
ar
X

iv
:1

70
8.

08
54

2v
1 

 [
cs

.C
R

] 
 2

8 
A

ug
 2

01
7

Verified Correctness and Security of mbedTLS HMAC-DRBG

Katherine Q. Ye
Princeton U., Carnegie Mellon U.

Ma�hew Green
Johns Hopkins University

Naphat Sanguansin
Princeton University

Lennart Beringer
Princeton University

Adam Petcher
Oracle

Andrew W. Appel
Princeton University

ABSTRACT

We have formalized the functional specification of HMAC-DRBG
(NIST 800-90A), and we have proved its cryptographic security—
that its output is pseudorandom—using a hybrid game-based proof.
We have also proved that the mbedTLS implementation (C pro-
gram) correctly implements this functional specification. �at proof
composes with an existing C compiler correctness proof to guaran-
tee, end-to-end, that the machine language program gives strong
pseudorandomness. All proofs (hybrid games, C program verifi-
cation, compiler, and their composition) are machine-checked in
the Coq proof assistant. Our proofs are modular: the hybrid game
proof holds on any implementation of HMAC-DRBG that satisfies
our functional specification. �erefore, our functional specifica-
tion can serve as a high-assurance reference.

1 INTRODUCTION

Cryptographic systems require large amounts of randomness to
generate keys, nonces and initialization vectors. Because many
computers lack the large amount of high-quality physical random-
ness needed to generate these values, most cryptographic devices
rely on pseudorandom generators (also known as deterministic ran-

dom bit generators or DRBGs) to “stretch” small amounts of true
randomness into large amounts of pseudorandom output.1

Pseudorandom generators are crucial to security. Compromis-
ing a generator (for example, by selecting malicious algorithm con-
stants, or exfiltrating generator state) can harm the security of
nearly any cryptosystem built on top of it. �e harm can be cata-
strophic: for example, an adversary who can predict future outputs
of the generator may be able to predict private keys that will be
generated, or recover long term keys used as input to the protocol
execution.

1A note on terminology: we use “entropy” loosely to denote randomness that is not
predictable by an adversary. We use “sampled uniformly at random” and “ideally
random” interchangeably. We use PRG, the acronym for “pseudo-random generator,”
to refer to the abstract cryptographic concept, whereas we use DRBG, the acronym
for “deterministic random bit generator,” to denote the specifications and implemen-
tations of PRGs. Instead of DRBG, some papers use “PRNG,” the acronym for “pseudo-
random number generator.” �e terms are synonymous.
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Moreover, it may be impossible to test that a DRBG has been
compromised if one is limited to black-box testing. Current valida-
tion standards [26, 30, 32] primarily resort to statistical tests and
test vectors, neither of which guarantee that the output is pseudo-
random. One can even construct backdoored PRGs that cannot be
detected by black-box testing [18].

Despite the importance of DRBGs, their development has not re-
ceived the scrutiny it deserves. Many catastrophic flaws in DRBGs
have been uncovered at both the design level and the implemen-
tation level. Some bugs arise from simple programming mistakes.
�e Debian DRBG, though open-source, was broken for two years
because a line of code was erroneously removed, weakening the
DRBG’s seeding process [29]. Several recent projects have identi-
fied and factored large numbers of weak RSA keys produced due
to improper generator seeding [12, 23, 28]. A bug in entropy use
in the Android DRBG resulted in the the� of $5,700 of Bitcoin [22].

While those flaws were accidental, some are malicious. Adver-
saries intentionally target DRBGs because breaking a DRBG is an
easy way to break the larger cryptosystem. �e most notorious
example is the NSA’s alleged backdooring of the Dual EC DRBG
standard [6, 13, 33, 36]. In the Dual EC design, the malicious choice
of a single algorithm parameter (an elliptic curve point Q) allows
for full state recovery of the DRBG given only a small amount of
raw generator output. �is enables the passive decryption of proto-
cols such as TLS and IPSEC/IKE [15, 16, 36]. From 2012 to 2015 this
backdoor was exploited by unauthorized parties to insert a passive
decryption backdoor into Juniper NetScreen VPN devices [15, 39].
Remarkably, a related DRBG flaw in Fortinet VPNs created a simi-
lar vulnerability in those devices during the same time period [25].

A key weakness in the deployment of DRBGs is that current
government standards both encourage specific designs and lack
rigor. �e FIPS validation process (required by the U.S. govern-
ment for certain types of cryptographic device) mandates the use
of an “approved” NIST DRBG in every cryptographic module. As a
consequence, a small number of DRBG designs have become ubiq-
uitous throughout the industry. �ese algorithms lack formal se-
curity proofs, and their design processes were neither open nor
rigorous—in fact, the designs were found to include errors. Even
worse, it is easy to implement certain of these DRBGs such that the
output of the generator is predictable (given detailed knowledge
of the implementation), and yet without this knowledge the output
of the generator is computationally indistinguishable from random

[18]. Unfortunately, the existing formal validation processes for
verifying the correctness of DRBG implementations are weak and
routinely ignore entire classes of flaws. Given that the widespread
deployment of a weak DRBG can undermine the security of entire
computer networks, we need a be�er way to validate these critical
systems.

http://arxiv.org/abs/1708.08542v1


1.1 Contributions

DRBGs have the special property that testing, even sophisticated
statistical fuzz-testing, cannot assure the security of an implemen-
tation. Even at the level of a pure cryptographic protocol, prov-
ing the security of a DRBG construction can be quite challenging.
(Hybrid-game-based proofs are the only known technique, but for
nontrivial DRBGs those proofs have so many technical steps that
it is hard to trust them.) �erefore a new paradigm is required, in
which the functional model of a DRBG is proved with a machine-

checked proof to satisfy the appropriate PRF properties, and the
C language implementation (and its compilation to machine lan-
guage) is proved with a machine-checked proof to correctly imple-
ment the functional model, and these proofs are linked together in
the same proof-checker.

We present machine-checked proofs, in Coq, of many compo-
nents, connected and checked at their specification interfaces so
that we get a truly end-to-end result: Verson 2.1.1 of the mbedTLS

HMAC-DRBG correctly implements the NIST 800-90A standard, and

HMAC-DRBG Generate andUpdate as described in that same NIST

800-90A standard indeed produces pseudorandom output, subject to

the standard assumptions2 about SHA-2, as well as certain assump-

tions about the adversary and the HMAC-DRBG instantiation that

we state formally and explicitly. We have not proved the security of

Instantiate (see §7) and Reseed.

To prove this theorem, we took the following steps.

(1) We constructed a proof that the version of HMAC-DRBG de-
scribed in the standard NIST SP 800-90A generates pseudoran-
dom output, assuming that HMAC is a pseudorandom func-
tion and that the DRBG’s state is instantiated with ideal ran-
domness. Our proof is similar to that of Hirose [24], but more
clearly and explicitly structured. By “pseudorandom,” wemean
that a nonadaptive3 probabilistic polynomial-time adversary
that requests the maximum amount of output from HMAC-
DRBG cannot distinguish its output from uniformly random
output with nonnegligible probability.

(2) We mechanized the proof in (1), formalizing the cryptographic
algorithm (“crypto spec”) and the security theorem in Coq, in-
stantiating HMAC as HMAC/SHA-256, and assuming that the
DRBG’s initial state is ideally random. Our crypto spec was
wri�enwith respect to theNIST standard SP 800-90A [6]which
defines HMAC-DRBG. It was wri�en in the probabilistic pro-
gramming language provided by the Foundational Cryptogra-
phy Framework [35], which is itself embedded in the Coq proof
assistant.

(3) We proved that thembedTLS implementation ofHMAC-DRBG
(wri�en in C) correctly implements a functional specification,
also derived from SP 800-90A, wri�en as a pure function in
Coq. We performed the verification using the Verified So�-
ware Toolchain (VST) framework [5], which is also embedded
in the Coq proof assistant.

2�e standard PRF assumptions about the security of SHA-2 are stated by Beringer et
al.[11, §4.2]. No one knows how to prove these, but it is not controversial to assume
them. See also §5 of our paper.
3In many typical applications of DRBGs, such as TLS, adversaries are nonadaptive
because they are not given control over parameters such as the number of requests
to the DRBG or the block length.

(4) We proved that our two functional specs for HMAC-DRBG
(both derived from SP 800-90A) are equivalent, by induction
in Coq. �is connects the C-program correctness proof to the
cryptographic pseudorandomness proof.

(5) Beringer et al. [11] and Appel [4] proved that an OpenSSL
implementation of HMACwith SHA-256 implements the FIPS-
198 and FIPS-180 functional specs (respectively), and those in
turn implement a PRF with bounded a�acker advantage, sub-
ject to some standard (unproven but uncontroversial) assump-
tions about the security of SHA-256’s compression function.

Composing these proofs (which we do in the Coq proof assistant
without any gaps at the interfaces) yields our main result. �is
modular approach allows one to incrementally verify even com-
plex cryptographic protocol implementations in real languages.

