
FreeGuard: A Faster Secure Heap Allocator
Sam Silvestro

University of Texas at San Antonio
Sam.Silvestro@utsa.edu

Hongyu Liu
University of Texas at San Antonio

liuhyscc@gmail.com

Corey Crosser
United States Military Academy

Corey.Crosser@usma.edu

Zhiqiang Lin
University of Texas at Dallas
zhiqiang.lin@utdallas.edu

Tongping Liu
University of Texas at San Antonio

Tongping.Liu@utsa.edu

ABSTRACT
In spite of years of improvements to software security, heap-related
attacks still remain a severe threat. One reason is that many existing
memory allocators fall short in a variety of aspects. For instance,
performance-oriented allocators are designed with very limited
countermeasures against attacks, but secure allocators generally
suer from signicant performance overhead, e.g., running up to
10× slower. This paper, therefore, introduces FreeGuard, a secure
memory allocator that prevents or reduces a wide range of heap-
related attacks, such as heap overows, heap over-reads, use-after-
frees, as well as double and invalid frees. FreeGuard has similar
performance to the default Linux allocator, with less than 2% over-
head on average, but provides signicant improvement to security
guarantees. FreeGuard also addresses multiple implementation is-
sues of existing secure allocators, such as the issue of scalability.
Experimental results demonstrate that FreeGuard is very eective
in defending against a variety of heap-related attacks.

KEYWORDS
Memory Safety; Heap Allocator; Memory Vulnerabilities

1 INTRODUCTION
C/C++ programs (e.g., web browsers, network servers) often require
dynamically managed heap memory. However, it is very challeng-
ing to guarantee heap security. Over the past decades, a wide range
of heap-related vulnerabilities – such as heap over-reads, heap over-
ows, use-after-frees, invalid-frees, and double-frees – have been
discovered and exploited for attacks, including denial-of-service,
information leakage, and control ow hijacking [36]. Currently,
heap vulnerabilities continue to emerge. For instance, as shown
in Table 1, a signicant number were still observed within the
past three months. It is very unlikely that heap vulnerabilities will
disappear in the near future, without signicant advancement in
detection techniques. Thus, ecient and eective techniques are
still required to defend against these vulnerabilities.

Vulnerabilities Occurrences (#)
Heap Over-reads 54
Heap Overows 66
Use-after-frees 5
Invalid-frees 2
Double-frees 2

Table 1: Number of heap vulnerabilities in the past
three months (collected on 08/26/2017 from NVD [30]).

One method used to secure the program heap is to add defenses
within the memory allocator [31], which can be combined with

other security mechanisms, such as non-executable segments and
address space layout randomization (ASLR). However, existing al-
locators are either insecure or inecient. In particular, existing
memory allocators can be classied into two types, based on their
implementation mechanisms.

One type belongs to bump-pointer or sequential allocators, which
sequentially allocate dierent sizes of objects in a continuous
range [31]. They maintain freelists for dierent size classes to assist
fast allocations, and are also called freelist-based allocators. Repre-
sentatives of these allocators include both the Windows and Linux
allocators, as well as Hoard [4], whose design features very limited
security countermeasures. Even worse, some implementations may
directly conict with the goal of security. For instance, they place
metadata immediately prior to each object, and reutilize the rst
words of a freed object to store pointers used by their freelists [31].
These designs will signicantly increase the attack surface, since
attackers can easily overwrite freelist pointers or other metadata
to initiate attacks. Further details are presented in Section 2.2.

BIBOP-style (“Big Bag of Pages” [17]) allocators belong to the
second type of allocators. They allocate several pages to serve as
a “bag”, where each bag will be used to hold heap objects of the
same size. The metadata of heap objects, such as the size and avail-
ability information, is stored in a separate area. These allocators,
such as jemalloc [12, 13], Vam [14], Cling [1], the OpenBSD al-
locator (which may be referred to simply as “OpenBSD” in the
remainder of this paper) [29], TCMalloc [16], and DieHarder [31],
avoid corruption of the metadata through isolation mechanisms.
To the best of our knowledge, all existing secure allocators utilize
the BIBOP-style.

Existing secure allocators, such as OpenBSD [29], Cling [1], and
DieHarder [31], avoid the use of freelists for small objects. Instead,
they maintain a bag-based bitmap to indicate the availability of all
objects within the bag. Although the bitmap mechanism reduces
the memory consumption associated with tracking the status of
heap objects, using only one bit for each object, it may impose
signicant performance overhead. If allocators utilize randomized
allocation, this may impose an even larger overhead. For instance,
the OpenBSD allocator randomly chooses one possible object in-
side a bag, upon every allocation. However, if this object is not
available, it will sequentially search for another available object
inside the same bag. In the worst case, the number of checks per-
formed to search the bag can be proportional to the number of
objects inside the bag (see Section 2.2.1 for more details). Further-
more, both OpenBSD and DieHarder may introduce false sharing
problems [4], since multiple threads are sharing the same heap.
For these reasons, secure allocators are typically much slower than

ar
X

iv
:1

70
9.

02
74

6v
2

 [
cs

.O
S]

 2
5

Se
p

20
17

performance-oriented allocators, although Cling is an exception
that only focuses on use-after-free problems. Based on our eval-
uation of open-source secure allocators, OpenBSD imposes 22%
performance overhead, and DieHarder results in over 36% slower
runtime, on average.

This paper introduces FreeGuard, a secure BIBOP-style allocator
that overcomes the performance issues of existing secure allocators.
FreeGuard may not impose the same randomization as existing
secure allocators, but runs at nearly the same speed as one repre-
sentative performance-oriented allocator—the Linux allocator.

First, FreeGuard designs a novel memory layout that com-
bines the benets of both BIBOP-style and sequential allo-
cators. FreeGuard takes the approach of BIBOP-style allocators:
each bag, consisting of multiple pages, will hold objects with the
same size class, while the object metadata is placed in an area
separate from the actual heap. This design helps prevent attacks
caused by corrupted metadata. At the same time, FreeGuard de-
signs a “sequential bag placement” by employing the vast address
space of 64-bit machines: FreeGuard maps a huge chunk of mem-
ory initially, then divides it into multiple heaps. Each heap will be
further divided into multiple subheaps, proportional to the number
of threads, and bags with increasing size classes will be placed se-
quentially, starting from the minimum size class to the maximum
size class. This layout enables constant-time metadata lookup. If
one bag inside the current heap is exhausted, FreeGuard simply
services new requests from the equivalent bag in the next available
heap. The detailed design is shown in Figure 3. For the purposes
of security, FreeGuard also randomizes the following parameters:
bag size, heap starting address, and metadata starting address, all
of which increase the diculty of attacks. Also, guard pages are
randomly inserted throughout, in order to defend against buer
overows and heap spraying.

Second, FreeGuard adopts the freelist idea from perfor-
mance-oriented allocators, and applies the shadowmemory
technique based on its novel layout. FreeGuard discards the
bitmap and hashmap designs of existing secure allocators, as they
are not suitable for performance. As described above, bitmaps may
incur signicant performance overhead, which could be propor-
tional to the size of the bitmap. Instead, using freelists can guarantee
constant-time memory allocations and deallocations. FreeGuard
further utilizes single-linked lists in order to prevent cycles within
the list, which avoids the issue of double frees. It utilizes freelists to
manage freed objects, but places the freelist pointers into segregated
shadow memory, such that they cannot be easily corrupted.

Third, FreeGuard greatly reduces the number of mmap calls
required for allocating both the bags, and the metadata re-
quired for managing these chunks. This design not only avoids
the performance overhead caused by performing a large number
of system calls, but also saves kernel resources in managing nu-
merous small virtual memory regions. For the purposes of security,
FreeGuard selectively places internal guard pages within each bag,
based on a user-specied budget.

Additionally, FreeGuard also xes several implementation weak-
nesses of existing secure allocators.

Contribution. In short, this paper makes the following contribu-
tions.

• A Faster Secure Allocator. We developed FreeGuard to
be a faster secure memory allocator. FreeGuard was de-
signed with a novel memory layout. In addition, FreeGuard
also applies the freelist and shadow memory techniques,
and reduces the number of unnecessary system calls, in or-
der to improve performance. FreeGuard also xes multiple
issues associated with existing secure allocators, includ-
ing possible false sharing problems, and provides better
reporting of double and invalid frees.

• Extensive Analysis of Secure Allocators. We have pro-
vided an extensive analysis of the performance and secu-
rity issues of existing secure allocators, such as OpenBSD,
DieHarder, and Cling. Some understanding is obtained di-
rectly through examination of their source code.

• Extensive Evaluation. We have performed a large num-
ber of experiments to verify the performance, memory
overhead, and eectiveness of FreeGuard. Experimental
results show that FreeGuard imposes less than 2% over-
head when compared to the Linux allocator, while provid-
ing signicantly better security. Furthermore, FreeGuard
considerably outperforms representative secure allocators,
OpenBSD and DieHarder.

Outline. The remainder of this paper is organized as follows. Sec-
tion 2 presents background on heap-related vulnerabilities. Sec-
tion 2.2 further examines the advantages and disadvantages of
several representative allocators, which motivate our work. Based
on our detailed analysis, we discuss the key ideas of FreeGuard and
its threat model in Section 3. Then, Section 4 provides the detailed
implementation of FreeGuard, while Section 5 evaluates its perfor-
mance, memory usage, and eectiveness. Next, Section 6 discusses
the limitations of FreeGuard. Finally, Section 7 lists relevant related
work, and Section 8 concludes.

2 BACKGROUND
This section provides a background of relevant memory vulnerabil-
ities, as well as an extensive analysis of existing allocators. Famil-
iarity with these memory vulnerabilities helps to understand how
FreeGuard defeats them, while the analysis also helps to recognize
the dierences between FreeGuard and these existing allocators.

2.1 Heap-related Memory Vulnerabilities
2.1.1 Heap Over-reads. A heap over-read occurs when a pro-

gram overruns the boundary of an object, possibly reading adjacent
memory that was not intended to be accessible. It includes heap
under-reads, where memory locations prior to the target buer
are referenced. Heap over-reads can occur due to a lack of built-in
bounds-checking on memory accesses, particularly for C/C++ pro-
grams. They can cause erratic program behavior, including memory
access errors, incorrect results, or a crash. They can also lead to secu-
rity problems, including information leakage and denial-of-service
attacks.

