

University of Birmingham

Spinner: Semi-Automatic Detection of Pinning
without Hostname Verification (or why 10M bank
users were vulnerable)
McMahon Stone, Christopher; Chothia, Tom; Garcia, Flavio D.

DOI:
10.1145/3134600.3134628

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
McMahon Stone, C, Chothia, T & Garcia, FD 2017, Spinner: Semi-Automatic Detection of Pinning without
Hostname Verification (or why 10M bank users were vulnerable). in Proceedings of 33rd Annual Computer
Security Applications Conference (ACSAC 2017). Association for Computing Machinery , pp. 176-188, 33rd
Annual Computer Security Applications Conference (ACSAC 2017), Orlando, Florida, United States, 4/12/17.
https://doi.org/10.1145/3134600.3134628

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Accepted manuscript to be published on ISBN: 978-1-4503-5345-8 doi>10.1145/3134600.3134628

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 25. Apr. 2024

https://doi.org/10.1145/3134600.3134628
https://doi.org/10.1145/3134600.3134628
https://birmingham.elsevierpure.com/en/publications/1f7272ef-0133-458b-9fa7-9bcf9c5cae59

Spinner: Semi-Automatic Detection of Pinning without
Hostname Verification

Chris McMahon Stone
University of Birmingham

Birmingham, UK
c.mcmahon-stone@cs.bham.ac.uk

Tom Chothia
University of Birmingham

Birmingham, UK
t.p.chothia@cs.bham.ac.uk

Flavio D. Garcia
University of Birmingham

Birmingham, UK
f.garcia@cs.bham.ac.uk

ABSTRACT
Certificate verification is a crucial stage in the establishment of a
TLS connection. A common security flaw in TLS implementations
is the lack of certificate hostname verification but, in general, this
is easy to detect. In security-sensitive applications, the usage of
certificate pinning is on the rise. This paper shows that certificate
pinning can (and often does) hide the lack of proper hostname veri-
fication, enabling MITM attacks. Dynamic (black-box) detection of
this vulnerability would typically require the tester to own a high
security certificate from the same issuer (and often same interme-
diate CA) as the one used by the app. We present Spinner, a new
tool for black-box testing for this vulnerability at scale that does
not require purchasing any certificates. By redirecting traffic to
websites which use the relevant certificates and then analysing the
(encrypted) network traffic we are able to determine whether the
hostname check is correctly done, even in the presence of certificate
pinning. We use Spinner to analyse 400 security-sensitive Android
and iPhone apps. We found that 9 apps had this flaw, including
two of the largest banks in the world: Bank of America and HSBC.
We also found that TunnelBear, one of the most popular VPN apps
was also vulnerable. These apps have a joint user base of tens of
millions of users.

1 INTRODUCTION
TLS is a tricky protocol to get right: both misconfiguration vul-
nerabilities (e.g. [10, 15]) and attacks on the protocol are common
(e.g. [2, 4, 7, 16]). A TLS server will authenticate itself to a client by
presenting it with a certificate containing its public key. The client
will then, providing it is correctly configured, verify this certificate
by making a number of checks. The most vital of which are that it
is correctly signed by a trusted Certificate Authority (CA) and that
the hostname (contained either in the Common Name or Subject
Alternative Name fields) matches that which is expected.

Like web browsers, mobile platforms such as Android and iOS
rely on a trust store containing a large number of CA root cer-
tificates. If a single CA acted maliciously or were compromised,
which has happened before (see e.g. DigiNotar in 2011 [14]), valid
certificates for any domain could be generated allowing an attacker
to Man-in-the-Middle all apps trusting that CA certificate.

Perl et al. [18] argue that a large number of certificates could
be removed from trust stores to reduce the risk of such an event.
However, applications can mitigate the problem to a much greater
extent by implementing an additional security measure known as
Certificate Pinning. Here, developers can choose to only accept cer-
tificates signed by a single pinned CA root certificate. Alternatively,
but at the cost of reduced flexibility, a leaf certificate can be pinned.
Although developers have been aware of the technique for some

time, Oltrogge et al. [17] found that adoption has been slow, citing
misunderstanding and complex implementations as the root causes.
Despite this, Chothia et al. [6] discovered that a large proportion of
the high security UK banking apps they tested were implementing
pinning. Focusing their analysis on these apps, they considered the
possibility that apps which pinned to a CA root certificate, correctly
checked that server certificates were signed by this root CA, but
failed to verify the hostname.

Automated tools do exist to test a variety of TLS flaws. Lack
of certificate signature verification can be tested for by serving
the client a self-signed certificate, lack of hostname verification
by serving a valid certificate for a different hostname, and lack of
certificate pinning can be checked for by adding a custom CA to
the device’s trust store. These tests have been shown to be effective
at finding vulnerabilities in apps [10] and poor TLS certificate vali-
dation [5]. However, none of these tools can detect the possibility
that an app will pin to the root or intermediate certificate used but
fail to validate the hostname.

In their analysis of banking apps, [6] formulated a manual method
to detect this issue. For each app that used pinning, a certificate
for a domain under the tester’s control was purchased from the
same CA signing the domains that the app was legitimately trying
to connect to. These were then installed on a TLS testing proxy
one-by-one when testing each app.

In this paper we argue that conducting large-scale testing in this
manner is difficult and expensive. Many apps pin to a high security
intermediate or root certificates and these are only available after
careful ID checks and payment of a large fee (below we estimate
the cost of purchasing all certificates needed to test all Android and
iPhone apps at over $100K a year). Without access to a certificate as
described above, the use of pinning makes the underlying problem
of no hostname verification much harder to detect.

We address these issues by designing and implementing a zero-
cost, automated tool, named Spinner, to facilitate testing of this
vulnerability at scale.

1.1 Related Work
There are a number of past studies that have looked at certificate
verification in non-browser software. Fahl et al. [10] developed a
tool that statically analyses Android code and detects non-standard
implementations. They then go on to manually test for Android
apps that accept self-signed certificates or do not verify hostnames.
Carrying out this process with over 10,000 apps, they find a surpris-
ingly large portion of them contain these serious flaws and hence
expose themselves to Man-in-the-Middle attacks.

Georgiev et al. [13] independently carried out a similar study.
In addition to Android, they also considered other platforms and

1

applications such as instant messenger clients, merchant payment
SDKs and cloud client APIs. Brubaker et al. additionally developed a
tool to fuzz certificates [5]. By generating certificates with mutated
fields, and then presenting them to clients during a TLS handshake,
they also find many critical bugs in the verification code in a number
of implementations.

Sounthiraraj et al. [22] improved on the analysis techniques pro-
posed in [10]. They develop a tool named SMV-Hunter, which, in
addition to statically analysing source code to detect non-standard
implementations, carries out dynamic tests by automatically run-
ning apps and emulating intelligent user input to trigger TLS con-
nection attempts. Basic TLS certificate mis-verification flaws are
then detected automatically. We note however, that this tool also
lacks the capability to detect hostname verification flaws when
certificate pinning is being used.

