
FirmUSB: Vetting USB Device Firmware using Domain Informed
Symbolic Execution

Grant Hernandez∗
University of Florida
Gainesville, FL, USA

grant.hernandez@ufl.edu

Farhaan Fowze∗
University of Florida
Gainesville, FL, USA
farhaan104@ufl.edu

Dave (Jing) Tian
University of Florida
Gainesville, FL, USA

daveti@ufl.edu

Tuba Yavuz
University of Florida
Gainesville, FL, USA
tuba@ece.ufl.edu

Kevin R. B. Butler
University of Florida
Gainesville, FL, USA

butler@ufl.edu

ABSTRACT

The USB protocol has become ubiquitous, supporting devices from
high-powered computing devices to small embedded devices and
control systems. USB’s greatest feature, its openness and expand-
ability, is also its weakness, and attacks such as BadUSB exploit the
unconstrained functionality afforded to these devices as a vector
for compromise. Fundamentally, it is virtually impossible to know
whether a USB device is benign or malicious. This work introduces
FirmUSB, a USB-specific firmware analysis framework that uses
domain knowledge of the USB protocol to examine firmware im-
ages and determine the activity that they can produce. Embedded
USB devices use microcontrollers that have not been well studied
by the binary analysis community, and our work demonstrates how
lifters into popular intermediate representations for analysis can
be built, as well as the challenges of doing so. We develop targeting
algorithms and use domain knowledge to speed up these processes
by a factor of 7 compared to unconstrained fully symbolic exe-
cution. We also successfully find malicious activity in embedded
8051 firmwares without the use of source code. Finally, we pro-
vide insights into the challenges of symbolic analysis on embedded
architectures and provide guidance on improving tools to better
handle this important class of devices.

CCS CONCEPTS

• Security and privacy → Intrusion/anomaly detection and

malwaremitigation; Embedded systems security; Systems security;

KEYWORDS

USB; BadUSB; Firmware Analysis; Symbolic Execution

∗These authors have contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’17, October 30-November 3, 2017, Dallas, TX, USA

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/10.1145/3133956.3134050

1 INTRODUCTION

The Universal Serial Bus (USB) protocol enables devices to com-
municate with each other across a common physical medium. USB
has become ubiquitous and is supported by a vast array of devices,
from smartphones to desktop PCs, small peripherals, such as flash
drives, webcams, or keyboards, and even control systems and other
devices that do not present themselves as traditional computing
platforms. This ubiquity allows for easy connecting of devices to
data and power. However, attacks that exploit USB have become
increasingly common and serious. As an example the BadUSB at-
tack exploits the open nature of the USB protocol, allowing the
advertisement of capabilities that device users may not realize are
present. A BadUSB device appears to be a benign flash drive, but
advertises itself as having keyboard functionality when plugged
into a victim’s computer; the host unquestioningly allows such a
capability to be used. The malicious device is then able to inject
keystrokes to the computer in order to bring up a terminal and
gain administrative access. Fundamentally, there is an inability to
constrain device functionality within USB, coupled with a corre-
sponding lack of ability to know what types of functionalities a
device is capable of advertising and whether or not these are benign.

Previous work has focused on preventing USB attacks at the pro-
tocol level, through isolation-based approaches such as sandboxing
and virtualization [2, 57] or involving the user in the authorization
process [55]. These approaches suffer from a common problem: they
rely on a device’s external actions to demonstrate its trustworthi-
ness. Without a deeper understanding of the underlying software
controlling these devices, an external observer cannot with cer-
tainty ensure that a device is trustworthy. Even solutions such as
signed firmware give little evidence of its actual validity; signing
merely demonstrates that an entity has applied their private key to
a firmware, but does not in itself provide any assurance regarding
device integrity. Consequently, there is limited ability to validate
the trustworthiness and integrity of devices themselves.

In this paper, we address these concerns through the analysis of
firmware underlying USB devices. We create FirmUSB, a framework
that uses domain knowledge of the USB protocol to validate device
firmware against expected functionality through symbolic execu-
tion. USB devices are often small and resource-constrained, with
significantly different chip architectures than the ARM and x86

ar
X

iv
:1

70
8.

09
11

4v
1

 [
cs

.C
R

]
 3

0
A

ug
 2

01
7

https://doi.org/10.1145/3133956.3134050

processors found on computers and smartphones. While substan-
tial past work has focused on firmware analysis of these processor
architectures [23, 48], comparatively little has been done on the mi-
crocontrollers that embedded USB devices often employ. We bring
architecture-specific support to existing frameworks and provide
informed guidance through USB-specific knowledge to improve
analysis. We have designed and implemented binary lifters to allow
for symbolic analysis of the Intel 8051 MCU, which represents a
Harvard architecture chip designed in 1980 that looks vastly differ-
ent from modern processor designs, but is commonly used in USB
flash drives as well as many other embedded environments. We use
two symbolic execution frameworks for our analysis in order to bet-
ter understand the benefits and challenges of different approaches
when using uncommon instruction architectures. We use Fie [28],
which uses LLVM as an Intermediate Representation (IR) and is
built on top of the popular KLEE symbolic execution engine [16], as
well as angr [49], which is designed to be used for binary analysis
and employs Valgrind’s VEX as an IR. FirmUSB is bottom-up, in
that it does not rely on the existence of source code to perform its
analysis. This is crucial for microcontroller firmware, for which
source code may be difficult if not impossible to publicly find for
many proprietary USB controllers. FirmUSB uses static analysis and
symbolic execution, to extract the semantics of a firmware image
in order to build a model of discovered firmware functionality for
comparison to expected functionality.

Our contributions are summarized as follows:

• FirmwareAnalysis Framework:Wedevelop a USB-specific
firmware analysis framework to verify or determine the in-
tention of compiled USB controller firmware binaries run-
ning on the 8051/52 architectures. To our knowledge this is
the first 8051 lifter into the popular VEX and LLVM IRs.
• Domain-Informed Targeting:We show that FirmUSB de-
tects malicious activity in Phison firmware images for flash
drive controllers containing BadUSB, as well as EzHID HID
firmware images for 8051 containing malicious activity. For
the malicious Phison image, our domain-specific approach
speeds up targeting by a factor of 7 compared to uncon-
strained fully symbolic execution.
• Analysis of Existing Symbolic Frameworks:Weprovide
insights and describe the challenges of utilizing existing
tools to analyze binary firmware for embedded systems ar-
chitectures, and present guidance on how such tools can be
improved to deal with these architectures.

Outline. The rest of this paper is structured as follows: Section 2
provides background on embedded firmware analysis, our case
study on the 8051 architecture in the context of USB devices, and our
major challenges in analyzing black-box firmware using symbolic
execution. Section 3 presents a high-level overview of FirmUSB and
Section 4 follows with low-level details. Section 5 evaluates the per-
formance of our angr and Fie implementations on crafted 8051/52
binaries. We discuss key takeaways from our work in Section 6 and
mention what difficulties we experienced during development. We
discuss related work in Section 7 and conclude in Section 8.

2 BACKGROUND

2.1 Universal Serial Bus

The USB protocol provides a foundation for host-peripheral com-
munications and is a ubiquitous interface. USB is a host-master
protocol, which means that the host initiates all communication on
the underlying bus.1 This is true even for interrupt driven devices
such as keyboards. The underlying bus arbitration and low-level bit
stream are handled in dedicated hardware for speed and reliability.
In our work, we primarily focus on the device level configuration
and omit the study of lower-level aspects of USB (i.e. power man-
agement, speed negotiation, timing).

When a USB device is first plugged in to a host machine, un-
dergoes the process of enumeration. A device possesses a set of
descriptors including device, configuration, interface, and endpoint
descriptors. A device descriptor contains the vendor (VID) and prod-
uct (PID) identifiers, pointers to string descriptors, and device class
and protocol. VIDs are assigned to the vendor by the USB Imple-
mentor’s Forum (USB-IF). Vendors are then able to assign arbitrary
PIDs to their products. VIDs and PIDs should be unique but are
not required to be. The device class (bDeviceClass) and its defined
protocol (bDeviceProtocol) hint to the host what capabilities to
expect from the device. The last field in the device descriptor is the
number of configurations (bNumConfigurations). A USB device
may have multiple configuration descriptors, but only one may be
active at a time. This high level descriptor describes the number
of interfaces and power characteristics. Interface descriptors have
a specific interface class and subclass. This defines the expected
command set to the host operating system.

Two important device classes in the context of this paper are
the Human Interface Device (HID) (0x03h) and the Mass Storage
(0x08h) classes. Devices are free to have mixed-class interfaces,
which means they are considered to be composite devices. For ex-
ample, a physical flash drive could contain two interfaces – one
mass storage and the other HID. This would allow it to transfer
and store bulk data while possibly acting as a keyboard on the host
machine. Additionally, a device could at runtime switch configura-
tions from a pure mass storage device to a HID device. The final
descriptor of interest is the endpoint descriptor. Endpoints are es-
sentially mail boxes that have a direction (in and out), transfer type
(control, isochronous, bulk, or interrupt), poll rate, and maximum
packet size. By default, devices’ first endpoint (Endpoint0 or EP0)
respond to control transfers, which are mainly configuration details
and commands from and to the host machine. Other endpoints may
be used for pure data transfer.

The elements of the USB protocol that are implemented in hard-
ware and firmware varies based on to the specific USB controller.
For instance, some USB devices may be completely fixed in hard-
ware, meaning that their configuration descriptors, including their
vendor and product IDs, are static. In this work, we assume that the
firmware deals with all of the major descriptors and the hardware
just provides low-level USB signaling.

1USB OTG and USB 3.0 are the exceptions. While USB 3.0 and later devices allow
for device-initiated communication, such a paradigm is still relatively rare amongst
peripherals, which are overwhelmingly designed to respond to host queries.

2

USB DB

10110111010
1011011101001
1001110110010
0010100001010
0100110HID010
1110110101010
1000110101010
1010110101010

1 Analyse firmware for
USB signatures

Save to DB

10110111010
1011011101001
1001110110010
1011011101001

2 Utilize symbolic
execution to
discover program
paths interacting
with USB targets

USB targets

HID

HID≠
Expected Model Recovered Model

Program
Path

3
Build expected USB

model from known
device types and

signatures

4 Use program knowledge to
recover a model of the USB
device

5Compare models and
identify unexpected or

unknown behaviors 6 Construct a report
detailing the findings of
FirmUSB

Extract

Load

Lifter

Figure 1: An overview of FirmUSB’s primary flow through analyzing firmware.

USB Attacks. Exploits on the USB protocol and implementations
of it (e.g., on hosts, peripherals, and controllers) may occur from
the physical layer upwards. An example of a physical layer attack
could be a malicious USB device that destroys the bus by using
out-of-specification voltages and currents via large capacitors [8].
An example of a more subtle attack is a “BadUSB” attack [41]. This
attack acts completely within the USB protocol and abuses the trust
of users and the lack of USB device authenticity. During the USB
enumeration phase, the USB host will query the device in order to
discover its functionality via descriptors (e.g., keyboard, storage,
webcam, etc.), but a BadUSB device will misrepresent itself as an
unlikely device type. In concrete terms, a flash drive could claim
itself as a keyboard or network device without consequence. This
mismatch between physical device and presentation of capabilities
could be used to socially engineer users [58] who would trust a key-
board differently than a flash drive (e.g., not anticipating keystrokes
from their flash drive).

What actually constitutes a malicious or misrepresenting USB
device is simply a malicious application of the USB protocol. This
application which, depending on the device, runs on hardware, a mi-
crocontroller, a CPU, or any combination of these determines how
a device functions when exposed to the USB protocol. FirmUSB fo-
cuses specifically on the software that runs on USBmicrocontrollers,
in particular microcontrollers that utilize the 8051 architecture.

2.2 Firmware Analysis

Microcontroller devices are often overlooked, but with the explo-
sion of embedded and IoT devices, these are becoming woven in to
the fabric of our modern day society. It is thus vital to have methods
for demonstrating their trustworthiness. USB devices represent one
of many classes of devices that run firmware, but are particularly
interesting to study, both due to the widespread deployment of
existing devices, and because in newer computers, many interfaces
are being replaced with USB-C connections to provide all peripheral
functionality. While the physical signal characteristics may differ

between USB connection types and protocol versions, the same
security issues (e.g., the USB-IF states that users are responsible the
security of USB devices) remain present in all devices.