2.1.2 Heap Overflows. A heap overow occurs when a program
writes outside of the boundary of an allocated object. As with heap
over-reads, throughout the remainder of this paper, heap overows

will also be used to refer to the related problem of corrupting mem-
ory immediately prior to the allocated object. Buer overows can
cause security problems such as illegitimate privilege elevation,
execution of arbitrary code, denial-of-service, and heap smashing.

2.1.3 Use-aer-frees and Double-frees. Use-after-free occurs
whenever an application accesses a previously deallocated object.
A recent study shows that use-after-free errors are the most se-
vere vulnerabilities of the Chromium browser, in terms of both the
number of occurrences, and the severity of security impacts [23].
Double-frees are considered to be a special case of use-after-free,
and occur when an object has been freed twice. Depending on the
design of the specic allocator, use-after-free may cause execution
of arbitrary code, loss of integrity, and denial-of-service attacks.

2.1.4 Invalid frees. For invalid frees, applications invoke free()
on a pointer that was not acquired using heap allocation functions,
such as malloc(), calloc(), or realloc(). Invalid frees can cause
the execution of arbitrary code, intentional modication of data,
and denial-of-service attacks.

2.1.5 Other Heap Errors. Other heap-related security vulnera-
bilities exist, including: initialization errors, failure of return values,
improper use of allocation functions, mismatched memory man-
agement routines (e.g., malloc/delete), and uninitialized reads, all
of which can lead to exploitable vulnerabilities. We must note that
FreeGuard is not designed to handle these vulnerabilities.

2.2 Existing Secure Allocators
As described in Section 1, memory allocators can be classied into
two major types: bump-pointer and BIBOP-style allocators.

Bump-pointer Allocators. Bump-pointer allocators, including
the Windows and Linux allocators, typically employ freelists for
the purpose of improved performance: they maintain freed objects
in various freelists, organized by their size classes [31]. Figure 1
provides an overview of Linux’s default memory allocator [22].
However, as they were not designed for security, they actually
increase the attack surface for malicious users. Metadata, such as
size and status information, are prepended to heap objects, such
that overows can easily destroy their contents. To save space, they
also embed freelist pointers directly within freed objects, which can
be altered easily by buer overows and use-after-frees. The only
security feature supported by the Linux allocator is the ability to
detect double and invalid frees. However, even this feature is only
partially achieved, as it checks a single bit embedded into the size
eld to conrm the status of the object. Furthermore, DLmalloc
has the following problems: (1) When the metadata is corrupted,
due to buer overows or use-after-frees following consolidation,
DLmalloc may either miss problems or generate incorrect alarms.
For example, it may report a normal free as an “invalid free” problem.
(2) It cannot report invalid frees if the pointer is outside the range
of valid heap addresses. (3) It may incorrectly report an invalid free
as a double free problem if the pointer refers to an unallocated area.

BIBOP-style Allocators. BIBOP-style allocators, such as PHKmal-
loc [19], dnmalloc [39], Vam [14], jemalloc [12, 13], OpenBSD [29],
TCMalloc [16], Cling [1], and DieHarder [31], typically allocate one
or more pages at a time (known as a “bag”), where each bag is

used to hold heap objects of the same size. Among them, Cling,
OpenBSD, and DieHarder are considered to be secure allocators,
while others focus on performance only. We further discuss the
design, advantages, and shortcomings of these three secure alloca-
tors.

2.2.1 OpenBSD Allocator. The OpenBSD allocator originates
from PHKmalloc [19], but features substantial improvements on
the security [29]. It avoids the use of freelists and inline meta-
data (headers). All descriptions here are based on the allocator of
OpenBSD-6.0.

The OpenBSD allocator handles objects with small sizes dier-
ently than those with large sizes. Objects with sizes greater than 2
kilobytes will be considered as large objects.

Management of Small Objects. For small objects, the size of a
bag is simply a page, which allows for multiple objects with the
same size. For instance, for the 32-byte size class, 128 objects will t
inside one bag. OpenBSD allocates every bag by utilizing an mmap
system call. It saves the information of chunks/objects in a separate
area that is also obtained via the mmap system call. Typically, the
information of multiple bags can share the same page, since the
memory required to store the information for a single bag will be
less than one page. As shown in Figure 2, OpenBSD utilizes a bit in
the bitmap (shown as “bits” in the gure) to indicate the status of
every object, where 1 indicates freed status, and 0 represents in-use.
Other bag information, such as the size and number of available
objects, is stored in the area before the bitmap. The OpenBSD
allocator utilizes a hash table to track the relationship between
bags and their metadata information. Basically, given an address,
we could obtain the starting address of the page, then use it to
search the hash table to nd the chunk information for this bag.
The hash table will grow automatically, in order to reduce potential
hash conicts.

The allocation and deallocation of small objects are further de-
scribed as follows. (1) During allocation, the OpenBSD allocator
rst randomly selects one-out-of-four bag lists for the given size
class. If there are no available objects in the rst bag, it will invoke
mmap to rst allocate another bag, then thread this bag into the bag
list with the proper size class. When objects are available in the
rst bag, the allocator will select one object randomly from the
bag, as discussed in “Randomized Allocation” below. (2) During
deallocation, a freed object will be randomly placed into a delayed
array that can hold up to 16 freed objects. If a previously-freed
object already exists in that slot, the previously-freed object will be
actually freed, and the newly-freed object will take its place in the
delayed array. If the previously-freed object is the rst freed object
of its bag – making the corresponding bag no longer full – the bag
will be moved into the header of this bag list.

Management of Large Objects. For large objects (whose sizes are
greater than 2 KB), OpenBSD applies a dierent policy. By default,
OpenBSD keeps at most 64 pages in the free_regions cache in
order to reduce the number of mmap system calls. Upon receiving
an allocation request, OpenBSD will check whether it is possible
to satisfy the request from the cached pages. If the requested size
is less than the available pages in the cache, OpenBSD will check
the entries in the cache, starting from a randomly-selected entry.

32

prev
object

size

curr
object

size

in-use object

32 64

prev
object

size

curr
object

size
Freed object

prev next

Freelist

Figure 1: A fragment of the Linux allocator. Object headers are prepended to objects, which supports
fast freeing and coalescing operations, but is vulnerable to overows that can easily destroy the metadata.

16 16 ……

1 page 1 page

bits
Chunks

Information

32 32 ……

info …… bits info bits info …… bits info

Figure 2: A fragment of the OpenBSD allocator. The mapping between bags and metadata (e.g. chunks information) is kept in
a global hash table, and each bag has a bitmap to maintain the status of all objects inside. Metadata are typically stored in a

separate location.

If it can nd one object whose size is equal to, or larger than, the
requested size, OpenBSD allocates the object from the cache, and
reinserts the remaining pages back into the cache. When there are
no available objects capable of satisfying the current request from
the cache, OpenBSD invokes the mmap system call directly.

For deallocation, OpenBSD rst checks whether the size of the
freed object is larger than the size of the preset cache (64 pages).
If so, then this object will be deallocated directly by invoking the
munmap system call. Otherwise, the current object is added to a
random location in the cache. Note, that if the current freed object
increases the total size of freed objects in the cache beyond 64 pages,
then some existing cached objects will be unmapped in order to
limit the total size of freed objects in the cache to no more than 64
pages.

Overall, the OpenBSD allocator implements the following ap-
proaches toward augmenting security, as shown in Table 2 as well.

No freelist, no object headers, BIBOP-style. These properties
are inherited from the original design of PHKmalloc [19]. Since the
OpenBSD allocator completely disposes with the use of freelists, it
avoids possible corruptions tometadata (such as linked-list pointers)
related to any freelists.

Fully-segregated metadata.Metadata information is maintained
in an area separate from heap objects. This design is a departure
from PHKmalloc, which stores metadata in the header of every
chunk [19]. Obviously, fully-segregated metadata helps augment
security.

Sparse page layout/Guard pages. Rather than using sbrk, such
as PHKmalloc, the OpenBSD allocator employs the mmap system call
to allocate a page from the underlying operating system each time
it is required for small objects. In eect, this mechanism eectively
places unmapped “guard pages” between regions, which limits the
exploitability of both overow attacks and heap spraying attacks.

Destroy-on-free.Destroy-on-free overwrites the contents of freed
objects, lling them with random data. This policy is expected to lo-
cate some memory errors within applications. Currently, OpenBSD
can also clean up an object prior to thememory being used, however,
this feature is disabled by default due to performance considera-
tions.

Randomized allocation.OpenBSD employs two types of random-
ization during allocation. Firstly, it maintains four lists for each
size class, and chooses one randomly from among them. Secondly,
inside a bag, it will determine the index of an allocation randomly.
If the object with that index is in-use, it will search for the next
available object, starting from the current position. Rather than
employing a traditional linear search of each individual bit, it will
sequentially test each of the bitmap’s 16-bit short values until nd-
ing one whose value is non-zero. Then, it performs a ne-grained
bit-level search of this short word to identify the next available
object. The corresponding implementation is located between line
997 and line 1014 of omalloc.c of OpenBSD-6.0. Obviously, this
second step may greatly compromise performance. In the worst
case, when only a single free object exists in a bag, the number of

searches is proportional to the total number of objects in the bag
(e.g., a page).

Delayed memory reuse. During memory deallocation, a freed
object is placed into a delay buer that can hold up to 16 objects with
the same size class. It computes an index into this array randomly.
If a previously-freed object is occupying the corresponding entry
of the delay buer, that object will actually be freed, making room
for the currently-freed object to be placed into the delay array.

Prevent invalid frees. The OpenBSD allocator could detect and
prevent invalid frees with no false positives. Basically, it could
identify the starting address and size of every object. If the corre-
sponding object does not exist, or if the address is no longer a valid
starting address, an invalid free is detected. Then, the allocator can
stop execution for the purposes of attack prevention.

