
Feature-driven mediator synthesis: supporting collaborative security in theFeature-driven mediator synthesis: supporting collaborative security in the
internet of thingsinternet of things

Amel Bennaceur, Thein Than Tun, Arosha K. Bandara, Yijun Yu, BASHAR NUSEIBEH

Publication datePublication date

01-01-2018

Published inPublished in

ACM Transactions on Cyber-Physical Systems;2 (3), article 21

LicenceLicence

This work is made available under the CC BY-NC-SA 1.0 licence and should only be used in accordance with
that licence. For more information on the specific terms, consult the repository record for this item.

Document VersionDocument Version
1

Citation for this work (HarvardUL)Citation for this work (HarvardUL)

Bennaceur, A., Tun, T.T., Bandara, A.K., Yu, Y.and NUSEIBEH, B. (2018) ‘Feature-driven mediator synthesis:
supporting collaborative security in the internet of things’, available: https://hdl.handle.net/10344/7421
[accessed 25 Jul 2022].

This work was downloaded from the University of Limerick research repository.

For more information on this work, the University of Limerick research repository or to report an issue, you can
contact the repository administrators at ir@ul.ie. If you feel that this work breaches copyright, please provide
details and we will remove access to the work immediately while we investigate your claim.

https://creativecommons.org/licenses/by-nc-sa/1.0/
mailto:ir@ul.ie

1

Feature-driven Mediator Synthesis: Supporting
Collaborative Security in the Internet of Things

AMEL BENNACEUR, The Open University
THEIN THAN TUN, The Open University
AROSHA K. BANDARA, The Open University
YIJUN YU, The Open University
BASHAR NUSEIBEH, The Open University and Lero - The Irish Software Research Centre

As the number, complexity, and heterogeneity of connected devices in the Internet of Things (IoT) increase, so
does our need to secure these devices, the environment in which they operate, and the assets they manage
or control. Collaborative security exploits the capabilities of these connected devices and opportunistically
composes them in order to protect assets from potential harm. By dynamically composing these capabilities,
collaborative security implements the security controls that satisfy both security and non-security requirements.
However, this dynamic composition is often hampered by the heterogeneity of the devices available in the
environment and the diversity of their behaviours. In this paper we present a systematic, tool-supported
approach for collaborative security where the analysis of requirements drives the opportunistic composition of
capabilities in order to realise the appropriate security control in the operating environment. This opportunistic
composition is supported through a combination of feature modelling and mediator synthesis. We use
features and transition systems to represent and reason about capabilities and requirements. We formulate the
selection of the optimal set of features to implement adequate security control as a multi-objective constrained
optimisation problem and use constraint programming to solve it efficiently. The selected features are then
used to scope the behaviours of the capabilities and thereby restrict the state space for synthesising the
appropriate mediator. The synthesised mediator coordinates the behaviours of the capabilities to satisfy the
behaviour specified by the security control. Our approach ensures that the implemented security controls are
the optimal ones given the capabilities available in the operating environment. We demonstrate the validity of
our approach by implementing a Feature-driven medIation for Collaborative Security (FICS) tool and applying
it to a collaborative robots case study.

CCS Concepts: • Security and privacy→ Security requirements; • Human-centered computing→ Ubiq-
uitous and mobile computing; • Social and professional topics→ Software selection and adaptation;

Additional Key Words and Phrases: Adaptive security, requirements, mediator synthesis, feature models,
collaborative adaptation

ACM Reference format:
Amel Bennaceur, Thein Than Tun, Arosha K. Bandara, Yijun Yu, and Bashar Nuseibeh. 2017. Feature-driven
Mediator Synthesis: Supporting Collaborative Security in the Internet of Things. ACM Transactions on Cyber-
Physical Systems 1, 1, Article 1 (January 2017), 25 pages.
https://doi.org/0000001.0000001

This work is supported by SFI grant 13/RC/2094, QNRF NPRP 5-079-1-018, and ERC Advanced Grant no. 291652 (ASAP).
Author’s addresses: A. Bennaceur, T. T. Tun, A. K. Bandara, Y. Yu, and B. Nuseibeh, The Open University Computing And
Communications Jennie Lee Building Walton Hall Milton Keynes MK7 6AA United Kingdom.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.
XXXX-XXXX/2017/1-ART1 $15.00
https://doi.org/0000001.0000001

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

1:2 A. Bennaceur et al.

1 INTRODUCTION
Many secure systems are designed and developed with pre-determined countermeasures without
the possibility to adapt to new resources and devices [56]. With the prevalence of the Internet of
Things (IoT), secure systems are expected to make the best use of the resources and devices in the
environment as their availability and capabilities change in order to meet their requirements [2].
However, most existing solutions focus on the security threats associated with the IoT rather than
the opportunities brought by the IoT to support security [44]. We believe that the IoT can play
an important role in enabling security by offering the infrastructure to connect multiple devices
on the fly in order to implement adequate countermeasures [12]. In the context of cyber-physical
systems, we particularly focus on physical security, that is the protection of material assets from
physical attacks (e.g., theft) [52]. In a previous position paper [6], we propose collaborative security
whereby both the selection and implementation of countermeasures are performed at runtime. In
this paper, we propose and elaborate a framework for collaborative security that composes the
capabilities of multiple, potentially heterogeneous, devices with variable (configurable) behaviours,
in order to satisfy their requirements. Our framework revolves around three concepts: security
controls, capabilities, and mediators.
• Security controls specify the mechanisms that need to be deployed in order to protect assets
from harm, i.e. to satisfy security requirements [21].
• Capabilities describe the features and behaviours of the devices. Features describe what a
device can do in the operating environment while the behaviour describes how it interacts
with the environment, including other devices.
• Mediators coordinate the behaviours represented by multiple capabilities in order to reach a
state where the requirements are satisfied.

Collaborative security leverages the capabilities of the connected IoT devices to implement
the adequate security controls. The process of enabling collaborative security spans design time
and runtime. At design time, the developer of each individual device defines its capability. The
set of requirements and the security controls are specified as well. At runtime, the capabilities
of the IoT devices are discovered and composed in order to implement the appropriate security
control. In other words, software developers have only to specify the models of the devices and
security controls while the framework is responsible for realising the collaborations of IoT devices
automatically.

Fig. 1 gives an overview of our framework for collaborative security. The requirements are first
analysed in order to determine the specification of the appropriate security control that needs to
be implemented. Determining the appropriate security controls often requires trading off security
against other requirements such as performance or usability and considering the value of the assets,
and potential threats [43]. To implement this security control, the available capabilities are then
configured and composed. This process is iterative and is performed in two steps. First, Feature
Selection computes the optimal set of features to be enabled on a subset of capabilities in order to
realise a security control (see Fig. 1-❶).
Feature-driven Mediator Synthesis aims to generate a mediator that coordinates the behaviours

associated with the selected subset of capabilities in order to satisfy the behavioural specification of
the chosen security control (see Fig. 1-❷). Only the behaviour associated with the selected features
are analysed during mediator synthesis. If the mediator synthesis fails then a different set of features
must be selected and fed back to the synthesis module. When the mediator synthesis succeeds
then the collaboration is realised by enabling the selected features and deploying the synthesised
mediator. Hence, while the requirement model can be used at design time to specify security

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Supporting Collaborative Security in the Internet of Things 1:3

controls and their relationships to those requirements, the realisation of those security controls is
performed at runtime by composing the capabilities available in the operating environment.

Collaborative
Security (FICS)

discover

analyse

Security Control

Feature Selection

Capabilities

Requirements

Feature-driven
Mediator Synthesis

Device 3

Internet of Things

selected
features

Device 1 Device 2

Device 4 Mediator

deploy

2 1

Fig. 1. Overview of our collaborative security framework

This paper focuses on the models and mechanisms to represent, reason about, and mediate
capabilities in order to realise security controls. It contributes to three areas:
• Modelling and reasoning about collaborative security. There is a conceptual gap between
requirements (security and others) and the collaborative behaviour of capabilities necessary
to satisfy those requirements.We show that the combination of features and transition systems
is a useful abstraction that helps bridge the gap between requirements and capabilities. From
a modelling perspective, features give a macro-view of capabilities and security controls as a
set of functionalities while transition systems describe how to interact with the capabilities
and specify the intended behaviour of security controls. From a reasoning perspective, feature
analysis drives the selection of capabilities while behavioural analysis drives the composition
of those capabilities to implement a security control.
• Feature-driven mediator synthesis. To implement security controls, we compose capabilities
considering both their features and behaviours. We first select a set of features to realise a se-
curity control. The selected features must also optimise quality attributes such as performance
or energy consumption. We formulate the selection of features as amulti-objective constrained
optimisation problem, which can be efficiently solved using constraint programming [42]. The
selection of features allows us to scope the behaviours represented by the capabilities and
thereby reduce the analysis space for mediator synthesis. The synthesis algorithm ensures
that the composition of the behaviours represented by the capabilities together with the
mediator is deadlock-free and reaches a state where the requirements are satisfied. Rather
than focusing on a specific algorithm for mediator synthesis, which we tackle elsewhere [7],
we show how these techniques can be improved through feature selection.
• Tool-support for collaborative security. We demonstrate the feasibility of our approach by
implementing a collaborative security framework, FICS (Feature-driven medIation for Collab-
orative Security), and evaluate it using a collaborative robotics case study. More specifically,

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:4 A. Bennaceur et al.

we show using a proof-of-concept demonstrator how two robots—a humanoid robot and a
vacuum cleaner—are made to collaborate in order to implement an additional security control
for protecting a mobile phone from theft. The tool and all models discussed in the paper are
available at http://sead1.open.ac.uk/fics/.

