address of a TS variable if that address is constant. Allowing TS pointers

to constant variables permits the especially important case of function pointers.

Our prototype requires the programmer to refer to array elements directly, i.e., writing A[30]
instead of *(p + 30). Our prototype statically inserts code to maintain version-backed bitmasks

on array accesses. Array indirection would require our prototype to use instrumentation that

dynamically disambiguates pointers to arrays, to determine which bitmask to update. Our prototype

makes the calculated choice to avoid this additional dynamic analysis cost by requiring direct array

access. We note that this strategy is similar to DINO [Lucia and Ransford 2015].

6 BENCHMARKS AND METHODOLOGY
We evaluated Alpaca using a collection of applications taken from prior work running on real,

energy-harvesting hardware. Our evaluation ran on a TI MSP430FR5969 microprocessor on MSP-

TS430RGZ48C project board for experiments with continuous power, and on a WISP5 [Sample et al.

2008] for experiments with harvested energy. We used EDB [Colin et al. 2016] for measurements

when running on harvested energy. To power the WISP, we used the ThingMagic Astra-EX RFID

reader as an RF energy source with its power parameter set to -X 50, and a distance between the

WISP and the power source of 20cm.

We evaluated Alpaca using applications ported to run on harvested energy using DINO [Lucia

and Ransford 2015], Chain [Colin and Lucia 2016], and Alpaca, allowing for a thorough direct

comparison. DINO and Chain versions of four applications were provided by the authors of the

Chain [Colin and Lucia 2016] paper: activity recognition (ar), cuckoo filter (cf), rsa encryption

(rsa), and cold-chain equipment monitoring (cem). We ported two additional applications from the

MIBench [Guthaus et al. 2001] to run with DINO, Chain, and Alpaca.

We studied six applications:

Activity Recognition (ar) AR buffers 128 samples from a three-axis accelerometer, featurizes

those samples, trains a model, and uses a model to do nearest neighbor classification that determines

whether the device is stationary or shaking. The features computed are the mean and standard

deviation in each dimension over the window of samples. To make experiments reproducible across

trials, we emulated accelerometer readings with a pseudo-random number generator, although

Alpaca fully supports AR with an accelerometer. We went through stationary data training phase

three times, moving data training phase two times, and testing phase two times.

RSA Encryption (rsa) RSA encrypts a fixed, in-memory input string of arbitrary size, using a

fixed encryption key. We used an 11-byte input string and a 64 bit key in our experiments. With

RSA’s existing task definitions, the Chain version of RSA got stuck in a task that always exhausts

its energy budget with keys larger than 64 bits.

Cuckoo Filtering (cf) CF uses a cuckoo filter to store a sequence of pseudo-random numbers,

then queries the filter to recover the sequence. We use 128-entry filter filled to one-fourth capacity

in each trial.

Cold-chain Equipment Monitoring (cem) CEM logs and periodically LZW-compresses tem-

perature sensor data. For repeatability, we emulated the sensor with pseudo-random numbers

because LZWhas input-dependent run time.We used a 512-entry dictionary and 64-byte compressed

block size.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 96. Publication date: October 2017.



96:18 Kiwan Maeng, Alexei Colin, and Brandon Lucia

20

22

cem ar rsa(64) cf(128) blowfish bc
0

2

4

6

8

10

12

Ru
n 

tim
e 

(n
or

m
al

ize
d)

plain C
Alpaca
Chain
DINO

(a) On continuous power

16

17

cem ar rsa(64) cf(128) blowfish bc
0

1

2

3

4

5

6

7

Ru
n 

tim
e 

(n
or

m
al

ize
d)

Alpaca
Chain
DINO

(b) On harvested energy

Fig. 9. Run time performance. Data are normalized to performance of (a) plain C and (b) Alpaca.