�e trusted base. Appel [4, §12] discusses at length the trusted
code base of this approach. In summary: the mbedTLS DRBG pro-
gram need not be trusted, as it is proved to implement the spec; the
compiler need not be trusted, as it is proved correct; the NIST spec
(or our formalization of it) need not be trusted, because it is proved
to be a PRF. FCF need not be trusted, because it is proved sound in
Coq (only the definitions used in the statement of the PRF theorem
need be trusted, because if you prove the wrong theorem it’s not so
useful). VST need not be trusted, because it is proved sound w.r.t.
the operational semantics of CompCert C. �e CompCert verified
optimizing C compiler need not be trusted, because it is proved
correct w.r.t. that same operational semantics and the op. sem. of
the assembly language. �e op. sem. specification of CompCert’s
source language (C) need not be trusted, because it’s just an in-
ternal interface of the proof (between VST and CompCert). What
must be trusted are: the specification of the assembly language
ISA (as an operational-semantic statement in Coq); the statement
of themain theorem and the definitions it relies on (one must make
sure that the right property is proved); and the Coq kernel (proof
checker), along with the OCaml compiler that compiled Coq, and
the OCaml compiler that compiled the OCaml compiler (it’s turtles
all the way down [38]). One could also compile mbedTLS with gcc
or clang, and in that case the compiler would be part of the TCB.

Our DRBG proof is for mbedTLS, and our HMAC proof is for
OpenSSL, so technically our end-to-end proof is for an implemen-
tation with those two components stapled together.

We prove “only” functional correctness, which has useful corol-
laries of safety and direct information flow: no buffer overruns,
no reading from or writing to unspecified locations. We do not ad-
dress side channels—which are not a functional-correctness property—
but because we verify standard C-language implementations, any
other analysis tools for side channels in C programs can be applied.
Closer to machine code, our approach is compatible with Barthe et
al.’s methodology of combining functional and implementational
correctness proofs with formal proofs of leakage security, based on
a noninterference analysis for CompCert’s low-level intermediate
language Mach [7].

Coq proofs. For the functional specification, cryptographic spec-
ification, proof of functional correctness, and security proof, see
github.com/PrincetonUniversity/VST/tree/master/hmacdrbg.
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�e README file in that directory explains how the Coq files cor-
respond to sections of this paper.

1.2 Prior work

Hirose [24] proves the pseudorandomness of the full HMAC-DRBG
on paper, also with respect to a nonadaptive adversary. However,
the proof is not linked to any implementation of HMAC-DRBG.
Moreover, though it is well-wri�en, the six-page Hirose proof is
challenging to read and verify. For example, Hirose justifies his
arguments informally; several times, he states that an important
implication is “easy to see” or that it “directly follows from the pre-
ceding lemmas.” Hirose also asserts that HMAC-DRBG is secure
when the user provides an optional additional input on initializa-
tion; however, he only states the relevant lemmas without proving
them. We do not prove any properties relating to additional input.

To perform proofs more readably and rigorously on complex
constructions such as DRBG, we harness the power of mechaniza-
tion. We mechanize our proof in the Coq proof assistant, using the
embedded Foundational Cryptography Framework (FCF). In con-
trast to working on paper, mechanizing a proof requires that all
lemmas and relationships between lemmas be precisely stated. Ad-
ditionally, FCF encourages proofs to be done in the game-playing
style, which makes the intermediate definitions more explicit (be-
cause they must all be wri�en as code) and the proof as a whole
easier to read and verify. See §4.4 for an outline of the structure of
our proof.

More specifically, the Coq proof assistant assists the user by pro-
viding an interactive development environment and user-program-
mable automation to construct a formal syntactic proof. �en, the
Coq kernel checks that this term proves the stated theorem. Coq
has been used to prove mathematical theorems, cryptographic the-
orems, C program correctness, and C compiler correctness. �e
la�er three are relevant to our work.

Affeldt et al. [1] present an end-to-end machine-checked (in
Coq) proof of the Blum-Blum-Shub PRG, proving cryptographic
security of the algorithm and correctness of the implementation.
�ey mechanize an existing, well-known proof of BBS’s security.
�eir cryptographic games are linked directly to their own assem-
bly code, whereas our games apply to a high-level specification of
the DRBG in question, and connect to a widely used C program.
BBS is not used in practice because it is quite slow [37].

Appel [4] proved in Coq that OpenSSL SHA-256 correctly imple-
ments the FIPS-180 specification. Beringer et al. [11] proved in Coq
the PRF security of the FIPS-198 specification of HMAC/SHA-256,
and that the OpenSSL implementation of HMAC correctly imple-
ments FIPS-198.

Petcher [34] applies mechanization to demonstrate a negative

example, rather than a positive one. He demonstrates how the pro-
cess of mechanizing the proof of security of Dual-EC-DRBG natu-
rally results in an unprovable theorem, which reveals theweakness
in the DRBG’s design. Our mechanized proof of HMAC-DRBG
showswhich parts have no flaws (Generate andUpdate), and which
are problematic (Instantiate).

Inspired by the Android bug described earlier, the Entroscope
tool [20] uses information flow and static analysis (with bounded
model checking) to detect entropy loss in the seeding of a PRNG.

Entroscopehas been successfully applied to find a bug in the Libgcrypt
PRNG, and would have detected the Debian incident [29].

Higher-level protocols such as TLS have been proved secure
with machine-checked proofs [14], although without proving se-
curity of primitives such as DRBGs or HMAC. Our work comple-
ments such proofs.

No prior work has proved full cryptographic security and cor-
rectness of a DRBG that links all of its components: a specification
on paper, a proof of security on paper, a widely used implemen-
tation, and its correct compilation to assembly code. �e DRBG
flaws listed earlier demonstrate that a DRBG may contain flaws
anywhere (and everywhere!) in that stack. �us, it is imperative
to verify DRBGs, and cryptographic primitives in general, in aman-
ner that links all of their components.

2 DETERMINISTIC RANDOM BIT
GENERATORS

In 2007 the U.S. National Institute of Standards and Technology
(NIST) released Special Publication 800-90 describing several pseu-
dorandom generator constructions, replaced in 2012 by 800-90A
[6]. Termed deterministic random bit generators in NIST’s parlance,
these generators have been widely adopted in many commercial
products, includingmany operating systems and TLS libraries. �is
adoption is largely because SP800-90A generators are required in
modules validated by the U.S. government’s Cryptographic Mod-
ule Validation Program [32].

�e NIST specification describes a specific algorithmic interface
as well as an informal list of security goals. We present this below.

Definition 2.1. A DRBG is a tuple of algorithms (Instantiate,
Update,Reseed,Generate) with the following interface.

Instantiate(entropy,nonce).On input of an initial entropy string
and a personalization nonce, outputs the initial state 〈k,v〉.

Update(data, 〈k,v〉). On input of (optional) data string (for seed-
ing) and a generator state 〈k,v〉, outputs a new state 〈k ′,v ′〉.

Reseed(〈k,v〉, entropy). On input of the current generator state
and an entropy string, output a new state 〈k ′,v ′〉.

Generate(〈k,v〉,n). On input of the current generator state and
a number of blocks n, output a string of pseudorandom
output as well as a new state 〈k,v〉.

�e NIST standard informally describes several security properties
that a DRBG must possess. �ese include the standard notion of
pseudorandomness, as well as several auxiliary properties. In this
work we focus primarily on the pseudorandomness property.

Definition 2.2 (Pseudorandomness of the DRBG).

Let Π = (Instantiate,Update,Reseed,Generate) be a DRBG, let
c denote the length of the internal state vector, and let the random
variable PRb (Π,A, λ)where b ∈ {0, 1}, and λ ∈ N denote the result
of the following probabilistic experiment:

PRb (Π,A, λ) := E ← {0, 1}λ

(k,v) ← Instantiate(E,⊥)

B ← AOGenerate(b, ·)(λ)

Output B

where OGenerate(b,n) defines an oracle that is initialized with ini-
tial state (k,v) and if b = 0 runs the Generate algorithm using
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the internal state and then updates the internal state. �e secu-
rity parameter λ is the number of entropy bits seeding the DRBG.
If b = 1, the oracle samples a uniformly random string of length
nc (where c is the block length) and returns this to A. A DRBG
scheme Π is pseudorandom if ∀ p.p.t. algorithms A the following
two ensembles are computationally indistinguishable:

{

PR0(Π,A, λ)
}

λ

c
≈

{

PR1(Π,A, λ)
}

λ

In this workwewill focus primarily on theGenerate andUpdate
algorithms, while leaving analysis of the Instantiate algorithm for
future analysis (we discuss the reasons in Section 7). �us in the
remainder of this workwe will employ the simplifying assumption
that the initial state (k,v) is uniformly random.

2.1 HMAC-DRBG

HMAC-DRBG is one of the four pseudorandomgenerator construc-
tions formalized in NIST SP 800-90A. It works by iterating HMAC,
a keyed-hash message authentication function that can be instan-
tiated using a cryptographic hash function such as SHA. HMAC is
useful in constructing a PRG. When instantiated with an efficient
cryptographic hash function it is highly efficient. Bellare [9, §5]
shows that HMAC is a pseudorandom function if certain assump-
tions hold on the hash functions’s internal compression function.

HMAC-DRBG has an internal state consisting of two pieces of
administrative information, which are constant across calls, and
two pieces of secret information, which are updated during each
call to the PRG.�e administrative component of the state contains
the security strength of the PRG’s instantiation, for which the In-
stantiate function obtains the appropriate amount of entropy for
that security strength, and a flag that indicates whether this in-
stantiation requires prediction resistance.