Prevent double frees. The OpenBSD allocator has a very low
probability of detecting double frees, due to an implementation
issue. Currently, it only checks for a double free problem whenever
a freed object is placed into the delay buer. Only when the object
in the selected slot of the delay buer shares the same address as the
newly-freed object will a double free problem be detected. However,
it can tolerate double frees, since one bit is used to record the status
of an object. It will not cause the same linked-list problem that is
inherent in freelist-based allocators.

2.2.2 DieHarder. DieHarder adapts many protections used by
the OpenBSD allocator, but improves upon the randomized place-
ment and randomized reuse by employing the randomization mech-
anism of DieHard [5]. DieHarder sparsely utilizes the pages in a
continuous range of virtual address space, which is dierent from
DieHard. However, DieHarder does not place guard pages inside a
continuous region. A buer overow cannot be detected, even if it
may be tolerated by its over-provisioning mechanism.

To further tolerate the vulnerabilities imposed by buer over-
ows, DieHarder guarantees that the ratio of allocated objects,
to the number of total objects, will never exceed 1/M , where M
represents the heap over-provisioning factor used to control this
proportion. Thus, the entropy of choosing a random object is
O(logN) (where N represents the number of allocated objects),
which is much larger than that of the OpenBSD allocator. Similarly,
DieHarder guarantees memory reuse to be less predictable. These
two properties decrease the probability of overow attacks. How-
ever, due to performance concerns, the default setting ofM is less
than 2 (actually 8/7), which indicates DieHarder will not waste half
of the heap space to achieve better security.

DieHarder manages large objects dierently from OpenBSD.
Basically, it always allocates large objects using the mmap system
call, then unmaps these objects by invoking the munmap system
call. It does not utilize the cache mechanism of OpenBSD, thus
helping defeat use-after-free problems. However, it may impose
much larger performance overhead, caused by numerous system
calls. An object with size larger than 64 KB will be treated as a large
object by DieHarder. Our experiments also conrmed that the size
of large objects will have a signicant impact on the performance
of applications.

DieHarder is capable of detecting double-frees and invalid-frees,
but is currently congured to ignore them. It can tolerate these
problems, which is the same as the OpenBSD allocator. DieHarder
also has a scalability problem, as it uses a global lock to manage
memory allocations/deallocations. This explains why the perfor-
mance overhead reported here is higher than that of its original
publication [31], since all evaluated applications of Section 5.1 are
multithreaded ones, instead of single-threaded applications, as in
their paper.

2.2.3 Cling. Cling is designed to defeat use-after-free problems,
but does not protect against other types of vulnerabilities [1]. It
also utilizes the BIBOP-style for managing small objects, and its
bitmap is located outside of the actual heap for security reasons.
It borrows the type-safety memory allocation idea from existing
work [11], but without the use of compiler analysis. Basically, mem-
ory reuse is conned to only objects with the same type and same
alignment (called “conning memory reuse”). It avoids the use of
freelists to mitigate the problem of metadata corruption. In order to
avoid the scanning of bitmaps, Cling borrows the idea of “reaps” [6],
when multiple objects are allocated from the same allocation site.
Basically, the allocations of objects inside the same bag will be in a
sequential order. However, Cling does not introduce any randomiza-
tion mechanism to increase the diculty of other types of attacks.
Also, the prevention of use-after-frees may fail if the object type is
dicult to determine by allocation site [9].

3 OVERVIEW
3.1 Key Ideas
To the best of our understanding, the OpenBSD allocator and Die-
Harder have the following issues or limitations:

• Ineciency caused by the use of bitmaps: The bitmap
design clearly reduces memory consumption, but com-
promises eciency. For instance, the worst case when
searching the bitmap for a free object is proportional to the
number of objects inside a bag, due to their randomized
allocation policy.

• Reduced randomization for larger size classes: De-
pending on the size class, the eective level of random-
ization in OpenBSD may not be uniform. A smaller size
class will provide better randomization, since an object will
be chosen randomly from among the many objects within
a page. However, when the size class is large, such as 2KB,
only two objects are present in each page, and one will be
selected randomly from one-out-of-four bags.

• Ineciency and extra memory overhead caused by
page-based mmap:TheOpenBSD allocator invokes an mmap
system call to allocate a chunk, as well as storage for its
chunk_info, every time. This method may place some
guard pages between dierent chunks, due to the ASLR
mechanism of the underlying operating system. However,
a large number of system calls can signicantly increase
performance overhead. Also, the underlying OS may cre-
ate a separate virtual memory region for each page, which
consumes around 80 bytes of additional memory overhead
in Linux. For small objects, DieHarder invokes mmap on the

Heap 1

…

Class:
1MB

Thread 1 Thread m

Shadow
memory

Class:
16B

…… ……

…

……

Heap n

……

Thread 1 Thread m

…… ……

T1:	 16B:	 Freelist1	

T1:	 16B:	 Freelist4	

…

Class:16B Class:1MB
Thread 1

… … … …

Class:16B Class:1MB
Thread m

… ……

Class:16B Class:1MB
Thread 1

… … …

Class:
1MB

Class:
16B

Class:
1MB

Class:
16B

Class:
1MB

Class:
16B

Figure 3: One example of FreeGuard’s layout.

level of the miniheap, larger than one page, which reduces
the number of system calls. However, it invokes mmap and
munmap for large objects, whose size is larger than 64 kilo-
bytes. In total, DieHarder also invokes a large number of
mmap calls, as seen in Table 4.

• False sharing performance problem: In OpenBSD and
DieHarder, multiple threads utilize the same heap simul-
taneously, which can cause false sharing problems that
may substantially hurt the performance of applications [4].
False sharing is a usage pattern in which two or more
threads simultaneously access dierent objects co-located
within the same cache line. If one of these threads modi-
es the data, this will result in the entire cache line being
invalidated for the other threads, despite the fact that they
were not using the exact data being modied. This cache
invalidation will result in a costly re-fetch of the required
data, degrading application performance [26].

• Other problems: DieHarder cannot detect double and
invalid frees, based on our evaluation. The OpenBSD allo-
cator can only report a very small portion of double frees,
since it reports double-frees only when the object being in-
serted into the delay buer shares the same address as the
prior object occupying the same slot in the buer. When
congured to utilize canaries, the OpenBSD allocator will
only check for overow of freed objects, which is insu-
cient to stop many possible buer overow attacks.

Our Design. Due to the above-mentioned problems, FreeGuard
designs a novel allocator aiming to balance performance and eec-
tiveness.

FreeGuard adopts almost all security features listed in Table 2,
although with a lower entropy for randomization, as discussed
in Section 6. The only feature not implemented by FreeGuard is
DieHarder’s over-provisioned allocation. Over-provisioned alloca-
tion is useful to increase randomization and reduce attacks caused
by buer overows, since overows may occur in unallocated free
space. However, over-provisioned allocation may signicantly in-
crease memory consumption, and largely decrease performance due
to lower cache and memory utilization, combined with higher TLB

pressure. Instead, FreeGuard checks for the occurrence of overow
on neighboring objects at each deallocation, not just the item being
freed, which is not supported by DieHarder. Then, if an overwrite
is detected, FreeGuard can stop the program immediately. This
method helps thwart attacks caused by overows in a more timely
manner.

For performance reasons, FreeGuard adapts the freelist mech-
anism that is widely utilized in performance-oriented allocators,
such as the allocators of Linux and Windows systems. Freelists
excel at performance, since each allocation and deallocation can be
completed in constant time. Also, the freelist maintains the order of
deallocations, which helps reduce attacks caused by use-after-frees,
the most serious type of security attacks in Microsoft products
recently [23]. Dierent from existing freelist allocators (see Sec-
tion 2.2), FreeGuard allocates these freelist pointers in a separate
space, and uses only a single-linked list, to reduce memory con-
sumption, shown as the shadow memory in Figure 3. To save space,
object status information is stored within the same word: if the
object is available, then its lowest-order bit will be 0 (this will hold
true whether the location contains a pointer to the next available
object, or whether it is null, indicating no next-available object
exists). Conversely, if the object is in-use, its status will exactly
equal 1.

The second design element is to reduce performance overhead
and memory consumption caused by page-based mmap operations.
In order to reduce calls to mmap, FreeGuard allocates a huge block
initially, and places guard pages randomly inside each bag (shown
as boxes with diagonal lines in Figure 3). Currently, guard pages will
be placed randomly to occupy 10% of each bag. This method reduces
the number of mmap calls to less than 10%, since OpenBSD invokes
additional mmap system calls to allocate storage for chunk_info
structures, as well.

The third design element is to improve the performance of
fetching corresponding metadata. Currently, OpenBSD and Die-
Harder create a hash table in which to map the page address of
heap objects to a specic index, and grows the total size of this hash
table whenever necessary. However, this still imposes signicant
performance overhead, especially when multiple pages are mapped
to the same bucket. Instead, FreeGuard relies on the fact that 64-bit

machines have a vast address space, and utilizes the shadow mem-
ory technique to save metadata [41]. For any given heap address,
FreeGuard can quickly compute the location of its metadata, and
vise versa. The layout of the allocator is shown as Figure 3, and
further described in Section 4.

3.2 Scope, Assumptions, and Threat Model
The security properties supported by FreeGuard are listed in Table 2,
as well as those of other allocators. Overall, FreeGuard has the same
performance overhead as the glibc allocator, but provides a better
security guarantee than all existing allocators. Next, we discuss the
attacks that can and cannot be stopped by FreeGuard, and explain
the fundamental reasoning.

Scope. For attacks based on invalid and double frees, FreeGuard
can prevent all such attacks, as long as the status of an object is
never corrupted. Because the status information is kept in a separate
location, this will greatly reduce the possibility of success for these
attacks. Even if the status were to be modied by the attacker, some
invalid frees caused by an invalid address can be prevented due to
FreeGuard’s special allocator design.

Buer overow/over-read attacks will fail if the access touches
one of the guard pages inserted randomly by FreeGuard. Addi-
tionally, buer overows can be detected if one of the implanted
canaries is found to have been corrupted. Implanting canaries will
result in additional verication steps at the time the object (or one
of its adjacent neighbors) is freed. At the same time, the diculty
of issuing these two types of attacks is increased due to randomized
allocations, since the address of a target object is much harder to
guess.

Attacks based on use-after-frees are reduced by utilizing delayed
memory reuses. If an object is not re-utilized, the attacker may
fail to exploit use-after-frees, since it will not cause any ill eect.
Also, memory reuses are randomized to increase the diculty of
successful attacks.