The paper is structured as follows. Section 2 introduces the collaborative robots case study, which
we use to illustrate and then evaluate our approach. It also describes our collaborative security
framework using Jackson and Zave’s framework for requirements engineering [26]. Section 3
presents the formalism we use to specify our inputs, that is requirements and capabilities. Section 4
details the selection of capabilities. Section 5 moves to the composition of capabilities using
mediators. Section 6 evaluates our framework both theoretically and practically. Section 7 examines
related work. Finally, Section 8 concludes the paper and discusses future work.

2 OVERVIEW
In this section we introduce our research questions using a collaborative robots example and outline
our approach using Jackson and Zave’s framework for requirements engineering [26].

2.1 Motivating Example: Collaborative Robots for Home Security
Traditionally, home security systems require buying and installing multiple cameras as well as
a software solution for monitoring and notifications. These systems are rather static and cannot
readily adapt to changes in user requirements or in the environment such as the users moving to
new houses. On the other hand, in 2013, 2.7 million domestic (household) robots (e.g., vacuum and
floor cleaning, lawn-mowing robots) and about 1.2 million entertainment robots (e.g., toy robots,
hobby systems, and educational robots) were sold [24]. Furthermore, Gartner estimates that the
typical family home could contain several hundred smart devices by 2022 [48]. The proliferation of
these devices illustrates how the IoT creates new opportunities for protecting our home and the
valuable assets therein at a lower cost. In our example, the security requirement is to protect a
phone from theft. Note that the focus is on protecting the physical object rather than the data within
the phone. In this paper we consider the case of two robots: a programmable autonomous vacuum
cleaner (iRobot Create1) and a humanoid robot (NAO2). Both robots have task-level autonomy [9]
in the sense that they are given specific tasks which they decompose and achieve by themselves.
For example, we can command NAO to standup, and NAO controls the different joints and motors
to perform this task.

Fig. 2 sketches our collaborative robots case study.We use extracts from this case study throughout
the paper to illustrate our approach while a demonstration video can be found at http://sead1.open.
ac.uk/fics/.
Several security controls can be used to protect the phone from theft when the user leaves it

unattended: (i) calling out to the user, (ii) hiding the phone in a safe place, or (iii) locking the door
of the room in which the phone is. The choice of the appropriate security control may depend on
other requirements. In our case study, hiding the phone is preferred to locking the door in order to
maximise the accessibility of the room, which is a usability requirement. Although, the Lock can be
used to make the room safe and thereby protect the phone, making the two robots, NAO and iRobot
Create, collaborate allows us to protect the phone from theft while ensuring that the room remains
accessible. In the rest of the paper, we will focus on the appropriate security control, which involves
hiding the phone in a safe place. In other words, our goal is to leverage the capabilities of NAO

1http://www.irobot.com/us/learn/Educators/Create.aspx
2http://www.aldebaran-robotics.com/en/

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

http://sead1.open.ac.uk/fics/
http://sead1.open.ac.uk/fics/
http://sead1.open.ac.uk/fics/
http://www.irobot.com/us/learn/Educators/Create.aspx
http://www.aldebaran-robotics.com/en/

Supporting Collaborative Security in the Internet of Things 1:5

Collabora've	Adapta'on:	
Make	NAO	and	Create	collaborate		

to	protect	the	phone	and	keep	the	room	accessible	

	NAO:	I	can	see,	talk,		
and	pick	up	objects	 Create:	I	can	clean	and	move	

Protect	phone		
from	the9	

Keep	the	room	
accessible	if	possible	

Lock:	I	can	lock	and	
unlock	the	room	

Fig. 2. Illustration of the collaborative robots case study

and iRobot Create to implement this security control. Therefore, we must answer the following
questions:
• Which security control should be implemented?
• Which capabilies should be selected and how should they be configured in order to realise
the chosen security control?
• How to compose the selected capabilities?

2.2 Collaborative Security à la Michael Jackson
To describe our approach more precisely, we formalise it using Jackson and Zave’s framework
for requirements engineering [26], which makes explicit the relationship between requirements,
specifications, and environment properties.
The role of our collaborative security framework is to bridge the gap between the security

controls and the behaviour of multiple capabilities. The first step is to determine a specification of a
security control that satisfies the requirements in the given environment, which can be formalised
as follows.

SC,E |= R

where SC denotes a specification of a security control, E denotes environment properties, and
R denotes a set of requirements. The security control may need to satisfy multiple requirements.
Therefore, the requirements are represented as a partially ordered set R = {Rs ,R1, . . . ,Rm} where
Rs denotes security requirements. In this work we assume that security requirements have higher
priority but that might not always be the case [8]. The larger the subset of requirements a security
control satisfies, the more appropriate it is. The goal is then to use the available capabilities in order
to implement the most appropriate security control.

It might be the case that none of the available capabilities can realise this security control on its
own:

∀c ∈ S : c ̸ |= SC
where S denotes the set of capabilities available in the environment.

Furthermore, even multiple capabilities put together in the environment may not be enough to
implement the security control:

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:6 A. Bennaceur et al.

∀C ⊆ 2S : C ̸|= SC
where 2S denotes the power set of S, i.e. any subset of available capabilities.

Yet by making multiple capabilities work together, we can implement this security control. To
this end, we automatically synthesise an intermediary software entity, called a mediator [53], that
composes multiple capabilities in order to implement the appropriate security control, which can
be formalised as follows:

Find C ⊆ 2S and synthesiseM such that C,M |= SC
where C is the selected set of capabilities and M is the synthesised mediator. We consider the
entailment (|=) from two perspectives: features and behaviours. From a feature perspective, the
features of the selected capabilities must be sufficient to implement the security control. These
features must also optimise specific quality attributes of the implementation of this security control.
From a behavioural perspective, the composition of the behaviours of the selected capabilities
together with the synthesised mediator must refine the behaviour specified by the security control.
This refinement implies the inclusion of the traces (possible executions) of the security control
specification into those of the system composed of the selected capabilities together with the
synthesised mediator [14]. Note that the mediator, if it exists, is only responsible for coordinating
the behaviours of the selected capabilities rather than creating additional functionalities, i.e. a
behaviour with a new set of actions (alphabet) [7].
Hence, collaborative security aims to realise security controls by dynamically composing the

capabilities of the IoT devices available at runtime. After giving the necessary formal definitions in
Section 3, Section 4 details feature selection, that is finding C ⊆ 2S . Section 5 details feature-driven
mediator synthesis, that is synthesisingM .

3 PRELIMINARIES
In this section, we give the formal definitions of the models used within our collaborative security
framework.

3.1 Modelling Requirements and Security Controls using KAOS
In this section we show how feature and behavioural models can be used to represent the security
controls necessary to satisfy security requirements as well as other relevant requirements. We
build upon KAOS goal modelling [49] to represent and reason about the relationships between
requirements and security controls. A KAOS goal model shows how goals are refined into sub-goals
and associated domain properties. A KAOS goal is defined as a prescriptive statement that the
system should satisfy through the cooperation of agents such as humans, devices and software.
Goals may refer to services to be provided (functional goals) or quality of service (soft goals).
KAOS domain properties are descriptive statements about the environment. Besides describing the
contribution of sub-goals (and associated domain properties) to the satisfaction of a goal, refinement
links are also used for the operationalisation of goals. In this case, refinement links map the goals
to operations, which are atomic tasks executed by the agents to satisfy those goals. Conflict links
are used to represent the case of goals that cannot be satisfied together. Keywords such as Achieve,
Maintain, and Avoid are used to characterise the intended behaviours of the goals and can guide
their formal specification. A KAOS requirement is defined as a goal under the responsibility of a
single software agent.
As our starting point, we consider security (and other) requirements, all of which are under

the responsibility of the collaborative security framework. The collaborative security framework
composes multiple capabilities in order to satisfy those requirements. The goal model used to
refine requirements into features and behavioural models can be decomposed into three levels. The

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Supporting Collaborative Security in the Internet of Things 1:7

Avoid [PhoneTheft]

Exists location.SAFE

phone is an object

UserHearsWhenCalled
UserCalled ⇒ UserHeard

UserComesBackWhenHeard
UserHeard ⇒ location(user) = location(phone)

Motion ObjectRecognition TextToSpeech

Achieve [PhoneInTheSafe If UserLeft]
UserLeft ⇒ ♢ location(phone) = location.SAFE

Achieve [UserCalled If UserLeft]
UserLeft ⇒ ♢ UserCalled

Room is adequately lit

Achieve[DoorLocked If UserLeft]
UserLeft ⇒ ♢ DoorLocked

LockingTheRoomMakesItSafe
DoorLocked ⇒ location(phone) = location.SAFE

Level 1
Requirements

Level 2
Adaptation strategies

& domain assumptions

Level 3
Features

& attributes
MinimiseMovingTime

max Speed

Domaine
Property

Conflict

Refinement

Legend

Functional
GoalOperation

RoomIsAccessible

Soft
Goal

Fig. 3. Refining the requirements of the collaborative robots case study

first level specifies the requirements. The second level is dedicated to security controls. It defines
the behavioural specification and the domain properties associated with each security control.
The third level is about the features necessary to implement the security controls as well as the
attributes that must be optimised by the implementation. Note that the use of levels facilitates the
representation but does not have a formal grounding.
Fig. 3 depicts the goal model for the collaborative robots case study. Two requirements are

specified R = {Rs ,Rusability} where Rs is to protect the phone from theft and Rusability is to keep the
room accessible when possible. Refinement links capture alternative security controls that satisfy
those requirements assuming some domain properties. Conflicts links may interconnect security
controls and other requirements and help select the appropriate security control to implement. For
example, the security control that involves moving the phone to a safe place contributes to the
satisfaction of both the security and usability requirements whereas the security control for locking
the room also satisfies the security requirement but not the usability one. Each security control is
annotated using a Linear Temporal Logic (LTL) [39] formula that specifies the desired behaviour of
this security control. For example, the security control that involves moving the phone into a safe
place specifies that when the user leaves the room then the location of the phone shall eventually
become the safe place, i.e. Gs is defined as UserLeft ⇒ ♢location(phone) = location.SAFE. This
security control is associated with three domain properties: phone is an object, there exists a safe
place, and the room is adequately lit. Finally, each security control is refined into a set of features
necessary to implement this security control as well as the attributes that need to be optimised
by this implementation. For example, the security control that involves moving the phone into a
safe place necessitates two features Motion and ObjectRecognition and shall maximise the Speed
attribute. Note that the KAOS model specifies possible security controls but is agnostic about
existing available capabilities, which are then selected and configured by the collaborative security
framework in order to realise the specified security control.