Concentrating on the hostname verification process, Sivakorn
et al. [20] find that the set of acceptable hostnames specified by the
patterns in the CommonName (CN) and SubjectAltName values
form a regular language. They use automata learning algorithms to
infer the corresponding models, and then use this to find discrepan-
cies in particular hostname verification implementations. Running
these tests on popular TLS libraries, they find 8 unique violations
of RFC specifications, several of which render them vulnerable to
man-in-the-middle attacks.

Previous research has also focused on applications implementing
certificate pinning. Oltrogge et al. [17] scanned a large portion
(around 600,000 apps) of the Play Store to find out how many were
employing this additional security measure. Using various metrics,
they determine and recommend that significantly more apps would
benefit from certificate pinning. They also interview a number of
developers and find that general understanding on the topic is good,
but the complexity of implementation methods makes it too difficult
to use. Implementations with serious flaws discovered in [6] backup
this finding.

Previous work on tools has not considered the case of missing
hostname verification when certificate pinning was being imple-
mented. Chothia et al. [6] manually analysed the way in which TLS
was being used in apps UK’s largest banks. They found a number
of misuses, including two apps from major banks that pinned a
root CA certificate but did not validate hostnames. They tested for
this by purchasing a certificate from the same CA being used by
each app, but for a domain they owned. The work presented in this
paper automates this testing technique and removes the need to
purchase certificates.

1.2 Our contribution
This paper presents a black-box method to detect apps (or devices
in general) that, when using TLS, pin to a root or intermediate
certificate but do not check the hostname of the host they connect
to. Instead of trying to get certificates from all possible certificate
authorities, which we argue is infeasible, we build a tool that makes
use of the Censys Internet scanning search engine. Given the cer-
tificate for a target domain, the tool queries for certificate chains
for alternate hosts that only differ in the leaf certificate. The tool
then redirects the traffic from the app under test to a website which
has a certificate signed by the same CA certificate, but of course a

App name No. of Installs Platform
Bank of America Health 100k - 500k Android
TunnelBear VPN 1m - 5m Android
Meezan Bank 10k - 50k Android
Smile Bank 10k - 50k Android
HSBC 5m - 10m iOS
HSBC Business 10k - 50k iOS
HSBC Identity 10k - 50k iOS
HSBCnet 10k - 50k iOS
HSBC Private 10k - 50k iOS

Figure 1: Apps that implement certificate pinning but fail to
verify hostname.

different hostname (Common Name). If the connection fails during
the establishment phase then we know the app detected the wrong
hostname. Whereas, if the connection is established and encrypted
application data is transferred by the client before the connection
fails then we know the app has accepted the hostname and is vul-
nerable. The key insight here is that although we cannot decrypt
the traffic, the information we need is provided by analysing ex-
actly when and how the TLS communication fails. While the tool
itself is fully automated, we refer to the testing framework as semi-
automated, as the user still needs to install and run the app by
hand (this is something that could also be automated using an app
emulator).

Using this tool, we then carry out a test of 400 iOS and Android
high security applications including banking, stock trading, cryp-
tocurrency and VPN apps. We find 9 new apps that pin to root or
intermediate CA certificates but fail to verify the hostname, ren-
dering them all vulnerable to Man-in-the-Middle attacks. Figure 1
summarises our findings. We note that the total user base of these
apps is tens of millions of users, which highlights the severity of
the issue. We then reverse engineered each of the vulnerable apps
in order to get a better understanding on how this weakness is
introduced by the app developers and how to prevent it.

Spinner will be released under the Creative Commons Licence,
as we believe that it would be a valuable addition to every pen
tester’s toolbox.

Structure of the paper
The next section provides some background, briefly describing
certificate pinning and some elements of the TLS protocol. Section
3 discusses the problem of pinning without hostname verification
and in Section 4 we describe our test framework in detail. We
discuss the results of our analysis of security sensitive apps from
the Android and iPhone app stores in Section 5. In Section 6 we
discuss the impact of the vulnerabilities we find and in Section 7
look at the apps in detail to find out why hostname verification
failed and if this weakness would be detectable by static checking.
We conclude in Section 8.

2

2 BACKGROUND
2.1 Transport Layer Security (TLS)
In order to establish a secure TLS channel, part of the initial hand-
shake involves the communication of a server’s X.509 certificate.
The purpose of this certificate is to bind the server’s identity to a
given public key. It is the job of the client, to verify this certificate
so that it can be sure the public-private key pair belongs to the
server it intends to be communicating with. Once this verification
process is complete, the public key encapsulated in the certificate
is used to negotiate a session key.

In a typical TLS set-up, this trust is enabled through the main-
tenance of a set of by-default trusted root CA certificates. Servers
wishing to use TLS, must obtain their own cryptographically signed
certificate from one of these CAs. A client wishing to set up a TLS
connection will then validate the server’s certificate by carrying
out a number of checks: Recursively checking the signatures of
each certificate in a chain to a trusted anchor, verify the certificate
was issued to the expected host, ensuring the certificate has not
been revoked or has expired.

Unfortunately, Certificate Authorities are not immune from com-
promise, which if were to happen (and has done before, see DigiNo-
tar [11]), would enable the perpetrator to generate valid certificates
for domains of their choosing. These forged certificates could then
be use to Man-in-the-Middle TLS connections from any client trust-
ing the compromised CA. Furthermore, a number of CAs have been
caught mis-issuing certificates. In early 2017, Google announced
plans to gradually phase out trust of Symantec certificates in the
Chrome browser, citing concerns that the organization had mis-
issued thousands of certificates [21]. Developers are further moti-
vated to avoid reliance on a devices trust store due to the potential
for users to be phished into inserting malicious certificates into to
trust store.

2.2 Certificate Pinning
In many mobile applications, unlike generic browsers, the client
knows the identity of the server(s) in advance. The consequence of
this is that dependence on CAs can be entirely removed, or reduced
down to a single CA. Conceptually, certificate pinning achieves
this by allowing a developer to implement their own trust store. In
practice, certain elements of a certificate chain are fixed or hard-
coded into the application. Exactly which certificate in a chain is
pinned, depends on the developer’s requirements:

• Leaf Certificate - The most obvious element to pin is the
end-entity or leaf certificate. No CAs are relied upon and
attack surface is minimal. Flexibility is reduced however; if
key rotation policy mandates that the certificate is changed,
then users will be required to update their apps to continue
use, similarly when the certificate expires.
• Intermediate Certificate - Certificate chains will typically

be of length 3 or more. If the certificate is neither a root,
nor a leaf, then it is called intermediate. Pinning to this type
of certificate enables the end-entity to easily renew it’s leaf
certificate (as long as it is signed by the pinned intermediate).

• Root Certificate - Pinning to a root certificate is the most
flexible approach as length of validity is usually ~20 years.
However, it is also the least secure.

Developers must also deliberate over whether the entire certifi-
cate or just the public key is pinned. Pinning the certificate is the
most common implementation, but suffers from issues regarding
certificate expiration. On the other hand, public key pinning is less
widely used, but allows for key continuity even when the certificate
has expired.

