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ABSTRACT
Deep neural networks (DNNs) have transformed several arti�cial
intelligence research areas including computer vision, speech recog-
nition, and natural language processing. However, recent studies
demonstrated that DNNs are vulnerable to adversarial manipu-
lations at testing time. Speci�cally, suppose we have a testing
example, whose label can be correctly predicted by a DNN classi�er.
An a�acker can add a small carefully cra�ed noise to the testing
example such that the DNN classi�er predicts an incorrect label,
where the cra�ed testing example is called adversarial example.
Such a�acks are called evasion a�acks. Evasion a�acks are one
of the biggest challenges for deploying DNNs in safety and secu-
rity critical applications such as self-driving cars. In this work, we
develop new methods to defend against evasion a�acks. Our key
observation is that adversarial examples are close to the classi�ca-
tion boundary. �erefore, we propose region-based classi�cation to
be robust to adversarial examples. For a benign/adversarial test-
ing example, we ensemble information in a hypercube centered
at the example to predict its label. Speci�cally, we sample some
data points from the hypercube centered at the testing example
in the input space; we use an existing DNN to predict the label
for each sampled data point; and we take a majority vote among
the labels of the sampled data points as the label for the testing
example. In contrast, traditional classi�ers are point-based clas-
si�cation, i.e., given a testing example, the classi�er predicts its
label based on the testing example alone. Our evaluation results on
MNIST and CIFAR-10 datasets demonstrate that our region-based
classi�cation can signi�cantly mitigate evasion a�acks without
sacri�cing classi�cation accuracy on benign examples. Speci�cally,
our region-based classi�cation achieves the same classi�cation ac-
curacy on testing benign examples as point-based classi�cation,
but our region-based classi�cation is signi�cantly more robust than
point-based classi�cation to various evasion a�acks.
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Figure 1: Adversarial examples generated by an evasion at-
tack proposed by Carlini and Wagner [4].
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1 INTRODUCTION
Deep neural networks (DNNs) are unprecedentedly e�ective at solv-
ing many challenging arti�cial intelligence problems such as image
recognition [16], speech recognition [12], natural language process-
ing [25], and playing games [33]. For instance, DNNs can recognize
images with accuracies that are comparable to human [16]; and
they can outperform the best human Go players [33].

However, researchers in various communities–such as security,
machine learning, and computer vision–have demonstrated that
DNNs are vulnerable to a�acks at testing time [4, 7, 21, 26, 29, 30, 35].
For instance, in image recognition, an a�acker can add a small noise
to a testing example such that the example is misclassi�ed by a
DNN classi�er. �e testing example with noise is called adversarial
example [35]. In contrast, the original example is called benign
example. Usually, the noise is so small such that, to human, the
benign example and adversarial example still have the same label.
Figure 1 shows some adversarial examples for digit recognition
in the MNIST dataset. �e adversarial examples were generated
by the state-of-the-art evasion a�acks proposed by Carlini and
Wagner [4]. We use the same DNN classi�er as the one used by
them. �e examples in the ith row have true label i , while the
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examples in the jth column are predicted to have label j by the
DNN classi�er, where i, j = 0, 1, · · · , 9.

Evasion a�acks limit the use of DNNs in safety and security
critical applications such as self-driving cars. �e adversarial ex-
amples can make self-driving cars make unwanted decisions. For
instance, one basic capability of self-driving cars is to automati-
cally recognize stop signs and tra�c lights. Suppose an adversary
creates an adversarial stop sign, i.e., the adversary adds several
human-imperceptible dots to a stop sign, such that the self-driving
car does not recognize it as a stop sign. As a result, self-driving
cars will not stop at the stop sign and may collide with other cars,
resulting in severe tra�c accidents.

To defend against evasion a�acks, Goodfellow et al. [7] proposed
to train a DNN via augmenting the training dataset with adversar-
ial examples, which is known as adversarial training. Speci�cally,
for each training benign example, the learner generates a training
adversarial example using evasion a�acks. �en, the learner uses
a standard algorithm (e.g., back propagation) to learn a DNN us-
ing the original training benign examples and the corresponding
adversarial examples. Adversarial training is not robust to adver-
sarial examples that are unseen during training. Papernot et al. [31]
proposed a distillation based method to train DNNs. Carlini and
Wagner [4] demonstrated that their a�acks can still achieve 100%
success rates for DNNs trained with distillation. Carlini and Wag-
ner [4] concluded that all defenses should be evaluated against
state-of-the-art evasion a�acks, i.e., the a�acks proposed by them
at the time of writing this paper. For simplicity, we call their a�acks
CW.

Our work: We propose a new defense method called region-based
classi�cation. Our method can reduce success rates and/or increase
the noise added into adversarial examples for various evasion at-
tacks. First, we performed a measurement study about adversarial
examples. We trained a 10-class DNN classi�er on the standard
MNIST dataset to recognize digits in images. �e DNN has the
same architecture as the one used by Carlini and Wagner [4]. Sup-
pose we have a testing digit 0. We use a CW a�ack to generate
an adversarial example for each target label 1, 2, · · · , 9. Each ex-
ample is represented as a data point in a high-dimensional space.
For each adversarial example, we sample 10,000 data points from
a small hypercube centered at the adversarial example in the high-
dimensional space. We use the DNN classi�er to predict labels for
the 10,000 data points. We found that a majority of the 10,000 data
points are still predicted to have label 0. Our measurement results
indicate that 1) the adversarial examples are close to the classi�-
cation boundary, and 2) ensembling information in the hypercube
around an adversarial example could correctly predict its label.

Second, based on our measurement results, we propose a region-
based classi�cation. In our region-based classi�cation, we learn a
DNN classi�er using standard training algorithms. When predicting
label for a testing example (benign or adversarial), we samplem data
points uniformly at random from the hypercube that is centered
at the testing example and has a length of r . We use the DNN
classi�er to predict label for each sampled data point. Finally, we
predict the label of the testing example as the one that appears
the most frequently in the sampled data points, i.e., majority vote
among the sampled data points. To distinguish our region-based

classi�cation with traditional DNN classi�cation, we call traditional
DNN point-based classi�cation.

One challenge for our region-based classi�cation is how to de-
termine the length r of the hypercube. r is a critical parameter that
controls the tradeo� between robustness to adversarial examples
and classi�cation accuracy on benign examples. To address the chal-
lenge, we propose to learn the length r using a validation dataset
consisting of only benign examples. We do not use adversarial
examples because the adversarial examples used by the a�acker
may not be accessible to the defender. Our key idea is to select
the maximal length r such that the classi�cation accuracy of our
region-based classi�cation on the validation dataset is no smaller
than that of the standard point-based DNN classi�er. We propose
to select the maximal possible length, so an adversarial example
needs a larger noise to move further away from the classi�cation
boundary in order to evade our region-based classi�cation.

�ird, we evaluate our region-based classi�cation using two
standard image recognition datasets, MNIST and CIFAR-10. We
evaluate our region-based classi�cation against six targeted evasion
a�acks and seven untargeted evasion a�acks. First, our evaluation
results demonstrate that our region-based classi�cation achieves
the same classi�cation accuracy on testing benign examples with
the standard point-based classi�cation. However, adversarial train-
ing and distillation sacri�ce classi�cation accuracy. Second, our
region-based classi�cation is signi�cantly more robust than exist-
ing methods. For instance, the targeted CW a�acks have less than
20% and 7% success rates on the MNIST and CIFAR-10 datasets,
respectively. In contrast, for standard point-based classi�cation,
adversarial training, and defensive distillation, the targeted CW
a�acks achieve 100% success rates on both datasets. �ird, we
consider an a�acker strategically adapts an existing a�ack to our
region-based classi�cation. In particular, the a�acker adds more
noise to an adversarial example generated by an a�ack to move it
further away from the classi�cation boundary. Our results demon-
strate that our region-based classi�cation can also e�ectively defend
against such adapted a�acks. In particular, the largest success rate
that the adapted a�acks can achieve on the MNIST dataset is 64%,
when the a�acker doubles the noise added to adversarial examples.

We conclude that, in the future, researchers who develop power-
ful evasion a�acks should evaluate their a�acks against our region-
based classi�cation instead of standard point-based classi�cation.

In summary, our contributions are as follows:

• We perform a measurement study to characterize adver-
sarial examples.

• We propose a region-based classi�cation to defend against
evasion a�acks, while not impacting classi�cation accuracy
on benign examples.

• We evaluate our region-based classi�cation using two im-
age datasets. Our results demonstrate that 1) our method
does not impact classi�cation accuracy on benign exam-
ples, 2) our method is signi�cantly more robust to existing
evasion a�acks than existing methods, and 3) our method
is robust to the a�acks that are strategically adjusted to
our region-based classi�cation.



