
Evading Classifiers by Morphing in the Dark

Hung Dang, Yue Huang, Ee-Chien Chang
School of Computing, National University of Singapore

Abstract
Learning-based systems have been shown to be vulnerable to
adversarial data manipulation attacks. These attacks have
been studied under assumptions that the adversary has cer-
tain knowledge of either the target model internals, its train-
ing dataset or at least classification scores it assigns to input
samples. In this paper, we investigate a much more con-
strained and realistic attack scenario that does not assume
any of the above mentioned knowledge. The target classifier
is minimally exposed to the adversary, revealing on its final
classification decision (e.g., reject or accept an input sam-
ple). Moreover, the adversary can only manipulate malicious
samples using a blackbox morpher. That is, the adversary
has to evade the target classifier by morphing malicious sam-
ples “in the dark”. We present a scoring mechanism that can
assign a real-value score which reflects evasion progress to
each sample based on limited information available. Lever-
aging on such scoring mechanism, we propose a hill-climbing
method, dubbed EvadeHC, that operates without the help
of any domain-specific knowledge, and evaluate it against
two PDF malware detectors, namely PDFrate and Hi-
dost. The experimental evaluation demonstrates that the
proposed evasion attacks are effective, attaining 100% eva-
sion rate on our dataset. Interestingly, EvadeHC outperforms
the known classifier evasion technique that operates based
on classification scores output by the classifiers. Although
our evaluations are conducted on PDF malware classifier,
the proposed approaches are domain-agnostic and is of wider
application to other learning-based systems.

1. INTRODUCTION
Machine learning techniques have witnessed a steady

adoption in a wide range of application domains such
as image classification [32] or natural language process-
ing [34]. Various learning-based systems have been reported
to achieve high accuracy, even surpassing human-level per-
formance [15, 27]. Given the assumption that the training
datasets are representative, these systems are expected to
perform well in reality on operational data.

Learning methods have also lent itself to security tasks.
Numerous innovative applications of machine learning in
security contexts, especially for detection of security vio-
lations, have been discussed in the literature [29, 19, 22].
However, when learning-based systems are deployed for se-
curity applications, their accuracy may be challenged by in-
tentional noise and deviations. Various studies [7, 12, 11]
suggest that they are likely susceptible to adversarial data
manipulation, for the assumption on representativeness of
the training datasets no longer holds true in the presence
of malicious adversaries. For example, a motivated attacker
may be able to morph a malicious instance so that it re-
sembles a benign instance found in the training datasets,
evading the existing learning-based classifier.

Several works have studied evasion attacks against
learning-based systems, making different assumptions on the
amount of knowledge the adversaries have about the system
they are attacking. For examples, Šrndic et al. [31] and
Sharif et al.[25] studied attack scenarios wherein the adver-
saries have a high level of knowledge about the internals
of the target system (e.g., features space and classification
algorithm). Xu et al. [35] investigated a more constrained
evasion scenario in which the adversaries only have black-
box accesses to the target detector that outputs a real-value
classification score for an input sample1. While the evasion
attacks are effective in the presence of the required auxil-
iary information, the authors of [35] suggested that a simple
preventive measure of hiding the classification score would
be sufficient to thwart their attacks. Thus, it remains a
question how these attacks operate against blackbox systems
deployed in reality (e.g., malware detector built-in to email
services), for they are unlikely to reveal real-value scores, but
rather expose only the final decisions (e.g., reject or accept
a sample).

In this work, we study the problem of classifier evasion
in the dark, investigating an evasion scenario that is much
more constrained and realistic than the ones considered in
existing works [35, 31, 26]. In particular, we consider a very
restricted setting in which the adversary does not have any
knowledge about the target system (e.g., model internals
and training dataset). Moreover, the target system only
reveals its final decision instead of a real-value score that
reflects its internal state. We further assume that the only
feasible mean to manipulate the samples is through some
given tools that perform “random” morphing.

To this end, we formulate a model that captures the
above-mentioned restricted setting. Under this model, the
adversary is confined to three blackboxes, a binary-output
detector (or classifier) that the adversary attempts to evade,
a tester that checks whether a sample possesses malicious
functionality, and a morpher that transforms the samples.
The adversary’s goal is to, given a malicious sample, adap-
tively queries the blackboxes to search for a morphed sample
that evades detection, and yet maintains its malicious func-
tionality.

We show that under this constrained setting with only
blackbox accesses, learning-based systems are still suscepti-
ble to evasion attacks. To demonstrate feasibility of effec-
tive evasion attacks, we present an evasion method, dubbed
EvadeHC, which is based on hill-climbing techniques. The
main component of EvadeHC is a scoring mechanism that
assigns real-value score to the sample based on the binary

1Although the approach treats the detector as a blacbox, it
still makes use of some feature property. Specifically, the
approach exploited a property that a sequence of morphing
steps which work for one malicious sample is likely to work
for others to accelerate the evasion.

ar
X

iv
:1

70
5.

07
53

5v
3

 [
cs

.C
R

]
 2

3
A

ug
 2

01
7

outcomes obtained from the tester and detector. The intu-
ition is to measure the number of morphing steps required
to change the detector and tester’s decisions, and derive the
score based on these values. We believe that this scoring
mechanism can be used to relax the assumption on the avail-
ability of real-value scores that other settings [20, 26, 35]
make.

We evaluate the proposed evasion technique on two well-
known PDF malware classifiers, namely PDFrate [28] and
Hidost [30]. In order to enable a fair basis for benchmarking
with previous work, we adopt the dataset that is used by
Xu et al. [35] in our experiments. This dataset consists of
500 malicious samples chosen from the Contagio archive [6].
We first compare EvadeHC against a baseline solution which
keeps generating random morphed samples and checking
them against the tester and detector until an evading sam-
ple is found. Empirical results show that EvadeHC attains
100% evasion rate on the experimental dataset, and out-
performs the baseline solution by upto 80 times in term of
execution cost. Further, we also experiment on a hypotheti-
cal situation wherein the classifiers are hardened by lowering
the classification thresholds (i.e., decreasing false acceptance
rate at a cost of increasing false rejection rate), benchmark-
ing EvadeHC against the state-of-the-art method in evading
blackbox classifiers [35]. The results strongly demonstrate
the robustness of EvadeHC. For instance, when the thresh-
old of Hidost is reduced from 0 to −0.75 and the number
of detector queries is bounded at 2, 500, EvadeHC attains an
evasion rate of as high as 62%, in comparison with 8% by
the baseline. We also compare EvadeHC with the technique
by Xu et al. [35] that uses real-value classification scores
during evasion. Interestingly, even with only access to bi-
nary outputs of the detector, our approach still outperforms
the previous work. While this may appear counter-intuitive,
we contend that this result is in fact expected. We believe
the reasons are two folds. First, EvadeHC is capable of in-
corporating information obtained from both the tester and
detector, as opposed to previous work relying solely on the
classification scores output by the detector. Secondly, the
fact that the detector can be evaded implies the classifica-
tion scores are not a reliable representation of the samples’
maliciousness.

Contributions. This paper makes the following contribu-
tions:

1. We give a formulation of classifier evasion in the dark
whereby the adversary only has blackbox accesses to
the detector, a morpher and a tester. We also give a
probabilisitic model HsrMopher to formalise the notion
that no domain-specific knowledge can be exploited in
the evasion process.

2. We design a scoring function that can assign real-value
score reflecting evasion progress to samples, given only
binary outcomes obtained from the detector and tester.
We believe that this scoring mechanism is useful in
extending existing works that necessitate classification
scores or other auxiliary information to operate under
a more restricted and realistic setting like ours.

3. Leveraging on the scoring function, we propose an
effective hill-climbing based evasion attack EvadeHC.
This algorithm is generic in the sense that it does not
rely on any domain-specific knowledge of the underly-
ing morphing and detection mechanisms.

4. We conduct experimental evaluation on two popular
PDF malware classifiers. The empirical results demon-
strate not only the efficiency but also the robustness
of EvadeHC. More notably, it is also suggested that the
scoring mechanism underlying EvadeHC is more infor-
mative than the one that only relies on classification
scores [35].

The rest of the paper is structured as follows. We formu-
late the problem and discuss its related challenges in Sec-
tion 2 before proposing our evading methods in Section 3.
Next, we formalize our proposed approach by presenting
probabilistic models in Section 4 and report the experimen-
tal evaluation in Section 5. We discuss the implications of
our evasion attacks and their mitigation strategies in Sec-
tion 6. We survey related works in Section 7 before conclud-
ing our work in Section 8.

2. PROBLEM FORMULATION
In this section, we define the problem of classifier eva-

sion in the dark and discuss its related challenges. Prior to
presenting the formulation, we give a running example to
illustrate the problem and its relevant concepts.

2.1 Motivating Scenario
Let us consider an adversary who wants to send a mal-

ware over email channel to a victim. The adversary chooses
to embed the malware in a PDF file, for the victim is more
willing to open a PDF file than other file formats. Most
email service providers would have built-in malware detec-
tion mechanisms scanning users’ attachments. Such mal-
ware detection mechanism is usually a classifier that makes
decision based on some extracted features, with a classifi-
cation model trained using existing data. We assume the
adversary does not have any knowledge about the detector
that the email service provider employs (i.e., the algorithms
and feature space adopted by the classifier). Nevertheless,
the adversary probes the detector by sending emails with
the malicious payload to an account owned by the adversary,
and observing the binary responses (accept/reject) from the
email server. Further, the adversary could adaptively mod-
ify his malicious PDF file to search for a PDF file that evades
detection. However, we assume that the adversary could
only probe the email server’s detector a limited number of
times before it is blacklisted.