8051 Architecture. The Intel MCS-51, also known as the 8051, was
developed by Intel Corporation in 1980 [63] for use in embedded
systems. Despite the 8051 being nearly 40 years old, it remains a
popular design due to its reliability, simplicity, and low cost, and
can be purchased in lightweight microcontrollers or embedded into
FPGA/ASIC designs via an IP core. The 8051 is an 8-bit microcon-
troller based on a Harvard architecture and contains four major
memory spaces: code, on-board memory (RAM), external RAM
(XRAM), and Special Function Registers (SFRs). The 8051 contains
128 bytes of RAM and its extended variant, the 8052, contains 256
bytes and additional SFRs and timers. The 8052 has no instruction
set differences from the 8051. This microcontroller has 32 regis-
ters spread across four memory-mapped banks and many SFRs for
controlling the processor’s peripherals. The notable SFRs are PSW,
which controls the register banks and contains the carry flag, and
the IE register, which controls interrupt functionality.

Intermediate Representation. In order to analyze firmware, ma-
chine code needs to be translated, or lifted, into an architecture-
independent representation. An Intermediate Representation (IR)
aims to be semantically equivalent to the underlying machine code,
while being generic enough to support many different instruction
operations across many architectures. There are many existing IRs
in use today, with each having a specific focus and purpose. There-
fore, an important design choice in binary analysis is the IR to use.
By supporting a single unified IR, the footprint of the supporting
analysis is smaller and possibly simpler. The alternative would be
to have an architecture-specific engine, but this approach would
require a rewrite of the engine and all of the analyses built upon it
when targeting a new architecture.

Two notable intermediate representations are LLVM and VEX
IR. The former is used by the LLVM compiler framework while the

3

latter is used by the Valgrind dynamic analysis framework. A major
difference between the IRs is that LLVM is meant for compilation

(top-down) while VEX lifts machine code (bottom-up) and then
drops back down after instrumentation. Both IRs support a variety
of architectures and are supported by symbolic execution engines
(Fie and angr respectively). However, to our knowledge, prior to
this work neither LLVM nor VEX had any support for the 8051 ISA.

Symbolic Execution. Symbolic execution [35] is a program analy-
sis technique that represents input values (e.g., registers or memory
addresses) as variables that may hold any value. As a program is
executed, symbolic values are propagated as a side effect of updates.
Symbolic constraints encountered in conditional branch instruc-
tions are accumulated in what is called a path condition. When a
conditional branch instruction is evaluated, the decision whether
to take a specific branch is determined by the satisfiability of the
path condition in conjunction with the symbolic constraints of the
branch condition. For each feasible branch, a clone of the current
execution state is created and the path condition is updated with
the symbolic branch condition.

Symbolic execution engines suffer from the path explosion prob-
lem as the number of paths to be considered is exponential in the
number of branches considered. Therefore, state-of-the art sym-
bolic execution engines come with a variety of path exploration
strategies such as random selection and coverage-based progress.
Although symbolic execution has emerged as an effective white-box
testing technique, we use it to determine reachability of states that
can help us understand various characteristics of a USB device.

3 OVERVIEW OF FIRMUSB

FirmUSB is an extensible framework for execution and semantic
analysis of firmware images. The primary purpose of FirmUSB is
to act as a semantic query engine via a combination of static and
symbolic analysis. Unlike other solutions that rely on a device’s
actions [2] or on human interaction [55] to determine its trustwor-
thiness. FirmUSB examines the device firmware to determine its
capability for generating potentially malicious behavior. In general,
determining if a device is malicious or benign via its firmware is
a difficult task because of the many different device architectures
and operating environments. As a result, we have specialized this
tool to aid in the analysis of binary USB controller firmware.

FirmUSB synthesizes multiple techniques to effectively reason
about USB firmware. Its most significant component is a symbolic

execution engine that allows binary firmware to be executed beyond
simple concrete inputs. Another involves static analysis on assem-
bly and IR instructions. The glue that binds these components is
domain knowledge. Through informing FirmUSB about specific
protocols such as USB, we are able to relate and guide the execution
of the firmware binary to what we publicly know about the proto-
col. This allows analysis to begin from commonly available generic
data – in our case, USB descriptors. From there we can begin to
unravel more about the firmware’s specifics, such as whether this
data is actually referenced during operation.

High-Level Flow. Figure 1 illustrates FirmUSB’s process of col-
lecting information, analyzing it, and characterizing the potential
malice of a device. Normally when a USB device gets plugged in, the

operating system will enumerate the device and, based on the class,
interface it with the appropriate subsystems. Instead of sandboxing
or requesting user input in order to determine how to classify a
device, FirmUSB directly examines the device firmware in order
to query this information directly. FirmUSB begins its analysis by
performing an initial pass for signatures relating to USB operation,
such as interfaces 1 . The type of interfaces that are expected to be
supported by devices of the claimed identity are passed to the static
analysis stage, which identifies memory addresses and instructions
that would be relevant to an attack scenario. The static analysis
component supports a variety of domain specific queries that can
be used for (1) determining whether a device is malicious and (2)
providing semantic slicing of the firmware for facilitating more
accurate analysis such as symbolic execution. Memory references
to these descriptors are discovered and any valid code location that
is found is marked as a “target” for the symbolic execution stage.
Upon finding these descriptors, the reported product, vendor IDs,
configuration, and interface information are parsed based on US-

BDB, a database of operational information that we have extracted
from the Linux kernel. Such parsing allows device firmware to be
correlated against expected USB behavior. 3

The next stage is symbolic execution, which can provide a more
precise answer on reachability of instructions of interest or the
target instructions that have been computed by the static analysis
stage based on the specific semantic query 2 . FirmUSB is able to
search for any instance of USB misbehavior or non-adherence to
the protocol, given the appropriate queries. As a demonstration,
we currently support two types of queries focusing on the BadUSB
attack. The first type of query is about potential interfaces the device
may use during its operation, e.g., “Will the device ever claim to be
an HID device?” The second type of query relates to consistency of
device behavior based on the interface it claims to have, e.g., “Will
the device send data entered by the user or will it use crafted data?”.
The first query consists of a target reachability pass that attempts to
reach the code referencing USB descriptors. When these locations
are reached, the found path conditions will demonstrate the key
memory addresses and values required to reach these locations,
implying the ability to reach this code location during runtime on
a real device. The path conditions required to reach this location in
the code further inform FirmUSB about the addresses being used
for USB specific comparisons. For example, if an HID descriptor
is reached, then we should expect to see a memory constraint of
MEM[X] == 33. Additionally, if an expected mass storage device
firmware reaches an HID descriptor, this could be an indicator of
malice or other anomalous behavior. The second query is a check for
consistency regarding USB endpoints. For example, if an endpoint
for keyboard data flow is observed to reference a concrete value,
this could indicate static keystroke injection. These gathered facts
about the binary are used to construct a model of operation 4 that
is compared against an expected model of behavior 5 . This model
is built from the known device VID, PID, and interface descriptors
that are extracted from the binary and searched in the USBDB.
Finally the results are reported for further review 6 .

Core Components. In lieu of writing a symbolic execution engine
from scratch, we used the well-established engines developed by

4

the Fie [28] and angr [49] projects. In order to target these engines
towards USB firmware, we first developed the underlying architec-
ture support for each engine. This consists of machine definitions
(registers, memory regions, I/O, etc.) and an 8051 machine code to
IR translator known as a lifter. We opted to use two different back-
ends to better understand the strengths of each approach. These
are detailed further in Section 4. angr utilizes VEX IR, which was
originally created for Valgrind [40] – a dynamic program instrumen-
tation tool. Fie embeds the KLEE symbolic execution engine [16],
which uses LLVM IR, originally developed by the LLVM project as
a compilation target. The IR syntax of VEX and LLVM differ greatly,
but the underlying semantics of both 8051 lifters are virtually equiv-
alent, with some exceptions.2 The complexity of these binary lifters
is extremely high as they must map each and every subtle archi-
tectural detail from a reference manual written informally to the
target IR and architecture specification. Beyond the likelihood of
omitting a critical detail, some instructions may not easily map to
a target IR, causing many IR instructions to be emitted. This is a
major factor in the speed of the underlying execution engine and
having an optimized and well-mapped IR can improve performance.

Threat Model. In designing a firmware analysis tool, we must
make assumptions about the firmware images being analyzed. Fir-
mUSB assumes that images being analyzed are genuine, meaning
that they have not been specifically tampered with in order to in-
terfere with analysis during firmware extraction or the build step.
Additionally, FirmUSB does not support obfuscated firmware im-
ages with the purpose to hide control flow or memory accesses. We
otherwise assume that the adversary has the ability to arbitrarily
tamper with the firmware prior to its placement on the device or
at any time prior to running FirmUSB. During analysis, FirmUSB
does not consider attacks on the USB protocol, vulnerabilities in
the host drivers, or the physical layer (e.g. USB-C combined with
Thunderbolt to perform DMA attacks) as protocol analysis and
driver protection are handled by other solutions. We assume that
the adversarial device can operate within the USB specification,
but can potentially masquerading as one or more devices. In sum-
mary, FirmUSB assumes firmware is genuine, unobfuscated, and
non-adversarial to the analysis engine. We discuss future potential
additions to the framework to further strengthen the adversarial
model in Section 6.

4 DESIGN AND IMPLEMENTATION

FirmUSB leverages existing symbolic execution frameworks, which
allows us to focus on identifying malicious USB firmware.3 The
primary new components we developed to support this analysis
consist of two 8051 lifters to IR, modifications to angr to support
interrupt scheduling, and the development of semantic firmware
queries with a basis in the USB protocol.

2Each IR has different operations available to it. VEX IR has many specific operations
relating to vector instructions and saturating arithmetic, while LLVM has no saturating
IR operations to speak of. The specificity of the underlying IR can affect analysis tool
understanding of program itself.
3There were some circumstances where additional efforts were required with the
frameworks; these issues are discussed in Section 6.

4.1 8051 Lifting to IR

In order to reason about firmware, it is necessary to represent it
in a format that is amenable to symbolic analysis. The process
of converting binary firmware into a corresponding IR is shown
in Figure 2. To facilitate this process, we built two lifters for 8051
binaries: a lifter to VEX IR for use with angr and one for LLVM IR
for use with Fie. Both lifters were written to lift 8051 machine code
to the equivalent or nearest representation in their respective IRs.
Writing lifters is non-trivial because of the substantial number of
instructions involved and the precision required. Every instruction
and sub-opcode needs to be accurately mapped to the target IR.

The 8051 has 44 different mnemonics (e.g. ADD, INC, MOV, LJMP)
across 256 different opcodes (e.g. INC A versus INC R0), each of
which may define a one-byte, two-byte or three-byte instruction.
For each opcode, the decoding pattern with operand types were
manually encoded into a 256 entry table. Some example operand
types included the accumulator (A), an 8 or 16-bit immediate, an
address, or a general purpose register. Even with an architecture sig-
nificantly less instruction-rich than Intel’s current x86 and x86_64
architectures, this lifting process took months.

Any inaccuracy in lifting, no matter how subtle, may cause code
paths to be ignored or incorrect values to be calculated during sym-
bolic execution. Processor documentation is written to be read by
humans, not machines, meaning that it is easy to miss technicalities
while transcribing the instructions. For example, while lifting a
specific 8051 MOV instruction, we later noticed that unlike all other
instructions, which followed the form of [op, dst, src], it is
the the only instruction to have the form of [op, src, dst] in
the binary instruction stream. This detail was missed on the first
lifting pass and caused subtle incorrect execution, leading to time-
consuming debugging. Ideally, processor documentation would
also be accompanied by an instruction specification. Such a formal
definition of instructions, which would include their encoding and
functionality, could possibly lead to an automatic lifter generator to
be created.

There are very few disassemblers available for the 8051 architec-
ture. We used D524 and mcs51-disasm5 disassemblers, in addition
to our own new, table-based 8051 disassembler built into our VEX
lifter and exposed to angr via a Python wrapper we wrote called
py8051. To support our symbolic execution engines, the disassem-
bled instructions are mapped to their corresponding IR. This map-
ping allows the engine to emulate hardware while revealing it in
detail to the analysis engine. At this stage, additional information
regarding the instruction set architecture and memory layout of the
device is added. On 8051, a distinction between memory regions is
required as there are numerous types of memory accesses, including
memory-mapped registers, external RAM, and code bytes.