Assumptions. FreeGuard assumes that the starting addresses of
both the heap and the shadow memory are kept hidden from the
attacker. If an attacker has knowledge of these addresses, he can
possibly change the status of an object, and force the allocator to
make an incorrect decision. To avoid the predictability of these
addresses, FreeGuard allocates this memory using the mmap system
call, which is guaranteed to return a random address if ASLR is
enabled on the underlying OS. However, if the attacker has permis-
sion to run a program on the machine, he may be able to guess the
location of the metadata, then take control of memory allocation.
More discussion is provided in Section 6.

4 IMPLEMENTATION
This section explains the detailed implementation of FreeGuard.
Basically, FreeGuard focuses on the management of small objects,
and adopts the same mechanism of DieHarder for managing larger
objects. However, FreeGuard denes large objects dierently, such
that only those objects with sizes larger than 1MB will be treated
as “large objects”.

4.1 Managing Small Objects
Section 3.1 describes the basic idea of managing small objects. First,
FreeGuard utilizes the BIBOP-style in order to place the metadata
in another location, avoiding possible metadata-based attacks. This
achieves the “fully-segregated metadata” target shown in Table 2.
Second, FreeGuard utilizes freelists for better performance, rather
than using a bitmap. Third, FreeGuard supports the fast fetching
of metadata (such as freelist pointers) using a novel heap layout,
shown as Figure 3.

FreeGuard initially maps a huge block of memory, and divides
this block into multiple heaps in the beginning. Inside each heap,
FreeGuard employs a per-thread subheap design so that memory
allocations from dierent threads will be satised from dierent
subheaps, in order to avoid possible false sharing problems [4]. All
bags belonging to a thread, which hold objects with dierent size
classes, are located together. The bag size, starting address of the
heap, and the starting address of the shadowmemory that keeps the
metadata of heap objects, are randomly chosen for each execution
for the purpose of increased security.

The rest of this section focuses on the implementation of other
security features, as listed in Table 2.

4.1.1 Randomized Guard Pages. FreeGuard initially utilizes the
mmap system call to allocate a large chunk of memory, where the
starting address of the heap is randomized between executions, a
feature enabled by the ASLR mechanism of the underlying OS. The
bag size utilized throughout each execution, which remains the
same across the dierent size classes, is randomized with every
execution, and ranges ranges between 4MB and 32MB. These mech-
anisms guarantee that the starting address of each bag is random
across multiple executions.

FreeGuard inserts guard pages randomly within each bag. Prior
to allocating objects from a new page, FreeGuard determines wheth-
er this page should be utilized as a guard page. This decision is
based on a predetermined user budget, such as 10%. Thus, 10% of
pages inside each bag will be chosen as guard pages. When a page
is randomly selected to be a guard page, FreeGuard invokes the
mprotect system call to make this page inaccessible, such that all
memory accesses on this page will be treated as invalid, and trigger
segmentation faults. For a bag with a size class larger than one page
(4KB), the size of its guard pages will be the same as the size class.
That is, multiple pages will be utilized as guard pages in order to
avoid misalignment of the metadata. Guard pages are useful for
stopping buer overows, buer over-reads, and heap spraying, as
access on guard pages will immediately stop execution.

4.1.2 Randomized Allocation and Delayed Reuse. FreeGuard
takes a dierent approach from all existing allocators, by balancing
randomization and performance.

FreeGuard maintains four bump pointers for each size class
of each per-thread heap, which always point to the rst never-
allocated object [14, 21]. Objects will be allocated in a sequential
order. After an object is allocated, the corresponding pointer will be
bumped up to the next one. Whenever a bump pointer refers to the
start of a new page, FreeGuard determines whether this new page
should be utilized as a guard page, as discussed above. FreeGuard

Security Features Security Properties glibc Cling DieHarder OpenBSD FreeGuard
No/segregated freelist Prevent attacks on freelist related pointers X X X X
No object headers Prevent metadata related attacks X X X X
BIBOP style Prevent metadata related attacks X X X X
Fully-segregated metadata Prevent metadata related attacks X X X X
Conning memory reuse Prevent use-after-free attacks X
Destroy-on-free Help nding some memory errors X � �
Guard pages Reduce attacks of buer overows and over-reads X X XReduce heap spraying attacks
Randomized allocation Increase diculty of attacks caused by use-after-frees X X X
Over-provisioned allocation Reduce possible attacks caused by overows X
Delayed/randomized reuse Reduce possible attacks caused by use-after-frees X 	 X
Detect invalid frees Prevent attacks caused by invalid frees 	 X X X
Detect double frees Prevent attacks caused by double frees 	 X 	 X
Check overows on frees Timely stop attacks caused by overows 	 X

Table 2: Security features of existing secure allocators, with glibc added for comparison. “X” indicates the allocator has this
feature. “�” indicates this is an option, but is disabled by default. “	” indicates the implementation has some weakness.

uses this sequential order for the purposes of performance, though it
may compromise security. More discussion can be seen in Section 6.

FreeGuard also maintains four freelists to manage freed objects
for each size class of each per-thread heap. A freed object will be
added into one-out-of-four freelists randomly. Objects in a freelist
will be reused in a rst-in/rst-out (FIFO) order. In this way, some
use-after-free problems can be prevented automatically, since a
freed object may be reallocated only after a long period, in which
any use-after-free problems appearing in this period can be tol-
erated automatically. However, this method may slightly reduce
performance compared with allocators using the last-in/rst-out
(LIFO) order. For the LIFO order, there is a signicant chance that
a newly allocated object is still inside the cache, which can avoid
fetching from memory. However, our method will be superior to
LIFO implementations in terms of security. It will signicantly in-
crease the diculty of guessing the address of an allocation, due
to the combination of FIFO and randomization, as discussed below.
Overall, the FIFO mechanism increases both reliability and security.
This mechanism cannot easily be supported when using bitmaps,
such as the OpenBSD allocator or DieHarder. Bitmap-based alloca-
tors only use one bit to indicate the state of an object, either in-use
or free. After a freed object is returned to the bitmap, there is no
way to maintain the temporal information. Due to the use of FIFO,
there is no need to utilize a delay buer, which is dierent from
OpenBSD.

FreeGuard introduces randomization into its memory allocations.
An allocation request could be satised either from one-of-four
bump pointers, or one-of-four freelists, based on the value of a ran-
dom number. This randomization is achieved through the following
steps. First, we generate a random number R using the Intel SSE2
number generator, as discussed below. We then take the modulus
value N by calculating R%4. N will decide which freelist or bump
pointer will be utilized. We will always check the N th freelist rst,
and if freed objects are available, it will reuse them to satisfy the
request. However, if there are no free objects in this freelist, the
allocation will fall back to the N th bump pointer. Furthermore, we
will always check if the expression R%W is equal to zero, whereW
represents a weighting factor. If so, FreeGuard will strictly utilize
the N th bump pointer, regardless of whether the N th freelist con-
tains any objects available for reuse. Therefore, in terms ofW , we
will have a 1-in-W chance of overriding the freelist and using the
bump pointer instead. This method may slightly increase memory

consumption and cause some slowdown, due to the increased mem-
ory footprint. However, it actually increases randomization, which
is dierent from OpenBSD. OpenBSD will never allocate from a
new bag, when there are freed objects it can reuse in the chosen
bag.

Incorporation of Fast Random Number Generator. In our ini-
tial design, we utilized the glibc rand function to generate a ran-
dom number. However, this method is found to be very slow due
to lock conicts. The invocation of rand will acquire a global lock,
which may prevent another thread from simultaneously obtaining
a random number. To improve performance, FreeGuard utilizes a
fast pseudo-random number generator (RNG)[32]. This faster RNG
was optimized using Intel’s SSE2 extensions, and further, does not
require the use of synchronization primitives internally. Adopting
this fast RNG reduced the performance overhead of swaptions by
up to 65%.

4.1.3 Checking Overflows at Deallocation. FreeGuard borrows
another mechanism of OpenBSD to thwart possible attacks caused
by buer overows. However, the OpenBSD allocator disables this
mechanism, by default. In fact, based on our evaluation, this mech-
anism is very lightweight and helpful toward stopping attacks in a
timely manner.

FreeGuard also increases the number of checks upon every deal-
location. Currently, it will check the neighboring four objects as
well, two before the current object and two after, instead of just
one object. To support this, every allocation request will add one
additional byte, at the end of the object, in which to hold a canary.
Upon deallocation, if one of these ve canaries has been changed to
other values, FreeGuard can halt execution of the current program.
Note, that adding one byte to the end of an object may signicantly
increase memory consumption, since FreeGuard always manages
objects within size classes featuring powers of two. Thus, one addi-
tional byte may double the size of the memory consumption in the
worst case.

4.1.4 Preventing Double and Invalid Frees. For both of these
problems, FreeGuardwill halt the execution immediately, and report
the problem precisely, with 100% guarantee.

FreeGuard prevents the following invalid frees: (1) If a free
pointer lies outside the address range of the heap, a case which is
easy to detect, and that most allocators can possibly detect. (2) If a

free pointer falls within the range of the heap, but was never allo-
cated. This could be discovered easily by checking its corresponding
status. However, the Linux allocator may wrongly consider this
problem to be a double-free error. FreeGuard avoids this issue and
reports it correctly. (3) If a free pointer is not aligned to the object’s
specic size class. FreeGuard detects this problem easily based on
its “information computable” design. FreeGuard avoids false alarms
and false negatives present in the Linux allocator, and caused by
corruption of metadata, since FreeGuard maintains the status of
each object in shadow memory that is segregated from the actual
heap.

FreeGuard also relies on the status information to detect possible
double-frees upon deallocations. FreeGuard always reports possible
double frees, avoiding the implementation faults of the OpenBSD
allocator. The segregation of metadata ensures that FreeGuard can
always detect double frees, unlike the Linux allocator.