The adversary expects that its malicious file will be re-
jected by the detector. To evade detection, it has access to
two tools: a morphing tool that transforms the PDF sam-
ple, and a sandboxing tool that tests whether the sample
maintains its malicious functionalities. For instance, the
morphing tool may insert, delete or replace objects in an
underlying representation of the file, and the sandboxing
tool dynamically detects whether the malicious PDF sam-
ple causes the vulnerable PDF reader to make certain un-
expected system calls. Due to its insufficient understanding
of the underlying mechanism to manipulate the PDF sam-
ple, the adversary employs the morphing tool as a blackbox.
Furthermore, due to the complexity of the PDF reader, the
adversary does not know whether a morphed PDF sample
will retain its functionality, and the only way to determine
that is to invoke the sandbox test.

Given such limitations on the knowledge of both the de-
tector and morphing mechanism, we want to investigate

whether effective attacks are still possible. To capture such
constrained capability, our formulation centres on the notion
of three blackboxes: a binary-outcome detector D that the
adversary wants to evade, a morpherM that“randomly”yet
consistently morphs the sample, and a tester T that checks
the sample’s functionality.

2.2 Tester T , Detector D and Evasion
The tester T , corresponding to the sandbox in the moti-

vation scenario, declares whether a submitted sample x is
malicious or benign. T is deterministic in the sense that it
will output consistent decisions for the same sample.

The blackbox detector D also takes a sample x as input,
and decides whether to accept or to reject the sample. D cor-
responds to the malware classifier in the motivating scenario.
Samples that are rejected by the detector are those that are
classified by the detector to be malicious. It is possible that
a sample x declared by T to be malicious is accepted by D.
In such case, we say that the sample x evades detection. Of
course, if the detector is exactly the same as the tester, eva-
sion is not possible. In fact, the main objective of our work is
to study the security of detectors with imperfect accuracy.
Similar to T , we consider detectors that are deterministic
(i.e., their output is always the same for the same input).

We highlight that, in our formulation, the detector’s out-
put is binary (e.g., accept/reject), as opposed to many pre-
vious works (e.g., [31, 35]) which assume real-value outputs.

2.3 MorpherM
The morpher M takes as input a sample x and a random

seed s, and deterministically outputs another sample x̃. We
call such action a morphing step. The morpher corresponds
to the morphing mechanism described in the motivating sce-
nario. The random seed s supplies the randomness required
by the morpher. We are not concerned with the representa-
tion of the random seed s, and for simplicity, treat it as a
short binary string.

Starting from a sample x0, the adversary can make suc-
cessive calls to M, say with a sequence of random seeds
s = 〈s1, s2, . . . , sL〉, to obtain a sequence of samples x =
〈x0, x1, x2, . . . , xL〉, where xi = M(xi−1, si). Let us call
(x, s) a path with starting point x0, endpoint xL, and path
length L. When it is clear from the context, we shall omit
s in the notation, and simply refer to the path by x.

The formulation does not dictate how the morphing is to
be carried out. The adversary can exploit useful proper-
ties of the application domain to manipulate the samples.
For instance, the adversary may be able to efficiently find
a morphing path connecting two given samples, or know
how to merge two morphing paths to attain certain desir-
able property. Nevertheless, such domain specific properties
are not always available in general. In Section 4, we pro-
pose a probabilistic model of “random” morphing to capture
the restriction that no underlying useful properties can be
exploited in manipulating the samples.

2.4 Adversary’s Goal and Performance Cost
Given a malicious sample x0, the goal of the adversary is

to find a sample that evades detection with minimum cost.
We call a sample evading if it is accepted by the detector
D, but exhibits malicious behaviours as perceived by the
tester T . If the given sample x0 is already evading, then
the adversary has trivially met the goal. Otherwise, the

adversary can call the morpher M to obtain other samples,
and check the samples by issuing queries to T and D.

Let Nd, Nt, and Nm be the number of queries the adver-
sary sent to D, T and M over the course of the evasion,
respectively. We are interested in scenarios where Nd is a
dominating component in determining the evasion cost. In
the motivating scenario, the detector can only be accessed
remotely and the email server (who is the defender) imposes
a bound on the number of such accesses.

While the adversary could freely access the tester, its
computational cost might be non-trivial. For instance, in
the motivating scenario, computationally intensive dynamic
analysis is required to check the functionality. In our exper-
iments, each such test takes around 45 seconds on average.
Morphing, on the other hands, is less computationally ex-
pensive. Hence, it is reasonable to consider an objective
function where Nt carries significantly more weight than
Nm.

A possible optimisation model is to minimise some cost
function (e.g., Nd+0.5Nt+0.01Nm). Alternatively, we could
consider constrained optimisation that imposes a bound on
Nd, while minimising a cost function involving the other two
measurements (e.g., Nt + 0.02Nm). Since cost functions de-
pend on application scenarios, we do not attempt to tune
our algorithm to any particular cost function. Instead, we
design search strategies with a general objective of minimis-
ing Nd, followed by Nt and Nm.

2.5 Flipping Samples and Gap
Let us consider a typical path x = 〈x0, x1, . . . , xL〉 in

which x0 is malicious and rejected while xL is benign and
accepted. Somewhere along the path, the samples turn from
malicious to benign, and from rejected to accepted. Start-
ing from x0, let us call the first sample that is benign the
malice-flipping sample, and the first accepted sample the
reject-flipping sample (see Figure 1). Let mx and rx be the
respective number of morphing steps from x0 to reach the
malice-flipping sample and reject-flipping sample. That is,

mx = arg min
i
{T (xi) = benign},

rx = arg min
i
{D(xi) = accept}

We call mx the malice-flipping distance, and rx the reject-
flipping distance. We further define by gx the gap between
mx and rx:

gx = rx −mx.

The value of gx is of particular interest. If gx < 0, then
the reject-flipping sample is still malicious, and therefore is
an evading sample.

It typically requires special crafting to embed an exploit in
a malicious sample. Thus, it is expected that once a sample
has turned to being benign, it is unlikely to regain the ma-
licious functionality via random morphing. Similar assump-
tion can be made about samples flipping from being accepted
to rejected, for the features that the classifiers are trained to
identify as grounds for making classification decision are un-
likely to be formed via random morphing. Thus, we make
an assumption that once a sample has flipped from being
malicious (or rejected) to benign (or accepted), it would not
be morphed to malicious (or rejected) again.

2.6 Challenges in Evasion in the Dark

malicious benign

reject accept

x0 x1 x2 x3 x4 x5 x6 x7 x8

(a)

malicious benign

reject accept

x0 x1 x2 x3 x4 x5 x6 x7 x8

(b)

Figure 1: Illustration of flipping samples. (a) The malice-
flipping sample is x4 and the reject-flipping sample is x6.
The malice-flipping distance mx = 4 and the reject-flipping
distance rx = 6. (b) The malice-flipping sample is x5
whereas the reject-flipping sample is x3. The malice-flipping
distance mx = 5 and the reject-flipping distance rx = 3.
Since the gap (rx −mx) is negative, x3 is evading.

There are two main challenges in evasion with the limited
blackbox accesses. Firstly, the detector D only provides a
binary output of accept/reject. Hence, from a set of mali-
cious samples, it is not clear which is “closer” to an evading
sample. Previous works such as [35] assume that D returns
a real-value confidence level, based on which the evasion is
guided. Nevertheless, in practice, a more cautious detector
might not reveal any information other than its final deci-
sion.

Secondly, the blackbox morpherM alone does not provide
flexibility in manipulating the samples. To illustrate, con-
sider the situation where the adversary has a malicious sam-
ple x0, and another sample x1 that losses its malicious func-
tionality and being accepted by the detector. Intuitively,
one could construct another sample x̂ from x1 and x0 that
has higher chance of evasion. With only blackbox accesses to
M, it is challenging to construct such x̂. One possible way is
to find a sample that lays somewhere in-between a path that
starts from x1 and ends at x0. However, it is not clear how
to efficiently find a morphing path that connects the two
given samples. Even if it is possible to connect them, there
is still a fundamental question on whether samples along the
path have higher chance of evasion.

3. PROPOSED EVASION METHODS
In this section, we present evasion methods that search for

evading samples given a malicious sample that is rejected by
the detector. For clarity of exposition, we first start with a
trivial exhaustive search algorithm SeqRand which serves as
the baseline for evaluation. We then optimize SeqRand to re-
duce its operation costs (i.e., number of queries issued to D
and T), obtaining BiRand. Next, we propose a hill-climbing
based algorithm EvadeHC0 and finally present our main eva-
sion approach EvadeHC that further reduces the number of
detector’s queries.

3.1 Evasion by Exhaustive Search SeqRand

On a malicious sample x0 which is rejected by D, Se-

qRand operates by successively morphing x0 and checking
the morphed samples against D and T until an evading sam-
ple is found. SeqRand is parameterised by a single threshold
L and proceeds as follows:

1. Choose a sequence of L random seeds s =
〈s1, s2, . . . , sL〉.

2. For each seed si in s, obtain a morphed sample xi by
invoking M(xi−1, si). Check xi against D and T , if
it is evading, output xi and halts. Otherwise continue
until s is consumed.