Blowfish Encryption (blowfish) Blowfish encrypts a string of arbitrary size using an encryp-

tion key. We encrypted a 32-byte string using five sub-key arrays, excluding the derivation of the

sub-keys. We used a P array with 18 32-bit entries and S0, S1, S2, and S3 arrays each 256 32-bit

entries. Our code is ported from MIBench [Guthaus et al. 2001].

Bitcount (bc) Bitcount counts the set bits in a random string using seven different algorithms

and compares their result to ensure they executed correctly [Guthaus et al. 2001]. We ran each test

with 100 pseudo-random inputs.

To ensure a fair comparison, applications use identical task definitions for both Chain and Alpaca,

and we inserted task boundaries at equivalent code points for DINO (We study the impact of task

boundary placement in Section 7.5). Some system parameters in our evaluation vary from the

defaults provided by the authors of Colin and Lucia [2016]; compiler and device energy buffer size

changes required us to modify some input and task sizes to ensure applications run to completion

and we used these parameters consistently across systems in our evaluation.

7 EVALUATION
Our evaluation compares directly to Chain and DINO and illustrates several findings about Alpaca.

The data show that Alpaca outperforms existing systems while running natively on existing

hardware both on harvested energy and running on continuous power. Our evaluation characterizes

these findings, showing that Alpaca avoids the costliest time and memory overheads of prior

approaches. We note that consequently Alpaca is applicable to more devices and less expensive

hardware options than other systems. We qualitatively and quantitatively show that programming

with Alpaca is simple compared to other approaches. We also contrast our Alpaca implementation

with an alternative Alpaca design that privatizes data to volatile memory, showing that our baseline

design is usually more efficient because of additional overheads required by volatile privatization.

7.1 Run Time Performance
Figure 9 shows Alpaca’s run time performance, measured on real hardware on both continuous

power and on harvested RF energy. Performance on continuous power is an upper bound on

performance because it avoids reboot-related overhead. Performance on harvested energy includes

all reboot-related overheads and is representative of a real-world deployment.
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Figure 9a shows performance on continuous power for each system, normalized to a plain C

implementation that implements each application without considering intermittence. As expected,

Alpaca has an overhead compared to plain C code, with the slowdown from 1.3x to 3.6x. However,

Alpaca outperforms both previous state-of-the-art systems Chain and DINO, by 1.5x to 7.8x and

1.02x to 15x respectively.

Figure 9b shows performance on harvested energy. Here, we omit the plain C variant because it

does not handle intermittence and cannot run correctly on harvested energy. Alpaca outperforms

all other systems, by 1.7x to 7.1x for Chain and 1.2x to 16.6x for DINO. The performance gap is

larger on harvested energy because power failures introduce reboot-related overheads and Alpaca’s

reboot overhead is extremely low. DINO has a higher overhead because it must restore the stack

and register file on every reboot.

7.2 Characterizing Alpaca’s Runtime Overhead
To better understand Alpaca’s performance, we made detailed measurements of each system’s

major overheads. Alpaca’s main overheads are privatization and task transitioning. Chain’s major

overheads are channel manipulation and task transitioning. Alpaca task transitions commit priva-

tized state and Chain’s task transitions commit all data written to “self” channels. DINO’s major

overheads are checkpointing and versioning, and restoring the stack and register files on reboot.

We measured each system’s overheads using the microcontroller’s internal timer. Our measure-

ments are conservative because Alpaca’s privatization is often a single-cycle mov operation which

may take less time than the minimum resolution of the timer; our measurements may over-estimate

Alpaca’s overheads. Alpaca’s task transitioning overhead is larger than the timer’s resolution,

allowing for precise measurement. Measuring Chain’s overhead requires distinguishing between

the inherent read and write functionality of channel manipulation and the channel overhead, which

is difficult. Instead of measuring channel manipulation overheads directly, we assume that because

Alpaca and Chain have the same code structure, they should have the same run time, except for

their overheads. We compute overhead-free application-only run time for Alpaca by subtracting

its measured overhead from its total run time. We then compute Chain’s channel manipulation

overhead by subtracting the application-only run time and measured transition overhead from

Chain’s total run time. We directly measured DINO’s checkpointing and restoration overhead using

the microcontroller’s timer.