Fie Backend. To facilitate memory analysis, we built a translator
that remaps 8051 machine code to LLVM IR for further use within
Fie. The translator has two main components – Dictionary and
Memory Layout. The dictionary maps 8051 instructions into their
corresponding LLVM IR sequence, e.g., for an add instruction, the
IR mapping is to LOAD the operands, ADD the loaded values, and

4Available from http://www.bipom.com/dis51.php
5Available from https://github.com/pfalcon/sdcc/blob/master/support/scripts/mcs51-
disasm.pl

5

int add() {
 unsigned char i, a = 0;

 for(i = 0; i < 100; i++)
 a += 1;

 return a;
}

Source Code Compiler

7f 64 7e 00

0e 8f 05 ed

14 ff 70 f8

ff 8e 82 8f

83 22

Binary Firmware

00 | ------ IMark(0x66, 1, 0) ------
05 | t24 = Get(R6)
06 | t23 = Add8(t24,0x01)
07 | Put(R6) = t23
08 | ------ IMark(0x67, 2, 0) ------
12 | t28 = i8051g_memory(0x00000005,0x00)
13 | STle(t28) = Get(R7)
14 | ------ IMark(0x69, 1, 0) ------
17 | t30 = Get(R5)
18 | ------ IMark(0x6a, 1, 0) ------
19 | t31 = Sub8(t30,0x01)
20 | PUT(A) = t31
21 | ------ IMark(0x6b, 1, 0) ------
22 | Put(R7) = t31
23 | PUT(ip) = 0x0000006c
24 | ------ IMark(0x6c, 2, 0) ------
25 | t34 = CmpNE8(t31,0x00)
26 | if (t34) { PUT(ip) = 0x66; Ijk_Boring }
NEXT: PUT(ip) = 0x0000006e; Ijk_Boring

VEX IR of basic block 0x66

Lifter
0x66: inc R6
0x67: mov (0x5), R7
0x69: mov A, R5
0x6a: dec A
0x6b: mov R7, A
0x6c: jnz $-8

0x6e: mov R7, A
0x6f: mov (0x82), R6
0x71: mov (0x83), R7
0x73: ret

0x62: mov R7, #0x64
0x64: mov R6, #0x00

8051 Assembly CFG

Disassembly
and CFG
recovery

Figure 2: The relationship between source code, 8051 binary

firmware, and lifted IR with VEX as the example.

STORE to the destination operand location. Memory Layout contains
addresses of registers and special memory locations. This memory
layout is loaded by Fie in order to correctly handle symbolic mem-
ory and normal memory operations. Fie also requires interrupt
subroutines to be specified. This requires an extra step to specify
function boundaries by matching them against the compiled and
assembled file.

Fie was built as a source level analysis tool, operating on LLVM
bytecode as generated by the Clang compiler. As a result, it was
not designed to load raw binaries. Instructions that refer to code
bytes in binary firmware may not be used properly without a direct
reference to raw code bytes. These bytes are referred to for accessing
constant data (e.g. USB descriptors and jump tables). Since Fie
does not load code bytes, it does not support these instructions. To
address this issue, wemodified Fie to load binary firmware to handle
access to code regions. This allowed us to properly symbolically
execute the destination of the jumps, therefore increasing our code
coverage.

In total our 8051 to LLVM IR lifter consisted of 1,967 lines of Java
with 803 of 8051-to-IR specification mappings. Our direct changes
to Fie consisted of 4,716 lines of C++.

angr Backend. The angr binary analysis platform is meant to be
used in projects as a Python library. It supports many binary formats
(e.g. ELF, PE, MachO, raw binary) and many processor architectures
(e.g. ARM, AArch64, x86, x86_64, PPC) out-of-the-box. Despite this,
during FirmUSB’s initial development, no processor architecture
with a word size less than 32-bits was supported. This has recently
changed with the addition of AVR support. Going forward with
FirmUSB, we opted to utilize angr as a library and make as little
modifications to the core, architecture independent code as possible.
This would allows us to rebase FirmUSB specificmodifications more
easily when a new version of angr is released.

The angr project is made up of three major subprojects – a
binary file loader CLE Loads Everything (CLE), a symbolic execution
engine SimuVEX,6 and an architecture definition repository, arch-
info. angr composes these and many other code bases and provides
6Our version of angr (07bb8cbe) is before SimuVEX and the core were merged.

Projects, Paths, PathGroups, and many more abstractions to aid in
analyzing binaries. In order for angr to support the 8051 architec-
ture, we developed a VEX IR lifter, firmware loader in CLE, archi-
tecture definition file in archinfo, disassembler wrapper (py8051),
and IR-specific CCalls in SimuVEX for load and store addreses.7
In total we added 917 lines of Python code to core angr subpro-
jects, 623 lines of C for our 8051 disassembler, 2,850 lines of C for
our VEX lifter along with 343 lines of 8051-to-IR tests. FirmUSB’s
usage of angr as a library, which included the frontend, interrupt
scheduling and 8051 environment definitions amounted to 3,117
lines of Python and C.

The architecture loader consisted of a mapping between the 8051
VEX guest state structure, which contains the 8051 CPU registers, to
human-readable register names. The firmware loader we added was
responsible for mapping in the binary’s code section and automati-
cally discovering ISRs for later scheduling. In order to have parity
with Fie, an ExecutionTechnique was written for angr to support
the dynamic scheduling of interrupts. The 8051 architecture uses an
interrupt vector table in which the first bytes of a firmware image
are trampolines to an Interrupt Service Routine (ISR) or a reti,
which means no ISR. Knowledge of the 8051 interrupt semantics
were used to limit when they and which ones were run. To improve
the execution time of firmware binaries, we created the concept of
code coverage in order to give our engine feedback on path perfor-
mance. Additionally, we created a randomized cooldown for ISR
scheduling order to facilitate binaries that have expensive ISRs. One
more heuristic we incorporated was the ability to detect looping
paths with a fixed threshold. This functionality was already built
into angr, but we utilized it to continually prune paths not making
any progress.

4.2 VID/PID Based Inference

To figure out what a firmware image would look like to the oper-
ating system when flashed on to a device, we simulate how the
operating system recognizes a USB device and loads the corre-
sponding driver. Ideally, one would expect to find all the necessary
information about the device using its Vendor ID (VID) and Product
ID (PID). Unfortunately, this only works for a small portion of USB
devices, an exception being USB class devices. These devices usually
follow a specific USB class specification, e.g., USB Mass Storage.
The benefit of having USB class devices is that the OS can provide
a general purpose driver to serve devices from different vendors –
as long as they follow the USB class specification. In this case, the
bDeviceClass solely determines the functionality of the device.
Another exception comes from USB composite devices. These de-
vices exposemultiple interfaces and functionalities to the operating
system. For instance, a USB headset may control an HID interface
and three audio interfaces. This is good example of where a simple
VID/PID pair is just not enough to find two different drivers at the
same time.

To solve these issues, we extract all the USB device matching
information from the Linux 4.9 kernel, and save it as a “USBDB”.
We have also fully implemented how the Linux kernel uses the USB

7CCalls are an IR expression that acts as a callback into a function. It is primarily used
by VEX to assist in supported complicated IR blocks, but we utilize it to resolve 8051
memory addresses to regions.

6

device descriptor, configuration descriptors, and interface descrip-
tors to match a device driver. Besides simple VID/PID matching,
there are another nine matching rules 8 to find the corresponding
drivers. With the help of USBDB, we may anticipate the behavior
or functionality of the device firmware precisely, without having it
interact with the actual OS.

4.3 Semantic Analysis

In this section we explain our developed algorithms that employ a
combination of static analysis and symbolic execution to compute
and check reachability of candidate target instructions for the se-
mantic queries. Static analysis algorithms presented in this section
refer to elements from the LLVM IR. Due to space restrictions, we
omit their adaptation to the VEX IR.

Query Type 1: "The Claimed Identity?". A USB device commu-
nicates with the host by responding to requests. Among those
requests, GetDescriptor requests have a special role as it is when
the device tells the operating system about itself. Depending on the
type of the descriptor, the device would respond with specific infor-
mation such as general device characteristics and configurations.
For HID devices, for example, additionally a report descriptor would
be requested so that the host knows how to interpret data from the
HID device. What is common among these information exchanges
is that the device communicates with the host through its endpoint
0 (EP0), which corresponds to one of the ports of the device. So it
is reasonable to assume that the firmware would be copying the
device descriptor, the configuration descriptor, and functionality
specific information, such as the HID report descriptor, to the same
buffer.

Algorithm 1 leverages this fact to identify candidate instructions
that may be copying functionality specific information, e.g., HID
report descriptor. The first step is to identify constant parts in all
these descriptor types and scan the data segment of the binary for
potential memory locations that may hold these descriptors (lines
2 - 15). Then, it runs Algorithm 2, which is an under-approximate
points-to analysis for the LLVM IR, to propagate constant memory
accesses. store instructions that copy from candidate configuration
descriptors or candidate device descriptors are used to compute the
set of potential memory locations that correspond to EP0 buffer
(lines 17 - 25). Finally, instructions that copy data from candidate
HID report descriptor buffers to the candidate EP0 buffers are iden-
tified as the target instructions (lines 26-32) and are returned as
output along with the candidate EP0 addresses.

Algorithm 2 tracks data flow among memory locations by keep-
ing track of the address values stored in or indirectly accessed via
memory mapped registers. To achieve this, it associates a tuple
with the source and destination of instructions, when applicable,
and stores in a map M (line 4). The first component of the tuple
represents a potential address value and the second component
represents a tracked address value, which represents the memory
location from which the data originates from. At the initialization
stage, every instructions’ source and destination are mapped to
(⊥,⊥) pairs (line 4). Then the algorithm locates store instructions
that copy constant values to memory mapped registers and stores in

8All matching rules are listed in Listing 2 in the Appendix.

Instruction Source Destination

L1: mov dptr,#X276c NA (X276c,⊥)
L2: movc a,@dptr (⊥,X276c) (⊥,X276c)
L3: mov r4,a (⊥,X276c) (⊥,X276c)
L4: mov dptr,#Xf1dc NA (Xf1dc,⊥)
L5: movx @dptr,a (⊥,X276c) (⊥,Xf1dc)

Table 1: Value and tracked address propagation using Algo-

rithm 2 for a sample 8051 assembly code block.

a work list (lines 5-11). The items in the work list are processed one
at a time until the work list becomes empty. For each instruction, it
finds uses of the destination value of instruction i and propagates
the tupleM(i .dst) based on the type of the dependent instruction.
Case 1) getelementptr instruction (lines 27-29): Since this instruc-
tion is used to compute a pointer using an index value, the first
component of the tuple M(i .dst) becomes a tracked address and,
hence, copied to the second component in the generated tuple9.
The first component of the generated tuple is a ⊥ as we do not try
to keep track of values stored in locations other than the memory
mapped registers. Case 2) Other instructions10 (lines 19-26): The
tuple is copied as is because of the fact that the instructions store,
zext, and load preserve the value as well as the tracked address. For
store instructions, the use dependence may be due to the source
or the destination and therefore, we update the appropriate item
whereas for all other instruction types we only propagate tuples to
the destination. A dependent instruction ui is added to the work
list as long as it is not a store instruction with a destination that
is not a memory mapped register. It is important to note that this
is not a fix-point computation algorithm as an instruction is visited
at most twice (lines 15-18) and, hence, it is an under-approximate
points-to analysis.

To demonstrate the value propagation, consider the sample 8051
code block (avoiding the rather lengthy translation to LLVM IR)
given in Table 1: Data is moved from address X276c to address
Xf1dc at line L5. In instruction movx @dptr,a, the source is a regis-
ter, a. We are interested in neither a’s address nor its value. However,
what we are interested is the address that it received its value from.
Similarly, we are interested in the address that dptr is pointing to.
The indirect addressing happens at L2 and at L5, which cause the
values, X276c and Xf1dc, to become tracked addresses, respectively.
In the context of Algorithm 1, L2 may represent reading from a
configuration descriptor as in line 19 or a device descriptor as in line
22. If so, if the tracked destination address in line L5 is a constant
then it is added to the set of candidate endpoint 0 addresses as in
line 20 or line 23.

Query Type 2: "Consistent Behavior?". A USB device that claims
to have certain functionality is one thing, but whether it actually
carries out that function is another. Therefore, it is important to
check firmware for behavior that is consistent with the claimed
functionality. As an example, a USB device that is claiming to have

9Since in our lifting of 8051 to LLVM IR getelementptr instructions use 0 as the base
address, we do not need to perform any address computation and use the index value
as the intended address.
10To simplify the algorithm, we did not consider the arithmetic operations which can
also help propagate constant values.

7

Algorithm 1 An algorithm for finding candidate instructions that
copies functionality/protocol specific information to the EP0 buffer.
1: FindDevSpecInfoToEP0(F : Firmware, isAReд: Memory Mapping of Registers,

type : U SBprotocol)
2: candDD ← ∅
3: candCD ← ∅
4: candFuncSpec ← ∅
5: for each memory locationm ∈ F .AddressSpace do

6: if m[0] = 0X 1201 then
7: candDD ← candDD ∪ {m }
8: else if m[0] == 0X 0902 then
9: candCD ← candCD ∪ {m }
10: else

11: if ((type = HID AND m[0] == 0X 05010906) OR (type =
MASS_STORAGE AND ...) OR ... then

12: candFuncSpec ← candFuncSpec ∪ {m }
13: end if

14: end if

15: end for

16: M ←PropConstMemAccesses(F , isAReд)
17: EP01, EP02 ← ∅
18: for each store instruction si ∈ F .Instructions do
19: if M (si, src).second ∈ candCD and M (si .dst).second , ⊥ then

20: EP01 ← EP01 ∪ {M (si .dst).second }
21: end if

22: if M (si, src).second ∈ candDD and M (si .dst).second , ⊥ then

23: EP02 ← EP02 ∪ {M (si .dst).second }
24: end if

25: end for

26: tarдet Insts, ep0← ∅
27: for each store instruction si ∈ F .Instructions do
28: if M (si, src).second ∈ candFuncSpec and M (si .dst).second ∈
(EP01 ∩ EP02) then

29: tarдet Insts ← tarдet Insts ∪ {si }
30: ep0← ep0 ∪ {M (si .dst).second }
31: end if

32: end for

33: return (tarдet Insts ,ep0)

HID functionality and sending keys that are not actually pressed
and then loaded in from a I/O port is not behaving consistently. To
detect such inconsistent behavior, we need to define what would
be consistent first. Obviously, this requires considering specific
functionality as, for example, what is consistent for HID may not
be consistent with a Mass Storage device.