Table 1: evasion attacks.

A�ack Type Noise metric
T-FGSM [7] Targeted L∞
T-IGSM [17] Targeted L∞
T-JSMA [30] Targeted L0
T-CW-L0 [4] Targeted L0
T-CW-L2 [4] Targeted L2
T-CW-L∞ [4] Targeted L∞
U-FGSM [7] Untargeted L∞
U-IGSM [17] Untargeted L∞
U-JSMA [30] Untargeted L0
U-CW-L0 [4] Untargeted L0
U-CW-L2 [4] Untargeted L2
U-CW-L∞ [4] Untargeted L∞
DeepFool [26] Untargeted L2

2 BACKGROUND AND RELATEDWORK
2.1 Deep Neural Networks (DNNs)
A deep neural network (DNN) consists of an input layer, several
hidden layers, and an output layer. �e output layer is o�en a
so�max layer. �e neurons in one layer are connected with neu-
rons in the next layer with certain pa�erns, e.g., fully connected,
convolution, or max pooling [16]. In the training phase, the weights
on the connections are o�en learnt via back-propagation with a
training dataset. In the testing phase, the DNN is used to predict la-
bels for examples that are unseen in the training phase. Speci�cally,
suppose we have L classes, denoted as {1, 2, · · · ,L}. Both the layer
before the output layer and the output layer have L neurons. Let
x ∈ Rn be an unseen example, which is a n-dimension vector; x j
represents the jth dimension of x . We denote the output of the ith
neuron before the output layer as Zi (x), and we denote the output
of the ith neuron in the output layer as Fi (x), where i = 1, 2, · · · ,L.
�e outputs Z1(x),Z2(x), · · · ,ZL(x) are also called logits. Since the
output layer is a so�max layer, Fi (x) represents the probability that
x has a label i; and the L outputs sum to 1, i.e.,

∑L
i=1 Fi (x) = 1. �e

label of x is predicted to be the one that has the largest probability,
i.e., C(x) = argmaxi Fi (x), where C(x) is the predicted label.

A classi�er essentially can be viewed as a classi�cation boundary
that divides the n-dimension space into L class regions, denoted as
R1, R2, · · · , RL . Any data point in the region Ri will be predicted to
have label i by the classi�er.

2.2 Evasion Attacks
Poisoning a�acks and evasion a�acks [13] are two well-known at-
tacks to machine learning/data mining. A poisoning a�ack aims to
pollute the training dataset such that the learner produces a bad
classi�er. Various studies have demonstrated poisoning a�acks
to spam �lter [28], support vector machines [1], deep neural net-
works [32], and recommender systems [19, 41]. In an evasion a�ack,
an a�acker adds a small noise to a normal testing example (we call
it benign example) such that a classi�er predicts an incorrect label

for the example with noise. A testing example with noise is called
adversarial example. From a perspective of geometrics, an evasion
a�ack moves a testing example from one class region to another.

In this work, we focus on DNNs and evasion a�acks. Evasion
a�acks can be classi�ed into two categories, i.e., targeted evasion
a�acks and untargeted evasion a�acks. In a targeted evasion a�ack,
an a�acker aims to add noise to a benign example such that the
classi�er predicts a particular incorrect label for the example. In an
untargeted evasion a�ack, an a�acker aims to mislead the classi�er
to predict any incorrect label. Table 1 shows representative evasion
a�acks to DNNs, where the a�acks with a pre�x “T-” are targeted
evasion a�acks and the a�acks with a pre�x “U-” are untargeted
evasion a�acks.

2.2.1 Targeted Evasion A�acks. We denote by C a DNN classi-
�er. C(x) is the predicted label of a testing example x ∈ [0, 1]n .
Note that we assume each dimension of x is normalized to be in
the range [0, 1], like previous studies [4, 26]. Szegedy et al. [35]
formally de�ned targeted evasion a�acks as solving the following
optimization problem:

min d(x ,x + δ )
subject to: C(x + δ ) = t

x + δ ∈ [0, 1]n , (1)

where δ is the added noise, t is the target label that the a�acker
wants the classi�er to predict for the adversarial example x +δ , and
d is a metric to measure distance between the benign example and
the adversarial example. �e label t is not the true label of x . L0, L2,
and L∞ norms are o�en used as the distance metric d . Speci�cally,
L0 norm is the number of dimensions of x that are changed, i.e., the
number of non-zero dimensions of δ ; L2 norm is the standard Eu-
clidean distance between x and x+δ ; and L∞ norm is the maximum
change to any dimension of x , i.e., max{δ1,δ2, · · · ,δn }.

An algorithm to solve the optimization problem in Equation 1
is called a targeted evasion a�ack. An adversarial example is suc-
cessful if the classi�er predicts the target label t for it. �e success
rate (SR) of a targeted evasion a�ack is the fraction of adversarial
examples generated by the a�ack that are successful.
Targeted Fast Gradient Sign Method (T-FGSM) [7]: Goodfel-
low et al. [7] proposed a targeted Fast Gradient Sign Method (T-
FGSM) based on the hypothesis that the classi�cation boundary
of a DNN is piecewise linear. T-FGSM is designed to generate ad-
versarial examples fast, without necessarily minimizing the added
noise. �erefore, the adversarial examples generated by T-FGSM
o�en have lower success rates than other optimized a�acks when
adding small noise [4]. Formally, given a benign example x , T-FGSM
generates an adversarial example x ′ as follows:

x ′ = x − ϵ · sign(∇x J (θ ,x , t)), (2)

where θ is the model parameters of the DNN, ∇ indicates gradient, t
is the target label, ϵ is a parameter to control tradeo�s between the
added noise and success rate of T-FGSM, and J is the cost function
used to train the DNN. Note that T-FGSM aims to minimize the
L∞ norm of the added noise. Like Carlini and Wagner [4], we
search over ϵ to �nd the smallest noise that generates a successful
adversarial example in our experiments; failure is returned if no ϵ
produces a successful adversarial example.



Targeted Iterative Gradient Sign Method (T-IGSM) [17]: Ku-
rakin et al. [17] proposed a targeted Iterative Gradient Sign Method
(T-IGSM), which is an advanced version of the targeted Fast Gra-
dient Sign Method (T-FGSM) [7]. Roughly speaking, T-IGSM it-
eratively adds small noise to the benign example until �nding a
successful adversarial example or reaching the maximum number
of iterations; in each iteration, T-IGSM clips the current adversarial
example to be in the L∞ ϵ-neighborhood of the benign example.
Formally, T-IGSM works as follows:

x ′0 = x , x ′N+1 = Clipx,ϵ (x
′
N − α · sign(∇x J (θ ,x , t))), (3)

where θ is the model parameters of the DNN classi�er, ∇ indicates
gradient, t is the target label, ϵ is a parameter to control tradeo�s
between the added noise and success rate of T-IGSM, J is the cost
function used to train the DNN, α is a small step size, and the
function Clipx,ϵ clips the current adversarial example to be in the
L∞ ϵ-neighborhood of x . T-IGSM also aims to minimize the L∞
norm of the added noise. Like Carlini and Wagner [4], we �x
α = 1

256 and search over ϵ to �nd the smallest noise that generates
a successful adversarial example; failure is returned if no ϵ produces
a successful adversarial example.
Targeted Jacobian-based SaliencyMapAttack (T-JSMA) [30]: Pa-
pernot et al. [30] proposed a targeted Jacobian-based Saliency Map
A�ack (T-JSMA). �e a�ack is optimized to �nd adversarial exam-
ples with small L0-norm noise. T-JSMA iteratively adds noise to
a benign example until the classi�er C predicts the target label t
as its label or the maximum number of iterations is reached. In
each iteration, T-JSMA picks one or two entries of the example,
by modifying which the example is most likely to move towards
the target label t , and then the a�ack increases or decreases the
entries by a constant value. Selecting the entries is assisted by
the Jacobian-based saliency map. T-JSMA has two variants. One
variant picks the entries to be modi�ed via the so�max outputs
of the DNN, while the other picks the entries via the logits of the
DNN. We adopt the la�er one as suggested by its authors [30]. Note
that defensive distillation can prevent the variant of JSMA that uses
so�max output, but not the variant that uses logits.
T-CW-L2 attack [4]: Carlini and Wagner [4] proposed a family
of targeted evasion a�acks, which generate successful adversarial
examples with small noise. For simplicity, we call their a�acks
targeted Carlini and Wagner (T-CW) a�acks. T-CW a�acks have
three variants that are tailored to the L0, L2, and L∞ norms, respec-
tively. �e variant T-CW-L2 a�ack is tailored to �nd adversarial
examples with small noise measured by L2 norm. Formally, the
evasion a�ack reformulates the optimization problem in Equation 1
as the following optimization problem:

min | | 12 (tanh(w) + 1) − x | |22 + c × f (12 (tanh(w) + 1)), (4)

where f (x ′) = max(max{Zi (x ′) : i , t} − Zt (x ′),−k). �e adver-
sarial example is 1