3. If s has been consumed and an evading sample has not
been found, repeat step 1 to 3 until an evading sample
is found.

Let Nr be the number of iterations SeqRand executed when
the search halts. It is easy to see that the numbers of queries
issued to D, T and M are the same:

Nd = Nt = Nm = Nr · L

3.2 Evasion by Binary Search BiRand

The baseline approach SeqRand can be improved in var-
ious ways. One straight-forward enhancement is to reduce
the number of detector queries issued in each path. In par-
ticular, one does not need to invoke D after every morph-
ing step, but rather submit only the sample preceding the
malice-flipping sample (e.g., x3 in Figure 1a and x4 in Fig-
ure 1b) to the detector. Further, one can also reduce the
number of tester queries in searching for the malice-flipping
samples by employing binary search in place of a series of
sequential check as in the baseline.

The algorithm BiRand, on an input x0 which is malicious
and rejected by D, carries out the following:

1. Choose a sequence of L random seeds s, and invokeM
successively with s (starting from x0) to obtain a path
x of length L.

2. Find the malice-flipping sample x̃ in the path using
binary-search with the tester T . Let x̂ be the immedi-
ate predecessor of x̃ on the path (i.e., x̂ is malicious).

3. If x̂ is accepted by the detector D, output x̂ and halt;
otherwise repeat step 1 to 3.

Similar to SeqRand, BiRand is also parameterised by a sin-
gle threshold L. The parameter L is set to be sufficiently
large such that with high probability, L morphing steps
would turn x0 from malicious to benign. In our experiments,
L ranges from 50 to 80.

Number of Queries. .
We note that the number of paths BiRand traverses in

finding evading samples is the same as the number of itera-
tions taken by SeqRand, hence they incur the same number
of morphing steps. On the other hand, BiRand requires less
queries to D and T . In particular, determining the malice-
flipping sample on each path (step 2) incurs at most dlog2 Le
queries to T , and there is only one query to the detector D
per each path (step 3). In sum, we have:

Nd = Nr, Nt ≤ Nrdlog2 Le, Nm = Nr · L

Note that the determination of the flipping samples is de-
signed to minimise the number of queries to D. In the sce-
nario where Nt imposes a larger cost than Nd, the algorithm
can be modified so that the binary searches are conducted
on D, finding reject-flipping samples. It then tests the can-
didates against T , incurring only one query to T per each
path.

Robustness of Binary Search. .
The binary search significantly reduces Nt compared to

the linear scan. As discussed earlier, we make an implicit
assumption that once a sample has become benign (or ac-
cepted), it is highly unlikely that M will morph it to ma-
licious (or rejected) again. Nevertheless, if such event hap-
pens, the binary-search may return a wrong flipping sample.
Fortunately, the effect of such failure is confined to the path
in question, and does not affect other paths.

We can further improve the efficiency of the evasion by in-
corporating information obtained from D and T in a heuris-
tic which “guides” the evasion. To this end, we propose a
hill-climbing algorithm, dubbed EvadeHC0.

3.3 Evasion by Hill-Climbing EvadeHC0

EvadeHC0 is parameterised by two pre-determined integers
q1, q2, a pre-determined real-value jump factor 0 < ∆ < 1
and a scoring function. The algorithm proceeds in iterations,
maintaining a set S of q2 candidates over the iterations (in
the first iteration, S contains the given malicious samples
x0). In each iteration, EvadeHC0 first generates q1 random
paths with starting points originating from S. If any of the
paths contains an evading sample, the algorithm outputs it
and halts. Otherwise, a new candidate, determined by the
jump factor ∆, is chosen from each path, and a real-value
score is computed for each new candidate using the scoring
function. The scoring function takes as inputs the flipping
distances of the path. Finally, q2 candidates with the highest
score are retained for the next iteration.

Details of each iteration are as follow:

1. For each sample x in S, generates bq1/|S|c random
paths with x as starting point, obtaining approxi-
mately q1 paths. Let P be the set of generated paths.
Reset S to empty set.

2. For each path x ∈ P , performs the following:

(a) Find the malice-flipping distance mx using binary
search.

(b) Find the reject-flipping distance rx using binary
search. If mx > rx, output the reject-flipping
sample and halt (i.e., an evading sample is found).

(c) Let x̂ be the sample along x at a distance of
b∆mxc morphing steps from the starting point.
Compute the score s = score(mx, rx), and asso-
ciate the sample x̂ with the score s. Insert x̂ into
S.

3. Keep q2 samples with the largest scores in S, and dis-
card the rest .

Scoring function..

x0

x1

x2

benign
malicious

reject

accept

e

Figure 2: Illustrating three iterations of Hill-Climbing. The
parameters (q1, q2,∆) are (1, 2, 0.5). Hence, S only contain
one starting sample. The sample x0, x1 and x2 are the start-
ing sample chosen for the first, second and third iteration
respectively. The sample e is evading.

A crucial component is the scoring function score. Two
possible choices of the scoring function are based on differ-
ence or relative ratio of the two flipping distances:

score1(mx, rx) = mx − rx, score2(mx, rx) = mx/rx.

Next, we present an improved version of EvadeHC0, called
EvadeHC, that employs a branch-and-bound technique to fur-
ther reduces the number of required detector queries.

3.4 Enhanced Evasion by Hill-Climbing
EvadeHC

Recall that in EvadeHC0, a complete binary search is car-
ried out on each path (Step 2(b)) to find a reject-flipping
distance rx. Thus, it requires q1 binary searches with the
detector D to find the best q2 candidates in each iteration.
EvadeHC, on the other hands, performs a single binary search
to find a score Ŝ such that exactly q2 candidates have scores
greater than Ŝ.

Specifically, the binary search takes in a set of paths P as
input. We assume that the malice-flipping distance of each
path in P is already determined. Let Ŝ be the target score,
and P̂ be the target set of paths that attains scores greater
than Ŝ. EvadeHC searches for Ŝ and P̂ in a single binary
search, while maintaining a set of candidate paths C which
is initially set to be P .

We now describe a step in the binary search that deter-
mines whether the target Ŝ is greater than a testing value
S0.

1. For each path x in C, carry out the following:

(a) Determine the smallest reject-flipping distance rx
such that the score is greater than S0. This does
not require any query since the malice-flipping
distance is known.

(b) Check whether this path attains a score larger
than S0. This is achieved by querying D, with the
sample at distance rx from the starting point. If
the sample is accepted, then the score is greater
than S0.

2. If the total number of paths attaining score greater
than S0 is more than q2, then Ŝ must be larger than

S0. Discard all paths whose score is lower than S0,
and recursively search on the upper half of S0.

3. Otherwise, Ŝ must be smaller than S0, and all paths
with score higher than S0 must be in P̂ . Remove them
from C and recursively search on the lower half of S0

for the remaining paths.

The applicability of this reduction depends on the choice
of scoring function. It is applicable as long as the scoring
function is decreasing with respect to the reject-flipping dis-
tance rx, which is the case for our choices of scoring functions
score1 and score2.

Similar to BiRand, the binary search is designed to reduce
Nd. If queries to the tester are more expensive than the de-
tector’s queries, we can swap and apply the binary search on
the malice-flipping distances, and thus reducing Nt instead.

Parameters q1, q2,∆. .
Figure 2 illustrates the searching process. Intuitively, a

larger q1 would improve accuracy of going toward the right
direction while a larger q2 would increase the robustness by
recovering from local minimum, and a larger jump factor ∆
could reduce the number of iterations in good cases. Never-
theless, excessively large parameters might not increase the
effectiveness of the search but rather incurs unnecessarily ex-
pensive performance cost. We examine in further details the
effect of these parameters on the performance of EvadeHC in
our experiments (Section 5).

4. PROBABILISTIC MODELS
In this section, we explain the intuition behind the design

of the proposed EvadeHC. In general, for searching to make
sense, each sample should have a score-value for the under-
lying “state”. We first give a way to assign a real-value state
(which is also the score) to a sample based on the binary
outcomes of T and D (“accept” versus “reject” and “mali-
cious” versus “benign”). Next, we propose a hidden state
model to capture the notion that the morphing process is
seemingly random.

4.1 States Representation
Given a sample x, we have 4 possible states from the bi-

nary outcomes of T and D. A searching strategy generally
needs to select the “best” candidate from a given set of sam-
ples, and this 4-state representation alone would not provide
meaningful information for selection.

Our main idea is to, ideally, assign the probability that
a random path (generated by the morpher) starting from x
has a reject-flipping sample that is malicious2.

Evading Probability as the state..
Given a starting point x, let Mx be the random variable

of the malice-flipping distance on random path. Recall that
the random paths arise from sequences of random seeds.
Likewise, let Rx and Gx be the random variable of the reject-
flipping distance and the gap respectively. It is not necessary
that Mx and Rx are independent. Indeed, one would expect
that they are highly positively correlated, since the detector

2An alternative choice is to consider the probability that a
random path has an evading sample. However, this choice
is not suitable, since an arbitrary long path is likely to have
an evading sample.

attempts to detect malicious functionality. We shall revisit
this later in Section 5. At this points, readers can refer
to Figure 10 for an intuition. The figure depicts flipping
distances of 500 morphed samples originating from the same
malware (Pearson correlation coefficient is 0.34).