7.2.1 Best Case Overhead. Figure 10a shows overheads measured on continuous power, which

represents the best case, with no restart overheads and re-execution costs. The data show that

Alpaca has high performance because it imposes few overheads. Privatization requires many

fewer operations than Chain’s channel manipulations and DINO’s checkpointing and versioning.

Alpaca’s frequent committing makes its task transition overhead twice as large as in Chain, but the

performance gain from efficient privatization amortizes this overhead.

7.2.2 Worst Case Overhead. Based on the measured best case data, we computed worst case

overheads. Assuming no task requires more energy than the device can buffer, a task will suffer

at most one power failure before successfully completing. We compute the worst case overhead

by assuming a power failure on the first execution attempt of each task, just before the task

completes. In this worst case, the system must re-execute from the previous task boundary or

checkpoint, roughly doubling the application’s execution time and maximally repeating operations

like initialization after reboot, privatization, and channel operations. We computed the worst case

run time for Alpaca and Chain by doubling the application run time, and privatization and channel

overheads. To compute the worst case run time for DINO, we invoked restore manually for each

checkpoint and measured the overhead.
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Fig. 10. Attributing slowdown to sources of overhead. Bars for each application are plain C, Alpaca, Chain,
DINO. We baseline both plots to plain C to allow direct comparison, even though plain C cannot execute on
intermittent power.

Figure 10b shows the worst case overhead results, in this case including the plain C version with

the caveat that the plain C version cannot actually run because it does not handle intermittence. In the

worst case, Alpaca has high performance, outperforming Chain by 1.6x to 7.3x and DINO by 1.2x

to 27.6x. Comparing with Figure 10a, DINO’s performance degrades considerably because, while

Chain and Alpaca have no additional overhead on reboot, DINO must restore a checkpoint on each

reboot, imposing an overhead.
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Fig. 11. Breakdown of energy overheads.

Directly measuring actual per-operation over-

heads on harvested energy is experimentally diffi-

cult, but the overheads will be between our mea-

sured best case and modeled worst case overheads.

The worst case model is adversarial, interrupting

every task once before allowing it to complete, lead-

ing to an artificially high reboot count. In our ex-

periments with real hardware on harvested energy,

we observed few reboots (around 10 per test), sug-

gesting that real-world overhead figures are more

likely to resemble the best case than the worst case

(i.e., Figure 9b).

7.2.3 Energy Overhead. We measured Alpaca’s

energy overhead using TI’s MSP EnergyTrace tool.

On continuous power, we removed privatization

code and transition code and measured total energy use to deduce the energy use of each.

Figure 11 shows a breakdown of Alpaca’s energy overheads, including application code execution,

task transitioning including commit, and privatization including pre_commit. The trend is consistent

with the breakdown of run time overhead. Applications in which tasks exchange smaller blocks of

data tend to have lower overhead. For example, AR has low overhead because different tasks only

share input data, unlike RSA, in which tasks share large arrays. Section 7.4 evaluates the energy

impact of privatizing data to SRAM instead of FRAM.
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7.3 Non-Volatile Memory Consumption
We measured non-volatile memory consumption by inspecting each application binary, which

is sufficient because these applications do not dynamically allocate non-volatile memory, as is

typical in embedded systems. DINO reserves double-buffered checkpointing space equal to twice

the maximum stack size of 2KB, i.e., 4KB total. Figure 12 shows that Alpaca uses less non-volatile

memory in all applications, by factor of 2.1x to 4.4x and 1.3x to 5.5x for Chain and DINO, respectively.