2 (tanh(w) + 1), which automatically constrains
each dimension to be in the range [0,1]. �e parameter k controls
the con�dence of the a�ack. By default, we set k = 0. �e noise
δ is δ = 1

2 (tanh(w) + 1) − x . T-CW-L2 iterates over the parameter
c via binary search in a relatively large range of candidate values.
For each given c , T-CW-L2 uses the Adam optimizer [15] to solve

the optimization problem in Equation 4 to �nd the noise. �e itera-
tive process is halted at the smallest parameter c that the classi�er
predicts the target label t for the adversary example.
T-CW-L0 attack [4]: �is variant is tailored to �nd adversarial
examples with small noise measured by L0 norm. �is a�ack it-
eratively identi�es the dimensions of x that do not have much
impact on the classi�er’s prediction and �xes them. �e set of �xed
dimensions increases until the a�ack has identi�ed a minimum
subset of dimensions that can be changed to construct a successful
adversarial example. In each iteration, the set of dimensions that
can be �xed are identi�ed by the T-CW-L2 a�ack. Speci�cally, in
each iteration, T-CW-L0 calls T-CW-L2, which can only modify the
un�xed dimensions. Suppose δ is the found noise for the benign
example x . T-CW-L0 computes the gradient д = ∇f (x + δ ) and
selects the dimension i = argmini дi × δi to be �xed. �e iterative
process is repeated until T-CW-L2 cannot �nd a successful adver-
sarial example. Again, the parameter in T-CW-L2 is selected via a
searching process: starting from a very small c value; if T-CW-L2
fails, then doubling c until �nding a successful adversarial example.
T-CW-L∞ attack [4]: �is variant is tailored to �nd adversarial
examples with small noise measured by L∞ norm. �is a�ack
transforms the optimization problem in Equation 1 to the following
one:

min
∑
i
(δi − τ )+ + c × f (x + δ ), (5)

where f is the same function as in T-CW-L2; (δi −τ )+ = 0 if δi < τ ,
otherwise (δi −τ )+ = δi −τ . T-CW-L∞ iterates over c until �nding a
successful adversarial example. Speci�cally, c is iteratively doubled
from a small value. For each given c , CW-L∞ further iterates over
τ . In particular, τ is initialized to be 1. For a given τ , T-CW-L∞
solves the optimization problem in Equation 5. If δi < τ for every i ,
then τ is reduced by a factor of 0.9, and then T-CW-L∞ solves the
optimization problem with the updated τ . �is process is repeated
until such a noise vector δ that δi < τ for every i cannot be found.

2.2.2 Untargeted Evasion A�acks. In an untargeted evasion at-
tack, an a�acker aims to solve the following optimization problem:

min d(x ,x + δ )
subject to: C(x + δ ) , C∗(x)

x + δ ∈ [0, 1]n , (6)

where δ is the added noise, C∗(x) is the true label of x , and d is
a metric to measure distance between the benign example and
the adversarial example. An algorithm to solve the optimization
problem in Equation 6 is called an untargeted evasion a�ack. An
adversarial example is successful if the classi�er predicts a label
that does not equal C∗(x) for it.
U-FGSM [7], U-IGSM [17], U-CW-L0 [4], U-CW-L2 [4], and U-
CW-L∞ [4]: Carlini and Wagner [4] proposed a strategy to convert
a targeted evasion a�ack to an untargeted evasion a�ack. Suppose
we have a targeted evasion a�ack A. Given a benign example x ,
whose true label isC∗(x), we useA to generate an adversarial exam-
ple for each target label t that does not equalC∗(x). �e adversarial
example with the smallest noise is treated as the untargeted adver-
sarial example for the benign example x . We use this strategy to
transform the targeted evasion a�acks T-FGSM, T-IGSM, T-CW-L0,



T-CW-L2, and T-CW-L∞ to untargeted evasion a�acks, which we
denote as U-FGSM, U-IGSM, and U-CW-L0, U-CW-L2, and U-CW-
L∞, respectively. We note that Goodfellow et al. [7] proposed an
untargeted FGSM a�ack, which constructs an adversarial example
as x ′ = x +ϵ · sign(∇x J (θ ,x ,C∗(x))). Moreover, IGSM has an untar-
geted version, which iteratively constructs an adversarial example
as x ′0 = x , x ′N+1 = Clipx,ϵ {x

′
N + α · sign(∇x J (θ ,x ,C∗(x)))}. How-

ever, we found such untargeted versions add larger noise. �erefore,
we will not use them in our experiments.
DeepFool [26]: Moosavi-Dezfooli et al. [26] proposed an untar-
geted evasion a�ack called DeepFool to di�erentiable classi�ers.
�e key idea of DeepFool is to iteratively add noise to a benign ex-
ample until the classi�er predicts an incorrect label for the example
or the maximum number of iterations is reached. In each iteration,
DeepFool linearizes the classi�er at the current adversarial exam-
ple and �nds the minimum noise required to move the adversarial
example to the linearized classi�cation boundary.

2.2.3 Evaluation Metrics. An adversarial example is successful
if it satis�es two conditions: 1) the adversarial example and the
original benign example have the same true label (determined by
human) and 2) the classi�er predicts the target label t (targeted
evasion a�acks) or an incorrect label (untargeted evasion a�acks)
for the adversarial example. It is unclear how to check the �rst
condition automatically because we do not have a way to model
human perception yet. In principle, success rate of an evasion a�ack
should be the fraction of its generated adversarial examples that
satisfy both conditions. However, due to the challenges of checking
the �rst condition, existing studies approximate success rate of an
a�ack as the fraction of its generated adversarial examples that sat-
isfy the second condition alone. Moreover, they also use the noise
(measured by L0, L2, or L∞ norms) in the adversarial examples to
supplement the approximate success rate. �erefore, in this work,
we will use the approximate success rate and noise to measure eva-
sion a�acks. An evasion a�ack with a larger approximate success
rate and/or a smaller noise is be�er. For simplicity, we will use
approximate success rate and success rate interchangeably.

2.3 Defenses Against Evasion Attacks
2.3.1 Detecting Adversarial Examples. One line of research [5, 6,

8, 11, 20, 24, 40] aim to detect adversarial examples, i.e., distinguish
between benign examples and adversarial examples. Essentially,
detecting adversarial examples is to design another binary machine
learning classi�er, which classi�es a testing example to be benign
or adversarial. An a�acker can strategically adjust its a�acks to
evade both the original classi�er and the new classi�er to detect
adversarial examples. Carlini and Wagner [3] demonstrated that,
for such adaptive a�acks, some detectors are ine�ective while some
detectors enforce a�ackers to add larger noise to construct success-
ful adversarial examples. A key limitation of detecting adversarial
examples is that it is unclear how to handle the testing examples
that are predicted to be adversarial examples. We suspect that
those testing examples eventually would require human to manu-
ally label them, i.e., the entire system becomes a human-in-the-loop
system. For real-time automated decision making systems such as
self-driving cars, it is challenging to require human to manually
label the detected adversarial examples.

Meng and Chen proposed MagNet [23], an approach combin-
ing detection and de-noising. Speci�cally, given a testing example,
they �rst use a detector to determine whether the testing example
is an adversarial example or not. If the testing example is pre-
dicted to be an adversarial example, the DNN classi�er will not
predict its label. If the testing example is not predicted to be an
adversarial example, they will reform the testing example using a
reformer, which essentially de-noises the testing example via an
autoencoder [9]. In the end, the DNN classi�er will predict label
of the reformed testing example and treat it as the label of the
original testing example. MagNet designs both the detector and
the reformer using auto-encoders, which are trained using only
benign examples. Meng and Chen demonstrated that MagNet can
reduce the success rates of various known evasion a�acks. How-
ever, MagNet has two key limitations. First, MagNet decreases the
classi�cation accuracy on benign testing examples. For instance,
on the CIFAR-10 dataset, their trained point-based DNN achieves
an accuracy of 90.6%. However, MagNet reduces the accuracy to be
86.8% using the same point-based DNN. Second, like all methods to
detect adversarial examples, MagNet relies on manually labeling
the detected adversarial examples, losing the bene�ts of automated
decision making.