�e secret component of the internal state is the working state
(k,v), where k is a secret key of length c for the internal PRF
(e.g., HMAC). Each time the PRG generates a string of pseudoran-
dom bits (by calling the Generate function), k is updated at least
once. �ev component holds the newest “block” of pseudorandom
bits that the PRG has generated. �e length of v is the length of
HMAC’s output, which is fixed (e.g., 256 bits).

Here we will rephrase the NIST standard in a mostly functional
style that closely mirrors our specification in Coq. Let f denote
HMAC and fk denote HMAC partially applied with the key k . Let
| | denote concatenation.

Update refreshes (k,v), optionally using some data, which can
be fresh entropy for prediction resistance.

Instantiate initializes (k,v) and reseed counter. For simplicity,
we omit the additional input and personalization string parameters
from Instantiate the “crypto spec” that we present here; these op-
tional parameters allow for the provision of additional entropy to
the instantiate call. Our proof of the mbedTLS C code (see §6) does
handle these parameters. �e omi�ed parameters are generally
used for fork-safety, so therefore we have not proved fork-safety.

Update(data,k,v) :=

k1 ← fk (v | |0x00| |data)
v1 ← fk1 (v)

if (data = nil)
then return (k1,v1)
else k2 ← fk1 (v1 | |0x01| |data)

v2 ← fk2 (v1)

return (k2,v2)

Instantiate(entropy,nonce) :=

seed ← entropy | |nonce

k ← 0x00 . . . 00
v ← 0x01 . . . 01
(k1,v1) ← Update(seed,k,v)

reseed counter ← 1
return (k1,v1, reseed counter)

Reseed could be called for two reasons. First, reseed counter

may have exceeded reseed interval. �is is rare, since reseed interval

is set to high values in practice; its maximum value is 248, mean-
ing it would naturally reseed once every couple of million years.
(Indeed, in practice, one does not want a PRG to reseed o�en. �is
would give an a�acker more opportunities to compromise the en-
tropy source.) More commonly, Reseed is called when a PRG’s
state could have been compromised, and requires fresh entropy to
be mixed in.

Generate(k,v,n) :=

(* We don’t model the reseed test.
if reseed counter > reseed interval then . . . reseed . . .
else *)

temp0 ← nil

v0 ← v

i ← 0
while length(tempi ) < n

do vi+1 ← fk (vi )

tempi+1 ← tempi | |vi+1
i ← i + 1

returned bits← le�most n of tempi
(k1,vi+1) ← Update(k,vi )

reseed counter1 ← reseed counter + 1
return (bits,k1,vi+1, reseed counter1)

Reseed(k,v, entropy) :=

(k1,v1) ← Update(seed,k,v)

reseed counter ← 1
return (k,v, reseed counter )

From the user’s point of view, only the Instantiate and Generate

functions are visible. �e state is hidden. Typical usage consists of
a call to Instantiate, followed by any number of calls to Generate to
produce pseudorandom bits. Generate automatically calls Update
every time it is called, and Generate may force a call to Reseed.
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3 OVERVIEW OF THE PROOF

Herewe explain the techniques used in our proof. Section 4 presents
the mechanized proof in detail.

3.1 Key result: HMAC-DRBG is pseudorandom

We prove the pseudorandomness property of HMAC-DRBG. As
with traditional proofs, we show the computational indistinguisha-
bility of two main “experiments.” In the first (or “real”) experi-
ment, which roughly corresponds to the experiment PR0 in §2, the
adversary interacts with an oracle whose generator uses HMAC-
DRBG. In the second (or “ideal”) experiment, the adversary inter-
acts with an oracle that produces uniformly random output. �is
corresponds to PR1. Our goal is to connect these experiments via
a series of intermediate “hybrid” experiments, which we will use
to show that the real and ideal experiments are computationally
indistinguishable by any probabilistic polynomial time (p.p.t.) ad-
versary.

�e real experiment (Greal). In this experiment, a p.p.t. adver-
sary A makes a sequence of calls to an oracle that imple-
ments the Generate function of DRBG. At the start of the
experiment, the generator is seeded with a uniformly ran-
dom generator state 〈k,v〉, and at each call the adversary
requests a fixed number n of blocks of generator output,
where n is chosen in advance. �e oracle returns the re-
quested output, then updates its internal state as required
by the Generate algorithm. At the conclusion of the ex-
periment, the adversary produces an output bit b .

�e ideal experiment (Gideal). �e adversary A interacts with
an oracle according to the same interface as in the pre-
vious experiment. However, this oracle simply returns a
uniformly random string of length n blocks. �e oracle
maintains no internal state. At the conclusion of the ex-
periment, the adversary produces an output bit b .

Stated informally, the probability that A outputs 1 when interact-
ing with Greal, minus the probability that the adversary outputs 1
when interacting withGideal, is a measure of how successfulA is in
distinguishing the pseudorandom generator from a random gener-
ator. Our goal is to bound this quantity to be at most a negligible
function of the generator’s security parameter (see §5).

Our proof connects the real and ideal experiments by defining
a series of intermediate, or hybrid, experiments. �ese hybrid ex-
periments comprise a transition between the real and ideal experi-
ments. We show that for each successive pair of hybrids—beginning
with the real experiment and ending with the ideal experiment—
the distribution of the adversary’s output must be at most negli-
gibly different between the two experiments in the pair. Having
performed this task for each pair of experiments leading from real

to ideal, we then apply a standard hybrid argument to prove that
if all intermediate hybrids satisfy our condition, then the real and
ideal experiments themselves must also be computationally indis-
tinguishable. It remains now to outline our hybrids.

Overview of the hybrids. Recall that the HMAC-DRBG generation
procedure consists of an iterated constructionwith twomain stages.
Given a uniformly random internal state (k,v0) the first phase of
generation operates as follows: a call to the Generate function

produces a sequence of output blocks which are calculated by ap-
plying the HMAC function fk (v0) to generate a block of outputv1,
and then applying fk (v1) to obtainv2 and so on untiln blocks have
been generated. �e second phase of Generate updates the inter-
nal state of the generator to produce a new state (k ′,v ′0)which will
be used in the subsequent call to Generate.

Our proof defines a set of hybrids that shows that at each call to
Generate, given integer n (whose size is polynomial in λ, the num-
ber of entropy bits) and a uniformly random initial state (k,v0),
the output ofGenerate(k,v,n) is indistinguishable from a random
string. Using these hybrids, we show that the PRG, over all calls to
Generate, is secure for any fixed number of calls numCalls made
by the adversary.

We define the following sequence of hybrids:

Greal. �is is the real experiment in which all calls are answered
using the HMAC-DRBG Generate algorithm.

G1...numCalls . For each hybrid indexed by i ∈ [1, . . . , numCalls],
we modify the experiment such that the first i calls are
replaced with a function that simply returns ideally ran-
dom bits and a new uniformly random state (k ′,v ′0) when
queried on any input. Internally this is achieved using two
additional hybrids:
(1) Internal hybrid 1. In this hybrid, the first i − 1 ora-

cle calls produce random output. In call i we modify
the output to sample a random function r and use r
in place of the PRF f to compute the Generate algo-
rithm.

(2) Internal hybrid 2. Identical to the previous hybrid,
except that we substitute each output of the random
function with a string of uniformly random bits.

Gideal. �is is the ideal experiment.

In the first hybrid, we replace the HMAC function f with a ran-
dom function r . We are able to show that this replacement does
not affect A’s output if f is pseudorandom, as this would imply
the existence of a distinguisher for the pseudorandom function, a
fact which would directly contradict our assumption. With this
replacement complete, hybrid (2) requires us to make specific ar-
guments about the input to the random function r , namely that
the inputs to the random function do not collide. �us, the core
of our proof is a sequence of theorems arguing that, from the per-
spective of A, the changes we make at each of the intermediate
hybrids described above induces only a negligible difference inA’s
output. We conclude then by making a standard hybrid argument
that bounds the overall distance ofGreal andGideal to be negligible
in λ. We calculate a concrete bound on A’s ability to distinguish
betweenGreal and Greal.

4 MECHANIZED SECURITY PROOF

In this section, we describe our machine-checked proof of HMAC-
DRBG’s pseudorandomness. All definitions and theorem statements
are taken straight from the Coq proofs and may be looked up by
name in the file. See the end of §1.1 for the link to our repository.

4.1 Foundational Cryptography Framework

Our proof uses the Foundational Cryptography Framework [35],
a Coq library for reasoning about the security of cryptographic
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schemes. FCF provides a probabilistic programming language for
describing cryptographic constructions, security definitions, and
assumed-hard problems. Probabilistic programs are described us-
ing Gallina, the purely functional programming language of Coq,
extended with a computational monad that adds uniform sampling
on bit vectors. In this language, {0,1}ˆn describes uniform sam-
pling on bit vectors of length n, and monadic arrows (e.g. <-$)
sequence the operations. Comp A is the type of probabilistic com-
putations that return values of type A, and a denotational semantics
relates every Comp A with a probability distribution on A.