Alpaca uses less non-volatile memory than Chain mainly because Chain creates multiple versions

of variables that exist in different channels. Alpaca uses less non-volatile memory than DINO

because DINO checkpoints all volatile state and versions some non-volatile state, while Alpaca

never checkpoints and only selectively privatizes non-volatile state.
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Fig. 12. Non-volatile memory use.

Using less non-volatile memory than other

systems makes Alpaca applicable to differ-

ent and cheaper hardware configurations with

different (i.e., smaller) non-volatile memory

sizes and dollar cost. We compared the to-

tal non-volatile memory requirement for each

application and configuration to the entire

MSP430FRxxxx product line, microcontrollers

in which vary primarily in price and memory

configuration. Alpaca enables applications to be

deployed on cheaper, smaller hardware. For ex-

ample, Alpaca allows AR, RSA, and bitcount to

deploy on product line’s bottom-end MCU, the

MSP430FR2110, with only 2KB of non-volatile

memory. However, DINO requires more non-volatile memory, limiting hardware options to micro-

controllers with at least 8KB of non-volatile memory, such as the MSP430FR2302, which is 1.8x

more expensive [TI Inc. 2017b] than the MSP430FR2110. By a similar analysis, deploying blowfish

using Chain requires hardware that is 2.4x more expensive than hardware available to blowfish

using Alpaca.

7.4 Privatizing Data to Volatile Memory
We evaluated an alternative implementation of Alpaca, called Alpaca-VM that uses volatile memory

to store privatized values, motivated by the fact that volatile memory accesses require less energy

than non-volatile memory accesses. Privatizing to volatile memory instead of non-volatile is not

straightforward because a consistent set of data privatized to volatile memory must be atomically

committed, even if power fails during commit. To ensure that volatile values commit atomically

despite failures, Alpaca-VM must make a full copy of all privatized values to a non-volatile commit

buffer during pre-commit, along with the usual memory address and data size. In contrast, Alpaca

avoids writing values to the commit buffer, saving a considerable number of non-volatile memory

writes, especially when privatizing large struct type data.

Copying from volatile memory into the non-volatile commit buffer adds time and energy overhead

to committing. Privatizing data to volatile memory is only a net benefit if the time and energy saved

by using volatile memory in the task are more than the time and energy consumed by copying to the

commit buffer. In general, if tasks often re-use privatized data before committing, then Alpaca-VM

will use less energy and time than Alpaca.
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Table 3. Average per-task re-use of privatized data.

cem ar rsa cf blowfish bc
Read 2 2.33 4.29 1.44 2.17 1

Write 1 1 1.29 1 1 1

We experimented with a microbenchmark

to measure how many accesses to volatile pri-

vatized data are required to amortize the in-

creased pre-commit cost of using volatile priva-

tization buffers. The benchmark is a repeated

task that does a fixed number of read-modify-

write (RMW) operations. The benchmark varies

the number of RMWs in the task to find the “tipping point” number, when using volatile privati-

zation buffers has better performance. The data show that Alpaca-VM’s performance relative to

Alpaca improves as the number of RMWs per task grows. When the task grows to around 110 RMWs,

Alpaca-VM begins to outperform Alpaca. If an application has a number of accesses to privatized

data greater than this “tipping point” number, volatile privatization pays off. We quantified data

re-use in our real applications and Table 3 shows the average number of reads and writes to each

privatized variable per task for each application. The data show that the average number of reads

and writes is much smaller than the tipping point, suggesting that volatile privatization is unlikely

to pay off.
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Fig. 13. Run time of Alpaca-VM versus Alpaca.

We ran each application using Alpaca-VM

and Figure 13 shows actual performance on

benchmarks. The data show that Alpaca-VM’s

performance is often worse than, or negligibly

different from Alpaca’s performance, which is

consistent with our “tipping point” character-

ization. While Alpaca-VM does not show any

improvement in our experimental system, it is

not an uninteresting design: volatile privatiza-

tion is likely to be viable and beneficial in a

system with a much larger energy buffering ca-

pacitor that accommodates more (i.e., hundreds

of) reads and writes in each task.