Since we target BadUSB attacks, we focus on defining and check-
ing for consistent behavior of HID devices. An HID device is ex-
pected to send to the host whatever it receives from the user. If,
as in the case of BadUSB, it is injecting keys that have not been
pressed then it could mean it is either sending data that it reads
from a buffer stored in memory or sending some constant values.
How can we differentiate between such crafted buffers and those
that may hold user-provided data? The key here is the interrupt
mechanism. When a user presses a key, an interrupt is generated
and the firmware handles the interrupt to store the specific key(s)
pressed. Memory locations that are read inside the interrupts are
the source of data provided by the external environment. By mark-
ing these addresses as symbolic, we distinguish addresses that are
filled by the environment (as opposed to appearing statically in the
binary image) and those that are not.

Finding Symbolic Locations. Algorithm 3 identifies memory loca-
tions that need to be represented symbolically. Since such locations
are processed in interrupt functions, the algorithm symbolically

Algorithm 2 Algorithm for propagating constant memory ad-
dresses.
1: PropConstMemAccesses(F : Firmware, isAReд: MemoryMapping of Registers)
2: Let isAReд : F .AddressSpace → {true, f alse }
3: Output: M : F .Instructions × {src, dst } 7→ N ∪ {⊥} × N ∪ {⊥}
4: M ← λi, j .(⊥, ⊥)
5: worklist ← ∅
6: for each store instr. si in F .Instructions do
7: if isAConstant (si .src) and I sAReд(si .dst) then
8: worklist ← worklist ∪ {si }
9: M ← M [(si .dst) 7→ (Value(si .src), ⊥)]
10: end if

11: end for

12: whileworklist not empty do

13: i ← worklist .r emove()
14: for each intra-procedural use ui of i do
15: srcdef ← M (ui, src).f ir st , ⊥orM (ui, src).second , ⊥
16: dstdef ← M (ui, dst).f ir st , ⊥orM (ui, src).second , ⊥
17: if (isAStore(ui) and srcdef and dstdef) or (!isAStore(ui) and

srcdef or dstdef) then continue
18: end if

19: if isALoad (ui) or isZext (ui) then
20: M ← M [(ui, dst) 7→ M (i, dst)]
21: else if isAStore(ui) then
22: if i .dst defines ui .dst then
23: M ← M [(ui, dst) 7→ M (i, dst)]
24: else// i .dst defines ui .src
25: M ← M [(ui, src) 7→ M (i, dst)]
26: end if

27: else if isGetElementPtr (ui) then
28: M ← M [(ui, dst) 7→ (⊥, M (i, dst).f ir st)]
29: end if

30: if !isAStore(ui) or isAReд(ui .dst) then
31: worklist ← worklist ∪ {ui }
32: end if

33: end for

34: end while

Algorithm 3 An algorithm for finding memory locations that
should be represented symbolically.
1: FindSymbolicLocations(F : F irmware , τ : Maxiterations)
2: Output: P(MemoryLoc)
3: WSet : ExecutionState → P(MemoryLoc)
4: symbolicLocs : P(MemoryLoc)
5: function checkLoads(i :Instr, s : Execution State)
6: if isALoad (i) and i ∈ f .Instructions and i .src < WSet (s) ∪

symbolicLocs then
7: symbolicLocs ← symbolicLocs ∪ {i .src }
8: terminate symbolic execution
9: end if

10: end function

11: function recordStores(i:Instr, s: Execution State)
12: if isAStore(i) and i ∈ f .Instructions and i .dst <WSet (s) then
13: WSet ←WSet [s 7→WSet (s) ∪ {i .dst }]
14: end if

15: end function

16: symbolicLocs ← ∅
17: for each interrupt function f do

18: for i : 1 to τ do

19: WSet ← λx .∅
20: register checkLoads and recordStores as listeners for symbolic execution
21: run symbolic execution on F with f as the only interrupt function and

with symbolicLocs
22: end for

23: end for

24: return symbolicLocs

executes the firmware for a single interrupt function at a time.11 As

11Nested interrupts are currently unsupported but otherwise the 8051 IE register is
respected when it comes to interrupt scheduling.

8

paths and the corresponding execution states get generated, loca-
tions written inside the interrupt function on the current path are
stored in amap,WSet , by a listener, recordStores, that is registered
with the symbolic execution engine. Another listener, checkLoads,
detects load instructions reading from memory locations that have
not been written in the same interrupt function and on the current
path. The source location of such a load instruction is added to the
set of symbolic values and symbolic execution is restarted with the
updated set of symbolic values. For each interrupt function, this
process is repeated for a given number of iterations, τ .

When Endpoints Can Be Predicted. Another issue is identifying
the endpoint address that will be used for sending HID data. The
endpoint number that will be used for the specific functionality is
extracted by scanning the interface descriptors that come after the
configuration descriptor. To acquire the endpoint address, we can
use the endpoint buffer candidates computed by Algorithm 1 as
each endpoint is normally allocated by having a constant amount
of offset from the consecutive endpoints. This constant offset is the
packet size, which can be 8, 16, 32, or 64 bytes depending on the
speed of the device.

Algorithm 4 An algorithm for detecting concrete data flows to
any of the endpoint buffers.
1: FindUnexpectedDataFlow(F : F irmware , , isAReд: Memory Mapping of

Registers, EP0 : P(MemoryLoc), Sym : P(MemoryLoc,maxEP: int)
2: function checkConcAccesses(i:Instr, s: Execution State)
3: if i ∈ tarдet Instr s and isAConstant (i .src) then
4: F laддedAccesses ← F laддedAccesses ∪ {i }
5: end if

6: end function

7: OtherEPs : P(MemoryLoc)
8: OtherEPs ← ∅
9: for each i = 8, 16, 32, 64, k = 1 :maxEP do

10: for each j ∈ EP0 do OtherEPs ← OtherEPs ∪ {j + i ∗ k }
11: end for

12: end for

13: M : F .Instructions × {src, dst } 7→ N ∪ {⊥} × N ∪ {⊥}
14: M ←PropConstMemAccesses(F , isAReд)
15: tarдet Insts ← ∅
16: for each store instruction si ∈ F .Instructions do
17: if M (si .dst).second ∈ OtherEps then tarдet Insts ←

tarдet Insts ∪ {si }
18: end if

19: end for

20: counters ← ∅
21: for each add or sub instruction ai ∈ F .Instructions do
22: if exists no use ui of ai as a getElementPtr s.t. ai ’s result is used as an index

then

23: if ai .dst is a direct address then
24: counters ← counters ∪ {Value(ai .dst)}
25: end if

26: end if

27: end for

28: Register checkConcAccesses as a listener and run symbolic execution with
symbolic values Sym ∪ counters

29: return F laддedAccesses

Algorithm 4 shows how candidate endpoint buffer addresses
can be used to detect concrete value flows into a potential end-
point buffer. After computing candidate endpoint buffers based on
a given number of maximum endpoints to be considered and the
constant offsets (lines 7-12), it identifies the store instructions that
may be storing to an endpoint buffer (lines 13-19). It also identifies
add and subtract instructions that may be manipulating counters.

If such an instruction does not have a getElementPtr reference,
then it probably is not used as an index into an array. If such an
instruction’s destination address can be resolved, the respective
memory location is identified as a potential counter (lines 20-27).
Such counters are often used to delay the attack and becomes a
bottleneck similar to the loops for symbolic execution engines. All
counter locations are marked as symbolic in addition to the other
variables symbolic addressed that have been passed as an input the
algorithm (line 28). By registering a listener, checkConcAccesses
(lines 2-6), for the symbolic execution engine, suspicious instruc-
tions that may be reading a constant value into an endpoint buffer
are detected and stored in FlaддedAccesses .

Algorithm 5 An algorithm for detecting inconsistent data flows.
1: FindInconsistentDataFlow(F : F irmware)
2: Sym, Conc : MemoryLoc ×Context Id → Bool
3: Sym, Conc ← λx, y .f alse
4: F laддedAccesses : P(Instr)
5: F laддedAccesses ← ∅
6: function recordAccesses(i:Instr, s: Execution State)
7: if isAStore(i) then
8: if isSymbolic(i .src) then
9: Sym ← Sym[(i .dst, i .blockID) 7→ true]
10: elseConc ← Conc[(i .dst, iblockID) 7→ true]
11: end if

12: end if

13: end function

14: function onSymExTermination

15: F laддedAccesses ← { i | Conc(i .dst, i .blockID) and
16: ∃b .Sym(i .dst, b) and b , i .blockID }
17: end function

18: Register recordSymAccesses and onSymExTermination as listeners and run
symbolic execution

19: return F laддedAccesses

When Endpoints Cannot Be Predicted. There may be cases when
endpoints are setup via the hardware logic and are not easily
guessed, i.e., the constant offset hypothesis fails. In such cases
malicious behavior can still be detected by checking for inconsis-
tent data flow as shown by Algorithm 5. The algorithm assumes
that the device sometimes acts non-maliciously, i.e., the data sent
to the host is read from a symbolic location, and sometimes act
maliciously, i.e., the data sent to the host is read from a concrete lo-
cation. To detect this, we perform a pass of the symbolic execution
algorithm with two listeners (line 18). Listener recordAccesses
records whether a store into a memory location get its data from a
symbolic or a concrete source along with the block identifier as the
context information (lines 6-13). Upon termination of the symbolic
execution algorithm, listener checkConcAccesses identifies mem-
ory locations that are known to receive symbolic values in some
contexts and concrete values in others (lines 14-17). Instructions
that write to such memory locations using concrete sources are
stored in FlaддedAccesses and are returned by the algorithm.

5 EVALUATION

We evaluate FirmUSB based upon two malicious firmware images
and across our separate backend engines built on angr and Fie. One
firmware binary that we analyze is reverse engineered C code from
a Phison 2251-03 USB controller (Phison) and the other (EzHID)
implements a keyboard for the Cypress EZ-USB. A key difference
between the images is that the Phison firmware is meant to act as

9

Time to Target (seconds) Coverage At Target (%)
angr Engine Fie Engine angr Engine Fie Engine

Firmware Name (Controller) Symbolic Domain Spec. Config HID Config HID Config HID Config HID
Phison (Phison 2251-03) Full No – – 384.40 43.49 – – 59.60 46.47

Partial No 68.91 68.72 58.54 21.64 49.53 48.58 48.61 41.91
Full Yes – – 55.77 7.91 – – 44.66 38.87

Partial Yes 70.28 70.09 7.68 5.64 49.53 48.58 38.88 36.26
EzHID (Cypress EZ-USB) Full No 10.76 24.04 – – 25.92 36.47 – –

Partial No 9.65 22.07 63.52 67.04 25.92 36.47 42.06 43.08
Full Yes 5.33 11.88 – – 11.24 14.45 – –

Partial Yes 5.18 11.13 9.45 9.87 11.24 14.45 37.95 38.71
Table 2: Time for each FirmUSB backend to reach USB-related target instructions (Query 1) for our two firmwares. The sym-

bolic column represents the symbolicmode used to execute the binary and the domain specific column states that USB specific

conditions were applied to the execution. The coverage (lower is better) is included to show the effects of partial symbolic and

domain constraining optimizations. The dashes (–) indicate that the run was unable to complete due to an error.

a mass storage device, but contains hidden code to act as a Human
Interface Device (HID), whereas EzHID acts as a normal keyboard,
but injects malicious keystrokes at run time. Our evaluation goals
are to determine what USB configurations a firmware will act as
during run time in order to compare against an expected device
model and to search for inconsistent behavior of its claimed identity.