FCF provides a theory of probability distributions, a program
logic, and a library of reusable arguments and tactics that can be
used to complete proofs. All of these items are based on theory de-
rived from the semantics of probabilistic programs, and the result
is a versatile proof framework with a small foundation. For exam-
ple, FCF includes a reusable hybrid argument on lists that can be
used in proofs like one described in this paper. FCF also provides
a standard type and associated theory for an adversary that is al-
lowed to interact with an oracle (called OracleComp).

4.2 Cryptographic specification

At a high level, any DRBG in the NIST specification takes as input
an initial state (k,v) and a list of natural numbers, where each num-
ber is the number of blocks (bitvectors) requested for that call, e.g.
[1, 3, 2]. It returns a list of lists of bitvectors with the correct num-
ber of generated blocks in each list, e.g. queried with [1, 3, 2], our
model of the DRBG would return [[b1], [b2,b3,b4], [b5,b6]], where
each bi ’s size is the output size of the PRF used in the DRBG. Be-
cause we model a nonadaptive adversary, there is only this one
round of query-response.

DRBG algorithm definitions. We begin by defining the abstract
PRG used in our mechanized proof of pseudorandomness. Let f
be an arbitrary PRF that takes a key bitvector, an input list, and re-
turns an output bitvector. η is the output size of the PRF, Bvector η
is the type of bitvectors of size η (also called “blocks”), and KV

is a type synonym for the PRG’s internal state, which is a tuple
consisting of two blocks (k,v).

Variable η : nat.

Hypothesis nonzero_eta : η > 0.

Variable f : Bvector η -> list bool -> Bvector η.

Definition KV : Set := Bvector η * Bvector η.

�e function Instantiate instantiates the PRG’s internal state (k,v)
with ideal randomness. �is idealized Instantiate function does
not reflect the NIST specification; we discuss this in Section 7.

Definition Instantiate : Comp KV :=

k <-$ {0,1}ˆη;

v <-$ {0,1}ˆη;

ret (k, v).

�e function Gen loop corresponds to the main loop of HMAC-
DRBG’s Generate function. Given an internal state (k,v) and a
number of requested blocks n, it returns a list of generated blocks,
along with the last generated block, which becomes the new v in
the internal state.

Fixpoint Gen_loop (k : Bvector η) (v : Bvector η)

(n : nat) : list (Bvector η) * Bvector η :=

match n with

| O => (nil, v)

| S n' => let v' := f k (to_list v) in

let (bits, v'') := Gen_loop k v' n' in

(v' :: bits, v'')

end.

NIST specifies that at the end of a call to Generate, Update is im-
mediately called to refresh the internal state. In our Coq definition,
we have inlined Update into Generate:

Definition Generate (state : KV) (n : nat) :

Comp (list (Bvector η) * KV) :=

[k, v] <-2 state;

[bits, v'] <-2 Gen_loop k v n;

k' <- f k (to_list v' ++ zeroes);

v'' <- f k' (to_list v');

ret (bits, (k', v'')).

�e NIST spec allows n to be any number of bits (up to a specified
maximum), by discarding extra generated bits up to a multiple of
the HMAC block size. Our security theorem measures n in blocks,
not bits; it would be straightforward to extend the theorem to ac-
count for discarding surplus bits.
Generate and Instantiate comprise our definition of the PRG.

�e adversaryA is given the output of the PRG, which is a list of
lists of blocks. It may perform a probabilistic computation on that
input, and it returns a boolean guess a�empting to distinguish the
PRG’s output from ideally random output. A is nonadaptive; it is
given the output all at once and cannot further query the PRG.

Variable A : list (list (Bvector η)) -> Comp bool.

Assumptions. We assume that there is a nonzero number of calls
numCalls to Generate. We assume that on each call, the adversary
requests the same nonzero number of blocks blocksPerCall. �is
request list is called requestList.

Variable blocksPerCall : nat.

Variable numCalls : nat.

Definition requestList : list nat :=

replicate numCalls blocksPerCall.

Hypothesis H_numCalls : numCalls > 0.

Hypothesis H_blocksPerCall : blocksPerCall > 0.

Using the definitions of the PRG’s functions and of the adver-
sary, we define the real-world gameGreal that simulates use of the
PRG. First, the internal state of the PRG is instantiated. �en the
Generate function is iterated over the request list using the func-
tion oracleMap, which tracks the PRG’s internal state (k,v) and
updates it a�er each iteration. �e resulting list of lists of blocks
is passed to the adversary, which returns a boolean guess.

Definition G_real : Comp bool :=

[k, v] <-$2 Instantiate;

[bits, _] <-$2 oracleMap Generate (k, v) requestList;

A bits.

�e ideal-world game Gideal simply generates a list of lists of
ideally random blocks, where each sublist is the same length as
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the corresponding one in the output generated by the PRG. Here,
compMap maps a probabilistic function over a list.

Definition G_ideal : Comp bool :=

bits <-$ compMap Generate_rb requestList;

A bits.

4.3 Formal statement of theorem

Our main theorem states that the probability that an adversary can
distinguish between the real-world gameGreal and the ideal-world
game Gideal is bounded by a negligible quantity.

Theorem G_real_ideal_close :

| Pr[G_real] - Pr[G_ideal] | ≤

numCalls * (PRF_Advantage_Max + Pr_collisions).

�is quantity is the number of calls numCalls to the PRG mul-
tiplied by a constant upper bound on the difference between adja-
cent hybrids, which is the sum of (1) an upper bound on the PRF
advantage for HMAC, and (2) an upper bound on the probability
of collisions in a list of length blocksPerCall of Bvector η that are
each sampled uniformly at random.

For quantity (1), the PRF advantage of a function f is infor-
mally defined to be the maximum probability that any p.p.t. ad-
versary can distinguish f from a PRF. Since a PRF’s advantage
is defined over all p.p.t. PRF adversaries, we construct a PRF ad-
versary that takes an oracle as input (denoted by OracleComp in
its type), runs the PRG using that oracle, and returns the PRG ad-
versary A’s guess. Technically, PRF Adversary defines a family of
adversaries parametrized by i , the index of the hybrid. �ere is
actually a different PRF advantage for each hybrid i .

Definition PRF_Adversary (i : nat) :

OracleComp Blist (Bvector eta) bool :=

bits <--$ oracleCompMap_outer (Oi_oc' i) requestList;

$ A bits.

�e rationale behind this definition of PRF Adversary will be
given in the discussion of lemma Gi prf rf close in Section 4.4.

Now we can use the definition of PRF Adversary, along with the
PRF f , to define PRF Advantage Game i , which is the PRF advan-
tage for hybrid i (again discussed further in Gi prf rf close).

Definition PRF_Advantage_Game i : Rat :=

PRF_Advantage RndK ({0,1}ˆη) f (PRF_Adversary i).

Finally, we define the upper bound on f ’s PRF advantage to be
the maximum (taken over i) of the PRF advantages of hybrid i .

Definition PRF_Advantage_Max :=

PRF_Advantage_Game (argMax PRF_Advantage_Game numCalls).

If f is instantiated with HMAC, then PRF Advantaдe Max can
be instantiated with the bound on the PRF advantage of HMAC
derived in [11], modulo some technical details of instantiating the
PRF Adversary between the two definitions.

�antity (2) in the theorem statement is the upper bound on the
probability of collisions in a list of length blocksPerCall of Bvector η
that are each sampled uniformly at random.

Definition Pr_collisions := (1 + blocksPerCall)ˆ2 / 2ˆη.

�is arises from bounding the probability of the “bad event” in in-
termediate hybrids, the probability of collisions in the inputs to a
random function as used in that intermediate hybrid.

4.4 Proof that HMAC-DRBG is pseudorandom

We formulate the real-world and ideal-world outputs as games in-
volving interactions with the adversary A, and use the code-based
game-playing technique [10] to bound the difference in probabil-
ity that the adversary returns True. We call this “bounding the dis-
tance between the two games.” We use “equivalent” to mean that
two games correspond to the same probability distribution. We ab-
breviate “random function” as “RF” and “ideal randomness” as “RB,”
for “random bits.” �e output block-size of the PRF is denoted by
η.

Now we outline the proof of the main result G real ideal close.
Here is the proof script:

Theorem G_real_ideal_close :

| Pr[G_real] - Pr[G_ideal] | ≤

numCalls * (PRF_Advantage_Max + Pr_collisions).

Proof.

rewrite Generate_move_v_update.

rewrite G_real_is_first_hybrid.

rewrite G_ideal_is_last_hybrid.

specialize (distance_le_prod_f (fun i => Pr[Gi_prg i])

Gi_adjacent_hybrids_close numCalls).

intuition.

Qed.

�eproof is quite short, since it consists of applying five lemmas:
rewriting Greal into the nicer form defined by G1 prg, then rewrit-
ing the ideal-world and real-world games as hybrids, then applying
the theorem Gi adjacent hybrids close that bounds the difference
betweeen any two adjacent hybrids by Gi Gi plus 1 bound. Most
of the work is done in Gi adjacent hybrids close.

Our proof is structured according to this outline, and we will
present the lemmas in this order:

∗ G_real_ideal_close

1. Generate_move_v_update

2. G_real_is_first_hybrid

3. G_ideal_is_last_hybrid

4. Gi_adjacent_hybrids_close

a. Gi_prog_equiv_prf_oracle

b. Gi_replace_prf_with_rf_oracle

c. Gi_replace_rf_with_rb_oracle

i. Gi_prog_equiv_rb_oracle

ii. Gi_rb_rf_identical_until_bad

(1) fcf_fundamental_lemma

(2) Gi_rb_rf_return_bad_same

(3) Gi_rb_rf_no_bad_same

iii. Gi_Pr_bad_event_collisions

5. hybrid_argument

We start by proving a lemma to rewrite Greal into a nicer form
defined by G1 prg.

