
X-Search: Revisiting Private Web Search using Intel SGX
Sonia Ben Mokhtar

LIRIS, CNRS, University of Lyon
Lyon, France

sonia.benmokhtar@liris.cnrs.fr

Antoine Boutet
Univ. of Lyon, Inria, INSA Lyon, CITI

Lyon, France
antoine.boutet@insa-lyon.fr

Pascal Felber
University of Neuchâtel
Neuchâtel, Switzerland
pascal.felber@unine.ch

Marcelo Pasin
University of Neuchâtel
Neuchâtel, Switzerland

marcelo.pasin@unine.ch

Rafael Pires
University of Neuchâtel
Neuchâtel, Switzerland
rafael.pires@unine.ch

Valerio Schiavoni
University of Neuchâtel
Neuchâtel, Switzerland

valerio.schiavoni@unine.ch

ABSTRACT

�e exploitation of user search queries by search engines is at the
heart of their economic model. As consequence, o�ering private
Web search functionalities is essential to the users who care about
their privacy. Nowadays, there exists no satisfactory approach
to enable users to access search engines in a privacy-preserving
way. Existing solutions are either too costly due to the heavy use
of cryptographic mechanisms (e.g., private information retrieval
protocols), subject to a�acks (e.g., Tor, TrackMeNot, GooPIR) or
rely on weak adversarial models (e.g., PEAS). �is paper introduces
X-Search, a novel private Web search mechanism building on the
disruptive So�ware Guard Extensions (SGX) proposed by Intel. We
compare X-Search to its closest competitors, Tor and PEAS, using
a dataset of real web search queries. Our evaluation shows that: (1)
X-Search o�ers stronger privacy guarantees than its competitors as
it operates under a stronger adversarial model; (2) it be�er resists
state-of-the-art re-identi�cation a�acks; and (3) from the perfor-
mance perspective, X-Search outperforms its competitors both in
terms of latency and throughput by orders of magnitude.

KEYWORDS

Middleware, security, SGX, web search, privacy
ACM Reference format:

Sonia Ben Mokhtar, Antoine Boutet, Pascal Felber, Marcelo Pasin, Rafael
Pires, and Valerio Schiavoni. 2017. X-Search: Revisiting Private Web
Search using Intel SGX. In Proceedings of Middleware ’17, Las Vegas, NV,
USA, December 11–15, 2017, 11 pages.
DOI: 10.1145/3135974.3135987

1 INTRODUCTION

Web search is with no doubt the most widely used online service,
with more than 3.5 billion queries sent on a daily basis to Google
alone. �ese queries are generally stored by search engines to
analyze user behavior and to personalize responses according to
pro�les inferred from the past queries of the users [17, 23]. �ey

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor or a�liate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
Middleware ’17, Las Vegas, NV, USA
© 2017 ACM. 978-1-4503-4720-4/17/12. . . $15.00
DOI: 10.1145/3135974.3135987

are at heart of the economic model of online services, which heav-
ily relies on (personalized) advertising [40]. However, as pointed
out by numerous studies, the collection and exploitation of search
queries opens a number of privacy threats as they can disclose sen-
sitive information about individuals (e.g., their age, sex, religious
or political preferences, sexual orientation) [6].

To deal with this issue, a number of solutions enabling the users
to query search engines in a privacy preserving manner have been
proposed in the literature. �ese solutions can be classi�ed in three
categories according to the guarantees they o�er to the users.

�e �rst category of solutions are those enforcing unlinkability
between a user and her search query. �e most popular approaches
in this category are anonymous communication protocols (e.g.,
Tor [10], Dissent [8, 37], RAC [4]). �ese solutions are however
limited for two main reasons: �rst, they typically su�er from poor
performance because of the heavy cryptographic mechanisms they
rely on; second, despite ensuring anonymity of the requester, it has
been shown in [30] that the actual content of search queries may
be su�cient to link back to the identity of the user.