For a sample x, let us assign the probability Pr(Gx < 0) as
its state. Recall that a path with negative gap implies that
its reject-flipping sample is malicious and thus is an evading
sample. In other words, the state of x is the probability that
a random path leads to an evading sample. Now, suppose
that the adversary has to pick one of two candidates x and
y to continue the search, then the candidate with the larger
state-value gives higher chance of finding an evading sample.
This comparison provides a way for a hill-climbing algorithm
to select candidates in each round.

Expected flipping distances as the state. .
A main drawback of explicitly taking Pr(Gx < 0) as x’s

state is the high cost in determining the probabilities during
the search process. Although one may estimate the distribu-
tion ofGx by sampling multiple random paths, such accurate
estimation would require extremely high number of queries,
which in turn offsets the gain offered by efficient searching
strategies. Alternatively, we can take the expected reject-
flipping and malice-flipping distances as the state. Compare
to the distribution Gx, the expected distances can be ac-
curately estimated by drawing fewer random paths. In the
proposed EvadeHC, the measured flipping distances can be
viewed as the estimates of the expected distances. From
the expected distances, we can derive the expected gap. In-
tuitively, the smaller the expected gap is, the higher the
probability Pr(Gx < 0) would be. Although the expected
flipping distances do not provide sufficient information for
us to estimate the probability, we can still employ the ex-
pected gap for comparison of probabilities. This motivates
the choices of the two scoring functions score1 and score2
proposed in Section 3.3.

4.2 Hidden-State Random Morpher
We consider an abstract model HsrMorpher for analysis.

Under HsrMorpher, the morpher operates in the same way
as the Random Oracle [17] employed in the studies of hash
functions does, producing truly random outcomes for unique
query, and being consistent with repeated queries. Based on
HsrMorpher, we give a condition whereby EvadeHC performs
poorly and cannot outperform BiRand.

Randomly morphed sample. .
Let us call a sample seen, if it has been queried against
T ,D or M, or has been an output of M. In other words, a
sample is seen if it has been processed by one of the black-
boxes. A sample is unseen otherwise. On a query consisting
of a sample x and a random seed s, M first checks whether
the query (x, s) has been issued before. If that is not the
case,M randomly and uniformly chooses an unseen sample
to be the morphed sample3. Otherwise, the previously cho-
sen sample will be outputted. In additional,M also decides,
in a random way, the hidden state of the morphed sample,
which is to be described next.

3If the pool of unseen samples is empty,M simply halts and
does not generate a morphed sample.

Randomly reducing hidden values. .
Under HsrMorpher, each sample x is associated with a

hidden state, represented by two real values (a, b). There is a
particular sample xo with state (1, 1) set to be seen initially,
and it is also known to the adversary. Upon receiving a
query (x, s), M outputs a morphed sample x̃ as described
in the previous paragraph. If x is unseen, then the morpher
sets the state of x to (0, 0) and remembers that. Next, the
morpher selects two real values (α, β) from a random source
S and sets the hidden state of x̃ as

(a− α, b− β)

where (a, b) is the hidden state of x.
The tester T , when given a query x, decides the outcome

based on the hidden state. If x is unseen, then T sets the
hidden state to (0, 0). Suppose the hidden state of x is
(a, b), then T outputs malicious iff a > 0. Likewise, for
the detector D, it outputs reject iff b > 0, and sets the state
of x to be (0, 0) if it is unseen.

Note that the only parameter in the HsrMorpher model is
the random source S.

4.3 Analysis of EvadeHC on HsrMorpher

HsrMorpher behaves randomly, and is arguably the worst
situation the adversary can be in, as the adversary is unable
to exploit domain knowledge to manipulating the samples.
For instance, given two samples x0 and x1, it is not clear
how to find a sequence of random seeds that morph x0 to
x1.

Ineffectiveness of EvadeHC.
To understand the performance of EvadeHC, let us give

a particular source S for HsrMorpher that renders EvadeHC

ineffective. Let us consider a source S where α and β are
discrete and only take on value 0 or 1. Thus, all possible
hidden states are (a, b) where a, b are integers not greater
than 1. We can view the samples seen during an execution
of EvadeHC as a tree. It is not difficult to show that the
conditional probability Pr(Gx > 0 | state of x is (1, 1)) is
the same for all x in this tree. Thus, in every iteration, all
candidates have the same probabilities and it is irrelevant
which is chosen for the next iteration.

Random Source S. .
The model HsrMorpher assumes that the reduction of the

hidden values is independent of the sample x. To validate
that real-life classifiers exhibit such property, in our em-
pirical studies, we treat their internal classification score
assigned to a sample as the sample’s hidden state. The
empirical results demonstrate that the distributions of the
reduction are similar over a few selected samples.

Remarks. .
One can visualise the search for evading sample as a race in

reducing the hidden state (a, b). Statistically, a is expected
to drop faster than b. The evasion’s goal is to find a random
path that goes against all odds with b reduces to 0 before
a does. Essentially, EvadeHC achieves this in the following
way: It generates and instantiates a few random paths. The
path with the smallest gap arguably has b reducing faster
than average. Hence, EvadeHC chooses a point along this
path as the starting point for the next iteration. Figure 8
depicts this process based on an actual trace obtained in our

experimentation.

5. EVALUATION
To study the feasibility and effectiveness of our proposed

approaches, we conduct experimental evaluation on two
well-known PDF malware classifier, namely PDFrate [28]
and Hidost [30]. We defer overview of PDF malwares and
the two classifiers to Appendix A. We first describe our ex-
perimental setups and then reports the results.

5.1 Experimental Setups
Morpher M. We employ a simple morphing mechanism
M that performs three basic operations with either insert,
delete or replace an object in the original PDF file. In order
to perform these operations, the morpherM needs to be able
to parse the PDF file into a tree-like structure, to perform
the insertion, deletion or replacement on such a structure
and finally to repack the modified structure into a variant
PDF4. We employ a modified version of pdfrw [5] available
at [3] for parsing and repacking.

For insertion and replacement, the external objects that
are placed into the original file is drawn from a benign PDF
file. We collect ten benign PDF files of size less than 1MB
via a Google search to feed into M as a source of benign
objects. They are all accepted by the targeted detectors
and confirmed by the tester T as not bearing any malicious
behaviours.

Tester T . The tester T is implemented using a malware
analysis system called Cuckoo sandbox [1]. The sandbox
opens a submitted PDF file in a virtual machine and
captures its behaviours, especially the network APIs and
their parameters. The PDF file is considered malicious if
its behaviours involve particular HTTP URL requests and
APIs traces. We follow previous work by Xu et al. [35]
in selecting the HTTP URL requests and APIs traces as
reliable signature in detecting malicious behaviours of the
submitted PDF files.

Dataset. We conduct the experimental studies using a
dataset which consists of 500 malicious PDF files that had
been selected by Xu et al. in their experiments [35]. These
samples are drawn from the Contagio [6] dataset, satisfying
the following three conditions. First, they exhibit malicious
behaviours observed by the tester. Secondly, they have
to be compatible with the morphing mechanism (i.e. can
be correctly repacked by pdfrw). And lastly, they are all
rejected by both targeted detectors. We shall refer to these
as malware seeds hereafter.

Targeted detectors. The targeted detectors in our
experiments are based on the two PDF malware classifiers,
namely PDFrate and Hidost. We make small changes to
their original implementations [4, 30] such that the final
outputs are binary decisions, rather than real-value scores.

Scoring function. The score function adopted in this
studies is score1(m, r) = m − r, where m is the malice-

4To avoid redundant parsing of the same PDF file in mul-
tiple steps, M caches the modified tree structure (or the
original tree structure of the malicious PDF file), and di-
rectly modifies it without having to parse the PDF file in
each step.

5 10 15 200
20
40
60
80

100
120

Average No. of iterations

(a) PDFrate

4 6 8 10 120

50

100

150

200

Average No. of iterations

(b) Hidost

Figure 3: Histogram of average numbers of iterations
EvadeHC needs in finding evading samples against the two
detectors.

flipping distance and r is the reject-flipping distance.

Machine and other parameters. All experiments are
conducted on Ubuntu 14.04 commodity machines equipped
with Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz pro-
cessors and 64GB of physical memory. The evasion process
can be run in parallel, as there are no dependencies between
different executions. In our experiments, we dedicate one
machine to run D andM, and nine others to run the tester
T . Each of these nine machines deploys 24 virtual machines
simultaneously, and is capable of performing approximately
2, 000 tester queries per hour.

We conducted five sets of experiments. The first set of
experiments examines how the parameters q1, q2 and ∆
effect the performance of EvadeHC. The second and third
experiment sets evaluate the effectiveness of the proposed
approaches in evading PDFrate and Hidost detectors, re-
spectively. The efficiency of the evasion is determined by
number of blackboxes queries and the overall running time.
In the forth set of experiments, we consider a hypothetical
setting where the detectors are hardened to make evasion
more difficult and benchmark our approaches against the
closely related work by Xu et al.[35], which relies on classi-
fication scores output by the detectors to guide the evasion.
We emulate the hardening of detectors by reducing their de-
faults thresholds: below 0.5 for PDFrate and below 0 for
Hidost. The last set of experiments validates the HsrMor-

pher model we discussed earlier in Section 4. Unless other-
wise stated, the reported results are average values obtained
over 10 instances.