7.5 Comparing Programmer Effort
We compared the programming effort required by Alpaca to the effort required by Chain and DINO

and found that Alpaca requires reasonable code changes compared to plain C code, requires less

change than writing Chain code, and is often easier to optimize for performance than DINO code.

Like Alpaca, Chain also requires the programmer to decompose code into tasks, which is different

from writing typical C code and we characterize task sizing next. Unlike Alpaca, Chain also requires

additional effort to re-write memory access code in terms of channel operations, which is different

from a typical C programming. Alpaca instead allows code to manipulate task-shared variables like

ordinary C variables using loads and stores.

7.5.1 Quantifying Programmer Effort. We quantified the difference in programmer effort between

systems by comparing the differences in the number of lines of code (LoC) and the number of

keywords by each system. Keywords are divided into three types: boundary, declaration, and

read/write. Boundary keywords (Bnd) represent task boundaries (i.e., transition_to) in Alpaca

and Chain, and checkpoints in DINO. Declaration keywords (Decl) modify function and data

declarations: task and TS for Alpaca, and task and channel declaration for Chain. Read/Write

keywords (R/W) access memory and only occur in Chain (channel in and channel out), because

Alpaca and DINO use a standard C read/write memory interface.
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Table 4. Lines of code and number of keywords.

App Alpaca Chain DINO
LoC # Bnd. # Decl. LoC # Bnd. # Decl. # R/W LoC # Bnd.

CEM 372 19 28 721 19 40 63 338 13

AR 466 19 26 713 19 34 57 439 8

RSA 765 27 40 1197 27 53 123 722 35

CF 397 19 29 707 19 41 72 335 11

Blowfish 614 18 24 740 18 29 75 556 9

BC 313 23 26 588 23 26 57 276 10

Table 4 summarizes the data. On average, the number of lines of Alpaca code is 10% higher than

DINO code, but Alpaca requires 37% fewer lines then Chain. The number of keywords used by

Alpaca code is 240% more than the number used by DINO code, but is only 27% of the number used

by Chain code. Although these data are only a rough indicator of programming complexity, the

data suggest that Alpaca’s complexity lies somewhere between Chain and DINO.

7.5.2 Choosing a Task’s Size. Dividing a program into tasks is a key part of Alpaca development,

and we we experimentally characterize the process to show that it is reasonable. Alpaca preserves

forward progress at the granularity of a task assuming the system eventually buffers sufficient

energy to complete each task. However, a real, energy-harvesting system with a fixed-size energy

buffer, may never be able to buffer sufficient energy for a very long task to complete, preventing

progress. If a task is too short, its privatization, commit, and transition overhead will be relatively

very high, impeding performance. Based on knowledge of the device and the energy cost of program

tasks, the programmer must assign work to an Alpaca task.

While it is a non-trivial programming task, defining the extents of Alpaca tasks requires only

modest programmer effort. We observed that on today’s energy-harvesting hardware, the task

decomposition problem is independent of input power and depends only on the device’s energy

buffer size. Figure 14a shows data for a microbenchmark that runs a loop on a WISP5 [Sample et al.

2008] device harvesting energy from an RF power supply. The x-axis shows the distance to the RF

power supply, which corresponds to input power. The y-axis shows the time to the first brown

out, at which point the device has exhausted energy accumulated in its capacitor and must slowly

recharge. Except for distances so small that the RF supply effectively continuously powers the

device (~10cm), the amount of work that the system can execute before browning out is invariant

to input power; the energy buffer is constant. Forming Alpaca tasks is thus a reasonable (albeit

non-trivial) task because the programmer need only reason about the total energy cost of a task.

The programmer need not reason about instantaneous input power, nor the power envelope of

particular hardware operations, which would be difficult.