2.3 Server Name Indication
In standard TLS, it is a requirement that each host, with its corre-
sponding certificate, has its own IP address. The implication of this
is that virtual hosting, where multiple domains, each with their own
certificate, share a single IP address, is not possible. To overcome
this limitation, the Server Name Indication (SNI) extension was
proposed in RFC6066 [9]. The solution works by enabling the client
to specify the host it wishes to communicate with in the ClientHello
message. The server can then inspect this value and serve to the
client the appropriate certificate for the requested hostname.

We use the SNI to facilitate transparent TLS proxying; as some
mobile applications bypass manual proxy settings, we require a
methodology that transparently intercepts and redirects network
traffic. Unfortunately, DNS spoofing on its own does not suffice.
Many clients will make numerous DNS lookups before making any
TLS connections. Therefore we use SNI to distinguish between TLS
connections, so that they can then be proxied to the appropriate
host.

3 PINNINGWITHOUT HOSTNAME
VERIFICATION

TLS misconfiguration vulnerabilities are clearly common, however
none of the existing frameworks will detect that a client pins a
root or intermediate certificate, but fails to check the hostname in
the leaf. Obtaining a complete set of test certificates is not feasible,
many apps use intermediate certificates that are only available after
thorough identity checks and payment of a large fee (see below).
This might be an option for a well motivated attacker who knows
they will get a large financial pay-off, but it is beyond the scope of
speculative checking.

Another option involves reverse engineering the apps [19] but
this is often a time involving process which requires an expert.
We are after a solution that scales. Our solution is to make use of
certificates that have already been issued to other websites such
as www.facebook.com and www.ibm.com. We cannot obtain the
private keys for these certificates, and so we cannot use them to
decrypt the traffic. However, we can direct traffic from the app to
this other website and analyse the result. Explicitly, we can direct
traffic from the app to a website using a TLS connection and a
certificate signed by the same root and/or intermediate certificates,
but with a different hostname. If the client rejects this connection
we can be sure that it checks the hostname and found it incorrect,
but if the app proceeds to send encrypted data, then we can tell
that the app accepted the certificate with the incorrect hostname.

We can then go on to perform additional checks to see if the
app actually accepts any certificate (i.e. it does not in fact pin the

3

www.facebook.com
www.ibm.com

certificate) by serving the app a legitimate certificate with a differ-
ent CA. We also check which element of the certificate chain the
app is pinning to. We automate this process using the framework
described in the next section.

We note that this framework is aimed at only detecting apps that
pin the certificate, but do not check the hostname, we are not, for
instance, testing for apps which accept self-signed certificates for
the correct hostname, or apps that make connections to hard-coded
IP addresses, as detection frameworks for such vulnerabilities is
the subject of much other work [3, 5, 22].

Purchasing all certificates
An alternative to the method presented here would be to adopt
the methodology followed by Chothia et al. [6]. Here, a pentesting
company would have to purchase one of every possible certificate,
for their own domain, and then use these to test the app. However,
we do not think such a method would be practical. Looking at just
one certificate authority: Symantec uses 14 intermediate certifi-
cates, which collectively link to 4 root certificates1. The particular
certificate you are allocated depends on a combination of your
product requirements (e.g. do you need Extended Validation/Wild-
cards) and your choice of cryptography (SHA-1 or SHA-2, ECC,
RSA, DSA). At an average price of $1,200 per certificate, to obtain all
14 Symantec certificates alone would cost $16,800 per year. There
are 146 root certificates on the Android platform [18] and roughly
4 intermediate certificates per root certificate. Symantec seem to
be one of the most expensive certificate authorities on the market,
but even assuming that the average certificate authority charges
only a quarter of the price of Symantec, to maintain a collection of
all certificates required for testing would cost well over $100k. Of
course, limited coverage would be possible for a smaller price, but
it would still cost a very substantial amount of money to effectively
check apps using purchased certificates.

Moreover, many of the certificates used by the apps are Extended
Validation certificates [12]. These certificates are only available to
registered businesses (certificate authorities are explicitly forbidden
from issuing EV certificates to unincorporated businesses). The
guide lines for EV certificates require a number of legal and identity
checks that must be carried out by hand before a EV certificate
can be issued, and certificate authorities are audited against these
checks. Therefore, it is possible that a certificate authority would
refuse to issue multiple EV certificates to a single company to
avoid difficulty in the audit process, and so it might be necessary
to register a number of different companies in order to acquire a
complete set of certificates.

4 A FRAMEWORK FOR SEMI-AUTOMATIC
DETECTION

The key elements of our framework are a method for looking up
the domain of websites that use a given certificate chain, a custom
built DNS server that will let us whitelist some URLs and redirect
others to an IP of our choice, and a TLS server that will redirect
TLS messages and look for encrypted application data. See Figure 2
for a high level overview of the framework.
1https://knowledge.symantec.com/support/ssl-certificates-support/index?page=
content&actp=CROSSLINK&id=INFO4033

To find domains running TLS servers with specified certificate
chains, we make use of the Censys2 search engine, which hosts
information on internet hosts by carrying out daily scans of the
IPv4 address space [8]. By analysing the certificate chain in use
by a domain that the app attempts to communicate with, the tool
extracts the Common Name value embedded in the issuing certifi-
cate (either an intermediate or root certificate). This value is then
used to construct a Certificate API query to Censys, which when
executed, provides the tool with a list of domains corresponding to
our requirements. The tool then selects the first reachable domain
and communicates this to the TLS server accordingly.

To accommodate for the possibility that Censys is not accessible,
we additionally provide a static database containing a mapping
of issuer certificates to a set of hostnames in possession of a cor-
responding certificate. This was built by scanning the certificate
chains in use by the Alexa top 1 million websites. In total, our
database contains 33,601 unique issuing certificates, which easily
satisfied the requirement for all the apps we tested.

The DNS component of the tool is used to redirect the messages
from the apps being tested to the TLS proxy, and the TLS server
will redirect the apps traffic to a site selected from either Censys or
the database, and inspect the handshake see if the app accepts or
rejects the connection.

Experimenting with apps we found five distinct ways in which
TLS connections could fail, these are depicted in Figure 3. In the
case when a server is using a certificate for the wrong hostname,
the client may send a TLS alert message as soon as the server sends
the certificate and then close the connection (Figure 3.a). This is
the first point in the protocol at which the client can detect the
bad certificate. In contrast to this, we found that some Apple apps
would omit the transmission of an alert message and instead just
stop communicating. We also found examples of Android apps that
continued the TLS protocol until after the two ChangeCipherSuite
messages were sent, and then sent an alert message and closed the
connection (Figure 3.c). A variation of this is depicted in (Figure
3.d).

Interestingly, in cases (c) and (d), we further observed a slightly
different breakdown in the connection. That is, in the time just
before a client sent an alert message and then closed the connection,
the server would send some encrypted application data. This bears
the important consequence that the framework must only detect a
successful connection if a client sends encrypted application data.