3.2 Modelling Capabilities using Featured Transition Systems
Capabilities describe what an IoT device can do, i.e. its features, and how it interacts with the
environment, i.e. its behaviour. This section gives the formal definitions of the models used to
represent capabilities.
A Feature Model (FM) is a hierarchical organisation of features representing the constraints

under which features occur in valid configurations [29].

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:8 A. Bennaceur et al.

Definition 3.1. A feature model is a tuple FM = (F ,DE,G,Car, r ,Attr, ρ,τ ,Φ) where F is a
finite set of features, DE ⊆ F × F is a set of directed child-parent edges, G ⊆ 2DE are non-
overlapping sets of edges participating in feature groups, i.e. the edges of the same sets share the
same parent, Car : G → N0 ×N0 is a mapping from a group to a pair (i ..j) denoting the cardinality
of the group where i is the minimum number of children required and j the maximum, r ∈ F is the
root feature, Attr is a set of attributes, ρ : Attr → F is a total function that associates an attribute
with a feature, τ : Attr → {Integer, Real,Boolean, Enumeration} assigns a type to each attribute.
This type must be finite or an interval of real numbers, Φ is a set of boolean-valued expressions
over the features F and the attributes Attr , expressing constraints on the selection of features.

Unlike the definition of Classen et al. [15], the root feature is optional. The rationale behind making
the root optional is that during feature selection, a capability is selected only if the corresponding
root feature is selected. As we will show in the Section 4, the root feature is selected if any of the
features associated with this capability is selected.
The behaviour of a device specifies how it interacts with its environment. Transition Systems

(TS) are often used to specify behaviours [31].

Definition 3.2. A Transition System (TS) is a tupleM = (S,A, Tr, s0, Pred,L) where S is a finite
set of states, A is a set of observable actions, Tr ⊆ S ×A × S denotes a transition relation, s0 ⊆ S is
the initial state, Pred is a set of predicates, and L : S → 2Pred is a valuation function that indicates
for a state s ∈ S the predicates p ∈ 2Pred that are true in this state.

However, the behaviour of an IoT devices is related to its features. Specifically, the invocation of
the actions of A is conditioned by the enabled features. Featured Transition Systems (FTS) provide
a compact formalism for describing behaviours using feature models [16]. An FTS is a TS whose
actions are guarded by features, which are specified in a feature model.

Definition 3.3. A Featured Transition System (FTS) is a tuple B = (S,A, Tr, s0, Pred,L, FM,γ)
where S,A, Tr, s0, Pred, and L are defined as in Definition 3.2, FM is a feature model, and γ : Tr →
B(F) is a total function, labelling each transition t ∈ Tr with a feature expression b ∈ B(F) that
must be true for the action associated with t to be executed. F are the features associated with the
feature model FM .

For a selected set of features (i.e. a configuration), an FTS can be projected onto this configuration
by removing all the transitions whose feature expressions are not satisfied, which results in a TS.

Definition 3.4. A projection of an FTS B onto a set of features f ⊆ F is a TS B |f =
(S,A, Tr ′, s0, Pred,L, FM,γ) where Tr ′ = {t ∈ Trsuch thatf |= γ (t)}.

Definition 3.5. A capability is an FTS B describing the behaviour and the features F of an IoT
device.

4 FEATURE SELECTION AS A MULTI-OBJECTIVE CONSTRAINED OPTIMISATION
PROBLEM

The first step in achieving collaborative security is to find the subset of capabilities that need to
be composed in order to implement the appropriate security control. These capabilities are also
configured by enabling only the features required for this collaboration and which optimise the
implementation of this security control. The selection of this optimal set of features is the focus of
this section. Fig. 4 gives an overview of feature selection. We are provided with a set of feature
models, each of which associated with a capability, together with the specification of a security
control. The specification of the security control includes the set of features necessary for its

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Supporting Collaborative Security in the Internet of Things 1:9

implementation and the quality attributes that need to be optimised by this implementation. The
aim is to select a set of features to be enabled which (i) includes all the features of the security control,
(ii) satisfies the constraints imposed by the feature model of each capability, and (iii) optimises the
quality attributes for the implementation of the security control. We formulate feature selection as
a MOCOP (see Definition 4.1). By doing so, we can build upon the large body of work on solving
optimisation problems efficiently using constraint programming [42].

Feature
Selection

Selected Features

Fs

A1, . . . , Al

f1, f2, . . . , fn
Features and Attributes
of the Security Control

…
…

Feature Models of the Capabilities

FM1 FM2 FMn

Fig. 4. Feature selection

Constraint programming uses constraints to state the problem declaratively without specifying
a computational procedure to solve it. The latter task is carried out by constraint solvers. The
constraint solver implements intelligent search algorithms such as backtracking and branch and
bound which are exponential in time in the worst case but that have proved to be very efficient
in practice. The constraint solver also exploits the arithmetic properties of the operators used to
express the constraints to quickly check, discredit partial solutions, and prune the search space
substantially.

Definition 4.1. A Multi-Objective Constrained Optimisation Problem (MOCOP) is a tuple
(X ,D,T ,U) where X = {x1, ...,xn} is the set of variables of the problem; D is a function that
associates to each variable xi its domain D(xi), i.e. the set of possible values that can be assigned to
xi ; T = {T1, ...,Tm} is the set of constraints. A constraint Tj is a mathematical relation defined over
a subset x j = {x j1, . . . ,x

j
n j } ⊆ X of variables, which restricts the values that these variables can

take at the same time; andU = {U1, ...,Uk } is a set of objective functions whose values we seek to
optimise. An objective function Ul=1..k is defined over a subset of variables Y ⊆ X and associates a
utility—usually an integer or real value—to each assignment of Y .

To formulate feature selection as a MOCOP, we must define the variables X and their domains
D(X), the associated set of constraints T , and the objective functionsU .

Variables and their Domains. Feature selection involves searching among all possible combinations
of features, an optimal set of features that must be enabled on a subset of capabilities in order to
implement a security control. Therefore, we associate each capability with a variable describing
whether the features of this capability are enabled or not. More specifically, we represent each
variable as a vector of boolean values, each of which set to 1 (true) if the feature of the associated
capability is to be enabled and set to 0 (false) otherwise:

X = {x1,x2, . . . ,xn} and D(X) = 2F1 × 2F2 × · · · × 2Fn

where 2Fi=1. .n denotes the power set of the features of capability Ci=1..n .

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:10 A. Bennaceur et al.

Constraints. Constraints specify the conditions for selecting features. In the following, the first
constraint ensures that all the features of the security control are selected and the second concerns
conformance to the feature models of individual capabilities.

Constraint 1: The selected featuresmust include the features necessary to implement the
security control. This constraint ensures that each feature required to realise the security control
is selected in some capability and is formalised as follows:

∀f ∈ Fs,∃ k ∈ [1,n] such that xk [f]
where Fs denotes the set of features associated with the security control and xk=1..n is the variable
associated with capability Ck=1..n .

Constraint 2: The selected featuresmust conform to the featuremodel of the capabilities.
The features to enable on each capability must represent a valid configuration considering the
feature model of this capability. We describe below how this constraint is decomposed into smaller
constraints that must be respected for each capability.
• The selected features must satisfy the cardinality of every group of features. Whenever a
parent feature with a cardinality <a..b> is selected, then at least a children must be selected,
i.e. the number of child features that are true (set to 1) is at least a, and at most b, which can
be formalised as follows.

∀fj ∈ Fi such that дr ∈ Gi ,дr = {(fj1 , fj), . . . , (fjm , fj)} and < a..b >= Cari (дr),

xi [fj] ⇒

(
a ⩽

m∑
k=1

xi [fjk] ⩽ b

)
for 1 ⩽ i ⩽ n

where fj ∈ Fi=1..n denotes the parent feature of fj1 , . . . , fjm , i.e. дr = {(fj1 , fj), . . . , (fjm , fj)}
is a group дr ∈ Gi=1..n associated with the capability Ci=1..n . The cardinality of this group is
<a..b>.
• Whenever a child feature is selected, so is the parent feature. As a result, the root feature,
and the capability, is selected if any of its features is selected.