4.2 Managing Large Objects
FreeGuard borrows the same mechanism as DieHarder to handle
large objects, which is discussed in Section 2.2.2. Both provide better
protection on “large” objects than OpenBSD. They can signicantly
reduce possible use-after-free attacks, since any access occurring
after the munmap operation may actually cause the program to crash.
They could defeat most buer over-writes and over-reads, since the
ASLR mechanism will eectively place guard pages before and after
a mapped area, in most situations. Instead, OpenBSD maintains a
cached list to track freed objects, which makes it fail to defeat use-
after-frees. It has an option to protect the area of freed objects, but
is disable by default due to performance reasons. We enabled this
option and found that it may signicantly aect performance, due
to the increased number of system calls. OpenBSD treats objects
with sizes larger than 2,048 bytes as large objects, resulting in many
of its objects being treated as large objects.

FreeGuard denes “large” objects dierently than DieHarder,
which treats objects with sizes exceeding 64 kilobytes as large.
This provides better protection than FreeGuard, but with increased
overhead due to the increased number of system calls.

5 EXPERIMENTAL EVALUATION
This section focuses on the following research questions.

• What is the performance overhead of FreeGuard, in com-
parison to the representative general-purpose allocator
(the Linux allocator), and other secure allocators, such as
the OpenBSD allocator and DieHarder?

• What is the memory overhead of FreeGuard? Also, we
compare it against the allocators mentioned above.

• How eectively can FreeGuard reduce or prevent real at-
tacks?

We performed all experiments on a 16-core quiescent machine,
with two sockets installed with Intel(R) Xeon(R) CPU E5-2640 pro-
cessors. This machine has 256GB of main memory, with 256KB L1,
2MB L2, and 20MB L3 cache. The experiments were performed us-
ing the unchanged Ubuntu 16.04, installed with Linux-4.4.25 kernel.
We used GCC-4.9.1 with -O2, -g ags to compile all applications
and all evaluated allocators appearing in this paper.

We utilized the default settings for both the Linux allocator and
DieHarder. For the OpenBSD allocator, we utilized a junking level
of 0, in order to provide a fair comparison with FreeGuard. For
DieHarder, we utilized the version of 08/05/2017, where an object
with size larger than 65,536 bytes (64 kilobytes) will be considered
a large object, and with the heap multiplierM set to 8/7. We expe-
rienced much higher performance overhead whenM is set to 2, or
higher. Both FreeGuard and OpenBSD do not enable destroy-on-
free, which is enabled by DieHarder.

5.1 Performance Overhead
We evaluated 19 applications, and show the average results of ten
executions in Figure 4, where all values are normalized to the glibc
library. A taller bar indicates a larger overhead. Among them,
eleven are from the PARSEC suite of applications, while others
are real applications, including Apache httpd-2.4.25, Firefox-
52.0, MySQL-5.6.10, Memcached-1.4.25, SQLite-3.12.0, Aget,
Pfscan, and Pbzip2. All evaluated applications are multithreaded
applications, making them more relevant toward gauging perfor-
mance on modern multicore machines than single-threaded bench-
mark suites, such as SPEC. Both DieHarder and OpenBSD utilize a
single heap to satisfy requests, instead of per-thread heaps, with a
scalability issue.

PARSEC applications were exercised using native inputs [8].
MySQL was tested using the sysbench application, with 16 threads
and 100, 000 max requests, the throughput of which is shown. Mem-
cached was tested using the python-memcached script [34], but
changed to loop 20 times in order to obtain sucient runtime.
SQLite was tested using a program called “threadtest3.c” [10].
Apache was tested by sending 10, 000 requests via ab [15]. For
Aget, we collected the execution time of downloading 600MB of
data from another quiescent server located on the local network.
For Pfscan, we performed a keyword search within 800MB of data.
For Pbzip2, we performed compression on a le containing 150MB
of data. Finally, Firefox-52.0 was evaluated in a headless congu-
ration using a Python script to instruct the browser, via geckodriver,
to fetch a xed set of 71 web pages cached on a proxy server located
on the local network. The time utility was used to measure the run-
time required to perform these operations, as well as the maximum
resident set size. Rather than utilizing glibc, Firefox uses its own
default allocator based on jemalloc.

Figure 4 shows the normalized runtime of dierent allocators.
Compared to the Linux allocator, FreeGuard’s performance over-
head is only 1.8% using the arithmetic average, and 1.4% using
the geometric mean, with a number of security features enabled
(Table 2). In comparison, the OpenBSD allocator has an overhead
of around 34% (arithmetic mean) or 22% (geometric mean), while
DieHarder runs around 88% (arithmetic mean) or 36% (geometric
mean) slower than the default Linux allocator. This indicates that
FreeGuard signicantly outperforms the existing allocators.

With the exception of canneal and freqmine, FreeGuard im-
poses less than 10% performance overhead. FreeGuard has addition-
ally enabled the delayed memory reuse feature by default, which
adds around 2% performance overhead.

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

blac
ksch

oles

bodytrac
k

can
neal

dedup

fac
esi

m
fer

ret

flu
idanimate

fre
qmine

stre
am

clu
ste

r

sw
aptions

x264
Aget

Apach
e

Firef
ox

Mem
cac

hed

MySQL

Pbzip
2

Pfsc
an

SQLite

AVERAGE

GEOMEAN

No
rm

ali
ze

d P
er

for
ma

nc
e

glibc DieHarder OpenBSD FreeGuard (no sec) FreeGuard (w/ rand) FreeGuard (all)

10.7 6.0 4.2 3.0 1.9

Figure 4: Normalized runtime with dierent allocators, where a higher bar indicates a higher overhead.

As shown in Table 3, canneal involves a large number of mem-
ory allocations and deallocations, around 30 million. Thus, the per-
formance slowdown is caused by the additional overhead of these
allocations and deallocations. Since the glibc allocator prepends
metadata before the actual objects, it takes virtually no time to
fetch the metadata when there are no errors. Although FreeGuard
can compute the object’s metadata location easily, it still imposes
a larger overhead than the glibc allocator. For each deallocation,
FreeGuard must identify the placement of the metadata in order to
add the entry into the freelist. When an object is allocated from a
freelist, it must compute the corresponding heap address for the
metadata. Currently, the freelist only contains the metadata address
of the free objects. Afterwards, the metadata should be changed to
reect the object’s updated status. The allocation of an object will
actually involve two cache lines, instead of only one, which also
adds some overhead.

For freqmine, as seen in Table 3, a considerable proportion of
these allocations were large objects, which FreeGuard handles by
invoking the mmap system call in response to each such request.
Therefore, a clear performance penalty will be associated with
this method of handling large objects, and explains the degraded
performance of FreeGuard for this application.

Figure 4 also shows that FreeGuard considerably outperforms
the Linux allocator for the dedup application. Based on our analysis,
the Linux allocator’s default conguration invokes a large number
of madvise calls (over 500, 000), in order to return memory back to
the OS. However, FreeGuard does not invoke such madvise system
calls, which explains why FreeGuard signicantly outperforms the
Linux allocator in this case. Consequently, FreeGuard shows larger
memory consumption on this application, with around 64% more
memory used.

5.2 Memory Overhead
We have evaluated memory overhead of dierent allocators on
the same applications. For server applications like MySQL and Mem-
cached, we executed a script to periodically collect the /proc/PID/
status le, and utilize the maximum value of the VmHWM eld to
represent its maximum memory consumption. Memory consump-
tion of other applications was collected using the maxresident
output of the time utility, which reports the maximum amount of
physical memory consumed by an application [25].

The physical memory overhead of running Linux, OpenBSD, and
FreeGuard, is shown in Table 3. Overall, OpenBSD has almost the
same memory overhead as Linux, since it always prefers freed ob-
jects. Comparing to the Linux allocator, the total memory overhead
of FreeGuard is around 20%, while OpenBSD actually uses 6% less
memory, and DieHarder’s memory overhead is about 11%.

We have investigated to determine the cause of this. FreeGuard
utilizes four bump pointers and four freelists. Memory reuse ran-
domization may signicantly reduce the re-utilization of a par-
ticular object. For instance, consider an application performing
eight allocations, each of size 1MB, where one allocation follows
after another deallocation. The Linux allocator will immediately
re-utilize the freed object, which only increases the memory foot-
print by 1MB, in total. However, FreeGuard may utilize up to 8MB
of memory, since the randomization may choose to allocate only
from bump pointers, or a chosen freelist may not have any available
objects, causing it to fall back to the bump pointer again. Although,
when there are already multiple objects available in the freelists,
memory overhead will be not signicantly increased. FreeGuard
compromises memory overhead in order to achieve better random-
ization.

Currently, FreeGuard imposes more memory overhead than the
OpenBSD allocator. There is a balance between memory overhead

Programs Runtime Total Allocs Large Allocations (#) Memory Usage (MB)
(s) (#) DieHarder OpenBSD FreeGuard glibc DieHarder OpenBSD FreeGuard

blackscholes 37.26 22 4 4 4 613 619 613 615
bodytrack 26.6 437572 13053 15417 0 33 42 31 62
canneal 55.39 30728188 1 1720 1 943 1131 808 1281
dedup 16.23 4073908 359 1152213 7 1639 2076 1007 2830
facesim 70.41 4746623 16970 33393 26 323 393 341 376
ferret 4.58 139013 1557 7374 1 66 90 67 101
uidanimate 29.67 229928 6 8 2 408 464 429 433
freqmine 44.31 6638 6103 6227 3068 1859 1785 1821 1996
streamcluster 62.08 113271 30 1758 3 111 115 111 115
swaptions 19.98 48001811 0 16000129 0 9 12 7 12
x264 53.23 35771 241 35483 35 485 516 502 483
Aget 5.5 50 0 18 0 6 6 3 5
Apache – 495 0 4 0 5 5 5 6
Firefox 78.01 21126988 5393 413270 264 158 158 161 160
Memcached 4.62 118 5 17 0 6 9 6 9
MySQL – 1898867 51697 391172 5 123 132 271 154
Pbzip2 1.46 1229 851 1022 0 94 100 95 255
Pfscan 1.46 43 0 2 0 735 782 784 821
SQLite 20.62 1345226 9635 1075648 0 40 62 34 122

Table 3: Program characteristics related to dierent memory allocators.
(Apache and MySQL were measured by transactions per second rather than runtime.)

and performance overhead: (1) The OpenBSD allocator treats mem-
ory allocations larger than 2KB as large objects, which will be
allocated utilizing mmap every time (see Table 4). For each allocation
larger than 2KB, but less than 1MB, the OpenBSD allocator will
waste, at most, one page. Instead, FreeGuard utilizes power-of-two
size classes to manage objects less than 1MB. Thus, it is possible to
have larger internal fragmentation, with an upper bound of 50%. In
its default setting, FreeGuard adds one byte for the canary, which
helps nd possible overows in a timely manner, and stop the pro-
gram accordingly. This additional byte may waste almost 50% of the
allocated space if the original size was already aligned to a power
of two. (2) The OpenBSD allocator utilizes one bit to indicate the
status of an object, which also minimizes memory consumption,
but with higher performance overhead. FreeGuard will use one
word for each object in order to thread an object into the freelist. (3)
FreeGuard utilizes four freelists and four bump pointers, and may
randomly choose to allocate an object from bump pointers despite
free object availability. This also adds some memory overhead, but
provides better protection due to increased randomization.