To summarise, our framework TLS server detects either an alert
message or a time out as a fail connection and detects any con-
nection where the client sends encrypted application data as a
successful connection.

Using our TLS server, DNS server and our database, our frame-
work then tests apps using the following three stage process:

(1) DNS Look Up Stage

(a) We start our framework running, which listens on ports
53 and 443 for DNS and TLS requests respectively. We load
all the apps under test onto a phone and set the phone
to use our framework as its DNS server. Note that this
caters for apps which bypass HTTP proxy settings. Our

2https://censys.io/

4

https://knowledge.symantec.com/support/ssl-certificates-support/index?page=content&actp=CROSSLINK&id=INFO4033
https://knowledge.symantec.com/support/ssl-certificates-support/index?page=content&actp=CROSSLINK&id=INFO4033
https://censys.io/

Figure 2: Overview of Spinner

tool will additonally monitor the network to flag any apps
that bypass DNS settings (this is very uncommon).

(b) We start the apps, one by one, and select the login option
to trigger a TLS connection attempt.

(c) The app sends DNS lookup request(s) to our framework
for the domain(s) it wishes to connect too.

(d) Our framework looks up the real IP address of the re-
quested domain(s). It then requests the certificate from
the server the app wishes to connect to. Using this, it then
queries Censys (or the static database) to find the URL for
another site which uses the same certificate chain as the
site the app wished to talk to. We note that some apps
query for IP addresses for multiple domains at once, be-
fore any connections are made. Therefore, a mapping of
requested hostnames to redirect domains is maintained.

(e) The IP address of the machine running our framework is
then returned to the app, as the answer to its DNS request.

(2) TLS Stage

Once the app knows to direct its traffic to our tool’s IP ad-
dress, the following process is executed. Each connection to
each domain is tested in isolation. To acheive this, all other
connections are whitelisted and proxied to their legitimate
servers.

(a) Our TLS proxy inspects the SNI contained in the Client
Hello message of incoming TLS connections. This value
is used to distinguish connections, and is also used as a
lookup to chose which domain to redirect to.

(b) The Client Hello and all subsequent TLS handshake mes-
sages are forwarded to and from the server it looked up
(which will be using the same certificate chain, but with a
different hostname).

(c) If the app sends a TLS alert fail message or times out before
encrypted application data was sent then we know the app
refused to connect to the server with the wrong hostname.

5

Client Server

ClientHello
−−−−−−−−−−−−−−−−−−−−−→

ServerHello
←−−−−−−−−−−−−−−−−−−−−−

ServerCert
←−−−−−−−−−−−−−−−−−−−−−

Alert
−−−−−−−−−−−−−−−−−−−−−→

ConnectionClosed
−−−−−−−−−−−−−−−−−−−−−→

(a) Fails after Cert

Client Server

ClientHello
−−−−−−−−−−−−−−−−−−−−−→

ServerHello
←−−−−−−−−−−−−−−−−−−−−−

ServerCert
←−−−−−−−−−−−−−−−−−−−−−

(b) Times out

Client Server

ClientHello
−−−−−−−−−−−−−−−−−−−−−→

ServerHello
←−−−−−−−−−−−−−−−−−−−−−

ServerCert
←−−−−−−−−−−−−−−−−−−−−−

ChangeCipherSpec
−−−−−−−−−−−−−−−−−−−−−→

ChangeCipherSpec
←−−−−−−−−−−−−−−−−−−−−−

Alert
−−−−−−−−−−−−−−−−−−−−−→

ConnectionClosed
−−−−−−−−−−−−−−−−−−−−−→

(c) Fails after CCS

Client Server

ClientHello
−−−−−−−−−−−−−−−−−−−−−→

ServerHello
←−−−−−−−−−−−−−−−−−−−−−

ServerCert
←−−−−−−−−−−−−−−−−−−−−−

ServerKeyExchange
←−−−−−−−−−−−−−−−−−−−−−

ClientKeyExchange
−−−−−−−−−−−−−−−−−−−−−→

ChangeCipherSpec
−−−−−−−−−−−−−−−−−−−−−→

EncHandshakeMessage
−−−−−−−−−−−−−−−−−−−−−→

NewSessionTicket
←−−−−−−−−−−−−−−−−−−−−−

ChangeCipherSpec
←−−−−−−−−−−−−−−−−−−−−−

EncHandshakeMessage
←−−−−−−−−−−−−−−−−−−−−−

Alert
−−−−−−−−−−−−−−−−−−−−−→

ConnectionClosed
−−−−−−−−−−−−−−−−−−−−−→

(d) Fails after CCS2

Client Server

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

EncApplicationData
←−−−−−−−−−−−−−−−−−−−−−

Alert
−−−−−−−−−−−−−−−−−−−−−→

ConnectionClosed
−−−−−−−−−−−−−−−−−−−−−→

(e) Additional observed end
steps of cases of (c) and (d)

Figure 3: Ways in which a TLS connection may fail

(d) If the app does send encrypted application data then we
know the TLS handshake was successful and the app will
accept a certificate with the wrong hostname.

(e) If no more connections to test, finish. Otherwise, white
list the current domain being tested, and repeat test with
next domain.

(3) Vulnerability Identification Stage

For each connection that the app makes, which is found to
succeed when proxied to the alternate domain, the following
process is carried out to pinpoint the exact vulnerability.

(a) To establish whether the app accepts self-signed certifi-
cates and doesn’t check the hostname (i.e. does not check

the server’s certificate is signed by a trusted CA). We redi-
rect the TLS connection to https://self-signed.badssl.com3.
The test fails if our tool detects a successful TLS connec-
tion.

(b) If the previous test fails, we know that the app either
doesn’t check the hostname and uses the devices trust
store for signature verification, or, the app pins to a par-
ticular certificate in the trust chain but also fails to verify
the hostname. To identify whether the former is the case,
we redirect the traffic to a domain that uses an entirely
different certificate chain.

(c) If the app is found to pin and not verify the hostname, the
tool executes additional tests to determine exactly which

3BadSSL.com is a site hosted by Google for basic testing of clients against incorrect
TLS config.

6

https://self-signed.badssl.com

Figure 4: Typical hierarchical PKI, with four possible certifi-
cate chains

certificate in the chain is being pinned. This done by iter-
atively querying Censys for domains that have certificate
chains that vary in intermediates, but share the same root.
For example, consider Figure 4, which illustrates four dif-
ferent certificate chains originating from the same root
CA. When testing an app that connects to bank.com, the
first round of tests proxies the traffic to news.com, which
we find is accepted. According to Figure 4, traffic would
then be proxied to server.com to establish if the Root CA
is pinned. If the test passes, we know the app must pin
to either Intermediate 2 or Intermediate 2(a). To narrow
down further, traffic would then be proxied to shop.com.
If successful, then the app pins to Intermediate 2, if not
then to Intermediate 2(a).

5 RESULTS
To try out our framework we tested 250 Android and 150 iPhone
applications. We choose to look at categories of apps that are often
considered to be high security. This included banking, trading,
cryptocurrency and VPN apps. Such apps should be less prone to
the simple kinds of attack that other frameworks can detect, such
as the acceptance of self-signed certificates. Furthermore, it seems
more likely that these apps will pin their certificates (a precondition
for this particular attack).