We also experimentally observed that choosing a task size that amortizes privatization, commit,

and transition costs is not overly challenging. On a WISP5 device, we studied the effect of task size

on the run time of a microbenchmark that executes a fixed amount of work across a varying size

of tasks. The microbenchmark executes a fixed total number of read-modify-write operations on

entries in an array. We varied the number of accesses per task, and Figure 14b shows the relationship

between task size and total run time. Run time decreases as task size grows because tasks better

amortize commit and transition cost. However, the effect saturates as tasks grow, revealing that

even relatively small tasks of around 100 read-modify-write amortize Alpaca’s overheads well.

The data suggest that choosing a task size that amortizes task overheads will not be prohibitively

challenging to a programmer.
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Fig. 14. Choosing task size. (a) Energy availability does not vary with input power. (b) Task overhead varies
with task size.

7.5.3 Manual Optimization Complexity. Unlike Alpaca, DINO does not require code to be written

in task functions. Instead, it requires boundaries which may be simpler but complicate performance

optimization and predictability. DINO complicates reasoning about performance because the cost

of a DINO task boundary is not explicit, instead varying dynamically with call depth and stack

allocation. DINO puts modularity at odds with performance: passing function arguments increases

checkpointing cost of a task boundary. We observed subtle performance effects introduced by

DINO that are unlikely to be obvious to a typical performance-conscious programmer.

We conducted a case study to illustrate that writing code in DINO is not necessarily simpler

than writing task-based code because DINO compromises performance predictability. This study

revealed to us that Alpaca is immune to some performance-specific programming issues that afflict

DINO. We hand-optimized the cost of DINO task boundaries for CEM. We carefully removed

stack-allocated variables and function arguments and made them non-volatile, global variables to

reduce the stack size and decrease checkpointing cost. The optimization process was trial-and-error

and decreased the modularity of the code. As a result, we got 36.8% performance improvement

(which remained slower than Alpaca) by tediously removing 18 local variables, introducing 14

global non-volatile variables, and modifying the interfaces of 6 functions in 400 lines of code. The

performance improvement suggests that a simple translation from naive C style to a checkpointing

system may not produce performant code because programmers are not thinking about the costs

imposed by checkpointing. Alpaca’s task model does not checkpoint the stack and requires tasks

to initialize task-local variables, eliminating the need for this optimization.

8 RELATEDWORK
Alpaca relates to prior work in several areas. Most related are prior efforts studying intermittent

computing, some of which discussed in Section 2. We also relate Alpaca to work on idempotent

compilation, systems with non-volatile memory, transactions and transactional memory, and

continuation-passing style.

8.1 Energy-Harvesting and Intermittent Computing
There is a large body of work on intermittent execution and other support for intermittent sys-

tems. Mementos [Ransford et al. 2011b] was among the first system to address computing on
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intermittent power, by monitoring the device energy level and checkpointing registers and stack.

Idetic [Mirhoseini et al. 2013] optimized where to poll and used a custom circuit to checkpoint

volatile state.

Periodic checkpointing approaches are correct with a purely volatile memory system. However,

if the program manipulates non-volatile memory, which is common in widely available plat-

forms [Sample et al. 2008; Zhang et al. 2011a], periodic checkpointing alone is incorrect [Ransford

and Lucia 2014]. DINO [Lucia and Ransford 2015] keeps non-volatile and volatile memory consistent

by versioning non-volatile memory and checkpointing volatile state. Ratchet [Van Der Woude

and Hicks 2016] assumes that main memory is entirely non-volatile and keeps memory consistent

using idempotence analysis and register checkpoints. These prior approaches all use some form of

periodic volatile state checkpoints. Alpaca avoids volatile state checkpointing, eliminating its time

and space overhead.

Instead of periodic checkpointing, QuickRecall [Ransford et al. 2011a], Hibernus [Balsamo et al.

2015], and Hibernus++ [Balsamo et al. 2016] do on-demand checkpointing of volatile state when

supply voltage is below a threshold. This approach is effective, but requires continuous supply

voltage measurement hardware, which is not typically available [Sample et al. 2008; Zhang et al.