∀(fchild , fparent) ∈ DEi : xi [fchild] ⇒ xi [fparent] for 1 ⩽ i ⩽ n

where (fchild , fparent) ∈ DEi=1..n is a child-parent pair associated with the feature model of
capability Ci=1..n .
• The selection of features must conform to any additional condition on features and attributes
specified within the feature model of the capability:

Φi for 1 ⩽ i ⩽ n

where Φi=1..n is the boolean expression associated with the feature model of capabilityCi=1..n .

Objective functions. There might be multiple sets of features satisfying the aforementioned
constraints. Therefore, the search is driven by the quality attributes we seek to optimise. In addition,
the number of selected features must also be minimised. We assume without loss of generality that
we seek to minimise all quality attributes without a preference for any of these attributes, which
can be stated as follows.

min
s ∈D(X)

[
дA1 (s),дA2 (s), . . . ,дAl (s), |s |

]
where дAj=1. .l denotes the function that calculates the value of the quality attribute Aj=1..l for any
set of features s ∈ D(X) that satisfies the aforementioned constraints. |s | denotes the cardinality of
this set of features. For simplicity, we assume that the attribute is associated with a single selected
feature. When an attribute Aj=1..l spans multiple selected features, then дAj=1. .l is an aggregation
function (e.g., summation, multiplication, andminimum) that depends on the structure of the feature
model and the type of attribute, in a way similar to QoS-aware service composition [27, 46, 57].

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Supporting Collaborative Security in the Internet of Things 1:11

Legend
selected
feature

feature

Attribute

optional feature

XOR group
cardinality <1..1>

OR group
cardinality <1..n>

Requires

NAO

Core Motion Audio Vision Sensors Trackers

Behaviour
Navigation

RobotPosture

Audio Player

Audio Recorder

SoundDetection

SpeechRecognition

TextToSpeech

DarknessDetection

FaceDetection

PhotoCapture

VideoRecorder

Battery

Sonar

Leds

FaceTracker

RedBallTracker

AudioSourceLocatisationWiFi

Bluetooth

Connection

Speed = 30m/s

ObjectRecognition

(a) NAO’s Feature Model - FM NAO

Create

Motion Audio

Moving

Turning

Bluetooth

Serial

Connection Cleaning

Speed = 60m/s

(b) iRobot Create’s Feature Model - FM iRobot

Fig. 5. Feature models for the collaborative robots case study

Example
Let us consider the collaborative robots case study, Fig. 5 depicts the feature models of NAO and
iRobot Create. Note that Definition 3.1 describes the feature model in a normal form. Therefore,
AND, OR, and XOR groups are represented using the cardinalities, <n..n>, <1..n>, and <1..1>
respectively. The Requires links are represented as logical implications within the set of boolean-
valued expressions Φ. The greyed features represent the optimal set of features that need to be
selected in order to implement the security control that involves moving the phone to a safe place.
This security control necessitates theMotion and ObjectRecognition features (see Fig. 3), both of
which are selected. The Lock capability is not selected and therefore we do not illustrate it in Fig. 3).
The selection of features must also conform to the cardinality of each group. For example, in the
feature model of iRobot Create, Connection admits only one child feature, which in this case is the
Bluetooth feature. In addition, as we want to maximise the speed at which the phone is moved to a
safe place, the Motion feature of iRobot Create whose associated Speed has a value of 60 m/s is
selected instead of the Motion feature of NAO whose associated Speed has only a value of 30 m/s.

Complexity
We prove that feature selection is NP-complete using polynomial-time reductions from the set
cover problem [30]. We recall that in the set cover problem, we are given a set of n elements U

and a finite family of its subsets C = {S1, . . . , Sm} such that Si ⊆ U and
m⋃
i=1

Si = U , we must find a

minimum-cost collection of these subsets whose union isU , i.e. the smallest (k) family of subsets

C ′ = {T1, . . . ,Tk } such that Tj ∈ C and
k⋃
j=1

Tj = U .

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:12 A. Bennaceur et al.

The first step is to transform an instance of the set cover problem into an instance of capability
selection. We start by buildingm feature models, each of which associated with a subset Si . The
feature model consists of a root feature rSi and the conjunction of its mandatory children features,
which are the elements included in Si . Hence, Fi = Si ∪ {rSi }. In addition, each root feature rSi is
associated with an attribute cost = 1. The features associated with the security controls are the n
elements ofU , i.e. Fs = U . We seek then to minimise the cost attribute, i.e. A = cost . The function
дcost for computing the value of the attributes for a set of feature is the sum of the values of the
cost attribute for individual features. It is trivial that this translation of the set cover problem to an
instance of feature selection can be performed in polynomial time.

Feature selection computes the optimal set of features f1, f2, . . . , fm that includes all the features
of the security control and minimises cost . In addition, if a child feature is selected, so is the parent
feature rSi since the selected set of features must satisfy the individual feature models. Hence to
get a solution to the set cover, it suffices to pick the set Si whose associated root feature, rSi , is
enabled. It is also trivial that we can check the satisfaction of feature models and inclusion of the
features of the security controls in polynomial time. As a result, we can state that feature selection
is NP-complete.

5 FEATURE-BASED MEDIATOR SYNTHESIS
Features express only the functionality associated with a capability. To ensure that capabilities
can be composed in order to implement the appropriate security control, we need to reason about
their behaviours and compose them appropriately. This composition is ensured through mediator
synthesis. Fig. 6 gives an overview of feature-driven mediator synthesis. We are provided with the
set of selected features and the behavioural models of the of the associated capabilities together with
the behavioural specification of a security control. The goal is to synthesise, if possible, a mediator
that coordinates the behavioural models of the capabilities in order to satisfy the behavioural
specification of the security control.
There are many approaches to mediator synthesis [7, 11, 18, 25, 36, 47, 54]. These approaches

differ in their assumptions (e.g., system behaviour is deterministic, or partial specification of the
mediator is given as an input) and the expressiveness of the goals involved (e.g., dealing with safety,
liveness, or general LTL properties). All these approaches require the exploration of the state space
of the composition of behaviours, which can rapidly grow as the number of capabilities increase.

Feature-driven
Mediator Synthesis

… M

Mediator

Gs

Selected Features

f1, f2, . . . , fn

…

Behavioural Specification
of the Security Control

C1 CnC2

Capabilities

Fig. 6. Feature-driven mediator synthesis

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Supporting Collaborative Security in the Internet of Things 1:13

To reduce the state space to be explored by the synthesis algorithm, we propose to project
the behaviours represented by each capability onto the selected features. Projection scopes the
behaviours of individual capabilities by keeping only the transitions whose feature expressions
are satisfied. We recall that the projection of an FTS onto a set of features is the TS obtained by
removing all the transitions whose feature expressions are not satisfied (see Definition 3.4). In
addition, this TS is well-formed in that it does not contain any dead state, i.e. a state with no
outgoing transitions. Hence, we can project the behaviours represented by the capabilities onto
the selected set of features to obtain their actual behaviours when only these features are enabled.
We then seek to synthesise, if possible, a mediator such that the composition of the projected
behaviours together with the mediator satisfies the behaviour specified by the security control,
which can be formally specified as follows.

C1 |f1 ∥ C2 |f2 ∥ . . .Cn |fn ∥ M |= Gs

where f1, f2, . . . , fn denote the selected set of features, Gs an LTL property specifying the desired
behaviour of the security control, and M the synthesised mediator. The algorithm for mediator
synthesis (Algorithm 1) starts by checking the basic configuration whereGs is satisfied in the initial
states (Lines 1-5). The algorithm then systematically explores the state space of the composition of
the projected capabilities (Ci for simplicity) to synthesise a mediator (Lines 6-20). This exploration is
guided by the selection of a capability whose initial state s0k will be further examined (Line 7). The
selection of a capability to explore may be random, sequential (the same index until all states have
been explored), or motivated by some heuristics related to the likelihood of satisfying Gs but, for
instance, let us assume that the algorithm simply loops from 1 to n, which results in a breadth-first
exploration. To avoid cycles and loops, s0k is deleted from the state set (Line 8). For each outgoing
transition (s0k ,ak , sk), an updated TS is created by removing the transition and setting sk as the
initial state (Line 10). A recursive call with the updated TS together with the remaining capabilities
is then made to test whether this transition can lead to a valid mediator (Line 11). Note that we
present the recursive version of the algorithm for readability while the implementation is based on
stacks. In the case where a state satisfyingGs is reachable, the mediator is generated by prefixing
the partial mediator with the selected transition (Lines 12-17). The algorithm fails if all states have
been explored without reaching a state where Gs is satisfied (Line 21).

If the synthesis algorithm fails to produce a mediator that coordinates the projected behaviours in
order to satisfy the goalGs , then another solution s ′ = { f ′1 , f

′
2 , . . . , f

′
n} is selected and the synthesis

algorithm run again. Currently, the selection of features is only informed that no mediator can be
synthesised. In future work, we will investigate how the synthesis algorithm can guide the selection
of another set of features. If all valid sets of features, i.e. sets of features satisfying the constraints
described in Section 4, have been explored then our collaborative security approach cannot realise
the chosen security control given the available capabilities and another security control must be
chosen. If a mediator can be synthesised for the selected set of features then the security control is
successfully implemented thereby satisfying the requirements.