For each app category we considered, the top 20 apps by down-
load numbers were installed and tested. The remaining apps were
chosen by browsing through the appropriate categories in each of
the app stores (Google Play and iOS). We downloaded apps from
the US, UK, Belgium and Indian app stores. However, a significant
portion of these are apps that are available globally.

We ran our framework, and manually opened each app in turn.
Of the 400 apps, 24 failed our first round of test (i.e., transferred
application data to the site we redirected them too). Of these, 6

were found to accept self-signed certificates; these were all banking
apps from developing countries, some of which have been reported
before [19].

Our framework then ran further tests on the remaining apps to
discern whether they were implementing certificate pinning. This
process is described in section 3(b) of the vulnerability identification
stage. Of the 18 apps that only accepted certificates signed by a
trusted CA, 9 were found to not pin and hence we deduced they
would accept any valid certificate for any hostname.

The remaining 9 apps were all found to be pinning the interme-
diate or root certificate but not checking the hostname. For each
of these apps, our framework then went on to determine the exact
certificate being pinned. A summary of the apps that failed our
tests, along with the certificates they pinned are shown in Figure 5.
If we regard the HSBC family of apps as a single code base, then the
distribution of apps that pin to intermediate certificates in contrast
to those that pin root certificates, is approximately the same.

For apps that are found to pin the certificate but not check the
hostname, an attacker could then go to the trusted third party used
by the certificate and obtain a valid certificate in their own name.
This certificate can then be used by the attacker to trick a victim’s
app into thinking it’s communicating with the server it expects,
and hence decrypt and/or modify any sensitive traffic.

More Prevalent Than Self-Signed Certificate
Acceptance
Past investigations of certificate verification flaws in mobile ap-
plications, such as Fahl et al [10], found that the acceptance of
any certificate (including those that are self-signed) to be the most
prevalent of this category of vulnerabilities. In 2012, Fahl et. al
analysed 13,500 apps from the Google Play store. They found that
790 accepted any certificate, and a further 284 accepted any CA
signed certificate for any hostname. In contrast, from our scan of
400 apps, we find that although the total proportion of apps that
contain TLS flaws has reduced, the distribution of the types of flaws
that vulnerable apps do have has changed significantly. We find that
in fact lack of hostname verification to now be the most common
flaw, and the variation of this that arises to due the use of certificate
pinning to be the second most common. Figure 6 shows all the
other apps that were flagged as vulnerable by our tool, but were
found not to pin to any certificate.

Pinning On The Rise
We took a random subset of 135 apps from our Android app data set.
We then checked how many of these apps where using certificate
pinning. This was done by adding our own root certificate to the
phone’s trust store, spoofing the DNS request and generating a
certificate (on the fly) for the requested domain which is then used
to MITM the connection. If the app accepts this then we conclude
that it is not pinning.

Our experiments show that 38 out of those 135 apps implement
certificate pinning, which is a much higher ratio than the results
from Oltrogge et al. who found that 45 out of 639,283 apps used
pinning in 2015 [17]. This increase could be attributed to a bias in
our sample set, since it only includes high security apps; or it could

7

App name Platform Certificate pinned Certificate Type Cost to exploit
TunnelBear VPN Android COMODO RSA Certification Authority Intermediate Free
Bank of America Health Android VeriSign Class 3 Public Primary

Certification Authority - G5
Root $366

Meezan Bank Android VeriSign Class 3 Public Primary
Certification Authority - G5

Root $366

Smile - the internet bank Android AddTrust External CA root Root Free
HSBC iOS Symantec Class 3 EV SSL CA - G3 Intermediate $995
HSBC Business iOS Symantec Class 3 EV SSL CA - G3 Intermediate $995
HSBC Identity iOS Symantec Class 3 EV SSL CA - G3 Intermediate $995
HSBCnet iOS Symantec Class 3 EV SSL CA - G3 Intermediate $995
HSBC Private iOS Symantec Class 3 EV SSL CA - G3 Intermediate $995

Figure 5: Apps in our test set that pinned but lacked hostname verification

App name Vulnerability Platform
Emirates NBD Self-signed iOS
Kotak Bank Self-signed iOS
Al Rajhi Bank Self-signed iOS
Santander UK (biocatch) No hostname check iOS
CommBank Property No hostname check iOS
American Bank of Sydney No hostname check Android
Ulster Bank NI No hostname check Android
Ulster Bank RI No hostname check Android
BofAML Research Library No hostname check Android
First Financial Bank No hostname check Android
ACU Mobile No hostname check Android
Bitcoin.co.id No hostname check Android
Britline Self-signed Android
Opal Transfer Self-signed Android
Aman Bank Self-signed Android

Figure 6: Apps that additionally failed our tests.

be evidence of an increase in the use of pinning; or most likely, a
combination of the two.

6 VULNERABILITY IMPACT
Having identified a number of apps that pin to intermediate or
root certificates but miss the crucial step of hostname verification,
our next steps were to evaluate the impact on security for each
of these apps. An important consideration to be made is whether
sensitive information, such as log in credentials, is sent over these
vulnerable connections. It may be the case that connections to
the vulnerable domains only contain non-sensitive data such as
adverts or analytics (this can be avoided to some extend by white
listing common analytics domains such as crashlytics.com and
webtrends.com, however is obviously not possible for all domains).
We therefore, adopted the following methodology to determine the
seriousness of the vulnerability.
• Run our framework on each app, making efforts to trigger

as much functionality of the app as possible through manual
interaction. This gives us a list of domains the app connects
to and whether these connections are vulnerable to TLS
Man-in-the-Middle.

App name Domains connected to Vulnerable?
TunnelBear api.tunnelbear.com ✓

stream.tunnelbear.com ✓

s3.amazonaws.com ✓

BofA Health benefitsolutions ✓

.bankofamerica.com
Meezan Bank mbanking.meezankbank.com ✓

Smile public-05.p01cd18.monitise.eu ✓

HSBC services.mobile.hsbc.com ✓

mapp.us.hsbc.com * ✗

security.us.hsbc.com * ✗

HSBC Business www.hsbcnet.com ✓

www.business.hsbc.co.uk ✗

www.secure.hsbcnet.com ✗

HSBCnet www.hsbcnet.com ✓

www.secure.hsbcnet.com ✗

HSBC Private services.mobile.hsbc.com ✓

www.us.hsbcprivatebank.com ✗

HSBC Identity www.business.hsbc.co.uk ✓

www.hkg1vl0077.p2g ✗

.netd2.hsbc.com.hk
* This domain depends on the country that is selected when setting up the app.

Figure 7: Domains that are connected to.

• For each app with at least one vulnerable domain, we judge
whether connections that involve the transmission of sensi-
tive data, are made to the vulnerable domain. This is done
by checking whether the submission of random log-in cre-
dentials results in a connection attempt to that domain. If so,
and the credentials are rejected, then we deem the app to be
vulnerable to an attacker stealing these credentials.