To overcome this limitation, a second category of solutions aim
at enforcing indistinguishability between user pro�les/queries. To
that end, they obfuscate user preferences/pro�le in such a way that
the search engine cannot distinguish between a user’s real inter-
ests and fake ones (e.g., Track me not [19], GooPIR [11]). �ese
approaches generally operate by sending fake queries (also called
dummy queries) on behalf of the user. It has been shown [31], how-
ever, that the external resources used for generating fake queries
(e.g., RSS feeds, dictionaries) makes it possible for search engines to
easily distinguish fake from real tra�c. Combination of unlinkabil-
ity and indistinguishability has also been proposed in the literature,
yet the only existing solution that we are aware of (PEAS [32])
assumes a weak adversarial model of non-colluding proxy servers.

�e last category of solutions are those enabling private infor-
mation retrieval (PIR), e.g., [24, 28]). �ese approaches rely on
specialized search engines implementing cryptographic techniques
(e.g., homomorphic encryption) that enable to answer a user re-
quest without having access to its content. �ese techniques are,
however, still unpractical due to their limited performance with
response times in the order of seconds for very large data stores [2],
which is the case of search engines.

Based on these considerations, it appears clearly that to fully
support privacy-preserving Web search one must address two main
challenges. �e �rst one is to provide a practical and secure un-
linkability protocol, i.e., a protocol enabling the protection of the

ar
X

iv
:1

80
5.

01
74

2v
1

 [
cs

.D
C

]
 4

 M
ay

 2
01

8

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA S. Ben Mokhtar, A. Boutet, P. Felber, M. Pasin, R. Pires, and V. Schiavoni

identity of the requester in a more realistic adversarial model, with-
out compromising the interactiveness between the user and the
search engine. �e second one is to provide an e�ective indis-
tinguishability protocol that generates realistic fake queries, i.e.,
di�cult to distinguish from real queries.

�is paper contributes X-Search, a novel privacy proxy en-
abling Internet users to access Web search engines in a privacy-
preserving manner. X-Search relies on Intel so�ware guard ex-
tensions (SGX) [9], a hardware technology that provides a trusted
execution environment able to perform secure computations within
an “enclave”. Instead of submi�ing her queries directly to the search
engine, a user sends them to the X-Search proxy to execute them
on her behalf. �e proxy executes a�ested code in a trusted SGX
enclave (see §2.3 for details on the guarantees provided by SGX).
�e queries are encrypted while outside the enclave, and only acces-
sible as plain text from within. �e X-Search proxy then generates
an obfuscated query by aggregating k random past queries and the
original one using the logical OR operator in such a way that the
search engine is not able to distinguish which one is the original
query. As the obfuscated scheme can alter the results returned by
the search engine by mixing results for the original query with
results for the additional aggregated past queries, the X-Search
proxy �lters results to only forward to the user the results related
to the initial query.

We evaluate X-Search from three perspectives: privacy, accuracy,
and performance. From the privacy perspective, we analytically
show that X-Search o�ers stronger privacy guarantees than its
competitors as it operates under a stronger adversarial model. Fur-
thermore, we experimentally demonstrate using a data set of real
search queries that X-Search is more resilient to state-of-the-art
re-identi�cation a�acks than PEAS (by 30% in average). From the
accuracy perspective, we show that the impact of the obfuscation
scheme of X-Search remains limited. For instance, with two fake
queries in the obfuscated query, the user retrieves more than 80%
of the results returned for the initial query. From the performance
perspective, we show that X-Search outperforms its competitors
both in terms of latency and throughput. Speci�cally, the through-
put of X-Search is one order of magnitude higher than the one of
PEAS and two orders of magnitude higher than the one of Tor.

�e contributions of X-Search are as follows. First, we present a
novel architecture to allow privacy-preserving Web searches that ex-
ploits Intel SGX to operate under stronger adversarial models than
existing systems in literature. Second, we contribute a novel query
obfuscation mechanism. �ird, we present the implementation
choices of our full prototype. Finally, we contribute an extensive
evaluation, both analytically and experimentally using real-world
datasets.