2011a]. Also, choosing a threshold voltage is not straightforward. Too high a threshold makes

the system checkpoint and wait for energy, even if there is ample energy to continue. Too low

a threshold may fail to guarantee that checkpointing completes, which is especially problematic

with a variable size call stack and arbitrary global variables. Alpaca is energy agnostic, avoiding

hardware requirements and threshold voltage assignment issues. Chain [Colin and Lucia 2016]

avoids checkpointing using a task-based execution strategy, like Alpaca. Chain uses static multi-

versioning to keep non-volatile data consistent at a high cost in time and space (see Section 7).

Non-volatile processors propose architectural non-volatility [Ma et al. 2015a,b] making intermittent

software simple, but precluding the use of existing hardware and imposing a performance and

complexity overhead. Dewdrop [Buettner et al. 2011] runs small, “one-shot” tasks on intermittent

hardware, optimizing task scheduling to maximize task completion likelihood given limited energy.

Dewrop, however, does not support computations that span failures.

Other work addresses intermittent computation, like Alpaca, but unlike Alpaca, these efforts

are not programming or execution models. Wisent [Aantjes et al. 2017; Tan et al. 2016] addresses

intermittence, but is not a computing model, instead enabling reliable software updating of in situ
intermittent devices. Ekho [Zhang et al. 2011b] helps test intermittent devices with support to

collect and replay representative power traces from a realistic environment. EDB [Colin et al. 2016]

is a hardware/software tool that allows programmers to profile and debug intermittent devices

without interfering with their energy level. Federated energy [Hester et al. 2015] is a disaggregated

energy buffering mechanism that decouples the energy storage of different hardware components.

Some earlier work addresses computing using harvested energy, but unlike Alpaca, these systems to

not explicitly address intermittent computation. Eon [Sorber et al. 2007] is one of the earliest efforts

to target harvested-energy computation, scheduling prioritized tasks based on energy availability.

ZebraNet [Juang et al. 2002] dealt with the challenges of solar energy in an adversarial environment.

8.2 Idempotent Code Compilation
Several prior efforts [De Kruijf and Sankaralingam 2013; de Kruijf et al. 2012; Zhang et al. 2013] noted

that a program decomposed into idempotent sections is robust to a number of failure modes because

idempotent sections can be safely re-executed. Idempotence systems break W-A-R dependances by

dividing dependent operations with a checkpoint (or section boundary). Like these systems, Alpaca

leverages the fact that eliminatingW-A-R dependences makes tasks idempotently re-executable.

Unlike other systems, however, Alpaca does not make code sections idempotent by inserting

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 96. Publication date: October 2017.



96:26 Kiwan Maeng, Alexei Colin, and Brandon Lucia

checkpoints. Instead Alpaca ensures task atomicity by using task-based execution to avoid the need

for volatile state checkpoints, and privatization of non-volatile data involved inW-A-R dependences

to make tasks idempotently restartable.

As discussed in Section 2, Ratchet [Van Der Woude and Hicks 2016] uses compiler idempotence

analysis to insert checkpoints tomake inter-checkpoint regions idempotent, assumingmainmemory

is entirely non-volatile. Alpaca makes no assumption about memory volatility making it applicable

to more varied hardware, and its tasks’ sizes are free from idempotence analysis, unlike Ratchet.