Applying this methodology the all the apps that were detected
by our tool (listed in figure 5), we find that TunnelBear VPN vulner-
able connections to three domains, whilst Bank of America Health,
Meezan Bank and Smile all made single connections to the vulner-
able domains when submitting log in or registration details. Each
app and the corresponding domains it made connections to is listed
in figure 7.

8

Special Case: HSBC
The behaviour of HSBC’s apps meant that its security impact anal-
ysis was more involved. On opening HSBC’s main app, requests
were made to the domain services.mobile.hsbc.com. We found that
these connections were pinning to an intermediate certificate, but
not checking the hostname. Despite this, as no interaction (other
than opening the app) was made, we could not initially conclude
that any sensitive data was being transmitted. Furthermore, when
these connections were white-listed, and we were presented with
the log in screen, a connection to mapp.us.hsbc.com was made.
Additionally, any submitted log-in credentials were seemingly sent
to another domain security.us.hsbc.com. Connections to these two
latter domains were found to be secure i.e. passed our tool’s tests.
We did however find that they were not using certificate pinning,
hence we were able to confirm the log-in details were sent to these
non-vulnerable domains by installing a custom CA on the phone.

At this point one would deduce that users of the app are safe
from having their credentials stolen by an attacker. However, it is
possible that the app could be performing other sensitive operations,
such as an update check. Moreover, the fact that pinning was being
implemented solely for connections to this domain, suggested that
in fact requests to this domain were of some significant importance.

We approached this problem by reverse engineering the iOS app.
We searched for requests to the domain services.mobile.hsbc.com,
and found that the app downloaded the resource /app/EntityList-
1.5.17.xml. As the Android version was seemingly identical to the
iOS version, including the same domains connected to (as well as
pinning connections to the mobile.services.hsbc.com domain), we
confirmed that this XML resource was also obtained, but named
slightly differently: /app/EntityList-1.5.17-Android.xml.

Contained in this file are URLs for config files that we observed
being downloaded after white listing connections to mobile.services.
hsbc.com. We note that as the main HSBC app is available globally,
the XML file contains different config URLs for each respective
country where HSBC operates. A portion of this file is listed in the
Appendix, Listing 3. Inspecting the contents of these config files,
we can see that the app uses this for a number of things including:
update checks, with included download links and corresponding
checksum values (HSBC uses hot code push/replacement for some
of its updates); miscellaneous app content like in app text, images
and adverts; links to web resources that open in the mobile browser;
and, critically, the domain to communicate with during the log-in
process.

As a result, we conclude that by exploiting the pinning vulnera-
bility for connections to services.mobile.hsbc.com, an attacker can
intercept and modify the downloaded config file to force a victim to
send authentication details to a domain under the attackers control.

Attack Scenario
To carry out this attack, the adversary needs to be in a position
where they can man-in-the-middle the network traffic from a victim.
A example of such a situation would be where the attacker is on
the same WiFi network, such as an airport or coffee shop. Using
ARP or DNS spoofing, the victims traffic can be redirected to the
attacker. Alternatively, a victim could be tricked into connecting
to ‘fake’ hotspot set up an attacker in what is known as an “evil

22 May 2017 • Vulnerability discovered
23 May 2017 • Initial disclosure by e-mail to HSBC
25 May 2017 • Conference call discussing details of

vulnerability
6 June 2017 • We notice that an update to the “HSBC

Business” app has added the
vulnerability, we e-mail HSBC

3 August 2017 • We send a follow up e-mail to check on
progress and we contact the UK
National Cyber Security Centre (NCSC)
who also contact HSBC

4 August 2017 • We receive an e-mail from HSBC
saying they are working on the issue

31 August 2017 • Follow up conference call with HSBC
and NCSC. HSBC confirms the issue
and say they are testing a fix

14 September 2017 • Patch rolled out for main HSBC app

Figure 8: HSBC Disclosure Timeline

twin” [1] attack. When the victim attempts to use their vulnerable
app, the attacker can intercept the TLS handshake and provide the
app with a certificate signed by the certificate that the app pins to.
Figure 5 shows the cost attached to carrying out the attack for each
app. Note that as hostname verification is not being done, only one
of each certificate needs to be purchased. Therefore it would cost
$995 to attack all of HSBCs vulnerable apps.

Disclosure
We have disclosed the vulnerabilities in the apps to all of the com-
panies involved. The vulnerabilities in these apps have now all
been fixed, or will be fixed before the publication of this paper. We
received varying degrees of responsiveness from the organisations
we disclosed to. Some patched their apps within a few days, whilst
others took longer. The fastest responses were from Smile bank and
from CommBank fixing their property app. The longest patch cycle
was from HSBC, as shown in Figure 8. Fixing their app seemed to
take longer due to the fact that the same app was available in 39
different countries’ app stores, hence making testing the app much
more complex. We would like to thank the UK’s National Cyber
Security Centre (NCSC) for helping us with the disclosure process.

7 WHY HOSTNAME VERIFICATION FAILS
To find why the vulnerable apps were weak, and to find out if simple
static analysis methods could have found these vulnerabilities, we
reverse engineered the vulnerable Android apps. We did this using
the JADX tool4 that can unpack Android APK files and decompile
Smali to Java source code.

4https://github.com/skylot/jadx

9

mobile.services.hsbc.com
mobile.services.hsbc.com
services.mobile.hsbc.com

1 public final boolean verify(String str , SSLSession sSLSession) {

2 if (str.contains("s3.amazonaws.com")) {

3 log("BearTrust", "Regular trust enabled");

4 return true;

5 } else if (str.contains("amazonaws.com") && !str.contains("s3.amazonaws.com")) {

6 log("BearTrust", "API Gateway enabled");

7 return true;

8 } else if (str.contains("captive.apple.com") || str.contains("tunnelbear.com")

9 || ("https ://" + str + "/"). equals("https ://api.tunnelbear.com/") {

10 log("BearTrust", "BlueBear trust enabled");

11 log("BearTrust", "BlueBear enabled , trying IP");

12 return true;

13 } else {

14 logError("BearTrust", "Failed to verify hostname");

15 return false;

16 }

17 }

Listing 1: Reverse Engineered Code from the TunnelBear app

TunnelBear. On initial inspection the TunnelBear app seemed
very secure. It did not disable hostname verification, and went fur-
ther, defining a custom built hostname verifier to be used by all
connections. The code for this verifier is shown in Figure 1. This test
is applied automatically by the API, for all connections, and it seems
to verify that the host connected to is one of s3.amazonaws.com,
amazonaws.com, tunnelbear.com or captive.apple.com. How-
ever, on closer inspection we found that this is not actually how
the verifier method should work.

The verifier method is called by the API with a string giving the
hostname the user has requested a connection with, and an active
SSL Session object. The verifier should then check that the given
string matches the name of the host that the SSL Session connects
to. The tunnelBear code does not do this: instead it simply checks
the value of the string given to it and ignores the SSL Session
object. If this app tries to connect to "tunnelbear.com", and we
redirect it to "evil.com", the verifier will be called with str equal
to "tunnelbear.com" and an SSL Session object that connects to
"evil.com". The verifier will just check the string, find it does equal
an expected string, ignore the session object and log the connection
as trusted.