5.2 Effect of Parameter Settings on EvadeHC

We first examine how the choice of parameters q1,
q2 and ∆ effects the performance of EvadeHC. We run
EvadeHC with different parameter settings on 100 mal-
ware seeds randomly selected from our experimental dataset
against PDFrate detector, varying q1 from 10 to 60, and
setting q2 proportional to q1 with a percentage ranging from
10% to 50%. In addition, we vary the jump factor ∆ from
0.4 to 0.9. The average numbers of iterations and amounts
of detector queries required to find evading samples are re-
ported in Figure 4.

Figure 4a indicates that increasing q1 will lessen the num-
ber of iterations. This is consistent with an intuition we dis-
cussed earlier, for larger q1 would improve a likelihood that
the algorithm is going toward the right direction. q2, on the
other hands, has a more subtle effects on the number of iter-

10 20 40 600

10

20

30

40

q1A
ve

ra
ge

n
o.

of
it

er
at

io
n

s

q2 = 10% · q1
q2 = 25% · q1
q2 = 50% · q1

(a) Effect of q1, q2

0.40.50.60.70.80.9
0
2
4
6
8

10

∆A
ve

ra
ge

n
o.

of
it

er
at

io
n

s

(b) Effect of ∆

10 20 40 60
0

200

400

600

800

1,000

q1

N
d

q2 = 10% · q1 q2 = 25% · q1 q2 = 50% · q1

(c) Average Nd w.r.t different q1, q2

Figure 4: Effect of q1, q2 and ∆ on performance of EvadeHC

ations. In particular, a too small value may lead the search
to a local minimum, hindering the search progress, while a
too large value may accidentally bring“bad”candidates onto
the next iterations. A similar trend is also observed on ∆
(Figure 4b). When it is increased from 0.4 to 0.7, we wit-
ness a reduction in number of iterations. However, when it
reaches 0.9, the algorithm tends to loop through more iter-
ations in order to find evading samples. The reason is that
too small ∆ limits progress the search can make in each it-
eration, while unnecessarily large ∆ would increase the like-
lihood of samples in the next iterations being rejected.

It is worth noting that the number of detector queries re-
quired to find evading samples depends not only on the num-
ber of iterations, but also the value of q1. Figure 4c shows
average number of detector queries with respect to different
settings of q1 and q2. While larger q1 leads to smaller num-
ber of iterations, it may result in larger number of detector
queries per each iterations, and thus larger queries overall
(e.g., with q2 = 25% ·q1, increasing q1 from 20 to 60 leads to
an increase in Nd). From the result of this experiment set,
we choose q1 = 20, q2 = 5 and ∆ = 0.75 as the parameter
setting for EvadeHC through all other sets of experiments.

5.3 Evading PDFrate Detector
The second experiment set focuses on evading

PDFrate detector. All of our methods achieve 100%
evasion rates (i.e., found evading samples for all 500 mal-
ware seeds in our dataset). While the baseline SeqRand and
BiRand traverse 1048 random paths on average to find
an evading sample, EvadeHC only needs from three to six
iterations (each iteration involves assessing 20 random
paths). Nevertheless, there are a few exceptions which
require EvadeHC to take up to 19 iterations to find evading
samples (Figure 3a).

40 60 800
20
40
60
80

100

(a) Ratios of Nd by
SeqRand and BiRand

4 6 8 10 12 140
20
40
60
80

100

(b) Ratios of Nt by
SeqRand and BiRand

2 3 4 50

20

40

60

(c) Ratios of Nd by
BiRand and EvadeHC

4 6 8 10 120

20

40

60

80

(d) Ratios of Nt by
BiRand and EvadeHC

Figure 5: Performance comparison of SeqRand, BiRand and
EvadeHC in evading PDFrate.

We first compare the performance of BiRand to the base-
line SeqRand. Figure 5a shows the ratios of their Nd, and
Figure 5b plots that of Nt, clearly demonstrating the effec-
tiveness of the binary search mechanism employed in BiRand.
Compared to the baseline, BiRand could reduce Nd by upto
94 times.

Next, we benchmark EvadeHC against BiRand. Figure 5c
report the ratios between their numbers of detector queries,
and Figure 5d depicts ratios of their tester queries. Bi-

Rand typically demands from 2 to 4 times more detec-
tor queries, and 6 to 10 times more tester queries than
EvadeHC does. More details in numbers of blackboxes
queries required by EvadeHC and BiRand are reported in
Appendix B.

Compared to the baseline SeqRand, EvadeHC demands
upto 450 times fewer detector queries and 148 times fewer
tester queries, which translates to two orders of magnitude
faster running times. We report running times of different
approaches in Section 5.5.

5.4 Evading Hidost Detector
In the third set of experiments, we evaluate our proposed

approaches against Hidost detector. They also achieve 100%
evasion rate for the 500 malware seeds in the dataset. For
95% of the seeds, EvadeHC found the evading samples within
11 iterations, while the other seeds need up to 13 iterations
(Figure 3b). BiRand and SeqRand, on the other hand, have
to traverse approximately 1550 paths on average to find an
evading sample.

We report performance of SeqRand in comparison with
BiRand in Figure 6a and 6b, showing that BiRand is capable
of outperforming SeqRand by upto 92 and 12 times in term
of detector and tester queries, respectively.

Further, we also benchmark BiRand against EvadeHC by
showing the ratios between their Nd (Figures 6c) and
Nt (Figure 6d). The results show the superiority of
EvadeHC over BiRand. In particular, for most malware seeds,

50 60 70 80 900

20

40

60

(a) Ratios of Nd by
SeqRand and BiRand

8 9 10 11 120

20

40

60

(b) Ratios of Nt by
SeqRand and BiRand

1.5 2 2.5 3 3.5 4 4.50
20
40
60
80

100

(c) Ratios of Nd by
BiRand and EvadeHC

5 10 15 200
20
40
60
80

100

(d) Ratios of Nt by
BiRand and EvadeHC

Figure 6: Performance comparison of SeqRand, BiRand and
EvadeHC in evading Hidost.

EvadeHC requires two to three times fewer detector queries
and seven to ten times fewer tester queries compared to Bi-

Rand. More details in numbers of blackboxes queries re-
quired by the two approaches are reported in Appendix C.

When benchmarked against the baseline solution,
EvadeHC attains upto two orders of magnitude lower exe-
cution cost, both in term of number of queries to the black-
boxes and the overall running time.

5.5 Execution Cost
Figure 7 report average running time of different ap-

proaches in evading the two detectors. As discussed earlier,
EvadeHC and BiRand are order of magnitude more efficient
than the baseline solution SeqRand. In particular, to find
an evading sample against Hidost, SeqRand takes on average
6.7 hours, while BiRand and EvadeHC need only 40 and 5
minutes, respectively.

It can also be seen that evading Hidost is often more ex-
pensive than evading PDFrate. It would be interesting to
investigate how the construct of Hidost provides resilience
against the attacks.

We remark that BiRand and EvadeHC are designed with a
premise that Nd is a dominating component in determining
the evasion cost, thus minimising the number of detector
queries, rather than tester queries which are computation-
ally expensive. In situations where Nt is the dominating
component (e.g., applications for which computational cost
is the main constrain), one can easily derive a variant of
EvadeHC that applies the single binary searches with D in-
stead of T . The performance of such algorithm is arguably
similar to that of our current implementation, except for Nd

and Nt whose values would be swapped. There is no im-
pact on the accuracy, since the modification is purely on the
algorithmic aspect.

5.6 Evading Trace Analysis
To gain a better insight on how the hill-climbing heuris-

SeqRand BiRand EvadeHC

103

104
A

ve
ra

ge
R

u
n

n
in

g
T

im
e

(s
)

PDFrate

Hidost

Figure 7: Average running time (in seconds) required to find
an evading sample of different approaches. The results are
taken over 5000 evasions, 10 for each of the malware seeds
in our dataset

0 20 40 60 80 100

0

20

40

60

80

100

Reject-flipping distance

M
al

ic
io

u
s-

fli
p

p
in

g
d

is
ta

n
ce

PDFrate

Hidost

Malware Seed

Evading Samples

Figure 8: Typical evading traces by EvadeHC against the
two targeted detectors. A diagonal dashed line represents
samples whose flipping distances are equal. Samples chosen
in successive iterations usually move “closer” to the line.

tic works in EvadeHC, we examine the flipping distances of
samples generated along typical evading traces. An evading
trace is a collection of samples that EvadeHC successively
generates in finding an evading sample for a malware seed.
Such a trace starts with an originally malicious PDF file,
and ends with an evading sample. Samples generated in
the first iteration would have reject-flipping distance larger
than malice-flipping distance. EvadeHC would select promis-
ing samples from one iteration and continue to morph them
in the next iteration so that they are eventually accepted by
the detector before losing their malicious functionality.

Figure 8 depicts typical evading traces that lead to evading
samples against PDFrate and Hidost detectors. The diago-
nal line in the figure represents points where malice-flipping
distance and reject-flipping distance are equal, the verti-
cal line represents points at which the detector’s decision
changes from reject to accept, and the horizontal line repre-
sents points where the malicious functionality of the samples
are lost. Intuitively, the malware seeds’ representations in
term of malice-flipping distance and reject-flipping distance
often lie below the diagonal line, and EvadeHC morphs them
so that they move past the diagonal line, reaching the verti-
cal line (i.e., being accepted) before crossing the horizontal
line (i.e., losing the malicious functionality). It can also be

0.45 0.4 0.35
0

20

40

60

80

100 100%

67%

35%

91%

38%

5%

100%

52%

26%

Malware thresholds

E
va

si
on

ra
te

(%
)

EvadeHC

BiRand

EvadeGP

(a) Hardened PDFrate

−0.25 −0.5 −0.75
0

20

40

60

80

100

100%

86%

62%

84%

57%

8%

100%

72%

50%

Malware thresholds
E

va
si

on
ra

te
(%

)

EvadeHC

BiRand

EvadeGP

(b) Hardened Hidost

Figure 9: Evasion rates of different approaches (displayed
on top of the bars) against hardened detectors.

seen from the figure that PDFrate is more evadable, as it is
easier to move the samples generated against PDFrate past
the diagonal compared to those that are evaluated against
Hidost.