Example
Let us consider the collaborative robots case study. Fig. 7 and 8 depict the behaviours of NAO and
iRobot Create respectively. Once the features are selected, the behaviour is projected and some
transitions are removed. For example, the transitions say(text) in NAO’s behaviour is removed as
the guarding features, TextToSpeech and will not enabled. The security control that involves moving
the phone to a safe place is specified by the LTL formula ♢location(phone) = location.SAFE. A
mediator must then be synthesised which coordinates the projected behaviours of NAO and iRobot
Create (see Fig. 5) in order to reach a state where the expression location(phone) = location.SAFE

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:14 A. Bennaceur et al.

ALGORITHM 1: SynthesiseMediator
Input: Projected capabilities: Ci=1. .n =

(
Si , Ai , Tri , s0i , Predi , Li

)
, Gs

Output:Mediator: M

1 if
n∧
i=1

Li (s0i) ̸ |= f alse and
n∧
i=1

L1(s0i) |= Gs then

2 s ← NewState();

3 M ←
(
{s }, ∅, ∅, {s },

n⋃
i=1

Predi , L(s) =
n∧
i=1

Li (s0i)
)
;

4 return M ;
5 end

6 while
n⋃
i=1

Si , ∅ do

7 k ← SelectCapabil ity();
8 Sk ← Sk \{s0k };
9 for t : (s0k , ak , sk) ∈ Trk do

10 C′ ← (Sk , Ak , Trk \{t }, sk , Predk , Lk);
11 M ′ =

(
S ′, A′, Tr′, s′0, Pred

′, L′
)
← SynthesiseMediator (Ci=1. .n, i,k , C′, Gs);

12 if M ′ , Nil then
13 s′′ ← NewState();

14 M ←
(
S ′ ∪ {s′′ }, A′ ∪ {ak }, Tr′ ∪ {(s′′, ak , s′0)}, {s

′′ }, Pred′ ∪ Lk (s0k), L
′′
)

15 where L′′ : S ′ ∪ {s′′ } → 2Pred
′∪Lk (s0k) such that L′′(s′′) = Lk (s0k) and

16 L′′(s) = L′(s) ∧ Lk (s0k) for s ∈ S
′;

17 return M ;
18 end
19 end
20 end
21 return Nil;

is true. This mediator is depicted in Fig. 9. The actions are prefixed with the capability names
to avoid ambiguity. The mediator starts by invoking the connect actions on both capabilities.
Note that it is also possible to start by connecting to iRobot Create but in any case the synthesis
algorithm chooses only one sequence of invocations to ensure that the mediator is deterministic.
The mediator can then invoke the actions locate(phone) and pick(phone) based on the assumption
that phone is an object. After the execution of the move(location((NAO))) action by iRobot Create,
its location becomes the location of NAO, and the location of the phone once the drop(phone)
action is executed. Finally, the phone is moved to a safe place once iRobot Create executes the
action move(location.SAFE)). The subsequent actions are executed to return to the initial states.

connect/
Connection

standup/RobotPosture moveToLocation/Navigation
locateObject/ObjectRecognition

⋀ DarknessDetection

pickObject/
RobotPosture

dropObject/
RobotPosturesayText/

TextToSpeech

location(NAO) location(phone)

location(NAO) =
location(phone)

disconnect/
Connection

location(NAO)

Fig. 7. NAO’s behaviour - BNAO

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Supporting Collaborative Security in the Internet of Things 1:15

connect/Connection playSound/Audio

disconnect/Connection moveToLocation/Motion

location(Create)

Fig. 8. iRobot Create’s behaviour - BiRobot

NAO.connect NAO.locateObject

NAO.pickObject
NAO.dropObject location(NAO) =

location(phone)

Create.connect

Create.moveToLocation

Create.move(location.SAFE)

location(NAO) =
location(Create)

location(Create)
= location.SAFE

NAO.disconnectCreate.disconnect
!!

location(NAO)
location(Create)
location(phone)

location(Create)
= location.SAFE

location(Create)
= location.SAFE

location(NAO)
location(Create)

location(NAO)

location(Create) =
location(phone)

Fig. 9. NAO-iRobot Create Mediator

Complexity
In the general case, mediator synthesis is known to be computationally expensive [40]. Let us
consider the synthesis of a mediator M that ensures the goal Gs assuming E, i.e. the mediator
satisfies the formula ϕ ≡ E ⇒ Gs . In other words,M |= ϕ. When ϕ is expressed as an LTL formula,
mediator synthesis may reach complexity of double exponent in the size of ϕ [40]. Yet for safety
formulas as well as subclasses of liveness formulas (e.g., GR(1) [19] or SGR(1) [18]), the synthesis
problem can be solved in polynomial time. Our approach does not aim to improve the synthesis
algorithm per se. Instead, we rely on the extensive work that has been developed in the area of
mediator synthesis and reduce the size of the models provided as input to the synthesis algorithm.
More specifically, by projecting the behaviour associated with the capabilities, we reduce the size
of E and hence the size of ϕ. Furthermore, by simplifying ϕ through projection, we may make it
possible to use polynomial-time techniques to synthesise the mediator.
Finally, most techniques for mediator synthesis do not consider the optimisation of numerical

attributes of the synthesised mediator. Indeed, controller synthesis for more complicated models
(e.g., probabilistic systems) is NP-hard [4].

6 VALIDATION
In this section we present a prototype tool, FICS (Feature-driven medIation for Collaborative
Security), that implements our approach. We report the results of experiments using FICS to
generate mediators for the collaborative robots case study. Finally, we discuss the limitations and
possible enhancements of our framework. Our evaluation covers the following properties of our
approach:

• Feasibility.We provide tool support for composing feature-based capabilities and use it in the
context of the collaborative robots case study to configure and mediate the capabilities of
NAO and iRobot Create automatically.
• Performance.We measure the time to perform the selection of features and synthesise me-
diators in the collaborative robots case study to show that, although theoretically complex,
feature-based composition can be applied at runtime in practical cases.
• Scalability.We show that the use of feature selection can allow mediator synthesis to deal
with an increasing number of capabilities.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:16 A. Bennaceur et al.

Fig. 10. NAO capability in FICS Fig. 11. iRobot Create capability in FICS

We focus on evaluating the composition of capabilities to implement security control and its
applicability at runtime rather than how to monitor domain properties or when to trigger the
composition. We refer the interested reader to related work [35] for an analysis of when to trigger
the composition.

6.1 Implementation
In order to demonstrate the validity of our approach, we implemented the FICS tool and made it
available at http://sead1.open.ac.uk/fics/. FICS takes as input the specifications of a set of capabilities,
each of which provided by the developer of the IoT device, and that of a security control, provided
by a security expert. In other words, FICS focuses on feature selection and mediator synthesis (steps
❶ and ❷ in Fig. 1) while the security control and the capabilities are specified manually. Note that
the tool is equipped with a graphical interface for illustration since the aim is to use some discovery
protocol (e.g., UPnP [28]) to detect the available capabilities and compose them automatically (see
Fig. 1). A capability is added to the capability set by loading its feature model, described using
TVL [15], and the associated behaviour, described in a proprietary XML format. We built upon the
TVL parser provided by Classen and colleagues and available at http://projects.info.unamur.be/tvl/
to extract the normal form of the feature model. We updated the TVL parser to support the analysis
of numerical attributes for feature models in order to manage the quality attributes to be optimised.
During the parsing of the behavioural specification, we check that all actions are guarded by feature
expressions described in the associated feature model. Fig. 10 and 11 illustrate the NAO and iRobot
Create capabilities once they have been parsed while their TVL specifications are available on the
FICS website.
The security control is described using features and attributes, which conform to the names of

the features and attributes used to represent the capabilities as well as an LTL formula representing
its desired behaviour. Fig. 12 illustrates how the security control that involves moving the phone to
a safe place is specified in FICS.

The capabilities available are then automatically composed in order to implement the specified
security control. Fig. 13 gives an overview of the FICS tool. The first step is to formulate feature

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

http://sead1.open.ac.uk/fics/
http://projects.info.unamur.be/tvl/

Supporting Collaborative Security in the Internet of Things 1:17

Fig. 12. Specifying a security control in FICS

Selected FeaturesSynthesised Mediator

no mediator

Translate into a constrained
optimisation problem

Project capabilities

MICS

Choco

FI
C
S

1

2

Security
Control

MOCOP

Selected features

Projected capabilities

Capabilities

Fig. 13. Overview of FICS
Fig. 14. Visualising the selected features and corre-
sponding synthesised mediator in FICS

selection as a MOCOP as described in Section 4 (see Fig. 13-❶). We use an open-source java library
for constraint solving and constraint programming, Choco3, to solve this MOCOP problem and
find the optimal set of features to select.

The next step is to project the capabilities onto the selected features (see Fig. 13-❷). We use the
MICS tool [7] to synthesise a mediator that coordinates the projected capabilities in order to refine
the behaviour of the security control. Note that other mediator synthesis tools can be used but we
chose MICS because we are familiar with the language and data structures and no conversion or
translation of the inputs/outputs is needed during the integration. MICS either generates a mediator
that coordinates the behaviours given as input in order to realise the behavioural specification of
the security control or returns that no such mediator exists. In the former case, the mediator and
the selected features to be enabled are given as output. In the latter case, we select the next valid
set of features. If no more valid sets of features can be found then FICS is unable to realise the
security control given the capabilities provided as input. Fig. 14 illustrates the output of FICS for
the collaborative robots case study when specifying the security control that involves moving the
phone to a safe place while the capabilities of NAO and iRobot Create are available.

3http://choco.emn.fr/

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

http://choco.emn.fr/

1:18 A. Bennaceur et al.