This represents an understandable confusion about how the API
works. A quick manual inspection could easily miss this subtle
error, and simple static analysis tools would also miss this: a verifier
is present, and hostname checking is enabled. To tell that the host-
name string and SSL Session object were not correctly compared
would require complex information flow checking, and even with-
out a direct comparison, code could still be secure, if it for instance
checked the SSL Session object against a static string.

The Smile Banking App. Inspecting the Smile banking app
we find that it does not specify a custom built hostname verifier.
It does however set the flag STRICT_HOSTNAME_VERIFIER which
requires that hostnames match exactly. Again, on initial inspection
the app looks secure. We identified the code that opened the weak
connection, and it is shown in Figure 2.

This code uses the SSLSocketFactory object from the Apache
HttpClient Java Library to create a SSL connection. As Georgiev
et al. [13] have previously pointed out, this object only checks the
hostname when the protocol is set to be HTTPS or LDAP by, for
instance, using the HttpsURLConnection object. In this code the
hostname and port number are resolved into an Internet address
on line 5, and the raw socket connects to this address. Therefore
this code does not check the hostname, irrespective of any flags set.

The setting of the STRICT_HOSTNAME_VERIFIER flag in the Smile
banking app suggests the authors of this app were aware of the
issue of hostname verification, however they had misunderstood
the subtleties of the API. After our disclosure the company fixed this
error by explicitly adding a verifier object. This could also have been
fixed by setting the protocol to HTTPS or checking the hostname
manually. Because of the range of ways to use SSLSocketFactory
safely, we currently do not know of any static checker that could
detect these issues without a high false negative result.

Bank of America Health. This app follows the same pattern as
the Smile app: it uses the Apache HttpClient Java Library SSLSocket
Factory with a raw internet address. It does define a hostname
verifier object, which would have correctly verified the Bank of
America hostname, however because the protocol of the connection
is not set to HTTPS and the verifier is not explicitly invoked, this
code never runs.

Meezan Bank. On inspecting this code we found that it used
the HttpsURLConnection object that would normally check the
hostname. However, the ALLOW_ALL_HOSTNAME_VERIFIER flag had
been explicitly set, which disables all hostname verification. This
one vulnerability could have been found by static checking, because
there is no safe way to use this flag, therefore its presence in the
code indicates a weakness.

Discussion
Reverse engineering these vulnerable apps has revealed a number
of interesting and subtle misuses of varying APIs that are available

10

1 public Socket connectSocket(Socket socket , String hostname , int portNo ,

2 InetAddress inetAddress , int i2, HttpParams httpParams) {

3 int connectionTimeout = HttpConnectionParams.getConnectionTimeout(httpParams);

4 int soTimeout = HttpConnectionParams.getSoTimeout(httpParams);

5 SocketAddress inetSocketAddress = new InetSocketAddress(hostname , portNo);

6 socket = socket != null ? (SSLSocket) socket : (SSLSocket) createSocket ();

7 if (inetAddress != null) {

8 if (i2 < 0) { i2 = 0; }

9 socket.bind(new InetSocketAddress(inetAddress , i2));

10 }

11 socket.connect(inetSocketAddress , connectionTimeout);

12 socket.setSoTimeout(soTimeout);

13 return socket;

14 }

Listing 2: Reverse Engineered Code from the Smile Banking app

for implementing certificate pinning. These errors contrast signifi-
cantly with those discovered in previous studies. Apps failing to
verify certificates in the study by Fahl et. al [10] were found to be
doing so in glaringly obvious ways, such as disabling certficate
verification all together. This indicated a fundamental misunder-
standing of the importance of server authentication in TLS.

Our results demonstrate that this is no longer the case, the vast
majority of apps no longer have these basic errors. However, the
added complication of certificate pinning, which appears to be
on the rise, has spawned a new class of vulnerabilites. These are
more subtle and hence have not been detected by existing detection
techniques. Moreover, our findings are testament to the feedback
received from developer interviews carried out in [17], which found
that although general understanding of pinning is good, implemen-
tation complexity has made it difficult to roll out.

Clearly, the abundance of pinning implemenation options avail-
able to developers has played a role in causing these flaws to be
made. Platform providers can make this less of an issue by provid-
ing standardised implementations with clear documentation. To
this end, Google have introduced Network Security Configuration5

in the Android 7.0 SDK. This provides a easy way to configure
certificate verification, including the ability to specify certificate
pins and associated hostnames in an XML file. If app developers
make use of these standard implementations, instead of rolling out
their own or using 3rd party libraries, these errors will be much
less likely to occur.

8 CONCLUSION
In this paper we have presented a new methodology for dynamically
testing applications that use TLS but fail to verify the hostname. We
have argued that previous tools being used by pen testers to detect
this flaw are insufficient, as the use of certificate pinning hides
the vulnerability. We implemented our proposed technique and
then used our tool to test hundreds of high security apps, including
banking, trading, VPN and cryptocurrency apps. Our tests find that
apps from some of the world’s largest banks contain the flaw, which
if exploited, could enable an attacker to decrypt, view and modify
traffic (including log in credentials) from the users of the app.
5https://developer.android.com/training/articles/security-config.html

11

https://developer.android.com/training/articles/security-config.html

REFERENCES
[1] K. Bauer, H. Gonzales, and D. McCoy. Mitigating evil twin attacks in 802.11. In

Performance, computing and communications conference, 2008. IPCCC 2008. IEEE
International, pages 513–516. IEEE, 2008.

[2] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss,
A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue. A messy state of the union: Taming
the composite state machines of TLS. In IEEE Symposium on Security and Privacy,
2015.

[3] K. Bhargavan, C. Fournet, A. D. Gordon, and G. O’Shea. An advisor for web
services security policies. In Proceedings of the 2005 workshop on Secure web
services, pages 1–9. ACM, 2005.

[4] K. Bhargavan, A. D. Lavaud, C. Fournet, A. Pironti, and P. Y. Strub. Triple
handshakes and cookie cutters: Breaking and fixing authentication over tls. In
Security and Privacy (SP), 2014 IEEE Symposium on, pages 98–113. IEEE, 2014.

[5] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov. Using frankencerts for
automated adversarial testing of certificate validation in ssl/tls implementations.
In Security and Privacy (SP), 2014 IEEE Symposium on, pages 114–129. IEEE, 2014.

[6] T. Chothia, F. D. Garcia, C. Heppel, and C. McMahon Stone. Why Banker Bob
(still) Can’t Get TLS Right: A Security Analysis of TLS in Leading UK Banking
Apps. In Financial Cryptography and Data Security. Springer, 2017.

[7] J. de Ruiter and E. Poll. Protocol state fuzzing of TLS implementations. In 24th
USENIX Security Symposium (USENIX Security 15), Washington, D.C., Aug. 2015.
USENIX Association.