5.7 Robustness against Hardened Detectors
In the forth experiment set, we investigate scenarios where

the detectors are hardened to render evasions more difficult.
We emulate hardened PDFrate by lowering its malware
threshold down to 0.35 5, and hardened Hidost’s to −0.75.
Further, we bound the maximum number of detector queries
that could be issued in finding an evading sample to 2, 500.
If an evading sample can not found after the predefined num-
ber of detector queries, we treat the seed as non-evadable.

In addition, we benchmark the two approaches BiRand and
EvadeHC against a technique by Xu et al. [35], which we
shall refer to as EvadeGP. We stress that while EvadeGP re-
lies on classification scores assigned to the samples to guide
the search, our approaches do not assume such auxiliary
information. We operate EvadeGP under a similar set of pa-
rameters reported in [35]: population size is 48, mutation
rate is 0.1 and fitness stop threshold is 0.0. We bound the
number of generations that EvadeGP traverses to 50 (instead
of 20 as in [35]), effectively limiting the number of detector
queries incurred in each evasion to 2, 500. In addition, we

5Authors of PDFrate [28] reported that adjusting the mal-
ware threshold from 0.2 to 0.8 has negligible effect on accu-
racy.

45 50 55 60 65 70

35

40

45

50

Evading

Region

Average reject-flipping distanceA
ve

ra
ge

m
al

ic
e-

fli
p

p
in

g
d

is
ta

n
ce

Figure 10: Average flipping distances (with Hidost as the de-
tector) of 200 morphed samples originating from the same
malware seed (depicted by the diamond). The malice-
flipping distance of the chosen malware seed is 42, and its
reject-flipping distance is 60. The pearson correlation coef-
ficient of the distances is 0.34.

disable its trace replay feature (i.e., mutation traces that
successfully generates evading sample for one malware seed
are not replayed on the other), treating each malware seed
independently. This enables a fair basis to benchmark the
effectiveness of our approaches against EvadeGP, for ours do
not assume trace replay.

Figure 9 reports evasion rates of BiRand and EvadeHC in
comparison with that of EvadeGP against the hardened de-
tectors. For PDFrate detector with malware threshold set
to 0.45, both EvadeHC and EvadeGP attained 100% evasion
rate on our dataset, while BiRand only achieves 91%. When
the malware threshold is further lowered to 0.4 and 0.35, the
evasion rate of EvadeHC decreases to 68% and 35%, respec-
tively, while EvadeGP and BiRand witness more significant
drops in their evasion rates, attaining evasion rate of as low
as 5% for BiRand and 26% for EvadeGP. Similarly, when the
malware threshold of Hidost is reduced to −0.75, BiRand and
EvadeGP could only find evading samples for 8% and 50% of
the malware seeds respectively, while EvadeHC still attains
an evasion rate of 62% (Figure 9b).

While it may come as a surprise that EvadeHC attains bet-
ter evasion rate than EvadeGP even though it only assumes
binary output instead of classification score as EvadeGP does,
we suspect that this is because of the fact that EvadeHC’s
scoring mechanism is capable of incorporating information
obtained from both the tester and detector and thus is
arguably more informative than the scoring mechanism of
EvadeGP which mainly relies on the classification score out-
put by the detector.

5.8 Validating the Hidden-state Morpher
Model

To justify the proposition on states representation of a
sample discussed earlier in Section 4, we generate 200 dif-
ferent morphed samples from the same malware seed, and
measure their average flipping distances (the reject-flipping
distance is measured against Hidost). The average flipping
distances of each sample are computed from 20 different
random paths originating from it (the sequences of random

−0.2 0 0.2 0.40
20
40
60
80

100
120

(a) x0

−0.4−0.2 0 0.2 0.40

20

40

60

80

(b) x1

Figure 11: Effect of morphing on PDFrate score. The
histograms reported changes in classification scores after 5
morphing steps.

seeds are the same for all samples), and plotted in Figure 10.
The figure also shows a certain correlation between the mal-
ice and reject flipping distances. Indeed, the pearson cor-
relation coefficient of the distances is 0.34, confirming our
proposition earlier in Section 4 that they are positively cor-
related.

The proposed model HsrMorpher assumes that the reduc-
tion of the hidden values is independent and identical for
all the samples. To validate that real-life classifiers exhibit
such property, we consider PDFrate and treat the inter-
nal classification score assigned to a sample as it’s hidden
state. We pick a sample x0 and create another sample x1
by applying a sequence of five morphing steps on x0. We
then generate 1, 000 random paths of length five from x0.
For each of the random path, we record the difference be-
tween classification scores of the last sample and x0. Figure
11a shows the histogram of the recorded score differences.
Similar experiment is carried out on x1 and the histogram is
shown in Figure 11b. Observe that the two histograms are
similar, giving evidences that HsrMoprher is appropriate.

We further study the validity of the HsrMorpher model
by running BiRand and EvadeHC under the abstract model.
Recall that HsrMorpher is parameterised by the random
source S that dictates how the two values (α, β) are chosen.
From previous set of experiments, we observe that a typical
malice-flipping distance is 42, and reject-flipping distance
is 60 (Figure 10). A more detailed analysis of the empiri-
cal data suggests that, with respect to the three blackboxes
deployed in our experiments, α would follow normal distri-
bution N (0.024, 0.01) and β follows N (0.017, 0.011). The
evasion starts with a malicious sample xo with state (1, 1)
and succeeds if it can find an evading sample e with state
(a, 0) for some a > 0. We repeat the experiment for 100
times.

Due to space constraint, we only show the average number
of iterations (or paths) that the two approaches traverse in
searching for evading samples under the HsrMorpher model.
The experimental results confirm the consistency of their be-
haviors under HsrMorpher and the empirical studies. This
strongly indicates that the abstract model can indeed serve
as a basis to study and analyze the proposed evasion mech-
anism.

6. DISCUSSION
In this section, we discuss potential mitigation strategies

and implications suggested by our evasion attacks.

6.1 Existing Defensive Mechanism

2 4 6 8 100
5

10
15
20
25

Average No. of iterations

(a) EvadeHC

1 1.11.21.31.41.51.6
·103

0

5

10

15

20

Average No. of paths

(b) BiRand

Figure 12: Histogram of average number of iterations and
path that EvadeHC and BiRand needs in finding evading sam-
ples under the abstract model.

Most existing works in evading learning-based classifier
rely on real-value classification scores to guide the eva-
sion [35, 21]. Thus, it has been suggested that hiding the
classification scores or adding random noise to the scores
may protect the classifier [8]. Another proposed defensive
mechanism is to use a multi-classifier system whose classifi-
cation score is randomly picked from different models trained
with disjoint feature sets [10]. Our results show that it is
still feasible to evade learning-based classifiers without any
classification score, rendering the above-mentioned defensive
mechanisms ineffective.

6.2 Potential Mitigation Strategies
Hardening the Malware Threshold. Previous

work [35, 28] suggested that the classification performance
(i.e., false accept/false reject) is typically robust against the
choice of the malware threshold, for original samples that
are not adversarially manipulated would have classification
scores close to either of extremes. For example, the authors
of PDFrate reported that adjusting the malware threshold
from 0.2 to 0.8 has negligible effect on accuracy, because
most samples would be assigned scores very close to either
0 or 1 [28]. On the other hand, our experimental study
(Section 5.7) suggests that even a slight change of the
malware threshold could have significant impact on the
evasion difficulties. Thus, it seems one potential mitigation
strategies is to set the threshold to be more “restrictive”.
This is worth investigating in future works.

Randomization. Another potential mitigation strategy is
to embed into the classifiers a certain level of randomness.
In particular, for samples whose classification scores are very
close to the threshold, the classifiers can flip its classification
decision with some probability. Given a proposition that
most samples would have classification scores distant from
the threshold, the above-mentioned flipping mechanism
would not have significant impact on the classification
accuracy. Similar to the previous mitigation strategy, more
study is needed to conclude an effect of this countermeasure.

Identifying Evading Attempts/Samples. In most
cases, evading samples are found after hundreds of queries to
the detector D. In addition, the samples queried against D
over the course of the evasion would resemble one another,
to a certain extent. Thus, one possible method to detect
evading attempts/samples is to have D remember samples
that have been queried and apply some similarity/clustering-

based techniques to identify evading queries/samples. In
other words, D has to remain stateful.

6.3 Evasion for Defense
Ironically, an effective evasion algorithm can also be used

to build more secure classifiers that are robust against eva-
sion attacks. Indeed, previous works have suggested that one
can enhance the robustness of a learning based model by in-
jecting adversarial examples throughout its training [14, 21].
In particular, those morphed samples that retain the desired
malicious activity, especially the ones that are misclassified
by the learning based systems, can be included in the train-
ning dataset for the next step of training. We remark that
by formulating the morphing process as random but repeat-
able, our approaches are capable of generating adversarial
examples with great diversity, further enhancing effective-
ness of the adversarial training.