6.2 Experimental Results
This section presents some practical aspects of our approach by reporting on the results of using
FICS to synthesise mediators in the collaborative robots case study.
Table 1 reports the time to perform each composition step (feature selection and mediator

synthesis) in the cases where only NAO’s capability is available and where both the capabilities
of NAO and iRobot Create are available. In both cases, the security control involves moving the
phone to a safe place and its implementation should optimise the speed at which the phone is
moved. In this experiment we consider a setting where the synthesised mediator is deployed on a
MacBook Pro laptop with 2.8 GHz Intel Core i7 processor and 8 GB memory. We also configured
the heap memory of the JVM to the maximum. In both cases the time for selecting the features
and synthesising the mediator is quasi-instantaneous. Yet in the case where both the capabilities
of NAO and iRobot Create are available, the speed at which the phone is moved into the safe is
higher, thereby optimising the implementation of the security control.

Table 1. Processing time (in milliseconds) for each step

NAO alone (n = 1) NAO and iRobot Create (n = 2)

n∏
i=1
|Fi | 28 28 × 9

Time for feature selection (ms) 5 ms 6 ms

n∏
i=1
|States(Ci) | 6 6 × 3

Time for synthesis (ms) 2 ms 5 ms

To evaluate the benefit of using features within mediator synthesis empirically, we proceeded
with further experiments by increasing the number of capabilities To generate the capabilities, we
introduced multiple NAO’s capabilities with variable values for the Speed attribute. We also added
a Distance attribute representing the distance between NAO and the phone, which we also varied
across the capabilities. We then kept the same security control involving moving the phone to
a safe place. We measured the time necessary to synthesise a mediator in both the cases where
feature selection is used and where it is not. We repeated the synthesis 30 times for each case and
computed the mean time.
In the first experiment, the security control does not specify any attribute to optimise. Fig. 15

shows the time for synthesising mediators in relation to the number of capabilities where feature
selection is used and where it is not. The mediation with feature selection does not go beyond
5 capabilities as the state space reaches 285 ≈ 1.7 × 107 possible configurations. Without any
optimisation, the number of valid sets of features is very high and the feature selection tries to
compute all solutions before invoking the mediator synthesis. One way around this is to use the
constraint solver to find one valid set of features and then invoke the synthesis. If the synthesis
does not succeed then the constraint solver resumes and provides another solution. This process
allows the synthesis to perform better as shown in Fig. 15. Feature-based mediation is penalised
in this case as the number of optional features is high. However, this is the case only when no
optimisation is involved.

In the second experiment, the security control specifies one attribute to optimise (mono-objective)
or two attributes (multi-objective). Fig. 16 shows the time for synthesisingmediators according to the
number of capabilities when using feature selection with two attributes (both Speed and Distance)

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Supporting Collaborative Security in the Internet of Things 1:19

Fig. 15. Processing time according to the number of capability (without attribute optimisation)

Fig. 16. Processing time according to the number of capability (with attribute optimisation)

or a single attribute (only Speed) as well as without feature selection. While the processing time
always increases proportionally to the number of capabilities, it is much slower when considering
feature selection. The time for mediator synthesis without using feature selection or using feature
selection with multi-objective optimisation can be fitted to an exponential curve but the former
soars with much fewer capabilities. In the case of feature selection with single-attribute optimisation,
the curve can be fitted to a third-order polynomial curve. As the search for the set of feature is
directed by the attribute to optimise, the algorithm quickly converges to the single set of features
optimising the Speed attribute. During mediator synthesis, only the behaviour associated with
a single capability has to be explored. Without feature selection, mediator synthesis runs out
of memory with 10 capabilities. Indeed, the state space is 610 = 60466176. Although on-the-fly
reduction (e.g., [36]) can be used, the mediator synthesis algorithm still needs to explore a large
state space, which rapidly increases as capabilities are added. This evaluation provides preliminary
evidence that using feature makes the composition more scalable in common cases. Indeed, it is
more likely that there needs to be some optimisation when implementing a security control [56].

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:20 A. Bennaceur et al.

6.3 Discussion
Collaborative security aims to realise security controls according to the capabilities available at
runtime. Therefore, it can be used to react rapidly to changes in the environment, changes in
assets under protection and their values, and the discovery of new threats and vulnerabilities
using the capabilities already available. It can also be used to achieve defence in depth [45] by
exploiting alternative implementations of security controls. It is applicable to software systems
made up of multiple, potentially heterogeneous, devices that need to be composed to satisfy specific
requirements. Therefore, it can be applied in the IoT, cyber-physical systems or service-oriented
systems alike. The framework described in this paper presents the core of our collaborative security
approach. We made several simplifying assumptions in order to implement and empirically evaluate
this framework. In the following we discuss how some of these assumptions can be relaxed.
Can collaboration be applied to other types of requirements besides security? Our approach for
composing feature-based capabilities can be used in a broader and more general context. It can
provide a means to opportunistically compose the multiple capabilities in order to satisfy given
requirements, be they security-related or not. Yet security exacerbates and opens up many issues
that make collaboration more challenging. First, security involves a great degree of change, which
is not only technical (e.g., the discovery of new attacks and vulnerabilities), but also organisational
or business related (e.g., new security policies and business strategies). Reacting to these changes
rapidly is paramount and is key tominimising the damage of discovered attacks. By opportunistically
using available resources, collaboration offers the possibility to react to change in a timely manner.
Assurance is also more challenging when it comes to security. Not only do we need to ensure that
security and quality requirements are met but also that no vulnerabilities are introduced. However,
it is not easy to prove that the collaborations realised do not create any new vulnerabilities. Our
approach can be enhanced by adding constraints to avoid combinations of features that may lead to
some vulnerability based on a repository of common vulnerabilities such as Common Vulnerabilities
and Exposures (CVE)4 or Common Vulnerability Scoring System (CVSS)5. Likewise, anti-goals
(attacker’ goals) [50] whose satisfaction must be stopped by the mediator can be integrated. Hence,
the formulation of feature selection as a multi-objective constrained optimisation problem makes it
easy to extend and improve the solution by simply adding additional constraints.
What are the limitations of the collaborative security framework? In our collaborative security
approach we are given the specification of a security control and then seek a subset of capabilities
and an associated mediator to implement this security control. Therefore, we do not create or
invent security controls based on the capabilities available but only use the capabilities available to
implement specified security controls. A possible enhancement is to discover new security controls
that were not specified at design time by exploiting security models such as attack trees.
We also assume a shared vocabulary of features when specifying capabilities and security

controls. This assumption can be relaxed by attaching semantic annotations to the features and
using ontologies to reason about and relate the different features. In this case, the ontology becomes
the new shared vocabulary, as demonstrated in our previous work [7].

In our collaborative security approach, iterations between feature selection and mediator synthe-
sis are independent. We need to investigate more efficient ways to trace back the causes of failure
in the synthesis and inform the feature selection. Moreover, we can envision learning from both
success and failures of mediator synthesis to guide feature selection. One way is to explore how
the different sets of features relate to each other and incrementally synthesise the mediator, in a
way similar to the work of Greenyer and colleagues [20].

4http://cve.mitre.org
5http://www.first.org/cvss

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

http://cve.mitre.org
http://www.first.org/cvss

Supporting Collaborative Security in the Internet of Things 1:21

Finally, we also assume that individual capabilities are trustworthy and that they implement the
capabilities advertised. However, the capabilities may deviate from their specified behaviours either
due to faults or malicious intents. Furthermore, the mediators themselves can be attacked. We are
investigating argumentation as a means to assess the risks and seek alternative collaborations to
ensure the satisfaction of some requirements even in the case of misbehaviour [55].
What can be the role of humans in collaborative security? Human agents can play an active role in
satisfying security requirements, acting as sensors, actuators, or decision makers [21]. Yet, human
behaviour is more difficult to analyse than the behaviours of software components. The work of
Cámara et al. [10] provide a formal model to represent and reason about human behaviour in
order to develop adaptation strategies involving both human agents (acting as actuators only)
and software components. Some parameters for this model (e.g., stress levels) can be obtained
using wearable sensors. Nevertheless, a richer model may be necessary to involve human agents as
decision makers when implementing security controls.

7 RELATEDWORK
With the great potential and opportunities of the IoT come a whole set of challenges of which a
complete survey is beyond the scope of this paper. We refer the interested reader to some surveys
on the subject [1, 3]. In this paper we focus in particular on composition and security.
One of the fundamental challenges of the IoT is to compose the capabilities of the plethora of

devices available [23]. This challenge is exacerbated when heterogeneity spans the application,
middleware, and network layers. At the application layer, devices may exhibit disparate data types
and operations, and may have distinct business logics. At the middleware layer, they may rely on
different communication protocols, which define disparate data representation formats and induce
different architectural constraints. At the network layer, data may be encapsulated differently
according to the network technology in place. While standardisation efforts such as HyperCat [22],
AllJoyn [33], and IoTivity [34] are suggested as potential solutions at the network and middleware
layers, the diversity of IoT applications requires additional effort to deal with semantic interop-
erability at the application layer [23]. In previous work [7], we developed an approach based on
ontology reasoning and constraint programming to synthesise application-layer mediators automat-
ically. We then extend the approach with automatically generated message translators to provide
a unified mediation framework [5] that deals with interoperability at both the application and
middleware layers. However, this mediation framework ensures the correct composition between
already selected components (capabilities). The collaborative security framework we present is this
paper is requirement driven and therefore is able to select and configure the capabilities automati-
cally. Letier and Heaven [32] propose to use mediator (controller) synthesis to derive a machine
specification that satisfies a set of of requirements in a given environments. Partial specifications
are synthesised for individual requirements, then combined to form a specification that satisfies
the set of requirements. Hence, combining requirement modelling and mediator synthesis help in
dealing with multiple requirements of the system. Rather than the synthesis of one specification
to satisfy requirements, our approach focuses on the configuration and mediation of the existing
behavioural specification. Cavallaro et al. [11] propose to extend the KAOS goal models in order to
define a specifications of services, which are then instantiated at runtime. In this case, mediators
are used to compensate for the differences between the discovered service instance and the service
specification rather than to select the services and coordinate the associated behaviours.