5.3 Eectiveness
To verify the eectiveness of FreeGuard, we have tested it on several
dierent real-world vulnerabilities, as shown in Table 5. Note that
these vulnerabilities have also been evaluated in other works, such
as FreeSentry [38].

We conrmed whether FreeGuard can prevent or mitigate la-
tent problems in these applications. “Prevention” indicates that
FreeGuard completely avoids the problem, such as with double or
invalid frees. “Mitigation” indicates that the possibility of successful
attack is reduced, although there is no full guarantee that such a
problem will always be avoided.

All vulnerabilities were conrmed in the original applications
prior to linking with the FreeGuard library. All applications, except
OpenSSH, resulted in program crash. These problems include use-
after-free, double-free, and buer overow problems; OpenSSH
experiences an information leak.

bc-1.06. bc, an arbitrary precision numeric processing language,
contains a heap buer overow. We obtained a buggy version of
this program from BugBench, a C/C++ bug benchmark suite [27].
Bad input can trigger the buer overow, and will normally result
in a program crash. An array requiring 512 bytes is requested, and
an object of size 1,024 bytes is returned by FreeGuard. The bug
causes bc to access one element beyond the boundary of the array.
FreeGuard prevents a crash from occurring, as the overow occurs
within the slack/unused portion of the object, but does not reach
either the canary or guard page located at the end of the allocated
space.

ed-1.14.1. ed has an invalid free problem that can cause the pro-
gram to crash, since the developers changed a malloc’d buer for
a static one, but forgot to remove the corresponding free operation.
FreeGuard can always report and prevent this problem, and print
the call stack of the invalid free inside.

gzip-1.2.4. gzip, the GNU compression and decompression pro-
gram, contains a stack overow problem. We converted this prob-
lem into a heap overow. When it occurs, it causes the program
to crash, since adjacent metadata will be corrupted. FreeGuard,
however, avoids the crash, due to its segregated metadata.

Heartbleed. FreeGuard’s protection against buer over-read was
validated against the Heartbleed bug, which results in the leakage of
up to 64KB of data occurring from the heap. During our evaluation,

glibc DieHarder OpenBSD FreeGuard
mmap munmap mprotect mmap munmap mprotect mmap munmap mprotect mmap munmap mprotect

blackscholes 36 17 24 126 17 32 59 17 35 38 5 11023
bodytrack 6585 6555 125 20469 19600 33 19661 20466 36 6557 6526 11177
canneal 52 24 42 215307 27 31 154856 152849 34 33 2 33763
dedup 650 862 273989 258295 363 28 434648 499668 31 35 2 42631
facesim 105 39 42 33106 16940 31 14062 13705 584 38 6 12249
ferret 319 297 183 8119 1839 34 7037 8532 549 294 263 11483
uidanimate 43 19 28 20663 30 32 14929 14725 35 34 3 12532
freqmine 212 164 167 6848 6322 49 6187 6035 52 3165 3124 11460
streamcluster 107 80 90 257 102 92 201 136 95 33 2 11042
swaptions 53 25 220 992 20 32 365 14 35 32 1 87760
x264 286 269 39 1424 503 32 1016 943 35 34 3 11319
Aget 54 27 44 99 14 32 87 14 35 33 2 11023
Apache 239 32 141 417 34 140 295 30 143 225 32 10125
Firefox 12248 8916 207834 70947 14545 209854 93006 143198 208699 11845 8685 202429
Memcached 39 8 25 214 5 23 97 1 24 34 1 11030
MySQL 154 33 326 17239 14449 62 22248 49876 65 67 17 12079
Pbzip2 120 92 143 1114 1037 37 939 880 40 33 1 11088
Pfscan 41 2 30 83 2 34 76 2 37 36 2 11025
SQLite 65 33 4160 14152 9665 33 239746 254387 36 38 7 14994

Table 4: System call counts, including both the application and the allocator.

Application Vulnerability Reference Original FreeGuard
bc-1.06 Buer Overow Bugbench [27] Crash Mitigation
ed-1.14.1 Invalid Free CVE-2017-5357 Crash Prevention
gzip-1.2.4 Buer Overow Bugbench [27] Crash Mitigation
Heartbleed Buer Over-Read CVE-2014-0160 Data Leak Mitigation
Libti-4.0.1 Buer Overow CVE-2013-4243 Crash Mitigation

PHP-5.3.6
Use-After-Free CVE-2016-6290 Crash Mitigation
Use-After-Free CVE-2016-3141 Crash Mitigation
Double Free CVE-2016-5772 Crash Prevention

polymorph-0.4.0 Buer Overow Bugbench [27] Crash Mitigation
Squid-2.3 Buer Overow CVE-2002-0068 Crash Prevention

Table 5: Verifying FreeGuard on several vulnerabilities.

we observed that the OpenSSL library will request approximately
33KB to use for receiving the client heartbeat request. Due to the
nature of a BIBOP-heap, this results in FreeGuard fullling the
request with a 64KB object, as this is the smallest available bag
(whose sizes follow powers-of-two) capable of satisfying the request.
The malicious heartbeat request contains a falsied payload length
value, indicating the payload is 64KB long, when in fact, it is empty.
The server then allocates a new buer in which to construct the
heartbeat reply, and proceeds to copy 64KB from the start of the
payload regionwithin the request buer, the amount indicated by its
falsied header value. However, because the request data is stored
in a buer of size 64KB, and the payload section is not located at the
beginning of the object, this results in a buer over-read occurring.
Normally, this would result in the leakage of uninitialized heap data.
But, with FreeGuard’s random guard pages enabled, the buer over-
read can result in a program crash immediately upon accessing
the random guard page (if present) placed at the end of the object.
The proportion of random guard pages inserted onto the heap
is congurable, and was set to 10% for our evaluation. As such,
the Heartbleed attack was prevented 1-in-10 times, resulting in a
program crash.

Libti-4.0.1. To validate FreeGuard’s protection against buer
overow vulnerabilities, a heap-based buer overow found in
gif2ti, a GIF-to-TIFF image conversion tool found in the libti
library, was tested. When supplied with a specially-crafted image,
gif2ti will attempt to process the le, resulting in a crash. An
attacker might exploit this vulnerability, and could potentially exe-
cute arbitrary code under the privilege level of the account used to
run the process. We reproduce the exploit by supplying a crafted
GIF image as input. After linking to FreeGuard, the program avoids
the crash, instead reporting, "illegal GIF block type".

PHP-5.3.6. For PHP, two use-after-free vulnerabilities are trig-
gered by dedicated XML data. They would allow attackers to cause
a denial-of-service attack by crashing the program. We apply Free-
Guard to PHP and rerun the vulnerable code. One program prints
the correct data, while the other prints a null value. Although
the output is not correct in these cases, FreeGuard prevents the
program crash and, therefore, successfully prevents the denial-of-
service attack. FreeGuard provides protection due to its delayed
and randomized reuse mechanisms; by reutilizing freed objects in
FIFO order, as well as randomly choosing an object to return, cer-
tain use-after-free errors will not result in the corruption of in-use
object data.

We additionally tested FreeGuard with PHP when experiencing
a vulnerability caused by unserializing malicious XML data, an
issue that results in program crash due to a double-free error. We
use a malicious PHP script to reproduce this vulnerability. With
FreeGuard, the program reports the complete call stack upon the
second free.

polymorph-0.4.0. Polymorph, a lename converter, has a stack
buer overow problem that was modied to use the heap for the
purposes of our evaluation. This overow is actually very similar to

that of gzip, whichwill change themetadata and cause the program
to crash when using the glibc library. As with gzip, FreeGuard
avoids the crash due to its segregated metadata.

Squid-2.3. The aected version of Squid – a caching Internet proxy
– contains a heap buer overow. Squid allocates memory from
which to build a title URL string, however, it fails to account for
the extra space needed to URL-escape the string. Thus, a buer
overow occurs when the program attempts to escape the string,
and writes the result to an inadequately-sized heap buer. For this
case, FreeGuard will always detect the overow before the program
crashes, since FreeGuard can always nd out the corrupted canaries
in single-threaded programs, although conceptually, FreeGuard can
probabilistically prevent buer overows.

Conclusion: In each of these instances, FreeGuard allows the
programs to either run normally with no ill eects, or immediately
halts execution and reports the problem to the user. As described
above, FreeGuard can always detect double and invalid frees. Free-
Guard prevents or mitigates buer overows due to the following
mechanisms: rst, FreeGuard’s metadata segregation prevents the
corruption of metadata; second, due to FreeGuard’s power-of-two
object class sizes, it tolerates a certain level of corruption, and; third,
when the canary within an adjacent object has been detected to
be corrupt, FreeGuard immediately produces a warning and calls
abort. FreeGuard also mitigates use-after-free problems due to its
reuse of freed objects in FIFO order.

6 LIMITATIONS
Both FreeGuard and DieHarder utilize the same mechanism for the
management of large objects, which is safer than that of OpenBSD.
Currently, OpenBSD cannot eectively defend against use-after-
free vulnerabilities due to its cache mechanism, since freed objects
are not protected after their deallocations. Instead, accessing a freed
object in FreeGuard and DieHarder will cause an access violation,
since a freed object will be unmapped directly.