�e remainder of the paper is organized as follows. We �rst intro-
duce background concepts and overview related work in Section 2.
�en we present the considered adversary model in Section 3 before
presenting our X-Search proposed protocol in Section 4. Finally, we
describe the considered experimental setup and the evaluation of
X-Search in Section 5 and Section 6, respectively. Section 7 presents
our conclusions.

2 BACKGROUND AND RELATEDWORK

We start by describing in this section the related work in private
Web search (Section 2.1). �en, we discuss the limitations of existing
solutions (Section 2.2). Finally, we present Intel so�ware guard
extensions (SGX) and discuss how this novel technology can be
used to improve the state of research in the �eld of private Web
search (Section 2.3).

2.1 Private Web Search

Private Web search has been an active research area in the last
decade in order to counterbalance the numerous threats open due
to the oversharing of users’ search queries by search engines. �is
research �eld is likely to gain even more a�ention due to the re-
cent legislation change in the United States, which enable ISPs to
sell user browsing history without their consent.1 In this context,
existing solutions to private Web search can be classi�ed in three
main categories. �e �rst two categories (presented respectively
in Sections 2.1.1 and 2.1.2) enable clients to use existing search en-
gines while o�ering them additional privacy guarantees. �e third
category (see in Section 2.1.3) includes alternative search engines
implementing speci�c privacy-preserving protocols.

2.1.1 Enforcing unlinkability. �is category of solutions includes
a set of protocols enabling users to send their search queries anony-
mously to a search engine, thus enforcing unlinkability between
the user identity (e.g., IP address) and her query.

�e most popular protocol among these solutions is Tor [10], an
implementation of the Onion Routing protocol [15]. Similarly to
Onion Routing, Tor sends each query through multiple nodes using
a cryptographic protocol. In this protocol, queries are encrypted
using multiple keys of randomly selected nodes (creating an “onion”
with multiple layers) and routed through these nodes. �en, each
node deciphers the received cipher text (hence removing the outer-
most layer of the onion) and forwards it to the next node until the
onion reaches the exit node. �e exit node retrieves the query and
sends it to the search engine on behalf of the user. �is protocol
assumes the participating relays to faithfully forward the onions,
which might not be true as some may behave sel�shly (e.g., by
dropping onions) or even maliciously (e.g., by injecting fake tra�c
to slow down the system).

RAC [4] overcome these limitations, by enabling anonymous
communication in presence of malicious and sel�sh nodes. In this
protocol, nodes are organized on several virtual rings such that,
for a given ring, a node has a predecessor node and a successor
node. A node might be part of several rings and thus have mul-
tiple predecessors and successors. To ensure that no message is
dropped by a freerider, nodes have to broadcast all messages they
relay. Broadcast messages have to circulate through all nodes in
the ring such that if a node does not receive a message from one
of its predecessors, it considers this predecessor as a freerider. �e
modi�cations made by RAC su�er from performance limitations,
achieving a throughput that is orders of magnitude lower than Tor.

Another robust solution to anonymous communication is the
Dissent protocol [8, 37]. �is protocol enforces accountability in

1h�p://www.nbcnews.com/news/us-news/trump-signs-measure-let-isps-sell-your-
data-without-consent-n742316

X-Search: Revisiting Private Web Search using Intel SGX Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

presence of malicious and sel�sh participants. However, its perfor-
mance is even worse than the one of RAC as it is a combination
of two heavy cryptographic protocols: the dining cryptographers
protocol (DC-NET) [7] and a data mining protocol used to per-
mute a set of �xed-length messages with cryptographically strong
anonymity [5].

In addition to the performance issue, protocols enforcing un-
linkability have also been shown not to resist re-identi�cation at-
tacks [31]. Indeed, the issue comes from the fact that search queries
themselves disclose enough information for breaking the unlinka-
bility property.