Existing solutions for the generation of mediators require exploring all possible combination of
behaviours. As a result, they can rapidly become prohibitive when dealingwith alternative selections
of components, and the corresponding behaviours. By first selecting the features to be enabled on a
subset of components, then projecting the behaviours of the selected components onto the enabled

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:22 A. Bennaceur et al.

features, our approach reduces the analysis space for the mediator synthesis. Rodrigues et al. [41]
also assemble components at the architectural level considering the components’ interfaces, then
analyse the composed behaviour of the selected (bounded) interfaces. Nevertheless, the approach
assumes that the components to assemble are interoperable, i.e. they can be bound together and
interact correctly without any mediator. Nejati et al. [38] combines both structural and behavioural
analysis for feature composition. Our approach also reasons about both structural and behavioural
properties but the synthesis of mediators enables rather than simply checks the desirable behavioural
properties. Greenyer et al. propose to synthesise mediators incrementally using the commonalties of
different products (a.k.a. feature configuration) in a product line [20]. However, they do not consider
the selection, let alone the optimisation of the selection, of features to satisfy given requirements.
Using multiple components to develop secure systems has been the subject of a great deal

of work, especially at the network level [37]. However, these components often have similar
capabilities and are designed to collaborate in order to implement security controls. In our approach,
the IoT devices are not specifically designed or intended for security purposes. Evidence of the
relevance of such a process has been given by the use of some toy robots such as Spykee for home
protection [51]. However, as the number, complexity, and heterogeneity of connected devices and
people in the IoT increases, the attack surface is widened and uncertain [17] and it also becomes
more difficult to scope the security problem by specifying the stakeholders involved, the assets
and their values, and the potential threats [21]. Existing work focuses on securing the interaction
between the IoT devices at the network, middleware, and application layers [44], and targeting
only information security. But as technology becomes more entwined with the physical world,
safeguarding personnel, information, equipment, IT infrastructure, facilities and other material
assets become paramount [12]. Our collaborative security framework leverages the capabilities of
IoT devices in order to provide adaptive software solution for physical security– delivering security
‘by’ the IoT rather than security ‘of ’ the IoT.

To deal with the inherent mobility of the devices and people as well as the diversity of applications
in the IoT, software systems must adapt their structure, behaviour, and security mechanisms [13].
Adaptive security (sometimes called self-protection [56]) aims to enable systems to vary their
protection in the face of changes in their operational environment. A requirements-driven approach
for adaptive security enables the analysis and reasoning about the cost and benefit of the security
controls. Salehie et al. [43] propose an approach in which a runtime model that combines goals,
threats, and assets models is used to evaluate the cost and benefit of applying each security
control and choosing the most appropriate one. The focus of adaptive security has mainly been
on the effective selection of security controls according to contextual information. Rather than
what security controls need to be implemented, our work addresses how security controls can be
implemented. Furthermore, while techniques for adaptive security assume the security control to
be implemented, we assume only a specification of the security control while its implementation is
realised at runtime by making the available IoT devices collaborate.

8 CONCLUSIONS & FUTUREWORK
The collaborative security framework described in this paper provides a systematic, tool-supported
approach for satisfying security requirements through the composition of multiple capabilities.
Our contribution stems from the synergetic use of feature modelling and mediator synthesis and
its application to security. Our approach relies on rich, multiple models so that many facets of
capabilities and requirements can be captured and analysed. The main advantage of the approach
is to satisfy requirements by introducing security controls without the need to rebuild or even
deploy additional devices. We implemented a collaborative security framework that computes
the optimal set of features to be enabled on a subset of capabilities in order to realise a security

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Supporting Collaborative Security in the Internet of Things 1:23

control, then generates a mediator that composes the selected capabilities in order to satisfy the
behavioural specification of the chosen security control. We used this framework to make multiple
robots collaborate in order to protect a mobile phone from theft. We showed that the performance
for realising collaboration makes it easily applicable at runtime. Our results provide initial evidence
that the IoT can play an important role in enabling security by offering the infrastructure to connect
multiple devices on the fly in order to implement adequate security controls.
We also identified several areas for future work. We will investigate the impact of the trust-

worthiness of individual capabilities on the collaboration. The goal is to ensure the satisfaction of
security requirements even when some capabilities are corrupted or compromised. We also aim to
relax some of the assumptions of our framework and improve its performance. For example, we are
investigating more efficient ways to iterate between the feature selection and the featured-based
synthesis by tracing back to the causes of failure in the mediator synthesis and informing the feature
selection. We are also planning to explore how to include human agents within the collaborative
behaviour. We also plan to deploy our framework in a smart home (or smart city) with a large
number of capabilities for a prolonged period of time and see how it scales and how people react
to it. We believe that the work on collaborative security is a fertile research area that holds great
promise for securing increasingly prevalent cyber-physical systems.

ACKNOWLEDGMENTS
The authors would like to thank Michael Jackson and Valérie Issarny for their valuable feedback
and insightful comments. We acknowledge SFI grant 13/RC/2094, QNRF NPRP 5-079-1-018, and
ERC Advanced Grant no. 291652 (ASAP).

REFERENCES
[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash. 2015. Internet of Things: A Survey on Enabling

Technologies, Protocols, and Applications. IEEE Comm. Surveys Tutorials 17, 4 (2015), 2347–2376.
[2] Mikael Asplund and Simin Nadjm-Tehrani. 2016. Attitudes and Perceptions of IoT Security in Critical Societal Services.

IEEE Access 4 (2016), 2130–2138.
[3] Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The Internet of Things: A survey. Computer Networks 54, 15

(2010), 2787–2805.
[4] Christel Baier, Marcus Größer, Martin Leucker, Benedikt Bollig, and Frank Ciesinski. 2004. Controller Synthesis for

Probabilistic Systems. In Proc. of the 3rd Int. Conf. on Theoretical Computer Science, TCS. 493–506.
[5] Amel Bennaceur, Emil Andriescu, Roberto Speicys Cardoso, and Valérie Issarny. 2015. A Unifying Perspective on

Protocol Mediation: Interoperability in the Future Internet. J. of Internet Services and Applications 6, 1 (2015), 12:1–12:15.
[6] Amel Bennaceur, Arosha K. Bandara, Michael Jackson, Wei Liu, Lionel Montrieux, Thein Than Tun, Yijun Yu, and

Bashar Nuseibeh. 2014. Requirements-driven mediation for collaborative security. In 9th Int. Symp. on Softw. Eng. for
Adaptive and Self-Managing Syst., SEAMS. 37–42.

[7] Amel Bennaceur and Valérie Issarny. 2015. Automated Synthesis of Mediators to Support Component Interoperability.
IEEE Trans. Softw. Eng. 41, 3 (2015), 221–240.

[8] Patrik Berander and Anneliese Andrews. 2005. Requirements Prioritization. In Engineering and Managing Software
Requirements, Aybüke Aurum and Claes Wohlin (Eds.). Springer Berlin Heidelberg, 69–94.

[9] Rodney Brooks. 2009. Robots Everywhere!. In Computing Research That Changed the World: Reflections and Perspectives,
CRASS ’09. Article 13, 39 pages.

[10] Javier Cámara, Gabriel A Moreno, and David Garlan. 2015. Reasoning about Human Participation in Self-Adaptive
Systems. In Proc. of the 10th Int. Symp. on Softw. Eng. for Adaptive and Self-Managing Syst., SEAMS. 146–156.

[11] Luca Cavallaro, Pete Sawyer, Daniel Sykes, Nelly Bencomo, and Valérie Issarny. 2012. Satisfying requirements for
pervasive service compositions. In Proc. of the 7th Workshop on Models@run.time. 17–22.

[12] Vinton G. Cerf. 2015. Prospects for the Internet of Things. XRDS 22, 2 (Dec. 2015), 28–31.
[13] Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, and Jeff Magee et al. 2009. Software Engineering

for Self-Adaptive Systems: A Research Roadmap. In Softw. Eng. for Self-Adaptive Syst. [Dagstuhl Seminar]. 1–26.
[14] Edmund M. Clarke and Jeannette M. Wing. 1996. Formal Methods: State of the Art and Future Directions. Comput.

Surveys 28, 4 (1996), 626–643.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:24 A. Bennaceur et al.

[15] Andreas Classen, Quentin Boucher, and Patrick Heymans. 2011. A text-based approach to feature modelling: Syntax
and semantics of TVL. Sci. Comput. Program. 76, 12 (2011), 1130–1143.

[16] Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, Axel Legay, and Jean-François Raskin.
2013. Featured Transition Systems: Foundations for Verifying Variability-Intensive Systems and Their Application to
LTL Model Checking. IEEE Trans. Softw. Eng. 39, 8 (2013), 1069–1089.

[17] M.Journal Covington and R. Carskadden. 2013. Threat implications of the Internet of Things. In Cyber Conflict (CyCon),
2013 5th Intl. Conf. on. 1–12.