2.3.2 Building Robust Classifiers. Another line of research aim
to design new methods to train DNNs.

Adversarial training: Goodfellow et al. [7] proposed to train a
DNN via augmenting the training dataset with adversarial exam-
ples, which is called adversarial training. Speci�cally, for each
training benign example, the learner generates a training adversar-
ial example using evasion a�acks. �en, the learner uses a standard
algorithm (e.g., back propagation) to learn a DNN using the original
training benign examples and the adversarial examples. Several
variants [14, 18, 22, 34, 37] of adversarial training were also pro-
posed. Adversarial training essentially reformulates the objective
function used to learn model parameters. For instance, Madry et
al. [22] and Sinha et al. [34] formulated adversarial training as
solving min-max optimization problems, which can be solved us-
ing robust optimization techniques. A key limitation of adversarial
training is that it sacri�ces classi�cation accuracies on benign exam-
ples. For instance, in Madry et al. [22], the DNN classi�er without
adversarial training achieves a classi�cation accuracy of 95.2% on
CIFAR-10; with adversarial training, the classi�cation accuracy
drops to 87.3%.

Defensive distillation: Papernot et al. [31] proposed a distillation
based method to train a DNN. �e DNN is �rst trained using a
standard method. For each training example, the DNN produces a
vector of con�dence scores. �e con�dence scores are treated as
the so� label for the training example. Given the so� labels and
the training examples, the weights of the DNN are retrained. A
parameterT named distillation temperature is used in so�max layer
during both training sessions to control con�dence scores. Carlini
and Wagner [4] demonstrated that their CW a�acks can still achieve
100% success rates for DNNs trained with distillation. Moreover, the
noises added to the benign examples when generating adversarial
examples are just slightly higher for distilled DNNs than those for
undistilled DNNs. Our experimental results con�rm such �ndings.



3 DESIGN GOALS
We aim to achieve the following two goals:

1) Not sacri�cing classi�cation accuracy on testing benign
examples. Our �rst design goal is that the defense method should
maintain the high accuracy of the DNN classi�er on testing benign
examples. Neural networks re-gained unprecedented a�ention in
the past several years under the coat of “deep learning”. �e ma-
jor reason is that neural networks with multiple layers (i.e., DNN)
achieve signi�cantly be�er classi�cation accuracy than other ma-
chine learning methods for a variety of arti�cial intelligence tasks
such as computer vision, speech recognition, and natural language
processing. �erefore, our defense method should maintain such
advantage of DNNs.

2) Increasing robustness. We aim to design a defense method
that is robust to powerful evasion a�acks. In particular, our new
classi�er should have be�er robustness than conventional DNN
classi�ers with respect to state-of-the-art evasion a�acks, e.g., the
CW a�acks. Suppose we have a classi�er C . A�er deploying a
certain defense method, we obtain another classi�er D. Suppose
we have an evasion a�ack. �e success rate (SR) of the a�ack
and the average noise of the successful adversarial examples for
the classi�ers C and D are denoted as (SRC , δC ) and (SRD , δD ),
respectively. We say that the classi�er D is more robust than the
classi�er C if δD ≥ δC and SRD ≤ SRC , where the equality does
not hold simultaneously for the two inequalities. In other words, a
defense method is said to be e�ective with respect to an evasion
a�ack if the method at least increases the noises of the generated
successful adversarial examples or decreases the success rates.

We note that our goal is not to completely eliminate adversarial
examples. Instead, our goal is to increase robustness without sac-
ri�cing classi�cation accuracy on benign examples. None of the
existing methods to build robust classi�ers satisfy the two goals
simultaneously.

4 MEASURING EVASION ATTACKS
We �rst show some measurement results on evasion a�acks, which
motivate the design of our region-based classi�cation method. We
performed our measurements on the standard MNIST dataset. In
the dataset, our task is to recognize the digit in an image, which
is a 10-class classi�cation problem. We normalize each pixel to be
in the range [0,1]. We adopted the same DNN classi�er that was
used by Carlini and Wagner [4]. �e classi�er essentially classi�es
the digit image space into 10 class regions, denoted as R0, R1, · · · ,
R9. Any data point in the class region Ri will be predicted to have
label i by the classi�er.

We sample a benign testing image of digit 0 uniformly at random.
We use the T-CW-L2, T-CW-L0, and T-CW-L∞ a�acks to generate
adversarial examples based on the sampled benign example. We
obtained the open-source implementation of the CW a�acks from
its authors [4]. For each target label i , we use an evasion a�ack to
generate an adversarial example with the target label i based on the
benign example, where i = 1, 2, · · · , 9. We denote the adversarial
example with the target label i as x ′(i). �e DNN classi�er predicts
label i for the adversarial example x ′(i), while its true label is 0.

We denote the hypercube that is centered at x and has a length
of r as B(x , r ). Formally, B(x , r ) = {y |yj ∈ [0, 1] and |yj − x j | ≤

r ,∀j = 1, 2, · · · ,n}, where x j andyj are the jth dimensions of x and
y, respectively. For each adversarial example x ′(i), we sample 10,000
data points from the hypercube B(x ′(i), r ) uniformly at random,
where we set r = 0.3 in our experiments (we will explain the se�ing
of r in experiments). We treat each data point as a testing example
and feed it to the DNN classi�er, which predicts a label for it. For the
10,000 data points, we obtain a histogram of their labels predicted
by the DNN classi�er.

Figure 2a, Figure 2b, and Figure 2c show the label histograms
for the 10,000 randomly sampled data points from the hypercube
around the benign example and the 9 adversarial examples gener-
ated by the T-CW-L2 a�ack, T-CW-L0 a�ack, and T-CW-L∞ a�ack,
respectively. For instance, in Figure 2a, the �rst graph in the �rst
row shows the histogram of labels for the 10,000 data points that
are sampled from the hypercube centered at the benign example;
the second graph (from le� to right) in the �rst row shows the
histogram of labels for the 10,000 data points that are sampled from
the hypercube centered at the adversarial example that has a pre-
dicted label 1, where the adversarial example is generated by the
T-CW-L2 a�ack.

For the benign example, almost all the 10,000 randomly sampled
data points are predicted to have label 0, which is the true label of
the benign example. For most adversarial examples, a majority of
the 10,000 randomly sampled data points are predicted to have label
0, which is the true label of the adversarial examples. From these
measurement results, we have the following two observations:

• Observation I: �e hypercube B(x , r ) centered at a benign
example x intersects the most with the class region Ri ,
where i is the true label of the benign example x . �is
indicates that we can still correctly predict labels for benign
examples by ensembling information in the hypercube.

• Observation II: For most adversarial examples, the hy-
percube B(x ′, r ) intersects the most with the class region
Ri , where i is the true label of the adversarial example x ′.
�is indicates that we can also correctly predict labels for
adversarial examples by ensembling information in the
hypercube.

�ese measurement results motivate us to design our region-based
classi�cation, which we will introduce in the next section.

5 OUR REGION-BASED CLASSIFICATION
We propose a defense method called Region-based Classi�cation
(RC). Traditional DNN classi�er is point-based, i.e., given a testing
example, the DNN classi�er predicts its label. �erefore, we call
such a classi�er Point-based Classi�cation (PC). In our RC clas-
si�cation, given a testing example, we ensemble information in
the region around the testing example to predict its label. For any
point-based DNN classi�er, our method can transform it to be a
region-based classi�er that is more robust to adversarial examples,
while maintaining its accuracy on benign examples.