For small objects, FreeGuard has some limitations in random-
ized allocation, randomized memory reuse, and freelist protection,
which are discussed as follows.

Randomized allocation. FreeGuard’s randomized placement is
not as strong as that of DieHarder and OpenBSD. DieHarder pro-
vides O(logN) bits of entropy for its randomized placement [31],
where N represents the number of freed objects for this size class
in existing miniheaps. OpenBSD-6.0 rst chooses one-out-of-four
lists, then allocates an object randomly inside a bag. Currently, the
size of a bag is just one page. Thus, a bag can hold 256 objects
with the size 16 bytes, and 2 objects with the size 2,048 bytes. Thus,
the entropy associated with OpenBSD is currently between 3 bits
to 10 bits. FreeGuard only has 2 bits of entropy, as it will choose
one-out-of-four lists randomly.

Randomized memory reuse. DieHarder has the same entropy as
its randomized allocation, O(logN) bits [31]. OpenBSD-6.0 has a
delayed buer with 16 entries, which will provide an entropy of 4
bits. After that, no randomization exists: a freed object will be al-
ways placed back into the same bag; it will always allocate an object
from the rst bag, if any objects are available there. FreeGuard does

not use the delayed buer, but will put a freed object into one-out-
of-four lists randomly. FreeGuard introduces another mechanism
to increase the complexity of attack upon memory reuses: freed
objects will be utilized in a FIFO order, and FreeGuard may still
allocate never-allocated objects, even when there are some freed
objects in freelists. We cannot easily quantify this entropy, but it
should not be worse than OpenBSD.

Freelist protection. The biggest problem of FreeGuard is that its
freelists are not protected. Thus, if an attacker modies them, they
may take control of the heap allocator, and issue successful attacks
afterwards. The relationship between FreeGuard’s metadata and
heap objects is computable, when the starting address of the meta-
data is known. If the attacker has permission to run a program
on the target machine, he may be able to examine the contents of
/proc/PID/maps, and identify the placement of the metadata. How-
ever, if the attacker is unable to run programs on the target machine,
the randomization increases the complexity of such attacks. Both
OpenBSD and DieHarder improve the protection of their metadata,
since the relationship between heap objects and their metadata is
actually stored in a hash map. OpenBSD dramatically increases the
diculty of attacks, since every bag and bag metadata have the
same storage unit of one page.

7 RELATEDWORK
7.1 Secure Heap Allocators
There are other secure heap allocators, apart from those discussed
in Section 2. However, most focus primarily on a particular type of
security issue.

Some previous work has focused on securing only the object
metadata. Robertson et al. proposed to prepend canaries and check-
sums for the metadata in order to detect possible overows [35].
Younan et al. proposed to secure the metadata, utilizing a hash table
that is placed in a separate location [40]. Heap Server places the
metadata in the separate address space of another process for better
protection [20]. The dnmalloc allocator allocates a separate chunk
to hold the metadata, and utilizes a separate lookup table to map
the chunks to their metadata, which is similar to OpenBSD and
DieHarder [39]. Although these works can prevent some metadata-
related attacks, they cannot mitigate attacks toward the heap itself,
such as use-after-free attacks.

Furthermore, some works aim to increase the non-determinism
of memory allocations and reuses, including the changing of start-
ing addresses [7, 37], and shuing the reuse order of freed ob-
jects [20]. FreeGuard adopts some of these techniques, but provides
more protections than these works.

7.2 Defending One Specic Type of Errors
Many security hardening techniques maintain and lookup the meta-
data at runtime to defend against certain problems. These examples
include the checking of bounds information for validating array ref-
erences [2, 3], the conrmation of type information to validate cast
operations [24], and the collection of object pointer information to
perform garbage collection [33].

Iwahashi et al. proposed a Petri-net based signature that helps
to understand and detect double-free vulnerabilities [18]. Undangle

assigns a unique label to each object, and tracks the propagation
of these labels, employing dynamic taint analysis. Upon dealloca-
tion, Undangle determines unsafe dangling pointers based on the
lifetime of dangling pointers [9]. FreeSentry protects against use-
after-free vulnerabilities through compiler instrumentation [38].
FreeSentry tracks pointers pointing to every object, then invali-
dates these pointers when an object is freed, which imposes around
25% overhead on average. DangNULL prevents use-after-free and
double-free vulnerabilities [23]. Similarly, DangNULL traces the re-
lationship between pointers and objects, and nullies those pointers
when their pointing-to objects are freed. DangNULL also utilizes
compiler instrumentation in order to collect the relationship be-
tween pointers and objects. Overall, DangNULL’s performance
overhead is between 22% to 105%.

However, these countermeasures typically defend against only
one type of approach. In contrast, FreeGuard provides more com-
prehensive protection against a range of errors, with lower perfor-
mance overhead.

7.3 Employing the Vast Address Space
Archipelego [28] trades the address space for security and reliability
by randomly placing objects in the vast address space. Thus, the
probability of overowing real data can be eectively reduced.
Cling also utilizes the vast address space to tolerate use-after-free
problems [1]. FreeGuard utilizes the vast address space to map heap
objects to their metadata through the shadow memory technique,
in order to achieve better performance.

8 CONCLUSION
This paper presents a novel secure heap allocator, FreeGuard, which
provides signicantly better performance than existing secure al-
locators. FreeGuard designs a novel memory layout, reduces a
large number of mmap calls, and borrows the “freelist” idea from
performance-oriented allocators. Overall, FreeGuard imposes neg-
ligible performance overhead (less than 2%) over the Linux al-
locator, but features a range of additional security features. In
contrast, the OpenBSD allocator (the representative secure allo-
cator), imposes around 22% overhead on average, with the worst
case running 3.9× slower than FreeGuard. Finally, we have re-
leased the source code of FreeGuard, which is available at https:
//github.com/UTSASRG/FreeGuard.

ACKNOWLEDGEMENTS
We would like to thank our shepherd, Hamed Okhravi, and anony-
mous reviewers for their valuable suggestions and feedback, which
signicantly helped improve this paper. We are also thankful to
Emery Berger for his invaluable comments, especially regarding
DieHarder and OpenBSD, and suggestions on an early draft of this
paper. The work is supported by UTSA, Google Faculty Award, and
the National Science Foundation under Grants No. 1566154 and
1453011. It is also supported by an AFOSR grant, FA9550-14-1-0119.
The opinions, ndings, conclusions or recommendations expressed
in this paper are those of the author(s) and do not necessarily reect
the views of the National Science Foundation.

REFERENCES
[1] Periklis Akritidis. 2010. Cling: AMemory Allocator toMitigate Dangling Pointers.

In Proceedings of the 19th USENIX Conference on Security (USENIX Security’10).
USENIX Association, Berkeley, CA, USA, 12–12. http://dl.acm.org/citation.cfm?
id=1929820.1929836

[2] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, andMiguel Castro.
2008. PreventingMemory Error Exploits withWIT. In Proceedings of the 2008 IEEE
Symposium on Security and Privacy (SP ’08). IEEE Computer Society, Washington,
DC, USA, 263–277. https://doi.org/10.1109/SP.2008.30

[3] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. 2009. Baggy
bounds checking: an ecient and backwards-compatible defense against out-of-
bounds errors. In Proceedings of the 18th conference on USENIX security symposium
(SSYM’09). USENIX Association, Berkeley, CA, USA, 51–66. http://dl.acm.org/
citation.cfm?id=1855768.1855772

[4] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson.
2000. Hoard: a scalable memory allocator for multithreaded applications. In
ASPLOS-IX: Proceedings of the ninth international conference on Architectural
support for programming languages and operating systems. ACM Press, New York,
NY, USA, 117–128. https://doi.org/10.1145/378993.379232

[5] Emery D. Berger and Benjamin G. Zorn. 2006. DieHard: Probabilistic Memory
Safety for Unsafe Languages. In Proceedings of the 27th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’06). ACM, New
York, NY, USA, 158–168. https://doi.org/10.1145/1133981.1134000

[6] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. 2002. Recon-
sidering Custom Memory Allocation. In Object-oriented Programming, Systems,
Languages, and Applications (OOPSLA ’02). https://doi.org/10.1145/582419.582421

[7] Eep Bhatkar, Daniel C. Duvarney, and R. Sekar. 2003. Address obfuscation:
an ecient approach to combat a broad range of memory error exploits. In In
Proceedings of the 12th USENIX Security Symposium. 105–120.

[8] Christian Bienia and Kai Li. 2009. PARSEC 2.0: A New Benchmark Suite for
Chip-Multiprocessors. In Proceedings of the 5th Annual Workshop on Modeling,
Benchmarking and Simulation.

[9] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa. 2012. Un-
dangle: early detection of dangling pointers in use-after-free and double-free
vulnerabilities. In Proceedings of the 2012 International Symposium on Soft-
ware Testing and Analysis (ISSTA 2012). ACM, New York, NY, USA, 133–143.
https://doi.org/10.1145/2338965.2336769

[10] SQL Developers. [n. d.]. How SQLite Is Tested. https://www.sqlite.org/testing.
html. ([n. d.]).

[11] Dinakar Dhurjati, Sumant Kowshik, Vikram Adve, and Chris Lattner. 2003.
Memory Safety Without Runtime Checks or Garbage Collection. In Proceed-
ings of the 2003 ACM SIGPLAN Conference on Language, Compiler, and Tool
for Embedded Systems (LCTES ’03). ACM, New York, NY, USA, 69–80. https:
//doi.org/10.1145/780732.780743

[12] Jason Evans. [n. d.]. jemalloc. http://www.canonware.com/jemalloc/. ([n. d.]).
[13] Jason Evans. [n. d.]. Scalable memory allocation using jemalloc. https://

krebsonsecurity.com/2016/10/ddos-on-dyn-impacts-twitter-spotify-reddit/. ([n.
d.]).

[14] Yi Feng and Emery D. Berger. 2005. A Locality-improving Dynamic Memory
Allocator. In Proceedings of the 2005 Workshop on Memory System Performance
(MSP ’05). ACM, New York, NY, USA, 68–77. https://doi.org/10.1145/1111583.
1111594

[15] The Apache Software Foundation. [n. d.]. ab - Apache HTTP server benchmark-
ing tool. https://httpd.apache.org/docs/2.4/programs/ab.html. ([n. d.]).