Lemma Generate_move_v_update :

Pr[G_real] == Pr[G1_prg].
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�e way NIST’s Generate function updates v makes it difficult
to write neat hybrids. Specifically, the PRF is re-keyed on the sec-
ond line of Generate; then, on the next line, in order to update v ,
Generate queries the new PRF. �erefore, if we were to replace fk
with a PRF oracle, it would have to span the last line of Generate
and the first two lines of the next Generate call, but not include
the second call’s v-update. �is would be messy to reason about.
We solve this problem by moving each v-update to the beginning
of the next call of Generate, then prove that the outputs are still
identically distributed. �en, a�er the PRF is re-keyed, we do not

further query it in this call of Generate v.
In the intermediate game G1 prg, we move each terminal v-

update to the beginning of the next call to Generate by spli�ing
the Generate function into Generate noV and Generate v.

�e function Generate noV is used for the first call. It differs
from Generate because it does not start by updating the v .

Definition Generate_noV (state : KV) (n : nat) :

Comp (list (Bvector η) * KV) :=

[k, v] <-2 state;

[bits, v'] <-2 Gen_loop k v n;

k' <- f k (to_list v' ++ zeroes);

ret (bits, (k', v')).

�e second version, Generate v, starts by updating v and does
not update v again. �en, as in Greal, the resulting list of lists of
blocks is passed to the adversary, which returns a boolean guess.

Definition Generate_v (state : KV) (n : nat) :

Comp (list (Bvector η) * KV) :=

[k, v] <-2 state;

v' <- f k (to_list v); (* new *)

[bits, v''] <-2 Gen_loop k v' n;

k' <- f k (to_list v'' ++ zeroes);

ret (bits, (k', v'')).

�is is the revised real-world game that uses the two split-up
Generate versions defined above.

Definition G1_prg : Comp bool :=

[k, v] <-$2 Instantiate;

[head_bits, state'] <-$2 Generate_noV (k, v)

blocksPerCall;

[tail_bits, _] <-$2 oracleMap Generate_v state'

(tail requestList);

A (head_bits :: tail_bits).

To prove the real-world game Greal equivalent to the new ver-
sion G1 prg, we prove that the pseudorandom output produced by
this sequence of calls

[Generate,Generate, . . .]

is identically distributed to the pseudorandom output produced by
this new sequence of calls

[Generate noV ,Generate v,Generate v, . . .].

Using G1 prg, to set up the hybrid argument, we rewrite the two
“endpoint” games as hybrids. We first prove (by a straightforward
induction) that the real-world game is equal to the first hybrid.

Lemma G_real_is_first_hybrid :

Pr[G1_prg] == Pr[Gi_prg O].

Next: the ideal-world game is equal to the last hybrid, also proved
by a straightforward induction.

Lemma G_ideal_is_last_hybrid :

Pr[G_ideal] == Pr[Gi_prg numCalls].

Bounding the difference between adjacent hybrids. As de-
scribed in Section 4.3, the difference between any two adjacent
hybrids is defined to be the sum of the maximum PRF advantage
over the PRF advantage for each hybrid, plus an upper bound on
the probability of collisions in a list of length blocksPerCall of uni-
formly randomly sampled blocks of length η each.

Theorem Gi_adjacent_hybrids_close : forall (n : nat),

| Pr[Gi_prg n] - Pr[Gi_prg (1+n)] |

≤ PRF_Advantage_Max + Pr_collisions.

�e game Gi prg i defines the ith hybrid game, which replaces
the output of the PRF with ideal randomness for any call before
the ith call.

Definition Gi_prg (i : nat) : Comp bool :=

[k, v] <-$2 Instantiate;

[bits, _] <-$2 oracleMap (choose_Generate i)

(O, (k, v)) requestList;

A bits.

To do this, Gi prg i uses an oracle choose Generate i that tracks the
number of calls callsSoFar (in addition to the PRG’s internal state
(k,v)) and returns the appropriate version of the PRG for that call.
choose Generate i returnsGenerate rb intermediate if the call index
is less than i , and Generate noV or Generate v as appropriate oth-
erwise.

Definition choose_Generate (i : nat) (sn: nat * KV)

(n: nat) : Comp (list (Bvector η) * (nat * KV)) :=

[callsSoFar, state] <-2 sn;

let Gen := if lt_dec callsSoFar i

then Generate_rb_intermediate

else if beq_nat callsSoFar O then Generate_noV

else Generate_v in

[bits, state'] <-$2 Gen state n;

ret (bits, (1+callsSoFar, state')).

�e two quantities that compose the bound between any two
adjacent hybrids Gi prg i and Gi prg (i + 1) are defined as follows
(see also Section 4.3).

Definition PRF_Advantage_Max :=

PRF_Advantage_Game (argMax PRF_Advantage_Game numCalls).

Definition Pr_collisions := (1 + blocksPerCall)ˆ2 / 2ˆη.

To bound the distance between adjacent hybrids Gi prд i and
Gi prд (i + 1), we derive the two quantities in the bound in two
steps. PRF Advantage Max is derived in lemmaGi prf rf close, and
Pr collisions in lemma Gi rf rb close.

Before we can derive the bound, we first need to transform our
normal hybrid definition Gi prg i into the equivalent oracle-using
definition Gi prf i .

Lemma Gi_prog_equiv_prf_oracle : forall (i : nat),

Pr[Gi_prg i] == Pr[Gi_prf i].
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�e only difference between the two definitions is that Gi prf i
is wri�en in the form of an oracle computation that uses a provided
oracle on the ith call. In the new game, the oracle we provide is
the PRF, defined in the code as f oracle f k . �e old gameGi prд i
already uses the PRF on the ith call by definition.

Definition Gi_prf (i : nat) : Comp bool :=

k <-$ RndK;

[b, _] <-$2 PRF_Adversary i (f_oracle f k) tt;

ret b.

�e computationPRF Adversary is a constructed adversary against
the PRF that rewrites our PRG execution, previously defined using
oracleMap, in terms of oracleCompMap, which is a version of or-
acleMap that replaces the PRF on the ith call of hybrid i with a
provided oracle. �e provided oracle is the PRF, f oracle f k .

Definition PRF_Adversary (i : nat)

: OracleComp Blist (Bvector eta) bool :=

bits <--$ oracleCompMap_outer (Oi_oc' i) requestList;

$ A bits.

�e technical lemma Gi normal prf eq allows us to provide dif-
ferent oracles to the new oracle-taking form of the hybrid to use
on its ith call, which we use to define the two intermediate hybrids
a�er Gi prg i .

We derive the first quantity used in the bound,
PRF Advantage Max.

Lemma Gi_replace_prf_with_rf_oracle : forall (i : nat),

i ≤ numCalls ->

| Pr[Gi_prf i] - Pr[Gi_rf i] | ≤ PRF_Advantage_Max.

Recall that we have just rewri�en the ith hybrid Gi prg i as
Gi prf, defined above, which uses the PRF oracle f oracle f k . In
Gi rf, we replace the PRF oracle with a random function oracle
randomFunc.

Definition Gi_rf (i : nat) : Comp bool :=

[b, _] <-$2 PRF_Adversary i (randomFunc ({0,1}ˆeta)) nil;

ret b.

A random function is simply a function that, queried with any
new input, returns an ideally random Bvector η and caches the re-
sult. If it is queried with a previous input, it returns the previously-
sampled bit-vector. By the definition of PRF advantage, for any
adversary against the PRF, the probability that the adversary can
distinguish between the PRF and a random function is PRF Advan-

tage Game(i), which is upper-boundedby themaximum taken over
i (over all hybrids).

Having bounded the distance between Gi prg i and the inter-
mediate hybrid Gi rf i , we proceed to derive the second quantity
in the bound: the distance between Gi rf i and the next normal
hybrid Gi prg (i + 1) is Pr collisions.

Lemma Gi_replace_rf_with_rb_oracle : forall (i : nat),

| Pr[Gi_rf i] - Pr[Gi_prg (1+i)] | ≤ Pr_collisions.

Similarly to lemma Gi prf rf close, we must first rewrite the le�-
most hybrid Gi prg (i + 1) in the form of the oracle-using hybrid
Gi rb that uses an oracle rb oracle on its ith call.

Lemma Gi_prog_equiv_rb_oracle : forall (i : nat),

Pr[Gi_prg (1+i)] == Pr[Gi_rb i].

Definition Gi_rb (i : nat) : Comp bool :=

[b, state] <-$2 PRF_Adversary i rb_oracle nil;

let rbInputs := fst (split state) in ret b.

�is new oracle rb oracle returns an ideally random Bvector η

for every query, not caching any of its queried inputs.

Definition rb_oracle (state : list (Blist * Bvector η))

(input : Blist) :=

output <-$ ({0,1}ˆeta);

ret (output, (input, output) :: state).