5.1 Region-based Classi�cation
Suppose we have a point-based DNN classi�er C . For a testing
examplex (either benign example or adversarial example), we create
a hypercubeB(x , r ) around the testing example. Recall that the DNN
classi�er essentially divides the input space into L class regions,
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(a) T-CW-L2 attack
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(b) T-CW-L0 attack
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(c) T-CW-L∞ attack

Figure 2: Label histograms of 10,000 randomdata points in the hypercube around a benign example or its adversarial examples
generated by the (a) T-CW-L2 attack, (b) T-CW-L0 attack, and (c) T-CW-L∞ attack. Each histogram corresponds to an example.
�e benign example has label 0. In each sub�gure, the �rst row (from le� to right): the benign example, and the adversarial
examples that have target labels 1, 2, 3, and 4, respectively; and the second row (from le� to right): the adversarial examples
that have target labels 5, 6, 7, 8, and 9, respectively.
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Figure 3: Illustration of our region-based classi�cation. x is
a testing benign example and x ′ is the corresponding adver-
sarial example. �e hypercube centered at x ′ intersects the
most with the class region that has the true label.

denoted as R1, R2, · · · , RL ; all data points in the class region Ri are
predicted to have label i by the classi�er, where i = 1, 2, · · · ,L. In
our RC classi�er, we predict the label of a testing example x to be
the one whose class region intersects the most with the hypercube
B(x , r ). We denote our RC classi�er as RCC,r since it relies on the
point-based DNN classi�er C and the length r . We denote the area
of the intersection between Ri and B(x , r ) as Ai (x , r ). �en, our
classi�er predicts the label of x to be RCC,r (x) = argmaxi Ai (x , r ).
Figure 3 illustrates our region-based classi�cation.
Approximating the areas Ai (x , r ): One challenge of using our
RC classi�er is how to compute the areas Ai (x , r ), because the
class regions might be very irregular. We address the challenge
via samplingm data points from the hypercube B(x , r ) uniformly
at random and use them to approximate the areas Ai (x , r ). In
particular, for each sampled data point, we use the point-based
classi�erC to predict its label. We denote by ai (x , r ) the number of
sampled data points that are predicted to have label i by the classi�er
C . �en, our RC classi�er predicts the label of x as RCC,r (x) =
argmaxi ai (x , r ).
Learning the length r : Another challenge for our RC classi�er
is how to determine the length r of the hypercube. r is a critical
parameter for our method RC (we will show the impact of r on the
e�ectiveness of RC in our experiments). Speci�cally, r controls the
tradeo� between robustness to adversarial examples and classi�-
cation accuracy on benign examples. Suppose we want to classify
an adversarial example x ′, whose true label is i . On one hand, if
the length of the hypercube B(x ′, r ) is too small, the hypercube
will not intersect with the class region Ri , which means that our
RC classi�er will not be able to correctly classify the adversarial
example. On the other hand, if the length is too large, the hyper-
cube around a benign example will intersect with the incorrect
class regions, which makes our method predict incorrect labels for
benign examples.

To address the challenge, we propose to learn the length r using
a validation dataset consisting of only benign examples. We do not
use adversarial examples because the adversarial examples used by
the a�acker may not be accessible to the defender. Our key idea is
to select the maximal length r such that the classi�cation accuracy

Algorithm 1 Learning Length r by Searching
Input: Validation dataset V , point-based DNN classi�er C , step

size ϵ , initial length r0.
Output: Length r .

1: Initialize r = r0.
2: ACC = Accuracy of C on V .
3: ACCRC = Accuracy of the RCC,r classi�er on V .
4: while ACCRC ≥ ACC do
5: r = r + ϵ .
6: ACCRC = Accuracy of the RCC,r classi�er on V .
7: end while
8: return r − ϵ .

of our classi�er RCC,r on the validation dataset is no smaller than
that of the point-based classi�er C . �ere are many choices of
r , with which our classi�er RCC,r has no smaller classi�cation
accuracy than the point-based classi�erC . We propose to select the
maximum one, so an adversarial example needs a larger noise to
move further away from the classi�cation boundary of C in order
to evade RCC,r .

Speci�cally, we learn the radius through a search process. Sup-
pose a point-based DNN classi�er C has classi�cation accuracy
ACC on the validation dataset. We transform the classi�er C into a
RC classi�er. Initially, we set r to be a small value. For each benign
example in the validation dataset, we predict its label using our
classi�er RCC,r . We compute the classi�cation accuracy of RCC,r
on the validation dataset. If the classi�cation accuracy is no smaller
than ACC , we increase the radius r by a step size ϵ and repeat the
process. �is search process is repeated until the classi�er RCC,r
achieves a classi�cation accuracy on the validation dataset that is
smaller than ACC . Algorithm 1 shows the search process.

5.2 Evasion Attacks to Our RC Classi�er
We consider a strong a�acker who knows all the model parameters
of our classi�er RCC,r . In particular, the a�acker knows the archi-
tecture and parameters of the point-based DNN classi�er C , the
length r , andm, the number of data points sampled to approximate
the areas. Our threat model is also known as the white-box se�ing.

5.2.1 Existing evasion a�acks. An a�acker can use any a�ack
shown in Table 1 to �nd adversarial examples to evade our classi�er
RCC,r . All these evasion a�acks require the classi�er to be di�er-
entiable, in order to propagate the gradient �ow from the outputs
to the inputs. However, our classi�er RCC,r is non-di�erentiable.
�erefore, we consider an a�acker generates adversarial examples
based on the point-based classi�er C , which is the key component
of our classi�er RCC,r ; and the a�acker uses the adversarial exam-
ples to a�ack RCC,r . �is is also known as transferring adversarial
examples from one classi�er to another.
Combined evasion attacks: An a�acker can also combine exist-
ing evasion a�acks. In particular, for a benign example, the a�acker
performs each existing evasion a�ack to �nd an adversarial exam-
ple; then the a�acker uses the successful adversarial example that
has the smallest noise with respect to a certain noise metric (i.e., L0,
L∞, or L2) as the �nal adversarial example; failure is returned if no



evasion a�acks can �nd a successful adversarial example. Specif-
ically, the targeted combined a�ack T-CA-L0 combines evasion
a�acks T-JSMA and T-CW-L0; the targeted combined a�ack T-CA-
L∞ combines evasion a�acks T-FGSM, T-IGSM, and T-CW-L∞; the
targeted combined a�ack T-CA-L2 combines evasion a�acks T-CW-
L2 with di�erent con�dence parameter k (we searched k until 40);
the untargeted combined a�ack U-CA-L0 combines evasion a�acks
U-JSMA and U-CW-L0; the untargeted combined a�ack U-CA-L∞
combines evasion a�acks U-FGSM, U-IGSM, and U-CW-L∞; and
the untargeted combined a�ack U-CA-L2 combines evasion a�acks
U-CW-L2 with di�erent con�dence parameter k and DeepFool.

We used the open-source implementation from the correspond-
ing authors for CW a�acks and JSMA a�acks, while we imple-
mented the FGSM, IGSM, and DeepFool a�acks by ourselves.

5.2.2 New evasion a�acks. An a�acker, who knows our region-
based classi�cation, can also strategically adjust its a�acks. Specif-
ically, since our classi�er ensembles information within a region,
an a�acker can �rst use an existing evasion a�ack to �nd an ad-
versarial example based on the point-based classi�er C and then
strategically add more noise to the adversarial example. �e goal is
to move the adversarial example further away from the classi�ca-
tion boundary such that the hypercube centered at the adversarial
example does not intersect or intersects less with the class region
that has the true label of the adversarial example.

Speci�cally, suppose we have a benign example x . �e a�acker
uses an existing evasion a�ack to �nd the corresponding adversarial
example x ′. �e added noise is δ = x ′ − x . �en, the a�acker
strategically constructs another adversarial example as x ′′ = x+(1+
α)δ . Essentially, the a�acker moves the adversarial example further
along the direction of the current noise. Note that, we will clip the
adversarial example x ′′ to be in the space [0, 1]n . Speci�cally, for
each dimension i of x ′′, we set x ′′i = 0 if x ′′i < 0, we x ′′i = 1 if
x ′′i > 1, and x ′′i keeps unchanged if 0 < x ′′i < 1. �e parameter α
controls how much further to move the adversarial example away
from the classi�cation boundary. For L2 and L∞ norms, α is the
increased fraction of noise. Speci�cally, suppose an existing evasion
a�ack �nds an adversarial example x ′ with noise δ , whose L2 and
L∞ norms are | |δ | |2 and | |δ | |∞, respectively. �en, the adapted
adversarial example x ′′ has noise (1+α)δ , whose L2 and L∞ norms
are (1+α)| |δ | |2 and (1+α)| |δ | |∞, respectively. A larger α indicates
a larger noise (for L2 and L∞ norms) and a possibly larger success
rate.

For convenience, for an evasion a�ack, we append the su�x -A
at the end of the a�ack’s name to indicate the a�ack that is adapted
to our classi�er RCC,r . For instance, T-CW-L0-A means the adapted
version of the a�ack T-CW-L0. In our experiments, we will explore
how α impacts the success rates of the adapted evasion a�acks and
noises added to the adversarial examples.

6 EVALUATIONS
6.1 Experimental Setup

Datasets: We perform evaluations on two standard image datasets
used to benchmark object recognition methods: MNIST and CIFAR-
10. Table 2 shows the statistics of the datasets. For each dataset,
we sample 5,000 of the prede�ned training examples uniformly at

Table 2: Dataset statistics.

Training Validation Testing
MNIST 55,000 5,000 10,000

CIFAR-10 45,000 5,000 10,000

random and treat them as the validation dataset used to learn the
length r in our RC classi�er.
Compared methods: We compare the following DNN classi�ers.