[18] Nicolás D’Ippolito, Víctor A. Braberman, Nir Piterman, and Sebastián Uchitel. 2013. Synthesizing nonanomalous
event-based controllers for liveness goals. ACM Trans. Softw. Eng. Methodol. 22, 1 (2013).

[19] Rüdiger Ehlers. 2011. Generalized Rabin(1) Synthesis with Applications to Robust System Synthesis. In Proc. of NASA
Formal Methods - Third Int. Symp., NFM. 101–115.

[20] Joel Greenyer, Christian Brenner, Maxime Cordy, Patrick Heymans, and Erika Gressi. 2013. Incrementally synthesizing
controllers from scenario-based product line specifications. In Proc. of the Joint Meeting of the Euro. Softw. Eng. Conf.
and the Symp. on the Found. of Softw. Eng., ESEC/FSE. 433–443.

[21] Charles B. Haley, Robin C. Laney, Jonathan D. Moffett, and Bashar Nuseibeh. 2008. Security Requirements Engineering:
A Framework for Representation and Analysis. IEEE Trans. Softw. Eng. 34, 1 (2008).

[22] HyperCat Consortium. 2016. HyperCat - Home. (2016). http://www.hypercat.io/.
[23] IERC. 2015. IoT Semantic Interoperability. IERC-European Research Cluster on the Internet of Things.
[24] IFR Statistical Department. 2014. World Robotics 2014 - Service Robots. Technical Report. IFR - Int. Federation of

Robotics.
[25] Paola Inverardi and Massimo Tivoli. 2013. Automatic Synthesis of Modular Connectors via Composition of Protocol

Mediation Patterns. In Proc. of the 35th Int. Conf. on Softw. Eng., ICSE. 3–12.
[26] Michael Jackson and Pamela Zave. 1995. Deriving Specifications from Requirements: An Example. In Proc. of the 17th

Int. Conf. on Softw. Eng., ICSE. 15–24.
[27] Michael C. Jaeger, Gregor Rojec-Goldmann, and Gero Mühl. 2005. QoS Aggregation in Web Service Compositions. In

Proc. of the IEEE Int. Conf. on e-Technology, e-Commerce, and e-Services, EEE. 181–185.
[28] Michael Jeronimo and Jack Weast. 2003. UPnP Design by Example :A Software Designer’s Guide to Universal Plug and

Play. Intel Press.
[29] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer Peterson. 1990. Feature-oriented domain

analysis (FODA) feasibility study. Technical Report. DTIC Document.
[30] Richard M. Karp. 1972. Reducibility among combinatorial problems. In Proc. of a Symp. on the Complexity of Computer

Computations. 85–103.
[31] Robert M. Keller. 1976. Formal Verification of Parallel Programs. Commun. ACM 19, 7 (1976), 371–384.
[32] Emmanuel Letier and William Heaven. 2013. Requirements modelling by synthesis of deontic input-output automata.

In 35th Int. Conf. on Softw. Eng., ICSE. 592–601.
[33] Linux Foundation. 2016. AllJoyn: An open source software framework. (2016). https://allseenalliance.org/framework.
[34] Linux Foundation. 2016. IoTivity: open source software framework. (2016). https://www.iotivity.org/.
[35] Valerio Panzica La Manna, Joel Greenyer, Carlo Ghezzi, and Christian Brenner. 2013. Formalizing correctness criteria

of dynamic updates derived from specification changes. In Proc. of the 8th Int. Symp. on Softw. Eng. for Adaptive and
Self-Managing Syst., SEAMS. 63–72.

[36] Radu Mateescu, Pascal Poizat, and Gwen Salaün. 2012. Adaptation of Service Protocols Using Process Algebra and
On-the-Fly Reduction Techniques. IEEE Trans. Softw. Eng. 38, 4 (2012), 755–777.

[37] Guozhu Meng, Yang Liu, Jie Zhang, Alexander Pokluda, and Raouf Boutaba. 2015. Collaborative Security: A Survey
and Taxonomy. ACM Comput. Surv. 48, 1, Article 1 (July 2015), 42 pages.

[38] Shiva Nejati, Mehrdad Sabetzadeh, Marsha Chechik, Steve M. Easterbrook, and Pamela Zave. 2012. Matching and
Merging of Variant Feature Specifications. IEEE Trans. Softw. Eng. 38, 6 (2012), 1355–1375.

[39] Amir Pnueli. 1977. The Temporal Logic of Programs. In Proc. of the 18th Annual Symp. on Foundations of Computer
Science. 46–57.

[40] Amir Pnueli and Roni Rosner. 1989. On the Synthesis of a Reactive Module. In Proc. of the 16th Annual Symp. on
Principles of Programming Languages, POPL. 179–190.

[41] Pedro Rodrigues, Jeff Kramer, and Emil Lupu. 2015. On Re-Assembling Self-Managed Components. In Proc of the Int.
Symp. on Integrated Network and Service Management, IM. 727–733.

[42] F. Rossi, P. Van Beek, and T. Walsh. 2006. Handbook of constraint programming. Vol. 35. Elsevier Science.
[43] Mazeiar Salehie, Liliana Pasquale, Inah Omoronyia, Raian Ali, and Bashar Nuseibeh. 2012. Requirements-driven

adaptive security: Protecting variable assets at runtime. In Proc. of the 20th IEEE Int. Req. Eng. Conf., RE. 111–120.
[44] Sabrina Sicari, Alessandra Rizzardi, Luigi Alfredo Grieco, and Alberto Coen-Porisini. 2015. Security, privacy and trust

in Internet of Things: The road ahead. Computer Networks 76 (2015), 146–164.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

http://www.hypercat.io/
https://allseenalliance.org/framework
https://www.iotivity.org/

Supporting Collaborative Security in the Internet of Things 1:25

[45] Martin R. Stytz. 2004. Considering Defense in Depth for Software Applications. IEEE Security & Privacy 2, 1 (2004),
72–75.

[46] Tian Huat Tan, Manman Chen, Jun Sun, Yang Liu, Étienne André, Yinxing Xue, and Jin Song Dong. 2016. Optimizing
selection of competing services with probabilistic hierarchical refinement. In Proc. of the 38th Int. Conf. on Softw. Eng.,
ICSE. 85–95.

[47] Roman Vaculín, Roman Neruda, and Katia P. Sycara. 2009. The process mediation framework for semantic web services.
Int. J. of Agent-Oriented Softw. Eng., IJAOSE 3, 1 (2009), 27–58.

[48] Rob van der Meulen and Janessa Rivera. 2014. Gartner Says a Typical Family Home Could Contain More Than 500 Smart
Devices by 2022. Technical Report. Gartner. http://www.gartner.com/newsroom/id/2839717

[49] Axel van Lamsweerde. 2009. Requirements Engineering: From System Goals to UML Models to Software Specifications.
Wiley.

[50] Axel Van Lamsweerde, Simon Brohez, Renaud De Landtsheer, and David Janssens. 2003. From system goals to intruder
anti-goals: attack generation and resolution for security requirements engineering. Proc. of RHAS 3, 49–56.

[51] Peter Wayner. 2010. Protecting Your Home From Afar With a Robot. The New York Times, Online. (November 2010).
http://www.nytimes.com/2010/11/04/technology/personaltech/04basics.html

[52] Steve H Weingart. 2000. Physical security devices for computer subsystems: A survey of attacks and defenses. In Int.
Workshop on Cryptographic Hardware and Embedded Syst. Springer, 302–317.

[53] Gio Wiederhold. 1992. Mediators in the Architecture of Future Information Systems. IEEE Computer 25, 3 (1992),
38–49.

[54] Daniel M. Yellin and Robert E. Strom. 1997. Protocol Specifications and Component Adaptors. ACM Trans. on
Programming Languages and System, TOPLAS 19, 2 (1997), 292–333.

[55] Yijun Yu, Virginia N. L. Franqueira, Thein Than Tun, Roel Wieringa, and Bashar Nuseibeh. 2015. Automated analysis
of security requirements through risk-based argumentation. J. of Syst. and Softw. 106 (2015), 102–116.

[56] Eric Yuan, Naeem Esfahani, and Sam Malek. 2014. A Systematic Survey of Self-Protecting Software Systems. ACM
Trans. on Autonomous and Adaptive Syst., TAAS 8, 4 (2014), 17.

[57] Liangzhao Zeng, Boualem Benatallah, Anne H. H. Ngu, Marlon Dumas, Jayant Kalagnanam, and Henry Chang. 2004.
QoS-Aware Middleware for Web Services Composition. IEEE Trans. Softw. Eng. 30, 5 (2004), 311–327.

Received February 2007; revised March 2009; accepted June 2009

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

http://www.gartner.com/newsroom/id/2839717
http://www.nytimes.com/2010/11/04/technology/personaltech/04basics.html

	Feature-driven mediator synthesis: supporting collaborative security in the internet of things
	Abstract
	1 Introduction
	2 Overview
	2.1 Motivating Example: Collaborative Robots for Home Security
	2.2 Collaborative Security à la Michael Jackson

	3 Preliminaries
	3.1 Modelling Requirements and Security Controls using KAOS
	3.2 Modelling Capabilities using Featured Transition Systems

	4 Feature Selection as a Multi-Objective Constrained Optimisation Problem
	5 Feature-based Mediator Synthesis
	6 Validation
	6.1 Implementation
	6.2 Experimental Results
	6.3 Discussion

	7 Related Work
	8 Conclusions & Future Work
	Acknowledgments
	References