2.1.2 Enforcing indistinguishability. To protect users against
re-identi�cation a�acks, solutions enforcing indistinguishability
have been proposed. �e aim of these solutions is to avoid search
engines distinguishing between a user’s real interests and fake ones,
hence protecting her privacy. �is is generally achieved either by
generating fake queries (e.g., TrackMeNot [19], GooPIR [11]) or by
altering the user’s query (e.g., �eryScrambler [3]).

TrackMeNot is a Firefox plugin that periodically generates fake
queries and send them to the search engine on behalf of the user
and independently of her real queries. Fake queries in TrackMeNot
are generated using RSS feeds.

GooPIR introduces k fake queries inside the user’s real query. All
these queries (i.e., the real one and the k fake ones) are separated by
the logical or operator and sent to the search engine. Fake queries
in GooPIR are generated by using randomly selected keywords
from a dictionary.

�eryScrambler protects users by replacing their queries by
semantically related queries. More precisely, for each user query, it
generates a set of related queries by generalizing the concepts used
in the initial query. �en, by merging and �ltering all the results
obtained with these related queries, it retrieves the most plausible
results for the initial query.

PEAS improves over existing solutions by combing an unlink-
ability protocol with an indistinguishability protocol. �e former
is based on two non-colluding proxy servers. �e �rst one han-
dles user identities without having access to their requests, while
the second generates fake queries, and send them to the search
engine on behalf of the user. To generate fake queries, PEAS uses a
co-occurrence matrix built from past user queries.

One of the major limitation of these solutions is that it is still
easy to discern the fake queriesfrom real ones, as shown by re-
identi�cation a�acks [31]. We highlight this issue in Figure 1. �e
show the CCDF (i.e., Complementary Cumulative Distribution Func-
tion) of the maximum similarity between fake queries generated
by PEAS (i.e., based on the co-occurrence of terms in past queries)
and TrackMeNot (i.e., based on RSS feeds) and past queries on the
AOL dataset (see Section 5.4 to have details of the used dataset and
similarity metric). �is result shows that in both cases most of the
fake queries are signi�cantly di�erent from real queries.

2.1.3 Alternative Search Engines. �is category of solutions build
alternative search engines generally based on Private Information
Retrieval (PIR) thus enforcing privacy-by-design. In these systems,
users access information stored on the distant server without reveal-
ing to the la�er what information they access. �e only information
known by the search engine is that the user has sent a query. In

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
C

D
F

 (
%

)

max(similarity(fakeQuery, userQuery))

PEAS TMN

Figure 1: Generation of e�cient fake queries: almost all

fake queries built by TrackMeNot and PEAS are original, i.e.

never appear in the AOL. CCDF=Complementary Cumula-

tive Distribution Function.

general, PIR protocols consist of three algorithms: the constructions
of protected queries (keywords are at least encrypted), the execu-
tion of the information retrieval (preventing the search engine to
access the query and its results), and �nally the reconstruction of
the result list. Part of these algorithms is performed on the clients,
the other part on the distant server. �ese generally rely on heavy
and unpractical [2] cryptographic protocols, especially when the
accessed data stores contain millions of documents, the normal case
for today’s search engines.

2.2 Open Challenges in Private Web Search

From the analysis of state of art private Web search solutions, we
distinguish two major challenges: one for enforcing unlinkability
and one for enforcing indistinguishability. �e main open challenge
for enforcing unlinkability is to design e�cient protocols that resist
strong adversaries. Indeed, existing protocols are either e�cient
but assume honest but curious servers (e.g., Tor, PEAS) or robust
to malicious adversaries but have unpractical performance (e.g.,
Dissent, RAC).

In term of indistinguishability, the main open challenge is to bet-
ter resist re-identi�cation a�acks by e�ectively hiding the original
query among fake queries. �is requires the generation of realistic
fake queries that are as close as possible to real queries.