• Standard point-based DNN. For each dataset, we trained
a standard point-based DNN classi�er. For the MNIST
dataset, we adopt the same DNN architecture as the one
adopted by Carlini and Wagner [4]. For the CIFAR-10
dataset, the DNN architecture adopted by Carlini and Wag-
ner is not state-of-the-art. �erefore, we do not adopt their
DNN architecture for the CIFAR-10 dataset. Instead, we
use the DNN architecture proposed by He et al. [10]. We
obtained implementation from Carlini and Wagner to train
the DNN for MNIST; and we obtained the implementation
from [36] to train the DNN for CIFAR-10.

• Adversarial training DNN. For each dataset, we use ad-
versarial training [7] to learn a DNN classi�er. �e DNN
classi�ers have the same architectures as the standard
point-based DNNs. �e state-of-the-art adversarial train-
ing method was recently proposed by Madry et al. [22],
which leverages robust optimization techniques. However,
such adversarial training signi�cantly sacri�ces classi�ca-
tion accuracy for benign examples. �erefore, we use the
original adversarial training method proposed by Goodfel-
low et al. [7] as a baseline robust classi�er. Speci�cally, we
use an evasion a�ack to generate adversarial example for
each training example; and we use both the original train-
ing examples and the generated adversarial examples to
train the DNN classi�ers. �e evasion a�ack should have a
high success rate, add small noise to adversarial examples,
and be e�cient. Considering the tradeo� between success
rate, noise, and e�ciency, we adopt DeepFool to generate
adversarial examples in adversarial training.

• Distillation DNN. For each standard point-based DNN
classi�er, we use distillation [31] to re-train the DNN clas-
si�er with a temperature T = 100.

• Our region-based DNN. For each dataset, we transform
the corresponding standard point-based DNN classi�er
to our region-based DNN classi�er. �e length r is learnt
through our Algorithm 1 using the validation dataset. Specif-
ically, we set the initial length value r0 and step size ϵ
in Algorithm 1 to be 0 and 0.01, respectively. Figure 4
shows the classi�cation accuracy of our RC classi�er on
the MNIST validation dataset as we increase the length r
in Algorithm 1. We observe that our classi�er RCC,r has
slightly higher accuracies than the standard point-based
classi�erC when r is small. Moreover, when r is larger than
around 0.3, accuracy of RCC,r starts to decrease. �erefore,
according to Algorithm 1, the length r is set to be 0.3 for
the MNIST dataset. Moreover, via Algorithm 1, the length
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Figure 4: Classi�cation accuracies of the standard point-
based DNN and our region-based DNN on the MNIST vali-
dation dataset as we increase the length r .

Table 3: Classi�cation accuracy on benign testing examples.

MNIST CIFAR-10
Point-based 99.4% 90.1%

Adversarial training 99.3% 88.1%
Distillation 99.2% 88.3%

Our region-based 99.4% 90.1%

r is set to be 0.02 for the CIFAR-10 dataset. To estimate the
areas between a hypercube and class regions, we sample
1,000 data points from the hypercube, i.e., the parameter
m is set to be 1,000.

6.2 Classi�cation Accuracies
Table 3 shows the classi�cation accuracies on testing benign ex-
amples of the compared classi�ers for the MNIST and CIFAR-10
datasets. First, our region-based DNN achieves the same classi�ca-
tion accuracy on the testing dataset with the standard point-based
DNN for both the MNIST and CIFAR-10 datasets. �is is because
our region-based classi�ers enable us to tune the length of the hy-
percube such that we do not sacri�ce classi�cation accuracies on
testing benign examples. Second, adversarial training DNN and
distillation DNN achieve lower classi�cation accuracies than stan-
dard point-based DNN, though the di�erences are smaller for the
MNIST dataset. In other words, adversarial training and distillation
sacri�ce classi�cation accuracies for robustness.

6.3 Robustness to Existing Evasion Attacks
We analyze robustness of our region-based classi�ers with respect
to existing targeted evasion a�acks, untargeted evasion a�acks,
and ensemble evasion a�acks.

6.3.1 Targeted Evasion A�acks. Table 4 shows the success rates
and average noise of successful adversarial examples for existing
targeted evasion a�acks. Since the CW a�acks are ine�cient, for

each dataset, we randomly sample 100 testing benign examples
that the standard point-based DNN correctly classi�es and generate
adversarial examples for them. For each testing benign example
and each targeted evasion a�ack, we generate an adversarial ex-
ample for each candidate target label. More speci�cally, for each
testing benign example and for each targeted evasion a�ack, we
generate 9 adversarial examples since the MNIST and CIFAR-10 are
10-class classi�cation problems. We compute the success rates of
a�acks using all these adversarial examples and the average noise
using successful adversarial examples. Note that these results are
slightly di�erent from those that we reported in our conference
paper [2]. �is is because we generated one adversarial example
for a randomly selected target label for a testing benign example in
our conference paper.

First, for each targeted evasion a�ack, the success rate is signi�-
cantly lower for our region-based DNN classi�er than for standard
point-based DNN classi�er. In other words, for our region-based
classi�er, existing targeted evasion a�acks can construct successful
adversarial examples for less number of testing benign examples.
Moreover, compared with point-based classi�er, some a�acks have
larger noise while some have smaller noise for our region-based
classi�er. �is indicates that, for a given a�ack, among the ad-
versarial examples generated based on di�erent benign examples,
the L0, L2, or L∞ norm does not necessarily measure how likely
our region-based classi�er can correctly predict the labels of the
adversarial examples.

Second, when an a�ack has a smaller noise for the point-based
classi�er, the a�ack has a lower success rate for the region-based
classi�er. For instance, among the L0-norm a�acks, both T-CW-
L0 and T-JSMA have success rates of 100% for the point-based
classi�er, while they have average noise of 18.8 and 72.3 on MNIST,
respectively. However, for our region-based classi�er, T-CW-L0 and
T-JSMA have success rates of 19% and 53% on MNIST, respectively.
Likewise, among the L∞-norm a�acks, T-FGSM has the largest
noise for the point-based classi�er and the largest success rates for
our region-based classi�er. In other words, when an a�ack is be�er
(adding smaller noise to construct successful adversarial examples)
for the point-based classi�er, the a�ack is worse (achieving lower
success rates) for the region-based classi�er. We speculate the
reason is that if two a�acks generate two adversarial examples for a
given benign example, the adversarial example with a larger noise
is more likely to be further away from the classi�cation boundary
and evade our region-based classi�er.

State-of-the-art targeted evasion a�acks (e.g., CW a�acks) aim
to �nd adversarial examples with minimum noise, i.e., they �nd
adversarial examples via solving the optimization problem in Equa-
tion 1. Such a�acks can �nd successful adversarial examples with
small noise for the standard point-based classi�ers. Our observation
indicates that such a�acks have low success rates for the region-
based classi�ers. �is is because the adversarial examples are close
to classi�cation boundary. To evade our region-based classi�er,
we may need to reformulate the optimization problem of �nding
adversarial examples.

�ird, for our region-based classi�ers, L0-norm a�acks can achieve
the highest success rates among existing a�acks. �e reason is that
the adversarial examples generated by the L0-norm a�acks could be
further away from the classi�cation boundary. However, L0-norm



Table 4: Success rates and average noise of successful adversarial examples for existing targeted evasion attacks to standard
point-based and our region-based DNN classi�ers.

(a) MNIST

L0 L∞ L2
T-JSMA T-CW-L0 T-FGSM T-IGSM T-CW-L∞ T-CW-L2
SR Noise SR Noise SR Noise SR Noise SR Noise SR Noise

Point-based 100% 72.3 100% 18.8 38% 0.276 99.9% 0.183 100% 0.188 100% 2.01
Adversarial training 100% 108.5 100% 17.5 45% 0.257 99.9% 0.139 100% 0.143 100% 1.41

Distillation 98% 45.3 100% 21.0 52% 0.232 100% 0.162 100% 0.163 100% 1.96
Region-based 53% 53.1 19.1% 11.9 11% 0.339 0.1% 0.086 0.1% 0.089 0.2% 0.912

(b) CIFAR-10

L0 L∞ L2
T-JSMA T-CW-L0 T-FGSM T-IGSM T-CW-L∞ T-CW-L2
SR Noise SR Noise SR Noise SR Noise SR Noise SR Noise

Point-based 100% 79.7 100% 30.5 72% 0.024 100% 0.008 100% 0.007 100% 0.192
Adversarial training 100% 84.3 100% 28.9 70% 0.056 100% 0.008 100% 0.01 100% 0.215

Distillation 100% 105.2 100% 32.6 64% 0.027 100% 0.009 100% 0.011 100% 0.251
Region-based 78% 85.6 6.3% 22.9 50% 0.025 29% 0.007 2.7% 0.004 2.6% 0.079

a�acks add “spots” on benign image examples, which may be easier
for human to perceive.
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Figure 5: Adversarial examples generated by the high-
con�dence T-CW-L2 attack for 10 randomly selected benign
examples, where k = 20.