All evaluation is performed on a SuperMicro server with 128GiB
of RAM and dual Intel(R) Xeon(R) CPU E5-2630 v4 2.20GHz CPUs
for a total of 20 cores. The angr Engine used Python 2.7.10 running
on PyPy 5.3.112 while the Fie Engine used a modified version of
KLEE[16] on LLVM-2.9. In practice, due to implementations of the
backends themselves, FirmUSB was only able to utilize a single
core (Python 2.7 and KLEE are single threaded). We did not opt to
orchestrate multiple processes for increased resource utilization.
Except formaking the EzHID firmwaremalicious, we did notmodify
or tailor the firmware images to aid FirmUSB during analysis.

The evaluation beginswith an explanation of the firmware bench-
marks we used, followed by the output of our symbolic location
finder from Algorithm 3, then on towards our domain informed
algorithms, and finally Query 1 and Query 2 on both firmwares.

5.1 Benchmarks

The first firmware we used for analysis is the Phison Firmware.
It was reverse engineered in to C code by [41] and then modified
to perform a BadUSB attack. The firmware initially enumerates
itself as a Mass Storage device and later may re-enumerate as an
Human Interface Device. After a predefined threshold count, it
starts sending input data from a hardcoded script. Since, the device
is now operating as a keyboard, the sent data is accepted as valid
keystrokes. The Phison firmware runs on top of an 8051 core, which
influenced our choice to select Intel’s 8051 architecture as our initial
target to analyze.

Our second USB firmware case study was based on the EzHID
Sun Keyboard firmware. In normal usage this firmware was meant
to work with an EZ-USB chip for bridging the legacy Sun keyboard
to a modern USB bus. From the stock firmware, we modified the
image with a malicious keystroke injector, similar to that of the
Phison firmware. After a set delay, the firmware will begin to inject
a series of static scan codes on to the active USB bus. This inter-
rupts the normal flow of keystrokes from the Sun keyboard until
12In practice, we received roughly a 2x speedup over the standard CPython interpreter,
at the expense of greatly increased memory usage.

the injection has completed. EzHID’s firmware was chosen as it
was readily available online13 and also compatible with the 8051
architecture (with 8052 SFR and RAM extensions).

5.2 Symbolic Values

One of our main contributions in this paper is the Algorithm 3
which finds the memory locations that need to be symbolic in order
to analyze the firmware. FirmUSB utilizes two symbolic execution
engines both of which require specified symbolic memory regions.
Large portions of both benchmarks are only conditionally accessible.
Without the correct regions being symbolic the code cannot be
properly covered and the analysis becomes incomplete. When no
memory region is set symbolic the coverage achieved for Phison is
17.20% and for EzHID it is 22.49%. In this case interrupts are still
fired but due to unmet conditions, not much of the code is executed
until the code finally ends up executing an infinite loop. Since the
target instructions are also guarded by conditions, the symbolic
execution never reaches them. As a result, the malicious property of
the firmware cannot be determined without more symbolic memory.
To improve this, we use Algorithm 3 to set memory regions as
symbolic, causing us to reach the targets.

One interesting aspect here is the contrast between our two
benchmarks. Phison uses direct addressing for most of the memory
reads and the conditional variables on the target path. On the other
hand, EzHID uses indirect reads from memory for conditional vari-
ables in the path to target. By recording loads and stores for each
path we were able to record the destination of indirect memory
accesses. Our algorithm found that only 26 bytes for Phison and
18 bytes for EzHID should be set symbolic. It took one iteration
for each byte of the symbolic set to get all the symbolic memory
locations needed to reach Query 1 target. The minimum and max-
imum time taken by one iteration is respectively 3.39 and 8.42
seconds. Setting memory partially symbolic based on our algorithm
increased efficiency greatly. It allowed fewer paths to be created
compared to setting the full memory region symbolic. From table 2
it can be seen that we have achieved a maximum of 2x speed up
in reaching targets. The algorithm helped in reducing the number
of paths to execute when compared to a fully symbolic memory
execution. From our tests we have seen a 72.84% reduction in num-
ber of paths created to reach targets for Phison. A certain amount

13Available from http://ezhid.sourceforge.net/sunkbd.html

10

X0bee: mov r7,#0 ; 0bee
X0bf0: mov a,r7 ; 0bf0

mov dptr,#X30c3 ; 0bf1
movc a,@a+dptr ; 0bf4

X30c3:
.db 0x05, 0x01, 0x09, 0x06, 0xA1,

0x01, 0x05, 0x07 ...

Figure 3: A snippet of assembly from the Phison firmware

showing how XREFs are found from patterns.

of instructions must be covered to reach the target, that is why
instruction coverage does not reduce as significantly as the number
of paths. But this path reduction entails less branches being created
which in turn increases speed.

5.3 Domain Informed Analysis

Target Finding. A preliminary step, before symbolically execut-
ing our firmware images, is to utilize knowledge of the USB con-
stants and byte patterns to identify targets in the binary to execute
towards. Using Algorithm 1, we scan the binary image for static
USB descriptors and search for all cross-references (XREFs) to these
descriptors via load instructions. The Fie Engine utilizes signature
scanning and a pass over the LLVM IR while angr Engine uses
signature scanning and the built-in CFGFast Control Flow Graph
recovery routine to automatically generate XREFs.

Using our target finding, we identify USB configuration descrip-
tors with the pattern [09 02 ?? ?? ?? 01 00], device descriptors
with [12 01 00 ?? 00], and HID keyboard reports starting with
the bytes [05 01 09 06 A1]. The ?? in a pattern means that the
byte at that position can take on any value. This makes the signa-
tures more robust against changing descriptor lengths. Figure 3 is
an example extracted from the Phison firmware image showing
the clear reference to the descriptor via a mov into DPTR (a 16-bit
special pointer register) followed by a movc from the code section.
FirmUSB would then zero in on the 0xbf4 address as that is what
is reading from the descriptor address.

During our development and research of FirmUSB, we refined
the dynamic analysis process through limiting the set of symbolic
data and further constraining this limited set. Using Algorithm 3, we
create a subset of symbolic variables to be instantiated during the
dynamic analysis. Through limiting the amount of symbolic mem-
ory, the targets are reached significantly faster. Over-approximation
of symbolic memory is guaranteed to reach all program paths at
the expense of a potentially intractable amount of created states.
Table 2 demonstrates the benefits of selectively deciding symbolic
variables in terms of analysis speed while executing Query 1.

We optimize our analysis further by utilizing preconditioned
execution [3], or USB specific domain constraints to selected sym-
bolic variables. By adding initial conditions before running a query,
the query may complete faster. It’s also possible to over-constrain
execution causing the query to end early, run very slow, or never
complete. In order to know which constraint to apply and where,
we first gather facts from found targets with constraints already
applied. By modifying these constraints with respect to USB specific
constants, it is possible to quickly reach USB-specific or prevent
reaching of less important code paths.

Pattern Name Pattern Code Address XREF(s)
DEVICE_DESC [12 01 00 ?? 00] 0x302b 0xb89
CONFIG_DESC [09 02 ?? ?? ?? 01 00] 0x303d 0xbd5
HID_REPORT [05 01 09 06 A1] 0x3084 0xbf1
Table 3: The found patterns and XREFs from Phison.

5.4 Target Reachability (Query 1)

Using FirmUSB’s knowledge of the USB protocol, interesting code
offsets in the firmware binary are identified. These targets are
searched for during a symbolic execution pass. If a target is found,
the path information will be saved and the wall-clock time and
current code coverage will be noted. Information collected includes
the path history, which includes every basic block executed, all path
constraints, and every branch condition. Targets are the primary ba-
sis for gathering additional information on firmware images. It links
the previous static analysis pass to a satisfiable path. This enables
more advanced analysis and inference of a firmware’s intent.

Phison. We start by looking for USB specific constants in Phison
to reason about Query 1. What we found is shown in Table 3. Using
static analysis on the generated IRs we found instructions that use
the either one of the descriptors to load from. For each descriptor
a set is kept that records the destination addresses where these
descriptors get copied to. We took the intersection of these sets and
found the possible set of EP0 address. In this case there was only
one common element and the EP0 address was found to be 0xf1dc.
Comparing with the source code we found that this was indeed the
address of the FIFO in EP0. This enabled us to find the instruction
where HID descriptor was being copied to EP0. We could reach
the target in short time using Algorithm 3 to set symbolic regions
for the analysis engines. The times shown in Table 2 shows the
effectiveness of our algorithms in reaching Query 1 targets. When
we do not apply Algorithm 3 the time to reach targets is highest. The
combination of Algorithm 3 and domain specific constraining gives
the best performance. When the size of symbolic memory region is
reducedwe automatically end upwith fewer paths to go in. Since we
determine the symbolic regions in a sound way we actually reach
the target with lower number of paths to test. Also domain specific
constraining further improves the performance. We restricted the
path based on two factors – USB speed change packets, which do
not affect our query, and making sure to guide the execution to call
the GET_DESCRIPTOR function as the successor when the deciding
switch statement comes. This pruning is sound for reachability
testing because we combine domain specific knowledge. Using our
optimizations, we achieved maximum of 7.7x speed up compared
to the fully symbolic version’s unconstrained execution for HID
target. Our angr Engine is not able to complete the Full version of
Phison due to running out of memory, which appears to be because
of path explosion.

EzHID. Using our target finding, we identified a USB configura-
tion descriptor, a device descriptor, and an HID report in EzHID.
Then we utilized our static analysis to find code address XREFs
for all targets as shown in Table 4. With the list of targets, we ac-
tivated FirmUSB for both backends. The first pass identified the
required path conditions for reached targets, which allowed us to

11

Pattern Name Pattern Code Address XREF(s)
DEVICE_DESC [12 01 00 ?? 00] 0xb8a 0x18b
CONFIG_DESC [09 02 ?? ?? ?? 01 00] 0xb9c 0x1a4
HID_REPORT [05 01 09 06 A1] 0xbbe 0x250
Table 4: The found patterns and XREFs from EzHID.

BVS(XRAM[7fab][0:0]) != 0 // USBIRQ & 0x1 ?
BVS(XRAM[7fe9]) == 6 // bRequest - Descriptor
BVS(XRAM[7feb]) == 34 // wValueH - HID Report
BVS(XRAM[7fec]) == 0 // wIndexL - Keyboard Index

Figure 4: The path constraints present at the execution step

when the HID report was reached for EzHID.

optimize additional runs by constraining SETUP data packet ad-
dresses that satisfy the following constraint XRAM[0x7fe9] == 6
from Figure 4. 0x7fe9 corresponds to the second byte of the USB
setup data packet which is the field bRequest. By limiting this to
0x06, we effectively constrain the execution to paths that satisfy
the GET_DESCRIPTOR call. For EzHID, this eliminates all other re-
quest types, which speeds up time-to-target and further analysis.
In Table 2 EzHID performs better when domain constraining is
enabled, but with a partial symbolic set the time to target has little
change. This is due to the shallow target, which does not have time
to benefit from the partial set. Fie is unable to complete the Full
version of EzHID due to a memory out of bounds error, which is a
limitation of KLEE’s symbolic memory model. See the discussion
in Section 6.2 for a further explanation.

5.5 Consistent Behavior (Query 2)

A second important query to vetting USB device firmware is detect-
ing inconsistent use of USB endpoints. In a typical mass storage
device, one would expect SCSI commands to arrive, data to be read
from flash memory, and then transferred out over an I/O port to the
USB bus. While analyzing firmware FirmUSB treats memory reads
from I/O regions (typically external RAM or XRAM) as symbolic.
Therefore, a consistent firmware image for either mass storage or
HID should read symbolic data, process it, and pass it along. An
inconsistency would occur if a firmware writes symbolic and con-
crete data to an output port from different code blocks. FirmUSB
performs dynamic XRAMwrite tracking as specified in Algorithm 4
and Algorithm 5.

Phison. We checked for concrete data flow in the firmware using
Algorithm 4. Since we set all inputs to be symbolic there should only
be symbolic data flowing to endpoints except EP0 for descriptors.
The concrete data flow to endpoints in this case entails stored data
being propagated to the host. As the Phison firmware should work
as a mass storage device firmware this behavior is inconsistent. EP0
found for Query 1 is used to calculate other endpoint addresses
using constant offset. A threshold count of 8192 was there in the
firmware. Due to this count the concrete data flow was getting
delayed and our symbolic execution engines did not execute the
malicious code region. That is why Algorithm 4 was extended
to incorporate these counters that compare with the threshold.
We used the algorithm to find the counters that may guard this
execution.We found 14more bytes of memory and included them to

Write Address Writers Symbolic Value Concrete
0x7e80 – 0x7e87 0x991, 0xa7e scancode[0-7] 0x0, 0xe2, 0x3b,

0x1b, 0x17, 0x08,
0x15, 0x10, 0x28

0x7fd4 0x199, 0x1b2,
0x22c, 0x1e9,
0x1e9, 0x25e,
0x6d7, 0x161

SDAT2[7fea] 0x0, 0xb, 0x7f

0x7fd5 0x1a2, 0x1bb,
0x237, 0x201,
0x201, 0x267,
0x6d7, 0x161

SDAT2[7fea] 0x0, 0x8a, 0x9c, 0xae,
0xe8, 0xbe

Table 5: The results of runningQuery 2 on EzHID for 30min-

utes.

the already found symbolic memory regions. Once these additional
memory regions were made symbolic we could reach the Query
2 target for Phison. We found constant data being copied to EP3.
With the new set of symbolic memory, it took 928.56 seconds to
reach the target with 69.98% instruction coverage. There was one
false positive due to a SCSI related constant being copied to EP1.