[16] Sanjay Ghemawat and Paul Menage. [n. d.]. TCMalloc : Thread-Caching Malloc.
http://goog-perftools.sourceforge.net/doc/tcmalloc.html. ([n. d.]).

[17] David R. Hanson. 1980. A portable storage management system for the icon
programming language. (1980), 489–500 pages. https://doi.org/10.1002/spe.
4380100607

[18] Ryan Iwahashi, Daniela A. Oliveira, S. Felix Wu, Jedidiah R. Crandall, Young-Jun
Heo, Jin-Tae Oh, and Jong-Soo Jang. 2008. Towards Automatically Generating
Double-Free Vulnerability Signatures Using Petri Nets. In Proceedings of the 11th
International Conference on Information Security (ISC ’08). Springer-Verlag, Berlin,
Heidelberg, 114–130. https://doi.org/10.1007/978-3-540-85886-7_8

[19] Poul-Henning Kamp. [n. d.]. malloc (3) Revisited. http://www-public.tem-tsp.
eu/~thomas_g/research/biblio/2015/gidra15asplos-numagic.pdf. ([n. d.]).

[20] Mazen Kharbutli, Xiaowei Jiang, Yan Solihin, Guru Venkataramani, and Mi-
los Prvulovic. 2006. Comprehensively and Eciently Protecting the Heap. In
Proceedings of the 12th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS XII). ACM, New York, NY,
USA, 207–218. https://doi.org/10.1145/1168857.1168884

[21] Chris Lattner and Vikram Adve. 2005. Automatic Pool Allocation: Improving
Performance by Controlling Data Structure Layout in the Heap. In Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’05). ACM, New York, NY, USA, 129–142. https://doi.org/
10.1145/1065010.1065027

https://github.com/UTSASRG/FreeGuard
https://github.com/UTSASRG/FreeGuard
http://dl.acm.org/citation.cfm?id=1929820.1929836
http://dl.acm.org/citation.cfm?id=1929820.1929836
https://doi.org/10.1109/SP.2008.30
http://dl.acm.org/citation.cfm?id=1855768.1855772
http://dl.acm.org/citation.cfm?id=1855768.1855772
https://doi.org/10.1145/378993.379232
https://doi.org/10.1145/1133981.1134000
https://doi.org/10.1145/582419.582421
https://doi.org/10.1145/2338965.2336769
https://www.sqlite.org/testing.html
https://www.sqlite.org/testing.html
https://doi.org/10.1145/780732.780743
https://doi.org/10.1145/780732.780743
http://www.canonware.com/jemalloc/
https://krebsonsecurity.com/2016/10/ddos-on-dyn-impacts-twitter-spotify-reddit/
https://krebsonsecurity.com/2016/10/ddos-on-dyn-impacts-twitter-spotify-reddit/
https://doi.org/10.1145/1111583.1111594
https://doi.org/10.1145/1111583.1111594
https://httpd.apache.org/docs/2.4/programs/ab.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://doi.org/10.1002/spe.4380100607
https://doi.org/10.1002/spe.4380100607
https://doi.org/10.1007/978-3-540-85886-7_8
http://www-public.tem-tsp.eu/~thomas_g/research/biblio/2015/gidra15asplos-numagic.pdf
http://www-public.tem-tsp.eu/~thomas_g/research/biblio/2015/gidra15asplos-numagic.pdf
https://doi.org/10.1145/1168857.1168884
https://doi.org/10.1145/1065010.1065027
https://doi.org/10.1145/1065010.1065027

[22] Doug Lea. [n. d.]. The GNU C Library. http://www.gnu.org/software/libc/libc.
html. ([n. d.]).

[23] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim,
Long Lu, andWenke Lee. 2015. Preventing Use-after-free with Dangling Pointers
Nullication.. In NDSS.

[24] Byoungyoung Lee, Chengyu Song, Taesoo Kim, and Wenke Lee. 2015. Type
Casting Verication: Stopping an Emerging Attack Vector. In Proceedings of the
24th USENIX Conference on Security Symposium (SEC’15). USENIX Association,
Berkeley, CA, USA, 81–96. http://dl.acm.org/citation.cfm?id=2831143.2831149

[25] Linux Comunity. 2015. time - time a simple command or give resource usage.
[26] Tongping Liu and Emery D. Berger. 2011. SHERIFF: precise detection and auto-

matic mitigation of false sharing. In Proceedings of the 2011 ACM international
conference on Object oriented programming systems languages and applications
(OOPSLA ’11). ACM, New York, NY, USA, 3–18. https://doi.org/10.1145/2048066.
2048070

[27] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou. 2005.
Bugbench: Benchmarks for evaluating bug detection tools. In In Workshop on
the Evaluation of Software Defect Detection Tools.

[28] Vitaliy B. Lvin, Gene Novark, Emery D. Berger, and Benjamin G. Zorn. 2008.
Archipelago: Trading Address Space for Reliability and Security. In Proceedings
of the 13th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XIII). ACM, New York, NY, USA,
115–124. https://doi.org/10.1145/1346281.1346296

[29] Otto Moerbeek. 2009. A new malloc(3) for OpenBSD. https://www.openbsd.org/
papers/eurobsdcon2009/otto-malloc.pdf. (2009).

[30] NIST. [n. d.]. National Vulnerability Database. ([n. d.]). http://nvd.nist.gov/
[31] Gene Novark and Emery D. Berger. 2010. DieHarder: securing the heap. In

Proceedings of the 17th ACM conference on Computer and communications security
(CCS ’10). ACM, New York, NY, USA, 573–584. https://doi.org/10.1145/1866307.
1866371

[32] Kipp Owens and Rajiv Parikh. 2012. Fast Random Number Generator on
the Intel® Pentium® 4 Processor. https://software.intel.com/en-us/articles/
fast-random-number-generator-on-the-intel-pentiumr-4-processor/. (March

2012).
[33] Jon Rafkind, AdamWick, John Regehr, and Matthew Flatt. 2009. Precise Garbage

Collection for C. In Proceedings of the 2009 International Symposium on Memory
Management (ISMM ’09). ACM, New York, NY, USA, 39–48. https://doi.org/10.
1145/1542431.1542438

[34] Sean Reifschneider. [n. d.]. "Pure python memcached client". https://pypi.python.
org/pypi/python-memcached. ([n. d.]).

[35] William Robertson, Christopher Kruegel, Darren Mutz, and Fredrik Valeur. 2003.
Run-time Detection of Heap-based Overows. In Proceedings of the 17th USENIX
Conference on System Administration (LISA ’03). USENIX Association, Berkeley,
CA, USA, 51–60. http://dl.acm.org/citation.cfm?id=1051937.1051947

[36] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal
War in Memory. In Proceedings of the 2013 IEEE Symposium on Security and
Privacy (SP ’13). IEEE Computer Society, Washington, DC, USA, 48–62. https:
//doi.org/10.1109/SP.2013.13

[37] The PaX Team. [n. d.]. Address Space Layout Randomization. https://pax.
grsecurity.net/docs/aslr.txt. ([n. d.]).

[38] Yves Younan. 2015. FreeSentry: protecting against use-after-free vulnerabilities
due to dangling pointers. In NDSS.

[39] Yves Younan, Wouter Joosen, and Frank Piessens. 2006. Ecient Protection
Against Heap-based Buer OverowsWithout Resorting to Magic. In Proceedings
of the 8th International Conference on Information and Communications Security
(ICICS’06). Springer-Verlag, Berlin, Heidelberg, 379–398. https://doi.org/10.1007/
11935308_27

[40] Yves Younan, Yves Younan, Wouter Joosen, Wouter Joosen, Frank Piessens, Frank
Piessens, Hans Van Den Eynden, and Hans Van Den Eynden. 2005. Security of
memory allocators for C and C++. Technical Report.

[41] Qin Zhao, David Koh, Syed Raza, Derek Bruening, Weng-Fai Wong, and Saman
Amarasinghe. 2011. Dynamic Cache Contention Detection in Multi-threaded
Applications. In The International Conference on Virtual Execution Environ-
ments. Newport Beach, CA. http://groups.csail.mit.edu/commit/papers/2011/
zhao-vee11-cache-contention.pdf

http://www.gnu.org/software/libc/libc.html
http://www.gnu.org/software/libc/libc.html
http://dl.acm.org/citation.cfm?id=2831143.2831149
https://doi.org/10.1145/2048066.2048070
https://doi.org/10.1145/2048066.2048070
https://doi.org/10.1145/1346281.1346296
https://www.openbsd.org/papers/eurobsdcon2009/otto-malloc.pdf
https://www.openbsd.org/papers/eurobsdcon2009/otto-malloc.pdf
http://nvd.nist.gov/
https://doi.org/10.1145/1866307.1866371
https://doi.org/10.1145/1866307.1866371
https://software.intel.com/en-us/articles/fast-random-number-generator-on-the-intel-pentiumr-4-processor/
https://software.intel.com/en-us/articles/fast-random-number-generator-on-the-intel-pentiumr-4-processor/
https://doi.org/10.1145/1542431.1542438
https://doi.org/10.1145/1542431.1542438
https://pypi.python.org/pypi/python-memcached
https://pypi.python.org/pypi/python-memcached
http://dl.acm.org/citation.cfm?id=1051937.1051947
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1109/SP.2013.13
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
https://doi.org/10.1007/11935308_27
https://doi.org/10.1007/11935308_27
http://groups.csail.mit.edu/commit/papers/2011/zhao-vee11-cache-contention.pdf
http://groups.csail.mit.edu/commit/papers/2011/zhao-vee11-cache-contention.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Heap-related Memory Vulnerabilities
	2.2 Existing Secure Allocators

	3 Overview
	3.1 Key Ideas
	3.2 Scope, Assumptions, and Threat Model

	4 Implementation
	4.1 Managing Small Objects
	4.2 Managing Large Objects

	5 Experimental Evaluation
	5.1 Performance Overhead
	5.2 Memory Overhead
	5.3 Effectiveness

	6 Limitations
	7 Related Work
	7.1 Secure Heap Allocators
	7.2 Defending One Specific Type of Errors
	7.3 Employing the Vast Address Space

	8 Conclusion
	References