We prove this rewrite, Gi normal rb eq, via another induction.
We use this rewrite to bound the difference between the two oracle-
using hybrids Gi rf i and Gi rb i . �e two games differ in only
one aspect: on the ith call, Gi rf i replaces the PRF with a random
function oracle, whereas Gi rb i replaces the PRF with an ideally
random oracle. �ese two oracles themselves can be distinguished
by an adversary in only one way: if the random function is queried
with an input that has been previously queried, then it becomes
deterministic and returns the same output as before, whereas the
ideally random oracle will still return ideally random output.

�erefore, the distance between Gi rf i and Gi rb i ought to be
bounded by the probability that there are duplicates in the inputs
to the random function, which we refer to as the probability of the
bad event occurring. �e probability that the adversary can distin-
guish between Gi rf i and Gi rb i should then be upper-bounded
by the probability of the bad event.

We formalize this intuitive argument by applying the fundamen-

tal lemma of game-playing [10], which states that the difference be-
tween two games that are “identical until bad” is upper-bounded
by the probability of the “bad event” happening. Two games are
“identical until bad” if they are syntactically identical except for
statements that follow the se�ing of a flag bad to true.

We state the bound on the difference between the game in a
form following that of the fundamental lemma:

Lemma Gi_rb_rf_identical_until_bad : forall (i : nat),

| Pr[x <-$ Gi_rf_dups_bad i; ret fst x]

- Pr[x <-$ Gi_rb_bad i; ret fst x] |

≤ Pr[x <-$ Gi_rb_bad i; ret snd x].

�e new games Gi rf dups bad and Gi rb bad are just versions
of the original games rewri�en to return a tuple, where the first
element is the usual output of Gi rf or Gi rb and the second event
is a boolean that indicates whether the bad event has occurred. To
apply the fundamental lemma to proveGi rb rf identical until bad,
we first prove that the games Gi rf dups bad and Gi rb bad are
indeed identical until bad. First we prove that the bad event has
the same probability of happening in each game:

Lemma Gi_rb_rf_return_bad_same : forall (i : nat),

Pr [x <-$ Gi_rb_bad i; ret snd x ] ==

Pr [x <-$ Gi_rf_dups_bad i; ret snd x ].

�is is clearly true (but don’t take our word for it: ask Coq!). Sec-
ond, we prove that if the bad event does not happen, the two games
have identically distributed outputs (evalDist takes a Comp and
produces the corresponding probability mass function).

Lemma Gi_rb_rf_no_bad_same : forall (i: nat) (a: bool),

evalDist (Gi_rb_bad i) (a, false) ==
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evalDist (Gi_rf_dups_bad i) (a, false).

�is, too, is clearly true. �us, we can apply the fundamental
lemma to derive the upper bound:

Pr[x <-$ Gi_rb_bad i; ret snd x].
�at concludes the identical-until-bad argument, which bounded

the difference between the two games by the probability of the bad
event. We finish the proof of the main result by calculating an up-
per bound on the probability of the bad event, which is, again, a
collision in the inputs to the RF.

Theorem Gi_Pr_bad_event_collisions:

forall (i:nat) (v: Bvector η),

Pr [x <-$ Gi_rb_bad i; ret snd x ] ≤ Pr_collisions.

On the ith call to the PRG, the provided oracle (here the random
function) is queried once with a constant v and then blocksPerCall

times a�er that, where each RF input is actually a previous output
from the RF due to the design of HMAC-DRBG’s Gen loop. If an
RF output is not a duplicate, it is ideally random. (To derive a more
general bound, blocksPerCall can be generalized to the ith element
in the request list. �e rest of the proof is unchanged.)

�erefore, the probability of collisions in the inputs to the RF
simplifies to the probability of collisions in a list of length blocksPerCall+
1 of elements Bvector η that are each sampled uniformly at random.
By the union bound, this is less than (1 + blocksPerCall)2/2η .

We have bounded the distance between adjacent hybrids with
Gi adjacent hybrids close, so we conclude the whole proof by ap-
plying the hybrid argument (which is essentially the triangle in-
equality, repeatedly applied) with that lemma to bound the dis-
tance between the first and last hybrid.

Theorem hybrid_argument :

forall (G : nat -> Rat) (bound : Rat),

(forall i : nat, | G i - G (1+i) | ≤ bound) ->

forall n : nat, | G 0 - G n | ≤ n * bound

�is generic theorem states that if the distance between adja-
cent games G i and G (i + 1) is bounded by the rational number
bound , the difference between the first hybrid G 0 and the last hy-
brid G n is bounded by n · bound.

4.5 Coq-specific proofs

Working in Coq requires doing many proofs of program and game
equivalence. �ese program equivalence proofs are generally elided,
by choice or by accident, in paper proofs. Two such proofs are
Gi_prog_equiv_prf_oracle and Gi_prog_equiv_rb_oracle. Because
using oracles changes the types of all computations that use that
computation, the types of Gen loop, Generate v, choose Generate,
and oracleMap all change from Comp to OracleComp, and we write
new functions with the new type and prove them each equivalent.
Proving the two lemmas requires doing complex inductions over
both the list of blocks provided by the adversary and over each
number of blocks in a call.

Semiformal crypto proofs (e.g., [24]) o�en leave the burden of
checking for semantic equivalence on the reader. An unintentional
error in this part of a crypto proof is unlikely, but an intentional
error is possible, and it may be subtle enough that a standards body
would not notice it.

4.6 Efficiency of adversary

We do not formally prove the efficiency of the constructed adver-
saries in the proof. It is necessary to inspect the family of con-
structed adversaries (that is, Definition PRF Adversary in §3.1) in
order to establish that it is probabilistic polynomial time; which
clearly it is (assuming the adversary against the PRG is p.p.t.). While
this omission increases the amount of code that must be inspected,
it also allows the result to be interpreted in any model of compu-
tation and cost.

5 CONCRETE SECURITY ESTIMATE

�e distance betweenGreal and Gideal is

numCalls · (PRF Advantage Max + (1 + blocksPerCall)2/2η ).

What does that mean concretely about an adversary’s ability to
predict the output of HMAC-DRBG? Let us assume the adversary
runs in time and space at most 2t .

Beringer et al. proved that the PRF advantage for HMAC is the
sum of the advantages associatedwith these three assumptions: (1)
SHA-256 is weakly collision-resistant, (2) the SHA-256 compres-
sion function is a PRF, and (3) the dual family of the SHA256 com-
pression function is a PRF against a (very) restricted related-key
a�ack.

(1) If the best method for finding collisions is a birthday a�ack,
a collision will be found with probability at most 22t−256. (2) If
the best method for distinguishing SHA-256’s compression from a
random function is an exhaustive search on keys, the probability
of success is at most 2t−256. (3) If, in addition, we consider that the
constructed adversary in the proof gains li�le or no additional ad-
vantage from the related key oracle, then the probability of success
is at most 2t−256 [9].

From these assumptions, we can conclude that the adversary’s
advantage in distinguishing HMAC-SHA256 from a random func-
tion is at most 22t−256 + 2t−255. For t = 78, the advantage is at
most 2−100 + 2−177.

Assuming there are 248 calls to the DRBG with block length
η = 128 and blocksPerCall = 10, then the distance is about 248 ·
(2−100+2−177+ (1+10)2/2128, or about 2−52. �at is, the adversary
with a thousand million terabytes (< 278 bits), and a million 1-
gigahertz processors running for a year (< 278 cycles) has a 2−52

chance of guessing be�er than random.
It also means that block length 128 is be�er than 64, but in-

creases beyond that are not particularly useful.
Warning: �ese calculations are based on unproved assump-

tions (1)(2)(3) about SHA-256 and the best ways to crack it. �e
assumptions may not be true, and there may be be�er ways to
crack SHA-256.

6 MBEDTLS IMPLEMENTATION IS CORRECT

6.1 Functional specification program

We verify the mbedTLS implementation of HMAC-DRBG with re-
spect to a functional program in Coq, with functions mbedtls

generate, . . . , mbedtls reseed. Where the Coq functions Gen-
erate, etc. described in Section 4.2 operate over Bvector η, these
functions operate over finite lists of sequences of integers (type
list Z in Coq), and over abstract DRBG states of type
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Inductive hmac256drbgabs :=

HMAC256DRBGabs: forall (key V: list Z)

(reseedCounter entropyLen: Z)

(predictionResistance: bool)

(reseedInterval: Z), hmac256drbgabs.

�e functions’ definitions are structured in accordance with NIST
800-90A, specialising generic DRBG functions to the functional
program for HMAC-SHA256 from Beringer et al. [11]. �e detailed
definitions are available in our source code.

�ere is a straightforward relation ∼ between states (k,v) from
Section 4 and states (HMAC256DRBGabs k v 0 0 false 248) of our
mbedtls functional specification.

Based on ∼, we formulate an equivalence theorem between the
two specifications of the Generate function, under certain condi-
tions. For example, mbedTLS measures out len in bytes, up to
1024, while our crypto spec measures n in 256-bit blocks; the re-
seed counter must be less than the reseed interval; the prediction-
Resistance flag must be false, and so on.

Theorem 6.1. �e functions mbedtls generate, etc. are equiva-

lent to Generate, etc., for ∼ similar states.