6.3.2 High-confidence T-CW-L2 A�ack. Carlini and Wagner [4]
also proposed a high-con�dence version of T-CW-L2 a�acks, where
the con�dence is controlled by the parameter k in Equation 4. We
use the high-con�dence T-CW-L2 a�ack to generate adversarial
examples based on the point-based classi�er, since our region-based
classi�er is non-di�erentiable. Again, for each of the sampled test-
ing benign example, we generate an adversarial examples for each
candidate target label. Figure 6 shows the success rates and average
noise of successful adversarial examples for the high-con�dence
T-CW-L2 a�ack, as we increase the con�dence parameter k .

For our region-based classi�er, the high-con�dence T-CW-L2
a�ack has a higher success rate with a larger k , but the noise is also
larger. In particular, for the MNIST dataset, the high-con�dence
T-CW-L2 a�ack has a success rate of 100% when k is around 20.
However, when k is around 20, the average noise is 70% larger
than that when k = 0. In other words, to achieve a 100% success
rate, an a�acker needs to add 70% more noise on average for our
region-based classi�er than for the point-based classi�er. Likewise,
for the CIFAR-10 dataset, to achieve a 100% success rate, an a�acker
needs to add 100% more noise on average for our region-based
classi�er than for the point-based classi�er. We note that our region-
based classi�er obtains such robustness gains without sacri�cing
classi�cation accuracy on benign examples at all.

Figure 5 shows adversarial examples generated by the high-
con�dence T-CW-L2 a�ack for 10 randomly selected benign exam-
ples, where k = 20. �e examples on the diagonal are the benign
examples; the examples on the ith row are supposed to have the
true label of i; and the examples on the jth column are predicted to
have a label j by the region-based classi�er. However, a signi�cant
number of adversarial examples have changed the true label and
are hard for human to recognize, e.g., benign example 2 with a
target label 9, benign example 4 with a target label 0, and benign
example 9 with a target label 1. Recall that in Section 2.2.3, we
discussed that a successful adversarial example should satisfy two
conditions and we approximate success rate of an a�ack using its
generated adversarial examples that satisfy the second condition
only. Our results show that some adversarial examples that satisfy
the second condition do not satisfy the �rst condition. �erefore,
the real success rates of the high-con�dence T-CW-L2 a�acks are
lower than what we reported in Figure 6.
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Figure 6: Success rates and average noise of successful adversarial examples for the high-con�dence T-CW-L2 attack.

6.3.3 Untargeted Evasion A�acks. Table 5 shows the success
rates and average noise of successful adversarial examples for exist-
ing untargeted evasion a�acks, where the testing benign examples
are the same as those used for evaluating the targeted evasion at-
tacks. For a testing benign example, DeepFool directly �nds an
adversarial example that the classi�er predicts an incorrect label.
For each remaining untargeted evasion a�ack (e.g., U-JSMA), we
have used its corresponding targeted version (e.g., T-JSMA) to gen-
erate 9 adversarial examples for each candidate target label in our
experiments of evaluating targeted evasion a�acks; we use the
successful adversarial example that has the smallest noise as the
adversarial example generated by the untargeted evasion a�ack;
failure is returned if none of the 9 adversarial examples is successful.

Similar to targeted evasion a�acks, every untargeted evasion
a�ack has a lower success rate and/or larger average noise for our
region-based classi�er than for point-based classi�er. Moreover,
when an untargeted evasion a�ack is be�er (adding larger noise
to construct successful adversarial examples) for the point-based
classi�er, the a�ack is very likely to be worse (achieving lower
success rates) for the region-based classi�er. Again, the reason is

that adversarial examples that have larger noise are further away
from the classi�cation boundary and thus are more likely to evade
our region-based classi�ers. Compared to targeted evasion a�acks,
the corresponding untargeted versions have higher success rates
and lower average noise. �is is because an untargeted a�ack tries
every candidate target label for a testing benign example; the a�ack
is successful if the a�ack �nds a successful adversarial example
for at least one target label; and the successful adversarial example
with the smallest noise is used as the adversarial example for the
untargeted a�ack.

6.3.4 High-confidence U-CW-L2 A�ack. We also studied the
untargeted version of the high-con�dence CW a�ack, i.e., U-CW-
L2 a�ack. Again, we use the high-con�dence a�ack to generate
adversarial examples based on the point-based classi�er, since our
region-based classi�er is non-di�erentiable. For a given con�dence
parameter k , for each testing benign example, we have used the T-
CW-L2 a�ack to generate 9 adversarial examples for each candidate
target label in our experiments of evaluating the high-con�dence
T-CW-L2 a�ack; we use the successful adversarial example that



Table 5: Success rates and average noise of successful adversarial examples for existing untargeted evasion attacks to standard
point-based and our region-based DNN classi�ers.

(a) MNIST

L0 L∞ L2
U-JSMA U-CW-L0 U-FGSM U-IGSM U-CW-L∞ U-CW-L2 DeepFool
SR Noise SR Noise SR Noise SR Noise SR Noise SR Noise SR Noise

Point-based 100% 21.4 100% 8.1 100% 0.188 100% 0.133 100% 0.138 100% 1.35 100% 2.17
Adversarial training 100% 36.9 100% 8.2 100% 0.151 100% 0.098 100% 0.101 100% 0.932 100% 1.39

Distillation 100% 13.64 100% 9.2 100% 0.137 100% 0.107 100% 0.111 100% 1.26 100% 1.74
Region-based 98% 23.1 95% 11.8 80% 0.288 18% 0.222 12% 0.182 19% 2.42 34% 2.39

(b) CIFAR-10

L0 L∞ L2
U-JSMA U-CW-L0 U-FGSM U-IGSM U-CW-L∞ U-CW-L2 DeepFool
SR Noise SR Noise SR Noise SR Noise SR Noise SR Noise SR Noise

Point-based 100% 28.2 100% 12.5 100% 0.0065 100% 0.005 100% 0.010 100% 0.11 100% 0.16
Adversarial training 100% 24.9 100% 12.3 100% 0.007 100% 0.005 100% 0.006 100% 0.12 94% 0.19

Distillation 100% 39.1 100% 14.4 99% 0.0079 100% 0.006 100% 0.007 100% 0.136 84% 0.19
Region-based 100% 34.8 41% 20.8 100% 0.0079 85% 0.006 17% 0.009 16% 0.13 20% 0.15

Table 6: Success rates and average noise of successful adversarial examples for combined evasion attacks to the compared
DNN classi�ers.

(a) Targeted combined attacks

MNIST CIFAR-10
T-CA-L0 T-CA-L∞ T-CA-L2 T-CA-L0 T-CA-L∞ T-CA-L2
SR Noise SR Noise SR Noise SR Noise SR Noise SR Noise

Point-based 100% 18.8 100% 0.18 100% 2.01 100% 29.9 100% 0.007 100% 0.18
Adversarial training 100% 17.5 100% 0.14 100% 1.41 100% 29.7 100% 0.009 100% 0.22

Distillation 100% 21.0 100% 0.16 100% 1.95 100% 34.9 100% 0.009 100% 0.25
Region-based 55% 36.1 11% 0.34 100% 2.65 76% 85.5 58% 0.019 100% 0.26

(b) Untargeted combined attacks

MNIST CIFAR-10
U-CA-L0 U-CA-L∞ U-CA-L2 U-CA-L0 U-CA-L∞ U-CA-L2
SR Noise SR Noise SR Noise SR Noise SR Noise SR Noise

Point-based 100% 8.0 100% 0.13 100% 1.35 100% 11.9 100% 0.005 100% 0.11
Adversarial training 100% 8.2 100% 0.10 100% 0.93 100% 12.8 100% 0.005 100% 0.12

Distillation 100% 9.2 100% 0.11 100% 1.26 100% 15.2 100% 0.006 100% 0.14
Region-based 100% 11.8 84% 0.28 100% 1.58 100% 29.3 100% 0.007 100% 0.19

has the smallest noise as the adversarial example generated by the
high-con�dence U-CW-L2 a�ack; failure is returned if none of the
9 adversarial examples is successful. Figure 7 shows the success
rates and average noise of successful adversarial examples for the
high-con�dence U-CW-L2 a�ack, as we increase the con�dence
parameter k . For our region-based classi�er, the high-con�dence U-
CW-L2 a�ack has a higher success rate with a larger k , but the noise
is also larger, except for small k on the MNIST dataset. Compared

with the high-con�dence T-CW-L2 a�ack, U-CW-L2 a�ack needs a
smaller k to reach 100% success rate. �is is because the untargeted
a�ack selects the best adversarial example among the adversarial
examples with di�erent target labels.