EzHID. After finding the USB specific targets, this firmware does
not appear suspicious as it is supposed to be a keyboard firmware.
In order to further vet this image, we perform a consistency check
on the USB endpoint usage. This query consists of running the
firmware image for an extended period in order to capture as many
XRAM writes as possible. If an inconsistency is detected, the re-
sults and offending instructions (and data) are printed for further
investigation. An example of malicious code that injects keystrokes
is shown in the Appendix as Listing 1. Using Algorithm 5 to detect
when an inconsistency has occurred, our angr Engine will then
print out the offending memory writes, their write addresses, and
the section of code that did the writing. There are some false posi-
tives, but the most consistent violations (more than one violation
indicating many writes) will be ranked higher. We ran Query 2 for
30 minutes to gather the results which are displayed in Table 5.
The first row shows the discovered inconsistent writers, where one
writes symbolic scancodes and another only concrete data from
the firmware images. The next two rows are false positives, which
also have many different write sites, but the difference is that each
write address only writes a single concrete value. The same writer
does not have multiple violations (such as writing many different
keystrokes).

6 DISCUSSION

In this section, we discuss discrepancies between Fie and angr,
challenges with obfuscation, and features of an ideal framework
for analyzing firmware.

6.1 Adapting Fie

Fie has built-in support for several MSP430 chips, which we used
as a reference for adding the 8051 support. Basically, we specified
the memory addresses for all registers and ports of 8051. Fie also
expects special read and write functions for any memory that is
declared as symbolic. These functions are normally generated au-
tomatically for architectures that are supported by Clang. So we
had to manually add these functions. 8051 interrupt specification

12

is introduced to Fie along with handler functions that first check
whether the specific interrupt is enabled before scheduling the
relevant ISR. While the register information is available from the
ISA documentation, the required symbolic memory regions are
determined by FirmUSB. Since Algorithm 3 finds each symbolic
memory region iteratively, the corresponding read/write functions
are created iteratively as well. On the other hand, to support 8051
interrupt firing the interrupt enable (IE) register in Fie execution
engine is modified to select the right bit for interrupt enable, which
turned out to be different in 8051 compared to the bit position in
MSP430 that Fie initially supported.

6.2 KLEE vs. angr

KLEE and angr are both symbolic execution engines, but their ap-
proaches come from different directions. angr is a recent execution
engine and it aims to be a more general purpose binary analysis
platform. This means it offers code for control flow recovery, some
abstract interpretation, and binary container (e.g. ELF, PE) parsing
built-in. For recovering higher-level constructs from binary-only
images, angr offers a superior platform, despite its more recent de-
velopment. KLEE operates on LLVM bytecode, which until recently
was only output from a compiler. Compilers do not have to worry
about concepts such as type or control flow recovery, so targeting
LLVM IR for a binary-only image was difficult. Binary firmware
does not typically have any concept of types and its control flow
may be masked by jump tables or indirect jumps.

As for both engines’ memory models, KLEE uses a linear model
for every memory object and maps it to an STP array for efficient
constraint solving. angr, on the other hand, uses a more flexible
indexed memory model in that it creates an immutable memory
object according to the lower and upper bounds inferred from the
constraint. The difference comes into play when a symbolic index
into memory may suggest going out of bounds w.r.t. an existing
memory object in KLEE, which flags it as a memory out-of-bounds
error. This is indeed what happened when we were evaluating
Query 1 on EzHID in full symbolic mode.

KLEE interleaves random path selection and a strategy to select
states that are likely to cover new code as its search heuristics. A
weight is computed for each process, and then a random process
is selected according to these weights. These heuristics take into
account the call stack of the process, whether or not the process
has recently covered new code, and the minimum distance to an
uncovered instruction. This interleaving technique shields the sys-
tem from a case where one strategy would become stuck. Once a
process is selected, it is run for a “time slice," which is defined by a
maximum amount of time and a maximum amount of instructions.
Time-slicing processes helps make sure a process that is executing
frequently with expensive instructions will not dominate execution
time. angr does not have any scheduling methods built in. It is left
up to the user to decide which paths to prioritize. The individual
execution paths in a program are managed by Path objects, which
track the actions taken by paths, the path predicates, and other
path-specific information. Groups of these paths are managed by
angr’s PathGroup functionality, where an interface is provided
for managing the splitting, merging, and filtering of paths during
dynamic symbolic execution. Additionally, angr does not collect

KLEE-like metrics such as code coverage, percent time spent in the
solver, and instructions executed.

In a symbolic execution engine, constraint solving is a major
part of checking the feasibility of a path, in order to generate as-
signments to symbolic variables and verify assertions. STP and
Z3 are popular solvers that are used in symbolic execution en-
gines. KLEE uses STP, which only has support for bit vectors and
arrays, and angr uses Z3, which supports arithmetic, fixed-size
bit-vectors, floating point numbers, extensional arrays, datatypes,
uninterpreted functions, and quantifiers. Both KLEE and angr split
constraints into independent sets to reduce the load on the solver.

Symbolic execution engines for binary code usually rely on trans-
forming native instructions into an intermediate representation.
LLVM generates the IR of the source code during the first step
of compilation. KLEE uses the IR that is generated by the LLVM
compiler for C and C++. In contrast, angr performs analysis on
the Valgrind dynamic instrumentation framework (VEX) IR. VEX
is a RISC-like language that is designed for program analysis and
generates a set of instructions for expressing programs in static
single assignment (SSA). By using VEX, they were able to provide
analysis support for 32-bit and 64-bit versions of ARM, MIPS, PPC,
and x86. Beyond existing support, VEX is a binary-first IR, meaning
it does not assume a control flow graph or memory layout. With
its basic block abstraction, executing VEX IR does not require an
entire binary program to be lifted beforehand. For larger binaries,
this demand-based lifting is superior in performance and does not
require any human intervention. Overall, VEX was built for binary-
only targets and we believe it is the better choice for supporting
new architectures.

We have explored using static analysis tools SVF [52] and DG
[19] for target identification. Although both SVF and DG provides
efficient inter-procedural analysis,14 their analysis results were
not precise enough for target finding. Specifically, the computed
alias sets were very big and even store instructions that wrote to
output ports and, hence, not read in any other part of the code have
been reported to have data dependencies. A closer analysis of the
latter problem revealed that when compiling the Phison BadUSB
firmware, the SDCC compiler used a data memory address 20h like
a register to store various flags that would affect the outcome of
various branches scattered around the various parts of the firmware
and appeared in five functions. Some of the accesses to this memory
location were for individual bits and in others to the whole byte. Our
lifter for LLVM translates accesses to individual bits by first loading
the whole byte, manipulating the individual bit, and storing the
whole byte back. Because of addressing in LLVM requires defining
a pointer to a base region and then referring to the individual bit,
translating these accesses as bit accesses would not significantly
improve the precision as the pointer to the base memory region
would still contribute to the imprecision in points-to analysis and,
hence, to dependence analysis.

In summary, angr shines in the analysis of pure binaries as
it never assumed the availability of source or symbol files. KLEE
still bests angr in raw performance (C++ vs. Python) and with a
proven and well tested process execution engine, it offers a more
traditional symbolic execution experience immediately without any

14LLVM’s optimizer tool opt is mostly intra-procedural.

13

code changes. A way to close this gap would be for the angr project
to improve and push forward a more user-friendly frontend tool
to match that of KLEE’s. Overall, when it comes to writing code
to support a new embedded architecture, angr is the better choice
due to its well-engineered modularity, active community, large
amount of documentation and examples, binary-first approach, and
easy and quick development cycle (no compilation times or hard
crashes). These benefits allow a researcher to quickly make progress
in supporting a completely new architecture and to explore areas
untouched by symbolic execution.

6.3 Firmware Obfuscation

Obfuscation of code is a long standing practice to dissuade reverse
engineering and to slow down attackers. With symbolic execution,
obfuscated code may have an effect on the execution accuracy and
performance. Unless these engines are specifically crafted to ex-
pect and handle obfuscated code, they may not be able to stand
up to these code changes [5, 64]. Currently FirmUSB’s underlying
symbolic execution engines KLEE and angr are not specifically
designed with obfuscated code in mind. This limitation would re-
quire more engineering and testing in order to ensure reasonable
performance and results in the presence of adversarial firmware.

Ignoring the timer-based delay of keyboard injection, which
causes many states and delays code coverage, the two firmware
images we analyzed can be considered unobfuscated. One of the
effective ways to obfuscate for binary analysis would be to use
as much indirection as possible for memory accesses. This would
break static cross-references and prevent data flow tracking from
USB constants. As an example, consider Algorithm 1 for identifying
target instructions to find the claimed identity. If the base address
of a configuration descriptor is stored to a memory location and
the descriptor is always accessed by first loading from that memory
location, the analysis would not be able to find any targets. A similar
effect could be achieved by storing the content of the descriptors
dynamically instead of being fixed at runtime. One can always use
over-approximate (conservative) static analysis to overcome such
obfuscation scenarios. However, for static analysis to be effective
one needs strike a balance between precision and efficiency. We
anticipate that domain knowledge, (e.g., the analyzed protocol(s)
and the specific microcontroller architecture used), will be helpful
in tuning such analyses.

6.4 Ideal Framework & FirmUSB Limitations

Currently FirmUSB does not handle automatic extraction of firmware
images from the devices themselves, as this may not be possible
or vendor specific. As such, firmware images are processed offline
from public resources or extracted from a controller manually by
a human. If FirmUSB performed automatic extraction, it would
have to trust the underlying device and USB bus to provide valid
and untampered firmware images. Even if a trusted USB bus is
assumed, analysis of the firmware itself may still be hampered by
knowledgeable actors who develop adversarial firmware. For ex-
ample, if an attacker knows that FirmUSB is being used to analyze
the firmware, he can obfuscate or cause the firmware to exhaust
the resources of the analysis engine via state explosion or delay
loops. FirmUSB will make an effort to continue in the presence

of many states by using path heuristics, but these heuristics are
fundamentally unsound. Additionally, while it is not possible to
execute data as code on the 8051 architecture – as it is a Harvard
architecture – it is still possible to realize weird machines [12] via
Return Oriented Programming (ROP) or Virtual Machines (VMs)
via existing instructions operating on data. Any vulnerability in
the firmware that could lead to arbitrary read/write or control flow
hijacking could be abused through self-exploitation [20, 21] in order
to perform computations not visible in the static machine code or
even during run-time.

Beyond limitations of the USB protocol, it would be very useful
to have an IR that reveals architectural elements, such as memory
mapped or special function registers, to facilitate analysis of diverse
microcontroller firmware. VEX and LLVM were not good fits for
the 8051’s overlapping memory model.15 To enable precise analysis,
bit level operations should also be straightforward to express in the
IR, i.e., without resorting to tricks such as accessing the containing
byte and manipulating it to achieve the intended effect

Symbolic execution will remain a key analysis component for
firmware analysis. However, since most symbolic execution engines
have been initially designed for analyzing user space binaries, ex-
tensions for embedded systems such as interrupts and the memory
layouts have been implemented as addons to Fie and to angr. A
symbolic execution engine that provides a flexible interface for
both specifying and controlling architectural aspects will be easier
to engineer using domain knowledge. Also, analyzing malicious
firmware would likely involve resolving intended as well as acciden-
tal16 obfuscation. Hence, symbolic execution should have flexible
interfacing with other static as well as dynamic analysis compo-
nents and enable reuse of facts it gathers at various phases of the
analysis.

7 RELATEDWORK

USB Security. Modern operating systems fundamentally trust
plugged in USB devices, as security decisions are left to users. As
a result, operating systems and users are open to a wide variety
of attacks including malware and data exfiltration on removable
storage [31, 47, 61], tampered device firmware [13, 41], and unau-
thorized devices [42]. Solutions for applying access control to USB
storage devices [30, 45, 53, 66] cannot assure that USB write re-
quests are prevented from reaching the device. Further, protections
against unauthorized or malicious device interfaces [46, 55] and
disabling device drivers are coarse and cannot distinguish between
desired and undesired usage of a particular interface. Researchers
have turned to virtualization as another means of providing security
within USB. GoodUSB [55] leverages a QEMU-KVM as a honeypot
to analyze malicious USB devices, while Cinch [2] separates the
trusted USB host controller and untrusted USB devices into two do-
mains where a gateway applies administration supplied policies to
USB packets. USBFILTER [57] acts as firewall for USB and enables
system administrators to only allow certain types of USB traffic.
USB devices themselves can also provide protection from malicious
hosts. USB fingerprinting [6] establishes the host machine identity

15Code, internal RAM, and external RAM all start at address zero.
16Even certain code patterns the compilers generate for efficiency may become a
bottleneck from static analysis perspective.