Proof. By induction on iterations of the Generate loop. �

Proving the C program correct w.r.t. the functional program,
then proving �eorem 6.1, is simpler than directly proving the C
program implements the crypto spec. �ere are other advantages
too: mbedtls generate is directly executable, though about a mil-
lion times slower than the C program. Successfully validating our
functional programagainst all 240 noReseed-noPredictionResistance
test vectors from NIST [31] takes about 30 mins.

6.2 Verification of C code

�e Verified So�ware Toolchain’s program logic, called Verifiable

C, is a higher-order impredicative separation logic [5]. �at is, it
is a Hoare logic that can handle advanced features such as pointer
data structures, function-pointers, quantification over predicates,
recursive predicates, and so on. Its judgments take the shape of a
Hoare triple {pre(z)}c{post(z)}, where assertions pre(.) and post(.)
are predicates on states. Variable z is implicitly universally quan-
tified and is used to express functional correctness properties in
which postconditions refer to (some aspects of) preconditions. Our
proof automation operates over assertions of the form

PROP P LOCAL L SEP R

where P is a purely propositional term, L describes the content of
local and global variables, and R describes the content of the heap,
as a list of formulae that are implicitly interpreted to refer to non-
overlapping memory regions.

Figure 1 shows a specification of mbedtls_hmac_drbg_random. It
means, suppose the function is called with argument p_rng hold-
ing a concrete representation of some abstract DRBG state I , and
output pointing to a (separate) memory region of length 0 ≤ n ≤

1024, specified in out_len. Suppose further that requesting n bytes
from I and entropy stream s succeeds according to the functional
specification program mbedtls_generate, yielding (bytes,ss, F).
�en, executing the body of the C function is safe: it will not per-
form memory loads or stores outside the region specified by the

Definition drbg_random_abs_spec :=

DECLARE _mbedtls_hmac_drbg_random

WITH output: val, n: Z, ctx: val,

I, F: hmac256drbgabs, kv: val,

s, ss: ENTROPY.stream, bytes: list Z

PRE [_p_rng OF tptr tvoid, _output OF tptr tuchar,

_out_len OF tuint ]

PROP (0 <= n <= 1024;

mbedtls_generate s I n = Some (bytes, ss, F)

LOCAL (temp _p_rng ctx; temp _output output;

temp _out_len (Vint (Int.repr n));

gvar sha._K256 kv)

SEP (data_at_ Tsh (tarray tuchar n) output;

AREP kv I ctx; Stream s)

POST [ tint ]

PROP ()

LOCAL (temp ret_temp (Vint Int.zero))

SEP (data_at Tsh (tarray tuchar n)

(map Vint (map Int.repr bytes)) output;

AREP kv F ctx; Stream ss).

Figure 1: VST specification of mbedtls hmac drbg random

precondition’s SEP clause, the function’s stack frame, and poten-
tially locally allocated memory; it will not experience division-by-
zero or other runtime errors. If terminating, the function will yield
return value 0, and a state in which ctx indeed holds abstract state
F , output indeed holds bytes, and the entropy stream is updated as
specified.

�e use of representation predicate AREP to relate an abstract
DRBG state to a concrete C data structure laid out in memory is
typical in separation logic, and emphasizes that client code should
only operate on DRBG contexts using the interface functions. Ab-
stract states I and F are elements of the type hmac256drbgabs de-
fined above. �e definition of AREP includes numeric invariants as-
serting that, e.g., reseedCounter is bounded between 0 and Int.max signed,
but is only unfolded in the proofs of the function bodies.

�e code of mbedtls hmac drbg random invokes the more gen-
eral function mbedtls hmac drbg random with add, our specifica-
tion of which indeed supports the supply of additional input, re-
spects the prediction resistance flag and reseeds the DRBG if neces-
sary. �e specification shown in Figure 1 restricts input arguments
so that certain error cases are avoided; again, our formalization
also includes more general specifications.

Our C implementation is based on mbedTLS hmac drbg.c, spe-
cialized to HMAC-SHA256 by instantiating C preprocessor macros.
We make minor local edits to satisfy Verifiable C’s syntactic re-
strictions: isolating memory loads/stores into separate assignment
statements. �e program uses a volatile keyword to prevent the
C compiler from deleting the clearing of an array a�er its last use;
reasoning about volatile is not supported in Verifiable C, so we
had to remove it. Calls to HMAC are rerouted to the OpenSSL im-
plementation [11].

To formally prove that the C code satisfies the specification, we
use the VST-Floyd proof automation system: a collection of Coq
tactics, lemmas, and auxiliary definitions that perform forward
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symbolic execution with substantial interactive help from the user,
who supplies function specifications, loop invariants, and proofs
of application-specific transformations using Coq’s built-in proof
commands. Building on the verification of HMAC SHA256, we have
specified and proved all core functions in hmac drbg.c, including
the flag update functions.

7 LESSONS LEARNED

�ree NIST design decisions made the proof harder or easier.

�e good. NIST re-keys the PRF with a length-extended input.
�is simplifies the component of the proof that bounds the prob-
ability of collisions in inputs to the random function. Because
HMAC can take inputs of any length, and all previous inputs for
HMACwith that key were of fixed length (since HMAC has a fixed
output), it is easy to prove that the length-extended input cannot
be a duplicate of any previous input to the random function.

�e bad. In Instantiate, NIST begins the initialization of the state
(k,v) as follows:

k ← HMACc1 (c2 | |0x00| |entropy input)

v ← HMACk (c2)

If we assume that entropy input is ideally random, then it would
be be�er to incorporate it into the first argument (c1) of HMAC,
rather than the second, because the la�er forces us to assume or
prove that HMAC is an entropy extractor.

If entropy input is not ideally random (as would likely be the
case in a real system), then we will indeed need an entropy ex-
tractor. HMAC seems to be as good a candidate as any. However,
existing proofs of HMAC as a randomness extractor [19, 21, 27]
are only for keys c1 that are random, so they may not apply here
because HMAC-DRBG’s c1 = 0. So we have no security proof of
Instantiate. Instead, we assume that the (k,v) produced by Instan-

tiate is ideally random.

�e ugly. It is hard to reason about NIST’s decision to update the
PRG’s internal state vector v immediately a�er re-keying the PRF
in the same call to Generate. �is decision makes it difficult to de-
fine hybrids that replace a PRF on each call, since the PRF changes
and is used before a call is over. We solve this problem by moving
each v-update to the beginning of the next call and proving that
the new sequence of programs is indistinguishable to the adver-
sary, and we continue the proof with the rewri�en Generate.

How verification helped. �e process of mechanizing our proof
and working in Coq and FCF enabled us to state definitions, func-
tions, and games in a language that was expressive, precise, and
executable. �is benefited our proof in two main ways.

First, working in this environment prevented us from making
subtle mistakes in dealing with a tricky hybrid argument. For ex-
ample, for every lemma bounding the difference between adjacent
hybrids Hi and Hi+1, Coq requires the lemma to be parametrized
by i . �is helped early in the proof; it forced us to realize that there
were multiple PRF adversaries: one for each hybrid Hi .

Additionally, Coq prevented us from making suble off-by-one
errors in the hybrid argument. It’s easy to mix up the total number
of hybrids for a list of blocks of n elements—is it n or n+1 hybrids?
It’s also easy to mix up whether the oracle is replaced in the ith call
or the i + 1th call. If the numbering is wrong, the relevant lemmas
will become unprovable.

Second, working in this environment allowed us to “execute”
computations in lemmas and test if they held true on small exam-
ples, which helped us spot typos in the proof. For example, in Gen-

erate v, we had typed ret (bits, (k ′,v ′)) instead of ret (bits, (k ′,v ′′)),
which made one lemma unprovable until we fixed it. Similar bugs
have been found in real-world code because a typo or mistake ren-
dered the code unverifiable.

�e trusted base. As explained in §1, a key part of the trusted
base of any machine-checked proof is the statement of the theorem

and assumptions. Our theorem is stated as 200 lines of Coq, (pseu-
dorandom properties of HMAC-DRBG), on top of about 50 lines of
supporting FCF definitions defining the notions of pseudorandom-
ness, etc. We rely on assumptions related to collision-resistance of
SHA [11, §4.2], which means that the 169-line definition of SHA in
Coq is also part of the trusted base.

On the other hand, the definitions of the HMAC function, the
HMAC-DRBG function, and the specifications of internal APIs need
not be trusted, because we prove an end-to-end theorem that, re-
gardless of what these functions actually are, they are correctly
implemented by the C code and they correctly provide a PRF.

Proof effort. �e proof of cryptographic security spans about
4500 lines of Coq code—which need not be trusted because it is
checked by machine, but still it has a pleasantly clear structure
as explained in §4.4. Developing and mechanizing this proof took
about 5 person-months. �e C program-correctness proof is about
10,200 lines of Coq, and took 1 person-month by a new user of
Verifiable C. �eorem 6.1 (about 700 lines), along with the connec-
tion to the HMAC proofs and other configuration engineering (in-
cluded in the 10,200 lines) took about 1 person-month. Coq checks
all the proofs in about 16.5 minutes (running Coq 8.6 on a 2.9 GHz
Intel Core i7 on a single core; faster on multicore).