[8] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman. A search
engine backed by internet-wide scanning. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pages 542–553. ACM, 2015.

[9] D. Eastlake et al. Transport layer security (TLS) extensions: Extension definitions.
2011.

[10] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and M. Smith.
Why eve and mallory love android: An analysis of android SSL (in)security.
In Proceedings of the 2012 ACM Conference on Computer and Communications
Security, CCS ’12, 2012.

[11] D. Fisher. Final report on diginotar hack shows total compromise of ca servers.
Retrieved September, 8:2013, 2012.

[12] C. Forum. Guidelines for the issuance and management of extended validation
certificates, version 1.5.7, 2015.

[13] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. Shmatikov. The most
dangerous code in the world: Validating ssl certificates in non-browser software.
In Proceedings of the 2012 ACM Conference on Computer and Communications
Security, CCS ’12, pages 38–49, New York, NY, USA, 2012. ACM.

[14] G. Keizer. Hackers may have stolen over 200 ssl certificates. Computerworld,
2011.

[15] M. Moixe. New tricks for defeating ssl in practice. In BlackHat Conference, USA,
2009.

[16] B. Möller, T. Duong, and K. Kotowicz. This POODLE bites: exploiting the SSL 3.0
fallback, 2014.

[17] M. Oltrogge, Y. Acar, S. Dechand, M. Smith, and S. Fahl. To Pin or Not to Pin-
Helping App Developers Bullet Proof Their TLS Connections. In USENIX Security,
pages 239–254, 2015.

[18] H. Perl, S. Fahl, and M. Smith. You won’t be needing these any more: On removing
unused certificates from trust stores. In International Conference on Financial
Cryptography and Data Security, pages 307–315. Springer, 2014.

[19] B. Reaves, N. Scaife, A. Bates, P. Traynor, and K. R. Butler. Mo(bile) money,
mo(bile) problems: Analysis of branchless banking applications in the developing
world. In 24th USENIX Security Symposium (USENIX Security 15), 2015.

[20] S. Sivakorn, G. Argyros, K. Pei, A. D. Keromytis, and J. Suman. HVLearn: Auto-
mated Black-box Analysis of Hostname Verification in SSL/TLS Implementations.
In Security and Privacy (SP), 2017 IEEE Symposium on. IEEE, 2017.

[21] R. Sleevi. Intent to deprecate and remove: Trust in existing symantec-issued
certificates. Chromium development forum, 2017.

[22] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan. SMV-Hunter: Large
scale, automated detection of SSL/TLS Man-in-the-Middle vulnerabilities in An-
droid apps. In In Proceedings of the 21st Annual Network and Distributed System
Security Symposium (NDSS’14). Citeseer, 2014.

12

APPENDIX
<?xml version= " 1 . 0 " encod ing = " UTF−8 " ?>
< e n t i t y L i s t >
< e n t i t y i d = " 148 " headerImg = " d e f a u l t " hometype= " app " >
< s u p p o r t e d D e v i c e s >
< d e v i c e name= " iPhone " / >
< d e v i c e name= " iPad " >
< c o n f i g u r l > h t t p s : / /www. hsbc . co . uk / c o n t e n t _ s t a t i c /
t a b l e t / 1 / 5 / 1 7 / 1 / c o n f i g . j s o n < / c o n f i g u r l >
< / d e v i c e >
< / s u p p o r t e d D e v i c e s >
< s u p p o r t e d S S L P i n n i n g >
< e n a b l e > f a l s e < / e n a b l e >
< / s u p p o r t e d S S L P i n n i n g >
< l o c a l i s e d l o c a l e = " en " name= " Uni t ed ␣ Kingdom " shortname = "UK" defaul t= " t r u e " / >
< c o n f i g u r l > h t t p s : / /www. hsbc . co . uk / c o n t e n t _ s t a t i c / mob i l e / 1 / 5 / 1 7 / 1 / c o n f i g . j s o n < / c o n f i g u r l >
< / e n t i t y >
< e n t i t y i d = " 159 " headerImg = " d e f a u l t " hometype= " app " >
< s u p p o r t e d D e v i c e s >
< d e v i c e name= " iPhone " / >
< d e v i c e name= " iPad " >
< c o n f i g u r l > h t t p s : / /www. hsbc . gr / 1 / PA_esf−ca−app−c o n t e n t /
c o n t e n t / mob i l e /GR/ t a b l e t / 1 / 5 / 1 7 / 0 / c o n f i g . j s o n < / c o n f i g u r l >
< / d e v i c e >
< / s u p p o r t e d D e v i c e s >
< s u p p o r t e d S S L P i n n i n g >
< e n a b l e > f a l s e < / e n a b l e >
< / s u p p o r t e d S S L P i n n i n g >
< l o c a l i s e d l o c a l e = " en " name= " Greece " shortname = "GR" defaul t= " t r u e " / >
< l o c a l i s e d l o c a l e = " e l " name= " Greece " shortname = "GR" defaul t= " f a l s e " / >
< c o n f i g u r l > h t t p s : / /www. hsbc . gr / 1 / PA_esf−ca−app−c o n t e n t / c o n t e n t /
mob i l e /GR/ mobi l e / 1 / 5 / 1 7 / 0 / c o n f i g . j s o n < / c o n f i g u r l >
< / e n t i t y >
< e n t i t y i d = " 144 " headerImg = " d e f a u l t " hometype= " app " >
< s u p p o r t e d D e v i c e s >
< d e v i c e name= " iPhone " / >
< d e v i c e name= " iPad " >
< c o n f i g u r l > h t t p s : / / mapp . us . hsbc . com / 1 / PA_1_083Q9FJ08A002FBP5S00000000 /
c o n t e n t / u s s h a r e d / Mobi le / t a b l e t / HBUS_1−5−TabletApp_Jun2015_PROD . j s < / c o n f i g u r l >
< / d e v i c e >
< / s u p p o r t e d D e v i c e s >
< s u p p o r t e d S S L P i n n i n g >
< e n a b l e > f a l s e < / e n a b l e >
< / s u p p o r t e d S S L P i n n i n g >
< l o c a l i s e d l o c a l e = " en " name= " Uni t ed ␣ S t a t e s " shortname = " US " defaul t= " t r u e " / >
< c o n f i g u r l > h t t p s : / / mapp . us . hsbc . com / 1 / PA_1_083Q9FJ08A002FBP5S00000000 / c o n t e n t /
u s s h a r e d / Mobi le / N a t i v e / HBUS_1−5−PhoneApp_Jun2015_PROD . j s < / c o n f i g u r l >
< / e n t i t y >
< / e n t i t y L i s t >

Listing 3: XML Config file downloaded over vulnerable HSBC connections

13

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Our contribution

	2 Background
	2.1 Transport Layer Security (TLS)
	2.2 Certificate Pinning
	2.3 Server Name Indication

	3 Pinning Without Hostname Verification
	4 A framework for semi-automatic detection
	5 Results
	6 Vulnerability Impact
	7 Why Hostname Verification Fails
	8 Conclusion
	References