14

using USB devices, while device-based mechanisms can attest in-
tegrity [15], provide malware forensics [56], provide policy [59, 62]
or allow for protocol fuzzing [11].

Firmware Analysis. Fie [28] is an embedded firmware analysis
platform targeting MSP430 micro-controllers, as described previ-
ously. It leverages Clang’s support for MSP430, requiring memory
layout and the interrupt functions. Fie models the reactive nature
of firmware via scheduling interrupt functions at various gran-
ularities. AVATAR [67] uses the S2E symbolic execution engine
to run firmware binaries in an emulator while forwarding I/O re-
quests to the physical device and processing the responses from
the device through state migration. S2E is further used [7] to gen-
erate test-cases for System Management Mode interrupt handlers
in BIOS implementations for Intel-based platforms. Firmalice [48]
utilizes symbolic execution and program slicing to discover back-
doors and their triggers in firmware images. [27] and FIRMADYNE
[23] present light-weight static and dynamic analysis, respectively,
for a large set of firmware collected through web-crawling. By
contrast, FirmUSB leverages domain knowledge of USB and embed-
ded systems to detect BadUSB type attacks by discovering hidden
functionality and inconsistent functioning.

Symbolic execution. Symbolic execution engines that have been
designed for analyzing systems code include EXE [17], KLEE [16],
SAGE [32], CREST [14], BitBlaze [50], S2E [24], Cloud9 [25], DDT
[36], McVETO [54], and angr [49]. In the context of security, sym-
bolic execution [35] has been used for a wide number of applica-
tions; a sample of these include generating exploits for control-flow
hijacking [3], buffer overflows [43] and other memory corruption
vulnerabilities [49, 51] detecting exploitable bugs in binaries [18]
and web applications [9, 22, 38, 39] proving confidentiality and
integrity properties [26], analyzing BIOS firmware for security [7],
analysis of embedded systems’ firmware binaries [48, 67] and code
[28], input generation for obfuscated code through bit-level taint
tracking and architecture aware constraint generation [65], find-
ing trojan message vulnerabilities in client-server systems [4], and
many others. Our domain specific path constraining is similar to
preconditioned symbolic execution in [3], which constrains input
length and input prefix. [65] identifies inputs as those written by a
library routine and then immediately read in the program, which ap-
plies to user space programs. Our symbolic value finding algorithm,
on the other hand, is customized for interrupt driven firmware.

Architecture lifters. To analyze binaries, a first step is to lift the
ISA of the target device into an IR for analysis. radare2 [44] is a
reverse engineering tool that lifts ISAs for many architectures, in-
cluding 8051, into its intermediate representation, ESIL. However,
ESIL is not popular beyond radare and its main focus is emulation
to assist static analysis – not symbolic execution. REV.NG [29]
leverages QEMU’s TCG to lift various ISAs to LLVM IR. Similarly,
angr [49] leverages libVEX, the IR lifter of Valgrind. Neither QEMU
nor libVEX currently support 8051. Binary Ninja [60] is a reverse
engineering platform that implements a custom IR called Low-level
Intermediate Language (LLIL). A community plugin [1] lifts 8051
to LLIL, but there are no currently available symbolic execution en-
gines for LLIL. Precision of binary analysis depends on the accuracy
of binary disassembly, which is undecidable in the general case. It

can, however, benefit from static analysis, especially when assump-
tions on compilers’ behavior may not apply [29]. Lim et al. present
a specification language, TSL [37], for defining concrete operational
semantics of machine-code instruction sets, enabling automated
generation of different abstract interpreters for an instruction set
and retargeting to new instruction sets. Neither LLVM nor VEX has
been target of such parameterized analysis effort. However, LLVM
has received more attention from the program analysis community
[10, 33, 34].

8 CONCLUSION & FUTUREWORK

This paper presented a domain informed firmware analysis that
is effective in detecting BadUSB type attacks. We have formulated
two semantic queries that would help reveal characteristics of a
USB device. Our experiments confirm effectiveness of using domain
specific heuristics for finding symbolic values and for reducing the
amount of explored paths. Our lifting of 8051 instruction set to two
popular IRs enabled us to leverage a source-level firmware analysis
tool, Fie, and a binary analysis tool for user space code, angr. We
faced various challenges in customizing these two tools to binary
analysis and to an embedded domain. We believe that a binary anal-
ysis framework for firmware needs an intermediate representation
and supporting analyses engines that are architecture-aware. As
future work, we would like to automate the lifting process to enable
analysis for other less common architectures.

ACKNOWLEDGMENTS

This work is supported in part by the US National Science Founda-
tion under grant CNS-1254017.

REFERENCES

[1] amtal. 2017. Binary Ninja 8051 Architecture Plugin. https://github.com/amtal/
i8051. (2017).

[2] Sebastian Angel, Riad S Wahby, Max Howald, Joshua B Leners, Michael Spilo,
Zhen Sun, Andrew J Blumberg, and Michael Walfish. 2015. Defending against
malicious peripherals. arXiv preprint arXiv:1506.01449 (2015).

[3] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and David Brumley. 2011.
AEG: Automatic Exploit Generation. In Proceedings of the Network and Distributed
System Security Symposium, NDSS 2011, San Diego, California, USA, 6th February

- 9th February 2011.
[4] Radu Banabic, George Candea, and Rachid Guerraoui. 2014. Finding Trojan

Message Vulnerabilities in Distributed Systems. SIGPLAN Not. 49, 4 (Feb. 2014).
[5] Sebastian Banescu, Christian Collberg, Vijay Ganesh, Zack Newsham, and Alexan-

der Pretschner. [n. d.]. Code Obfuscation Against Symbolic Execution Attacks.
In Proceedings of the 32Nd Annual Conference on Computer Security Applications

(2016) (ACSAC ’16). ACM, 189–200. https://doi.org/10.1145/2991079.2991114
[6] Adam Bates, Ryan Leonard, Hannah Pruse, Daniel Lowd, and Kevin Butler. 2014.

Leveraging USB to Establish Host Identity Using Commodity Devices. In Pro-

ceedings of the 21st ISOC Network and Distributed System Security Symposium

(NDSS’14). San Diego, CA, USA.
[7] Oleksandr Bazhaniuk, John Loucaides, Lee Rosenbaum, Mark R. Tuttle, and

Vincent Zimmer. 2015. Symbolic Execution for BIOS Security. In Proceedings of

the 9th USENIX Conference on Offensive Technologies (WOOT’15). 8–8.
[8] Brian Benchoff. 2017. The USB Killer, Version 2.0. (2017). https://hackaday.com/

2015/10/10/the-usb-killer-version-2-0/
[9] Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, and V. N. Venkatakrishnan.

2014. Automated Detection of Parameter Tampering Opportunities and Vulnera-
bilities in Web Applications. J. Comput. Secur. 22, 3 (May 2014), 415–465.

[10] Guillaume Brat, Jorge A. Navas, Nija Shi, and Arnaud Venet. 2014. IKOS: A Frame-
work for Static Analysis Based on Abstract Interpretation. In Software Engineering
and Formal Methods - 12th International Conference, SEFM 2014, Grenoble, France,

September 1-5, 2014. Proceedings. 271–277.
[11] Sergey Bratus, Travis Goodspeed, and Peter C Johnson. 2011. Perimeter-Crossing

Buses: a New Attack Surface for Embedded Systems. In Proceedings of the 7th

Workshop on Embedded Systems Security (WESS 2012). Tampere, Finland.

15

https://github.com/amtal/i8051
https://github.com/amtal/i8051
https://doi.org/10.1145/2991079.2991114
https://hackaday.com/2015/10/10/the-usb-killer-version-2-0/
https://hackaday.com/2015/10/10/the-usb-killer-version-2-0/

[12] Sergey Bratus, Michael E Locasto, Meredith L Patterson, Len Sassaman, and Anna
Shubina. 2011. Exploit programming: From buffer overflows to weird machines
and theory of computation. USENIX; login 36, 6 (2011).

[13] Matthew Brocker and Stephen Checkoway. 2014. iSeeYou: Disabling theMacBook
webcam indicator LED. In 23rd USENIX Security Symposium (USENIX Security

14). 337–352.
[14] Jacob Burnim and Koushik Sen. 2008. Heuristics for Scalable Dynamic Test

Generation. In 23rd IEEE/ACM International Conference on Automated Software

Engineering (ASE 2008), 15-19 September 2008, L’Aquila, Italy. 443–446.
[15] Kevin Butler, Stephen McLaughlin, and Patrick McDaniel. 2010. Kells: A Protec-

tion Framework for Portable Data. In Proceedings of the 26th Annual Computer

Security Applications Conference (ACSAC). Austin, TX, USA.
[16] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and

Automatic Generation of High-coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and

Implementation (OSDI’08). 209–224.
[17] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.

Engler. 2006. EXE: Automatically Generating Inputs of Death. In Proceedings of

the 13th ACM Conference on Computer and Communications Security (CCS ’06).
322–335.

[18] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012.
Unleashing Mayhem on Binary Code. In Proceedings of the 2012 IEEE Symposium

on Security and Privacy (SP ’12). 380–394.
[19] Marek Chalupa. 2017. LLVMDependenceGraph. https://github.com/mchalupa/dg.

(2017).
[20] Geoff Chappell. 2007. America Online Exploits Bug In Own Software. http:

//geoffchappell.com/notes/security/aim/index.htm. (2007).
[21] Geoff Chappell. 2013. (s)elf-exploitation. http://www.gamasutra.com/view/

feature/194772/dirty_game_development_tricks.php. (2013).
[22] Avik Chaudhuri and Jeffrey S. Foster. 2010. Symbolic Security Analysis of Ruby-

on-railsWeb Applications. In Proceedings of the 17th ACMConference on Computer

and Communications Security (CCS ’10). 585–594.
[23] D D Chen, M Egele, M Woo, and D Brumley. 2016. Towards Automated Dynamic

Analysis for Linux-based Embedded Firmware. Proceedings of the ISOC Network

and Distributed Systems Symposium (NDSS) (2016).
[24] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A

Platform for In-vivo Multi-path Analysis of Software Systems. SIGPLAN Not. 47,
4 (March 2011), 265–278.

[25] Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chipounov, and George
Candea. 2010. Cloud9: A Software Testing Service. SIGOPS Oper. Syst. Rev. 43, 4
(Jan. 2010), 5–10.

[26] Ricardo Corin and Felipe Andrés Manzano. 2012. Taint Analysis of Security Code
in the KLEE Symbolic Execution Engine. In Proceedings of the 14th International

Conference on Information and Communications Security (ICICS’12). 264–275.
[27] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti. 2014.

A Large-scale Analysis of the Security of Embedded Firmwares. In Proceedings of

the 23rd USENIX Conference on Security Symposium (SEC’14).
[28] Drew Davidson, Benjamin Moench, Thomas Ristenpart, and Somesh Jha. 2013.

FIE on Firmware: Finding Vulnerabilities in Embedded Systems Using Sym-
bolic Execution. In Presented as part of the 22nd USENIX Security Symposium

(USENIX Security 13). USENIX, Washington, D.C., 463–478. https://www.usenix.
org/conference/usenixsecurity13/technical-sessions/paper/davidson

[29] Alessandro Di Federico, Mathias Payer, and Giovanni Agosta. 2017. Rev.Ng: A
Unified Binary Analysis Framework to Recover CFGs and Function Boundaries. In
Proceedings of the 26th International Conference on Compiler Construction (CC 2017).
ACM, New York, NY, USA, 131–141. https://doi.org/10.1145/3033019.3033028

[30] Sinan Adnan Diwan, Sundresan Perumal, and Ammar J Fatah. 2014. Complete
security package for USB thumb drive. Computer Engineering and Intelligent

Systems 5, 8 (2014), 30–37.
[31] Nicolas Falliere, Liam O Murchu, and Eric Chien. 2011. W32. Stuxnet Dossier.

(2011).
[32] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated

Whitebox Fuzz Testing. In Proceedings of the Network and Distributed System

Security Symposium, NDSS 2008, San Diego, California, USA, 10th February - 13th

February 2008.
[33] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

2015. The SeaHorn Verification Framework. In Computer Aided Verification -

27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,

Proceedings, Part I. 343–361.
[34] Julien Henry, David Monniaux, and Matthieu Moy. 2012. PAGAI: A Path Sensitive

Static Analyser. Electron. Notes Theor. Comput. Sci. 289 (Dec. 2012).
[35] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM

19, 7 (July 1976).
[36] Volodymyr Kuznetsov, Vitaly Chipounov, and George Candea. 2010. Testing

Closed-source Binary Device Drivers with DDT. In Proceedings of the 2010 USENIX
Conference on USENIX Annual Technical Conference (USENIXATC’10). 12–12.