8 FUTURE WORK

In this work we focused primarily on the pseudorandomness prop-
erty of the DRBG. In SP 800-90A, NIST proposes a variety of ad-
ditional properties, including “backtracking resistance” and “pre-
diction resistance.” �e former property ensures that a compro-
mise of generator state should not affect the security of output
generated prior to the compromise, while the la�er property ad-
dresses post-compromise security (under the assumption of a con-
tinually reseeded generator). Extending our proof to backtracking
resistance should be straightforward. A proof that HMAC-DRBG
is prediction-resistant would require a careful specification of the
rate at which new entropy must be provided.

Our security proof leaves out some optional parameters such
as the personalization nonce and additional input. We hope to ad-
dress these in the future.
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While we have addressed only a single NIST DRBG construc-
tion, future work may prove the security of other widely-used
SP 800-90A constructions such as CTR-DRBG and HASH-DRBG
(based on block ciphers and hash functions respectively). �ese
generators have similar constructions to HMAC-DRBG, and thus
it is likely that our work may be adapted with reasonable modifi-
cations.

HMAC-DRBG’s Instantiate function usesHMACwith fixed non-
random key as a randomness extractor; this is not known to be
sound (see §7).

Concerning implementation correctness, we would like to ex-
tend our framework by integrating provable protection against
side-channel a�acks [3, 7], including protection against timing at-
tacks that recently affected implementations of MEE-CBC [2].

We hope this work will lead to formal verification efforts on
other widely used cryptographic so�ware packages. Ideally, this
type of verification could replace or supplement the use of test vec-
tors, which are currently used by organizations such as the U.S.
Cryptographic Module Validation Program to validate DRBG cor-
rectness.

9 CONCLUSION

Wehave created the first end-to-end formal security-and-correctness
verification of a real-world random number generator, and the first
machine-checked proofs of HMAC-DRBG security and of a cor-
rect implementation of HMAC-DRBG. We can say with very high
confidence that HMAC-DRBG and its mbedTLS implementation
are secure in their basic functions against a nonadaptive adver-
sary. �ere are no bugs (including buffer overruns) and no back-
doors, purposeful or otherwise. We have not proved security of
the Instantiate algorithm (though we have proved that mbedTLS
implements it correctly). Our proof is modular; thus, it is portable
to other implementations of HMAC-DRBG. Our proof should be
extensible to other features and properties of HMAC-DRBG, with
limitations as discussed in §8.

Machine-checked proofs of cryptographic security should be
a required part of the NIST standardization process. �is would
likely have detected serious generator flaws such as those that
occurred in Juniper NetScreen devices [15]. And though HMAC-
DRBG is a good DRBG, proving the security of the construction at
NIST standardization timewould likely have resulted in amore ele-
gant construction, and would have allowed NIST to clearly specify
the security assumptions on HMAC required by Instantiate.

Finally, implementations of cryptographic standards should come
with machine-checked proofs of correctness. �is would have pre-
vented theHeartBleed bug, and probably prevented theDebian/OpenSSL
fiasco (see the appendix).
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[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Du-
pressoir, and Michael Emmi. 2016. Verifying Constant-Time Imple-
mentations. In 25th USENIX Security Symposium, USENIX Security 16,
�orsten Holz and Stefan Savage (Eds.). USENIX Association, 53–70.
h�ps://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida

[4] Andrew W. Appel. 2015. Verification of a Cryptographic Primitive: SHA-256.
ACMTrans. on ProgrammingLanguages and Systems 37, 2 (April 2015), 7:1–7:31.

[5] Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah
Dodds, Gordon Stewart, Sandrine Blazy, and Xavier Leroy. 2014. Program Logics
for Certified Compilers. Cambridge University Press, New York.

[6] Elaine Barker and John Kelsey. 2012. Special Publication 800-90A: Recommen-
dation for Random Number Generation Using Deterministic Random Bit Genera-
tors. Technical Report 800-90A. National Institute of Standards and Technology.
h�p://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf

[7] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Carlos Daniel Luna, and
David Pichardie. 2014. System-level Non-interference for Constant-time Cryp-
tography. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.).
ACM, 1267–1279. DOI:h�ps://doi.org/10.1145/2660267.2660283

[8] Georg T. Becker, Francesco Regazzoni, Christof Paar, and Wayne P. Burleson.
2013. Stealthy Dopant-level Hardware Trojans. In International Workshop on
Cryptographic Hardware and Embedded Systems. Springer, Berlin, 197–214.

[9] Mihir Bellare. 2006. New proofs for NMAC and HMAC: Security without
collision-resistance. In Annual International Cryptology Conference. Springer,
602–619.

[10] Mihir Bellare and Phillip Rogaway. 2006. �e security of triple encryption and a
framework for code-based game-playing proofs. In Annual International Confer-
ence on the �eory and Applications of Cryptographic Techniques. Springer, 409–
426.

[11] Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W. Appel. 2015.
Verified Correctness and Security of OpenSSL HMAC. In 24th USENIX Security
Symposium. USENIX Assocation, 207–221.

[12] Daniel J. Bernstein, Yun-An Chang, Chen-Mou Cheng, Li-Ping Chou, Na-
dia Heninger, Tanja Lange, and Nicko van Someren. 2013. Factoring RSA
Keys from Certified Smart Cards: Coppersmith in the Wild. In ASIACRYPT
2013: 19th International Conference on the �eory and Application of Cryptology
and Information Security, Proceedings Part II. Springer, Berlin, 341–360. DOI:

h�ps://doi.org/10.1007/978-3-642-42045-0 18
[13] Daniel J. Bernstein, Tanja Lange, and Ruben Niederhagen. 2016. Dual EC: A

Standardized Back Door. In �e New Codebreakers - Essays Dedicated to David
Kahn on the Occasion of His 85th Birthday (Lecture Notes in Computer Science),
Peter Y. A. Ryan, David Naccache, and Jean-Jacques�isquater (Eds.), Vol. 9100.
Springer, 256–281. DOI:h�ps://doi.org/10.1007/978-3-662-49301-4 17

[14] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti,
and Pierre-Yves Strub. 2013. Implementing TLS with verified cryptographic se-
curity. In 2013 IEEE Symposium on Security and Privacy. IEEE, 445–459.

[15] Stephen Checkoway, Jacob Maskiewicz, Christina Garman, Joshua Fried,
Shaanan Cohney, Ma�hew Green, Nadia Heninger, Ralf-Philipp Weinmann,
Eric Rescorla, and Hovav Shacham. 2016. A Systematic Analysis of the
Juniper Dual EC Incident. In CCS ’16: 23rd ACM Conference on Computer
and Communications Security. ACM, New York, NY, USA, 468–479. DOI:

h�ps://doi.org/10.1145/2976749.2978395
[16] Stephen Checkoway, Ruben Niederhagen, Adam Everspaugh, Ma�hew

Green, Tanja Lange, �omas Ristenpart, Daniel J. Bernstein, Jake
Maskiewicz, Hovav Shacham, and Ma�hew Fredrikson. 2014. On
the Practical Exploitability of Dual EC in TLS Implementations. In
Usenix Security ’14. USENIX Association, San Diego, CA, 319–335.
h�ps://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/checkoway

[17] Russ Cox. 2008. Lessons from the Debian/OpenSSL Fiasco. (21 May 2008).
h�ps://research.swtch.com/openssl

[18] Yevgeniy Dodis, Chaya Ganesh, Alexander Golovnev, Ari Juels, and �omas
Ristenpart. 2015. A formal treatment of backdoored pseudorandom generators.
In EUROCRYPT (1). 101–126.

[19] YevgeniyDodis, RosarioGennaro, JohanHåstad, Hugo Krawczyk, and Tal Rabin.
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APPENDIX: DEBIAN/OPENSSL FIASCO

In 2006, in order to eliminate a Purify warning, a developer at De-
bian removed a line of code from the randomness-initializer of
OpenSSL as shipped with Debian [29]. �is reduced the amount
of true entropy for initializing SSH keys to approximately 15 bits,
or (in some realistic scenarios) 0 bits.

Cox [17] has an excellent analysis of the technical problem and

the social processes that led to this failure. We have no library in
Coq for proving things about social processes, but we can say:

(1) �e all-too-clever C code in theOpenSSLRAND poll and RAND add
tolerates the use of a partially uninitialized array. Cox explains
why (a) it’s not strictly speaking wrong to do this and (b) it’s
still a terrible idea. �e Verifiable C proof system would reject
this program.

(2) �e Debian developer asked about the safety of this change
on the official OpenSSL developer’s mailing list, and got no
response. Verifiable C cannot help with that.

(3) Presumably a (hypothetical) verified implementation distributed
by OpenSSL would be marked as such (in comments) and dis-
tributed with its open-source proof, and not so casually modi-
fied by the Debian developer.

(4) Suppose there had been a different insufficient-entropy bug,
one not involving uninitialized variables. In such a case, it
would not be automatically rejected by Verifiable C. Instead,
either (a) the C code could not be proved to implement the func-
tional model, or (b) the functional model could not be proved
to provide sufficient entropy at initialization time. In either
case, the bug would be detected.

(5) Suppose the functional model and C code were both proved
correct; the correct program asks an external device for n bits
of “true” entropy, and instead gets n bits with almost no en-
tropy [8]. Our proofs cannot help here.

In summary: Yes, proofs would probably have prevented the
Debian/OpenSSL fiasco.
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