7. RELATED WORK
Evasion attacks against classifiers have been studied in

numerous contexts [36, 23, 30, 35]. These works differ in
their assumptions on the adversary’s knowledge about the
detector and how the data could be manipulated. Intu-
itively, detailed knowledge of the classifier significantly ben-
efits the adversary in conducting evasion attacks. Šrndic
et al. [31] proposed a taxonomy of evasion scenarios based
on the knowledge about the targeted classifier’s components
that are available to the adversary. These components in-
clude training datasets and classification algorithms together
with their parameters, as well as a feature set that the clas-
sifier has learnt.

Various attacks against learning-based classifiers [9, 31,
25] assume that the adversary has high level of knowledge
about the target system’s internals (e.g., feature sets and
classification algorithms), and could directly manipulate the
malicious seeds in the feature space. It is unclear how these
works could be extended to the constrained scenario we con-
sider in this work, wherein the adversary does not have any
knowledge of the feature set and could not manipulate the
data on the feature space.

Xu et al. [35] relax an assumption on the high level of
knowledge about the detector’s feature set, only presume
that the adversary is aware of the manipulation level of
the morphing mechanism and has access to the classification
scores output by the target detector. On the contrary, our
technique does not assume any of such knowledge. Interest-
ingly, we show in Section 5.7 that even without relying on
classification scores, our proposed algorithm EvadeHC still
attains higher evasion rate against hardened detectors in
comparison with previous work.

The evasion attacks proposed by Papernot et al. [21] re-
quire training a local model that behaves somewhat simi-
lar to the targeted system, then search for evading samples
against such local model, and show that they are also mis-
classified by the targeted system. The actual evasion hap-
pens on the substituting model whose internal parameters
and training dataset are available to the adversary. Fur-
ther, this approach heavily relies on the transferability of the
adversarial samples. Our solutions, on the other hand, di-
rectly search for evading samples against the targeted classi-
fier without necessitating training a local substituting model
or making any assumption on the transferability of samples.

A line of works on adversarial learning [33, 26] also as-

sume blackbox accesses to the targeted systems, but are dif-
ferent from ours in their adversarial goals. While Tramèr
et al. [33] attempted to extract exact value of each model
parameter and Shokri et al. [26] were interested in inferring
if a data record was in the targeted model’s training dataset,
our focus is on deceiving the target system into misclassify-
ing evading samples.

8. CONCLUSION
We have described EvadeHC, a generic hill-climbing base

approach to evade binary-outcome detector using blackbox
morphing, assuming minimal knowledge about both the de-
tector and the data manipulation mechanism. We have
demonstrated the effectiveness of the proposed approach
against two PDF malware classifiers. Although the experi-
ment studies are performed on malware classifier, the pro-
posed technique and its security implications may also be of
wider application to other learning-based systems.

Acknowledgements
We thank Amrit Kumar and Shiqi Shen for helpful discus-
sions and feedback on the early version of the paper. This
research is supported by the National Research Founda-
tion, Prime Minister’s Office, Singapore under its Corporate
Laboratory@University Scheme, National University of Sin-
gapore, and Singapore Telecommunications Ltd. All opin-
ions and findings expressed in this work are solely those of
the authors and do not necessarily reflect the views of the
sponsor.

9. REFERENCES
[1] Claudio Guarnieri, Alessandro Tanasi, Jurriaan

Bremer, and Mark Schloesser. Cuckoo Sandbox: A
Malware Analysis System. .
http://www.cuckoosandbox.org/.

[2] CVE Details. Adobe Acrobat Reader: Vulnerability
Statistics. http://www.cvedetails.com/product/497/.

[3] Modified pdfrw. https://github.com/mzweilin/pdfrw.

[4] Nedim Šrndić and Pavel Laskov. Mimicus: A Library
for Adversarial Classifier Evasion.
https://github.com/srndic/mimicus.

[5] Patrick Maupin. PDFRW: A Pure Python Library
That Reads and Writes PDFs.
https://github.com/pmaupin/pdfrw.

[6] Stephan Chenette. Malicious Documents Archive for
Signature Testing and Research - Contagio Malware
Dump. http://contagiodump.blogspot.sg/2010/08/.

[7] M. Barreno, B. Nelson, A. D. Joseph, and J. Tygar.
The security of machine learning. Machine Learning,
2010.

[8] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and
J. D. Tygar. Can machine learning be secure? In
Proceedings of the 2006 ACM Symposium on
Information, computer and communications security,
2006.

[9] B. Biggio, I. Corona, D. Maiorca, B. Nelson,
N. Šrndić, P. Laskov, G. Giacinto, and F. Roli.
Evasion attacks against machine learning at test time.
In ECML-PKDD, 2013.

[10] B. Biggio, G. Fumera, and F. Roli. Multiple classifier
systems for adversarial classification tasks. In MCS,

2009.

[11] B. Biggio, B. Nelson, and P. Laskov. Poisoning attacks
against support vector machines. arXiv preprint
arXiv:1206.6389, 2012.

[12] M. Brückner, C. Kanzow, and T. Scheffer. Static
prediction games for adversarial learning problems.
Journal of Machine Learning Research, 2012.

[13] M. Cova, C. Kruegel, and G. Vigna. Detection and
analysis of drive-by-download attacks and malicious
javascript code. In WWW, 2010.

[14] I. J. Goodfellow, J. Shlens, and C. Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In ICCV, 2015.

[16] A. S. Incorporated. Pdf reference, sixth edition,
version 1.23. 2006.

[17] J. Katz and Y. Lindell. Introduction to modern
cryptography. CRC Press, 2014.

[18] P. Laskov and N. Šrndić. Static detection of malicious
javascript-bearing pdf documents. In ACSAC, 2011.

[19] K. Lee, J. Caverlee, and S. Webb. Uncovering social
spammers: social honeypots+ machine learning. In
SIGIR, 2010.

[20] J.-P. M. Linnartz and M. Van Dijk. Analysis of the
sensitivity attack against electronic watermarks in
images. In IH, 1998.

[21] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B.
Celik, and A. Swami. Practical black-box attacks
against machine learning. In ASIACCS, 2017.

[22] K. Rieck, P. Trinius, C. Willems, and T. Holz.
Automatic analysis of malware behavior using
machine learning. Journal of Computer Security, 2011.

[23] D. Sculley, M. E. Otey, M. Pohl, B. Spitznagel,
J. Hainsworth, and Y. Zhou. Detecting adversarial
advertisements in the wild. In KDD, 2011.

[24] K. Selvaraj and N. F. Gutierres. The rise of pdf
malware.

[25] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter.
Accessorize to a crime: Real and stealthy attacks on
state-of-the-art face recognition. In CCS, 2016.

[26] R. Shokri, M. Stronati, and V. Shmatikov.
Membership inference attacks against machine
learning models. In IEEE S&P, 2017.

[27] D. Silver, A. Huang, C. J. Maddison, A. Guez,
L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.
Mastering the game of go with deep neural networks
and tree search. Nature, 2016.

[28] C. Smutz and A. Stavrou. Malicious pdf detection
using metadata and structural features. In ACSAC,
2012.

[29] R. Sommer and V. Paxson. Outside the closed world:
On using machine learning for network intrusion
detection. In IEEE S&P, 2010.

[30] N. Šrndić and P. Laskov. Detection of malicious pdf
files based on hierarchical document structure. In
NDSS, 2013.

[31] N. Šrndić and P. Laskov. Practical evasion of a
learning-based classifier: A case study. In IEEE S&P,

http://www.cuckoosandbox.org/
http://www.cvedetails.com/product/497/
https://github.com/mzweilin/pdfrw
https://github.com/srndic/mimicus
https://github.com/pmaupin/pdfrw
http://contagiodump.blogspot.sg/2010/08/

2014.

[32] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf.
Deepface: Closing the gap to human-level performance
in face verification. In CVPR, 2014.

[33] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and
T. Ristenpart. Stealing machine learning models via
prediction apis. In USENIX Security, 2016.

[34] O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever,
and G. Hinton. Grammar as a foreign language. In
NIPS, 2015.

[35] W. Xu, Y. Qi, and D. Evans. Automatically evading
classifiers. In NDSS, 2016.

[36] C. Yang, R. Harkreader, and G. Gu. Empirical
evaluation and new design for fighting evolving twitter
spammers. IEEE TIFS, 2013.

APPENDIX
A. PDF MALWARE CLASSIFIERS

In this section, we give an overview of the Portable Doc-
ument Format (PDF) and PDF malwares, and briefly in-
troduce the two detectors, namely PDFrate [28] and Hi-
dost [30].

A.1 PDF
The Portable Document Format (PDF) is a standardised

file format that is designed to decouple the document pre-
sentation from the underlying environment platform (e.g.,
application software, hardware or even OSes), thus enabling
consistent presentation of the document across different
platforms [16]. A typical PDF file consists of four parts.
The first part – header – contains the magic number and
the version of the format. The second part – body – incorpo-
rates a set of PDF objects comprising the content of the file.
The third part – cross-reference table (CRT) – is an index
table that gives the byte offset of the objects in the body.
The last part – trailer – includes references to the CRT and
other special objects such as the root subject. We depict an
example of a PDF file in Figure 13.