8.3 Memory Persistency and Non-Volatile Memory Systems
The increasing availability of non-volatile memory creates a need for models defining the allow-

able reorderings of non-volatile memory updates and persist actions, which ensure data become

persistent [Pelley et al. 2014, 2015]. Relaxing the ordering of updates and persist actions to different

locations may expose a re-ordering to code resuming execution after a failure and persistency

models describe which of these re-orderings are valid. Other, earlier work developed mechanisms

for managing data structures in non-volatile memory, and for building consistent memory and

file systems out of byte-addressable non-volatile memory [Coburn et al. 2011; Condit et al. 2009;

Doshi and Varman 2012; Dulloor et al. 2014; Moraru et al. 2013; Narayanan and Hodson 2012;

Venkataraman et al. 2011; Volos et al. 2011]. Alpaca relates to these efforts because both aim to

keep non-volatile memory consistent across power failures. The prior work differs from Alpaca,

however, in purpose and mechanism. Alpaca is programming model and run-time implementation

that keeps data consistent across extremely frequent failures in intermittent executions. These prior

efforts focused on large-scale systems and are only peripherally applicable to intermittent devices.

8.4 Transactions and Transactional Memory
Transactions [Gray and Reuter 1992] and, in particular, transactional memory [Hammond et al. 2004;

Harris et al. 2005; Herlihy and Moss 1993; Shavit and Touitou 1995] (TM) systems are also related

to Alpaca. Transactional memory targets multi-threading systems. A transaction speculatively

updates memory until a (usually) statically defined atomic region ends. Transactions commit when

they complete execution, updating globally visible state, or aborting their speculative updates due

to a conflicting access in another thread, and beginning execution again. Transactions are similar to

Alpaca because Alpaca buffers a task’s updates privately, committing them to global memory when

a task ends. Moreover, when a power failure interrupts a task, its privatized updates are aborted

and it begins again from its start. However, Alpaca differs in that it targets intermittent systems

with potentially extremely frequent failures. Unlike TM, Alpaca does not target multi-threaded

programs, instead aiming to keep memory consistent between re-executions across power failures.

8.5 Continuation-Passing Style
Continuation-passing style [Appel and Jim 1989] (CPS) is a programming style in which each

function explicitly calls the next function in a sequence as a continuation rather than returning.

CPS code makes control and state more explicit, often leading to clearer semantics and simpler

analysis of, e.g., intermediate state. CPS is similar to Alpaca in that tasks are like continuations that

execute in sequence, avoiding in Alpaca’s case the need to track the stack or handle task nesting.

CPS code is often written in a functional language, which, like Alpaca tasks makes continuations

idempotent without the need for explicit privatization of mutable state. We plan to explore the

role of functional and explicitly continuation passing programming models in the intermittent

computing context in our future work. One promising direction is continuation-passing C [Kerneis

and Chroboczek 2010] (CPC), which uses continuation-passing style in the C language for efficient

concurrent execution. CPC is similar to Alpaca because CPC executes short code regions one after
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another without exposing intermediate state, similarly to Alpaca tasks. Both system restrict the

stack’s lifetime to the small scope of a task or continuation, eliminating the need for checkpoints

in Alpaca, and reducing the cost of concurrent conflicts in CPC. The goals of these systems are,

however, fundamentally different. CPC is for explicitly concurrent programs, while Alpaca is for

(implicitly concurrent) intermittent programs. Moreover, CPC uses a run time scheduler, while

Alpaca uses explicit inter-task control flow via transition_to.

9 CONCLUSION AND FUTUREWORK
This work proposed Alpaca, a programming model for low-overhead intermittent computing that

does not require checkpointing, using a task-based execution model and a data privatization scheme

built on idempotence analysis. Compared to competitive systems from prior work, our Alpaca

prototype, which will be made available after publication achieves up to 7.8x and 15x improvement

in run time and 1.3x-5.5x improvement in non-volatile memory consumption on a real, energy-

harvesting device for a variety of applications from the literature. Along with Alpaca’s effectiveness

and high performance, our evaluation showed that Alpaca is reasonable to program and allows

applications to run on more diverse and cheaper hardware options, increasing its applicability

and impact. Looking to the future, Alpaca emphasizes a need raised by Chain, Ratchet, and DINO

for a system to aid, or automate the decomposition of a program into tasks, which is currently a

reasonable task, but mostly a manual process.
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