6.3.5 Combined Evasion A�acks. Table 6 shows the results for
targeted and untargeted combined a�acks. We described these
combined a�acks in Section 5.2. Speci�cally, for each testing benign
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Figure 7: Success rates and average noise of successful adversarial examples for the high-con�dence U-CW-L2 attack.

example and a target label, for T-CA-L0, we use T-JSMA and T-CW-
L0 to generate adversarial examples, use the successful adversarial
example with the smallest noise as the adversarial example for
T-CA-L0, and failure is returned if none is successful; for T-CA-
L∞, we use the successful adversarial example with the smallest
noise, which were generated by T-FGSM, T-IGSM, and T-CW-L∞,
as the adversarial example for T-CA-L0, and failure is returned if
none is successful; for T-CA-L2, we use T-CW-L2 with k upto 40
to generate adversarial examples, select the successful adversarial
example with the smallest noise as the adversarial example for
T-CA-L2, and failure is returned if none is successful. Similarly,
we can construct adversarial examples for untargeted combined
a�acks.

From Table 6, we make several observations. First, our region-
based classi�er is more robust to point-based classi�er, adversarial
training, and defensive distillation. For instance, for the T-CA-L0
a�ack, our region-based classi�er has success rates of 55% and 76%
on the MNIST and CIFAR-10 datasets, respectively, while all other

compared classi�ers have 100% success rates. Moreover, our region-
based classi�er enforces an a�acker to add more noise into adver-
sarial examples. For instance, for the T-CA-L0 a�ack on CIFAR-10,
our region-based classi�er requires 2.5 to 3 times more noise than
the compared classi�ers. Second, our region-based defense is less
e�ective for untargeted combined a�acks. In particular, untargeted
combined a�acks still achieve high success rates for our region-
based classi�ers. However, our region-based classi�ers still enforce
a�ackers to add larger noise to construct successful adversarial
examples. For instance, for U-CA-L0 on CIFAR-10, the required
noise to a�ack our region-based classi�er is around twice of the
noise required to a�ack the compared classi�ers.

6.4 Robustness to New Evasion Attacks
Recall that we discussed adapting existing a�acks to our region-
based classi�er in Section 5.2. �e key idea is to move the adversarial
example further away from the classi�cation boundary. �e param-
eter α controls the tradeo� between the increased fraction of noise
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Figure 8: Tradeo� between success rates and increased fraction of noise for adapted CW attacks.
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Figure 9: Adversarial examples generated by the adapted
targeted evasion attack T-CW-L2-A for the MNIST dataset,
where α = 1.

(for L2 and L∞ norms) and success rates. We focus on adapting
CW a�acks since they are state-of-the-art in terms of the added
noise. Figure 8 shows the success rates of the adapted targeted CW
a�acks as we increase α .

�e adapted targeted CW a�acks cannot achieve 100% success
rates anymore no ma�er how we set the parameter α . Speci�cally,
the success rates �rst increase and then decrease asα increases. �is
is because adding too much noise to adversarial examples moves
them to other class regions, resulting in an unsuccessful targeted
evasion a�ack. Suppose an adversarial example has a target label i .
�e original adversarial example generated by a targeted CW a�ack
is in the class region Ri . When α is small, the adapted adversarial
example generated by an adapted CW a�ack is still within the
class region Ri . However, when α is large, the adapted adversarial
example is moved to be in another class region Rj , which has a
di�erent label.

For the MNIST dataset, the best adapted targeted evasion a�ack
is the adapted a�ack T-CW-L2-A. �e largest success rate the a�ack
can achieve is 64%, when α = 1, i.e., the added average noise
of adversarial examples is doubled. When the a�ack T-CW-L2-A
wants to achieve 50% success rate, the adversarial examples need
25% more noise. For the CIFAR-10 dataset, the best adapted targeted
evasion a�ack is T-CW-L∞-A. �e a�ack achieves 85% success rates
when α = 1.8. �e a�ack needs to set α = 0.75 in order to achieve
a 50% success rate.

Figure 9 shows the adversarial examples generated by the adapted
targeted evasion a�ack T-CW-L2-A for the MNIST dataset when
the a�ack achieves the highest success rate, i.e., α = 1. For all these
adversarial examples, our region-based DNN classi�er predicts the
target label for each of them. Recall that Figure 1 shows adversarial
examples generated by the existing T-CW-L2 a�ack. To compare
the adversarial examples generated by T-CW-L2 and T-CW-L2-A,
we use the same benign examples in Figure 9 and Figure 1. We
observe that some adversarial examples generated by T-CW-L2-A
have changed the true labels. For instance, the sixth adversarial
example in Figure 9 was generated from a benign example with
true label 5. However, human can hardly classify the adversarial ex-
ample to be a digit 5, i.e., the true label has been changed. Similarly,
the third, eighth, and ninth adversarial examples almost change the
true labels of the corresponding benign examples.

Recall that in Section 2.2.3, we discussed that a successful adver-
sarial example should satisfy two conditions and we approximate
success rate of an a�ack using its generated adversarial examples
that satisfy the second condition only. Our results in Figure 9 show
that some adversarial examples that satisfy the second condition do
not satisfy the �rst condition, because of adding too much noises.
�erefore, the real success rates of the adapted evasion a�acks are
even lower.

7 DISCUSSIONS

Other types of regions: Our work demonstrates that, via ensem-
bling information in a region around a testing example (benign or
adversarial), we can enhance DNNs’ robustness against evasion
a�acks without sacri�cing their generalization performance on
benign examples. In this work, we use a hypercube as the region.
It would be an interesting work to explore other types of regions,
e.g., lp -norm ball (i.e., Bp (x , r ) = {y |yj ∈ [0, 1] and | |y − x | |p ≤ r }),
hypersphere, and intersection between a lp -norm ball and mani-
folds [27] formed by the natural examples. Hypercube is essentially



a l∞-norm ball. Moreover, we essentially use majority vote to en-
semble information in a region. It would be interesting to explore
other methods to ensemble information in a region, e.g., considering
certain weights for di�erent data points in a region.

Randomization based defenses: Another way to interpret our
region-based classi�cation is that our method uses randomization
to defend against evasion a�acks. Speci�cally, for each testing
example, our region-based classi�cation is equivalent to add small
random noise to the testing example to construct some noisy ex-
amples; we use a point-based DNN to classify each noisy example;
and we take a majority vote among the noisy examples to predict
the label of the testing example. We note that randomization-based
defense was used as a feature preprocessing step [38, 39] to enhance
robustness of DNNs. However, our work is di�erent these defenses
in two aspects. First, the randomization-based feature preprocess-
ing needs to be used in both training and testing, while our method
is only applied at testing time. �erefore, randomization-based
feature preprocessing is not applicable to legacy classi�ers, while
our method is. Second, randomization-based feature preprocessing
applies randomization once, i.e., they essentially randomly sample
one noisy example in a region around an example and use it to
replace the example. Our method samples multiple noisy examples
and ensembles them.

Generating robust adversarial examples: Our work demon-
strates that adversarial examples generated by state-of-the-art eva-
sion a�acks are not robust, i.e., if we add a small noise to an adver-
sarial example, a classi�er will very likely predict a di�erent label
for the noisy adversarial example. However, benign examples are
robust to such random noise, as our region-based classi�er does
not sacri�ce the classi�cation accuracy. It is an interesting future
work to generate adversarial examples that are robust to random
noise.

8 CONCLUSION
In this work, we propose a region-based classi�cation to mitigate
evasion a�acks to deep neural networks. First, we perform a mea-
surement study about adversarial examples. We observe that ad-
versarial examples are close to the classi�cation boundary and the
hypercube around an adversarial example signi�cantly intersects
with the class region that has the true label of the adversarial ex-
ample. Second, based on our measurement study, we propose a
region-based DNN classi�er, which ensembles information in the
hypercube around an example to predict its label. �ird, we per-
form evaluations on the standard MNIST and CIFAR-10 datasets.
Our results demonstrate that our region-based DNN classi�er is
signi�cantly more robust to various evasion a�acks than exist-
ing methods, without sacri�cing classi�cation accuracy on benign
examples.

Future work includes exploring di�erent types of regions, di�er-
ent ways to ensemble information in a region, and new a�acks to
generate robust adversarial examples. We encourage researchers
who propose new evasion a�acks to evaluate their a�acks against
our region-based classi�er, instead of standard point-based classi�er
only.
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