The header, CRT and trailer are introduced with %PDF,
xref and trailer keywords, respectively. Objects in the body
of the file may be either direct (those that are embedded in
another object) or indirect. The indirect objects are num-
bered with a pair of integer identifiers and defined between
two keywords obj and endobj. Objects have eight basic types
which are Booleans (representing true or false), numbers,
strings (containing 8-bit characters), names, arrays (ordered
collections of objects), dictionaries (sets of objects indexed
by names), streams (containing large amounts of data, which
can be compressed) and the null objects. It is worth men-
tioning that there are some dictionaries associated with spe-
cial meanings, such as those whose type is JavaScript (con-
taining executable JavaScript code).

A.2 PDF Malwares
Due to its popularity, PDF files have been extensively ex-

ploited to deliver malware. In addition, given an increasing
number of vulnerabilities in Acrobat readers reported re-
cently [2], the threat of PDF malwares is clearly relevant.
The malicious payploads embedded in the PDFs are often
contained in JavaScript objects or other objects that could
exploit vulnerabilities of a particular PDF reader in use.

Header %PDF-1.5

Body

1 0 obj <</Count 1/Kids[7 0 R]/Type/Pages
>>endobj
· · ·
21 0 obj null
endobj

CRT

xref
0 22
0000000002 65535 f
· · ·
0000000394 00000 n

Trailer

trailer
· · ·
startxref
1637
%%EOF

Figure 13: An example of a PDF file structure

A.3 Detectors
Various PDF malware detectors have been proposed in the

literatures. A line of works [13, 18] targeted JavaScript code
embedded in the malicious PDFs (or PDF malware). They
first extract a JavaScript code from the PDF, and either
dynamically or statically analyse such a code to assess the
maliciousness of the PDF. Nevertheless, these works would
fail to detect PDF malware wherein the malicious payloads
are not embedded in JavaScript code or the code itself is
hidden [24]. Hence, recent works have taken another ap-
proach, relying on the structural features of the PDFs, to
perform static detection. Structural feature-based detectors
perform detection based on an assumption that there exist
differences between internal object structures of benign and
malicious PDF files.

Our experimental evaluations are conducted against two
state-of-the-art structural feature-based detectors, namely
PDFrate [28] and Hidost [30]. These two systems are re-
ported to have very high detection rate on their testing
datasets, and are also studied in previous works on evad-
ing detection [35]. It is worth mentioning that the outputs
of these two detectors are real-value scores which are to be
compared against thresholds to derive detection results. In
our experiments, we make small changes to their original
implementations so that they return binary outputs.

PDFrate..
PDFrate is an ensemble classifier consisting of a large

number of classification trees. Each classification tree is
trained using a random subset of the training data and based
on an independent subset of features. These features include
object keywords, PDF metadata such as author or creation
data of the PDF file, and several properties of objects such
as lengths or positions. At the time of classification, each
tree outputs a binary decision indicating its prediction on
the maliciousness of the input. The output of the ensemble
classifier is the fraction of trees that consider the input “ma-
licious” (a real-value score raning from 0 to 1). The default
cutoff value is set at 0.5.

PDFrate was trained using 5, 000 benign and 5, 000
malicious PDF files randomly selected from the Contagio
dataset [6]. The classifier consists of 1, 000 classification
trees each of which covers 43 features. The total number
of features covered by all the classification trees is 202 (but
only 135 are documented in PDFrate’s documentation).

0.8 1 1.2 1.4 1.6 1.8
·103

0.2

0.4

0.6

0.8
·103

BiRand

E
v
a
d
e
H
C

(a) Nd

0.7 0.8 0.9 1 1.1
·104

0.1

0.15

0.2

·104

BiRand

E
v
a
d
e
H
C

(b) Nt

4 5 6 7 8 9 10
·104

1

2

3

4
·104

BiRand

E
v
a
d
e
H
C

(c) Nm

2 4 6 8 100

10

20

30

40

(d) Ratios of Nm by
BiRand and EvadeHC

Figure 14: Average number of blackbox queries required in
evading PDFrate

An open-source implementation of PDFrate, namely Mim-
icus [4], is by Šrndić et al. [31]. We utilise this implementa-
tion in our experiments.

Hidost..
Hidost is a support vector machine (SVM) classifier [30].

SVM aims to fit a hyperplane (which can be expressed using
a small number of support vectors) to training data in such
a manner that data points of both classes are separated with
the largest possible margin. Hidost works by first mapping
a data point (representing a submitted PDF file) to an in-
definite dimensional space using radial basis function, and
reports the distance between the data point and the hyper-
plane as a measurement of its maliciousness. If the distance
is positive, the PDF file is considered malicious; otherwise,
the file is flagged as benign.

Hidost was trained using 5, 000 benign and 5, 000 mali-
cious PDF files. Hidost operates based on 6, 087 classifica-
tion features, which are structural paths of objects. These
structural paths are selected from a set of 658, 763 PDF
files (including both benign and malicious instances) based
on their popularity (i.e., each of them appeared in at least
1, 000 files). We use the implementation made available by
the author of Hidost in our experiments [30].

B. NUMBER OF BLACKBOX QUERIES IN
EVADING PDFrate

The number of blackbox queries that BiRand and
EvadeHC required in evading PDFrate are reported in Fig-
ures 14a, 14b, 14c. We do not report these metrics of the
baseline, for they are all equal to the number of morphing
steps that BiRand incurs.

As can be seen from Figure 14a, for a majority of the
malware seeds, EvadeHC needs at most 494 queries, while

1.2 1.4 1.6 1.8 2
·103

0.4

0.5

0.6

0.7

0.8
·103

BiRand

E
v
a
d
e
H
C

(a) Nd

100 110 120 130
·102

5

10

15

20

·102

BiRand

E
v
a
d
e
H
C

(b) Nt

9 10 11 12 13
·104

0.5

1

1.5

2

·104

BiRand

E
v
a
d
e
H
C

(c) Nm

5 10 15 200

20

40

60

80

(d) Ratios of Nm by
BiRand and EvadeHC

Figure 15: Average number of blackbox queries required in
evading Hidost

BiRand requires approximately 1500. The remaining seeds
appear to be much more difficult to evade, for which
EvadeHC and BiRand need up to 786 and 1837 queries, respec-
tively. Similarly, EvadeHC also requires fewer tester queries
and less morphing efforts than BiRand (Figures 14b and
14c). In particular, for the majority of the malware seeds,
EvadeHC can find an evading sample with less than 1, 237
tester queries and 21, 707 morphing steps, while BiRand con-
sumes up to 9, 100 and 63, 288 morphing steps.

To get an insight why some seeds necessitated much more
effort in finding evading samples, we check their classifica-
tion scores given by PDFrate. It comes as no surprise
that their classification scores are higher than the rest of
the malware seeds. In order words, it is harder to find evad-
ing samples for these seeds because the detector perceived
their maliciousness more clearly.

The histogram of the ratios between the numbers of mor-
phing steps required by the two approaches is depicted in
Figure 14d. EvadeHC requires as low as one tenth morph-
ing efforts compared to BiRand in order to find an evading
sample.

C. NUMBER OF BLACKBOX QUERIES IN
EVADING HIDOST

We report the amounts of blackbox queries EvadeHC and
BiRand incur in evading Hidost in Figure 15a, 15b and 15c.
Overall, EvadeHC outperforms BiRand with respect to all
three metrics Nd, Nt and Nm. In particular, EvadeHC’s re-
quires as few as 427 detector queries, while BiRand needs as
least 1, 131 queries to find an evading sample. With respect
to the tester, EvadeHC requires no more than 2073 queries,
while BiRand requires 11, 500 queries on average. The simi-
lar trend can also be observed on morphing effort, wherein
EvadeHC requires about 12, 500 morphing step on average,

while such number for BiRand is approximately 10 times
larger (Figure 15d).

	1 Introduction
	2 Problem formulation
	2.1 Motivating Scenario
	2.2 Tester T, Detector D and Evasion
	2.3 Morpher M
	2.4 Adversary's Goal and Performance Cost
	2.5 Flipping Samples and Gap
	2.6 Challenges in Evasion in the Dark

	3 Proposed Evasion Methods
	3.1 Evasion by Exhaustive Search SeqRand
	3.2 Evasion by Binary Search BiRand
	3.3 Evasion by Hill-Climbing EvadeHC0
	3.4 Enhanced Evasion by Hill-Climbing EvadeHC

	4 Probabilistic Models
	4.1 States Representation
	4.2 Hidden-State Random Morpher
	4.3 Analysis of EvadeHC on HsrMorpher

	5 Evaluation
	5.1 Experimental Setups
	5.2 Effect of Parameter Settings on EvadeHC
	5.3 Evading PDFrate Detector
	5.4 Evading Hidost Detector
	5.5 Execution Cost
	5.6 Evading Trace Analysis
	5.7 Robustness against Hardened Detectors
	5.8 Validating the Hidden-state Morpher Model

	6 Discussion
	6.1 Existing Defensive Mechanism
	6.2 Potential Mitigation Strategies
	6.3 Evasion for Defense

	7 Related Work
	8 Conclusion
	9 References
	A PDF Malware Classifiers
	A.1 PDF
	A.2 PDF Malwares
	A.3 Detectors

	B Number of blackbox queries in evading PDFrate
	C Number of blackbox queries in evading Hidost