[37] Junghee Lim and Thomas Reps. 2013. TSL: A System for Generating Abstract
Interpreters and Its Application to Machine-Code Analysis. ACM Trans. Program.

Lang. Syst. 35, 1 (April 2013).
[38] Joseph P. Near and Daniel Jackson. 2014. Derailer: Interactive Security Anal-

ysis for Web Applications. In Proceedings of the 29th ACM/IEEE International

Conference on Automated Software Engineering (ASE ’14). 587–598.
[39] Joseph P. Near and Daniel Jackson. 2016. Finding Security Bugs in Web Appli-

cations Using a Catalog of Access Control Patterns. In Proceedings of the 38th

International Conference on Software Engineering (ICSE ’16). 947–958.
[40] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-

weight dynamic binary instrumentation. In ACM Sigplan notices, Vol. 42. ACM,
89–100.

[41] Karsten Nohl and Jakob Lell. 2014. BadUSB–On accessories that turn evil. Black
Hat USA (2014).

[42] NSA. 2015. TURNIPSCHOOL - NSA Playset. http://www.nsaplayset.org/
turnipschool. (2015).

[43] V. A. Padaryan, V. V. Kaushan, and A. N. Fedotov. 2015. Automated Exploit
Generation for Stack Buffer Overflow Vulnerabilities. Program. Comput. Softw.

41, 6 (Nov. 2015), 373–380.
[44] Pancake. 2017. Radare 2. https://github.com/radare/radare2. (2017).
[45] Dung Vu Pham, Malka N Halgamuge, Ali Syed, and Priyan Mendis. 2010. Opti-

mizing Windows Security Features to Block Malware and Hack Tools on USB
Storage Devices. In Progress in Electromagnetics Research Symposium.

[46] Sergej Schumilo, Ralf Spenneberg, and Hendrik Schwartke. 2014. Don’t trust
your USB! How to find bugs in USB device drivers. In Blackhat Europe.

[47] Seungwon Shin and Guofei Gu. 2010. Conficker and Beyond: A Large-scale
Empirical Study. In Proceedings of the 26th Annual Computer Security Applications

Conference (ACSAC ’10). ACM, New York, NY, USA, 151–160. https://doi.org/10.
1145/1920261.1920285

[48] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. 2015. Firmalice - Automatic Detection of Authentication Bypass
Vulnerabilities in Binary Firmware. In NDSS.

[49] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
AndrewDutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In IEEE Symposium on Security and Privacy.

[50] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung
Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena.
2008. BitBlaze: A New Approach to Computer Security via Binary Analysis. In
Proceedings of the 4th International Conference on Information Systems Security

(ICISS ’08). 1–25.
[51] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,

Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In
NDSS.

[52] Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow anal-
ysis in LLVM. In Proceedings of the 25th International Conference on Compiler

Construction, CC 2016, Barcelona, Spain, March 12-18, 2016. 265–266.
[53] A. Tetmeyer and H. Saiedian. 2010. Security Threats and Mitigating Risk for

USB Devices. Technology and Society Magazine, IEEE 29, 4 (winter 2010), 44–49.
https://doi.org/10.1109/MTS.2010.939228

[54] Aditya V. Thakur, Junghee Lim, Akash Lal, Amanda Burton, Evan Driscoll, Matt
Elder, Tycho Andersen, and Thomas W. Reps. 2010. Directed Proof Generation
for Machine Code. In Computer Aided Verification, 22nd International Conference,

CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings. 288–305.
[55] Dave Jing Tian, Adam Bates, and Kevin Butler. 2015. Defending Against Malicious

USB Firmware with GoodUSB. In Proceedings of the 31st Annual Computer Security

Applications Conference (ACSAC).
[56] Dave Jing Tian, Adam Bates, Kevin Butler, and Raju Rangaswami. 2016. ProvUSB:

Block-level Provenance-Based Data Protection for USB Storage Devices. In Pro-

ceedings of the 23rd ACM Conference on Computer and Communications Security

(CCS’16). Vienna, Austria.
[57] Dave Jing Tian, Nolen Scaife, Adam Bates, Kevin R.B. Butler, and P. Traynor. 2016.

Making USB great again with USBFILTER. In Proceedings of the 2016 USENIX

Security Symposium. Austin, TX, USA.
[58] Matthew Tischer, Zakir Durumeric, Sam Foster, Sunny Duan, Alec Mori, Elie

Bursztein, and Michael Bailey. 2016. Users really do plug in USB drives they find.
In Security and Privacy (SP), 2016 IEEE Symposium on. IEEE, 306–319.

[59] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Aastha Mehta, Deepak Garg, Peter
Druschel, Rodrigo Rodrigues, Johannes Gehrke, and Ansley Post. 2015. Guardat:
Enforcing data policies at the storage layer. In Proceedings of the Tenth European

Conference on Computer Systems. ACM, 13.
[60] Vector35. 2015. Binary Ninja. https://binary.ninja/. (2015).
[61] JimWalter. 2012. "Flame Attacks": Briefing and Indicators of Compromise.McAfee

Labs Report (May 2012).
[62] Zhaohui Wang and Angelos Stavrou. 2010. Exploiting Smart-phone USB Con-

nectivity for Fun and Profit. In Proceedings of the 26th Annual Computer Security

Applications Conference (ACSAC ’10).
[63] John Wharton. 1980. An Introduction to the Intel-MCS-51 Single-Chip Micro-

computer Family. Intel Corporation (1980).

16

https://github.com/mchalupa/dg
http://geoffchappell.com/notes/security/aim/index.htm
http://geoffchappell.com/notes/security/aim/index.htm
http://www.gamasutra.com/view/feature/194772/dirty_game_development_tricks.php
http://www.gamasutra.com/view/feature/194772/dirty_game_development_tricks.php
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
https://doi.org/10.1145/3033019.3033028
http://www.nsaplayset.org/turnipschool
http://www.nsaplayset.org/turnipschool
https://github.com/radare/radare2
https://doi.org/10.1145/1920261.1920285
https://doi.org/10.1145/1920261.1920285
https://doi.org/10.1109/MTS.2010.939228
https://binary.ninja/

[64] Babak Yadegari and Saumya Debray. [n. d.]. Symbolic Execution of Obfuscated
Code. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and

Communications Security (2015) (CCS ’15). ACM, 732–744. https://doi.org/10.
1145/2810103.2813663

[65] Babak Yadegari and Saumya Debray. 2015. Symbolic Execution of Obfuscated
Code. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and

Communications Security (CCS ’15). 732–744.
[66] Bo Yang, Dengguo Feng, Yu Qin, Yingjun Zhang, and Weijin Wang. 2015. TMSUI:

A Trust Management Scheme of USB Storage Devices for Industrial Control
Systems. Cryptology ePrint Archive, Report 2015/022. (2015). http://eprint.iacr.
org/.

[67] Jonas Zaddach, Luca Bruno, Aurélien Francillon, and Davide Balzarotti. 2014.
AVATAR: A Framework to Support Dynamic Security Analysis of Embedded
Systems’ Firmwares. In 21st Annual Network and Distributed System Security

Symposium, NDSS 2014, San Diego, California, USA, February 23-26, 2014.

17

https://doi.org/10.1145/2810103.2813663
https://doi.org/10.1145/2810103.2813663
http://eprint.iacr.org/
http://eprint.iacr.org/

APPENDIX

Listing 1 A minimal injection code snippet similar to that added to EzHID. The in1_buffer is what will be marked inconsistent after Query
2 completes. Additional processor details omitted.
1 static void timer2_isr ()
2 {
3 if (! inject_start) {
4 inject_counter ++;
5 if (inject_counter > ATTACK_THRESHOLD) {
6 inject_start = TRUE;
7 }
8 }
9
10 // static keystrokes from the data segment
11 if (inject_start) {
12 if (! in1_busy) {
13 memcpy(in1_buffer, key_script , sizeof(firmusb_script));
14 in1_busy = TRUE;
15 inject_start = FALSE;
16 }
17 }
18
19 if (kbd_data) {
20 if (! in1_busy) {
21 // normal keyboard data from I/O port
22 memcpy(in1_buffer, key_buffer , kbd_num_bytes);
23 in1_busy = TRUE;
24 }
25 }
26 }

Listing 2 USBDB implements 10 matching rules in total. All these rules are directly extracted from the Linux kernel 4.9 source file, reflecting
the real-world USB device matching.
1 /* https ://lxr.missinglinkelectronics.com/linux+v4.9/ include/linux/usb.h#L853 */
2 #define USB_DEVICE_ID_MATCH_DEVICE (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
3 #define USB_DEVICE_ID_MATCH_DEV_RANGE (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
4 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
5 #define USB_DEVICE_ID_MATCH_DEV_INFO (USB_DEVICE_ID_MATCH_DEV_CLASS | USB_DEVICE_ID_MATCH_DEV_SUBCLASS | USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
6 #define USB_DEVICE_ID_MATCH_INT_INFO (USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS | USB_DEVICE_ID_MATCH_INT_PROTOCOL)
7
8 #define USB_DEVICE(vend , prod) .match_flags = USB_DEVICE_ID_MATCH_DEVICE , \
9 .idVendor = (vend), \
10 .idProduct = (prod)
11
12 #define USB_DEVICE_VER(vend , prod , lo, hi) .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION , \
13 .idVendor = (vend), \
14 .idProduct = (prod), \
15 .bcdDevice_lo = (lo), \
16 .bcdDevice_hi = (hi)
17
18 #define USB_DEVICE_INTERFACE_CLASS(vend , prod , cl) .match_flags = USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_INT_CLASS , \
19 .idVendor = (vend), \
20 .idProduct = (prod), \
21 .bInterfaceClass = (cl)
22
23 #define USB_DEVICE_INTERFACE_PROTOCOL(vend , prod , pr) .match_flags = USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_INT_PROTOCOL , \
24 .idVendor = (vend), \
25 .idProduct = (prod), \
26 .bInterfaceProtocol = (pr)
27
28 #define USB_DEVICE_INTERFACE_NUMBER(vend , prod , num) .match_flags = USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_INT_NUMBER , \
29 .idVendor = (vend), \
30 .idProduct = (prod), \
31 .bInterfaceNumber = (num)
32
33 #define USB_DEVICE_INFO(cl, sc, pr) .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO , \
34 .bDeviceClass = (cl), \
35 .bDeviceSubClass = (sc), \
36 .bDeviceProtocol = (pr)
37
38 #define USB_INTERFACE_INFO(cl, sc, pr) .match_flags = USB_DEVICE_ID_MATCH_INT_INFO , \
39 .bInterfaceClass = (cl), \
40 .bInterfaceSubClass = (sc), \
41 .bInterfaceProtocol = (pr)
42
43 #define USB_DEVICE_AND_INTERFACE_INFO(vend , prod , cl, sc, pr) .match_flags = USB_DEVICE_ID_MATCH_INT_INFO | USB_DEVICE_ID_MATCH_DEVICE , \
44 .idVendor = (vend), \
45 .idProduct = (prod), \
46 .bInterfaceClass = (cl), \
47 .bInterfaceSubClass = (sc), \
48 .bInterfaceProtocol = (pr)
49
50 #define USB_VENDOR_AND_INTERFACE_INFO(vend , cl, sc, pr) .match_flags = USB_DEVICE_ID_MATCH_INT_INFO | USB_DEVICE_ID_MATCH_VENDOR , \
51 .idVendor = (vend), \
52 .bInterfaceClass = (cl), \
53 .bInterfaceSubClass = (sc), \
54 .bInterfaceProtocol = (pr)
55
56 #define USUAL_DEV(useProto , useTrans) { USB_INTERFACE_INFO(USB_CLASS_MASS_STORAGE , useProto , useTrans) }

18

	Abstract
	1 Introduction
	2 Background
	2.1 Universal Serial Bus
	2.2 Firmware Analysis

	3 Overview of FirmUSB
	4 Design and Implementation
	4.1 8051 Lifting to IR
	4.2 VID/PID Based Inference
	4.3 Semantic Analysis

	5 Evaluation
	5.1 Benchmarks
	5.2 Symbolic Values
	5.3 Domain Informed Analysis
	5.4 Target Reachability (Query 1)
	5.5 Consistent Behavior (Query 2)

	6 Discussion
	6.1 Adapting Fie
	6.2 KLEE vs. angr
	6.3 Firmware Obfuscation
	6.4 Ideal Framework & FirmUSB Limitations

	7 Related Work
	8 Conclusion & Future Work
	Acknowledgments
	References