�e remaining of this section shows how to leverage Intel So�-
ware Guard Extensions and address the above two challenges.

2.3 Intel So�ware Guard Extensions

Cloud so�ware runs in multitenant computing nodes, remotely
maintained by third parties. From the clients’ point of view, the
environment to remotely run their so�ware can be compromised in
several ways. �e third party or the person in charge of managing
its hardware may be malicious. System managers have total access
privileges on their hardware to potentially access or tamper with
any stored information. Besides, the remote machine may run
compromised operating systems, possibly executed by another
(malicious) tenant. It is therefore hard to trust so�ware running in
the clouds.

Homomorphic encryption [12] is an appealing solution for un-
trusted environments. A user encrypts data, send it to an untrusted

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA S. Ben Mokhtar, A. Boutet, P. Felber, M. Pasin, R. Pires, and V. Schiavoni

server. It is still able to process the ciphertext without having ac-
cess to its content. �e algorithms proposed so far prove that the
concept is sound but impractical because of their enormous com-
plexity. Preliminary yet partial solutions promise to improve the
current situation [26]. To overcome this limitation, several hard-
ware manufacturers extended their architectures with some form
of trusted execution environment (TEE). In a nutshell, a TEE can
certify what so�ware it runs, and data stored inside it can only be
accessed by its own so�ware. With TEEs, users do not need to trust
the infrastructure provider’s execution environment, because it can
do no harm to their data, but only the TEE manufacturer.

We use a TEE to ensure the con�dentiality and integrity of the
X-Search proxy. It is the responsibility of the client to ensure
that a certi�ed proxy is running within a trustworthy TEE. �e
communication between client and proxy is then encrypted, and
the user’s real interests are only accessible in the client domain and
inside the TEE. In the following, we present Intel’s SGX [25], our
platform of choice and TEE to implement the X-Search proxy.

Intel calls an enclave a TEE created with SGX. Enclaves are cre-
ated and destroyed using speci�c privileged system calls. When an
enclave is created, SGX allocates a memory region that is protected
from all accesses from outside the enclave itself, including kernel,
hypervisor and peripheral DMA. Applications can interact with
enclaves via procedure calls, in both ways. Parameters and results
are copied in and out enclaved memory when a call crosses the
enclave border. Intel o�ers a so�ware development kit to de�ne
and handle in- and out-calls and to manage the enclaves’ lifecycle.

�e CPU keeps for each enclave a page cache and ensures that
each page is assigned to exactly one enclave. System so�ware,
although untrusted, is responsible for assigning pages to enclaves.
An initial set of pages is prepared by the system so�ware, by as-
signing enclave pages with unencrypted data and code in it. �e
CPU keeps a cryptographic hash for the memory pages assigned
to each enclave. A�er all initial pages are loaded into the enclave,
the system so�ware issues an instruction to mark the enclave as
initialized. At that moment the memory hash, or measurement hash,
is computed. From this point on, loading unencrypted pages is dis-
abled and application so�ware can enter the protected environment
through the enclave interface.

SGX o�ers instructions for managing keys and for signing certi�-
cates of an enclave. Communication between a remote entity and
an enclave is done through a local, untrusted so�ware proxy. �e
enclave can send its certi�cate to the remote entity, which can then
verify it with an appropriate authority. An authentic certi�cate
and a correct measurement hash a�est that the correct program
has been loaded inside an authentic enclave. �is process is also
known as a�estation. As certi�cates are signed within enclaves,
remote entities can verify that it was not forged nor modi�ed by an
untrusted proxy, and trusted channels can be built (using untrusted
components).

Access to enclave memory is prevented by hardware, and all
enclaves in a processor can have up to approximately 90MB of a
protected memory called EPC (enclave page cache). Paging can still
be used to access larger address spaces. Enclave data residing in
the processor’s internal cache are hashed and encrypted before
�ushed to the EPC. Memory checks are made through a chain of
a stateful hash codes using random numbers created every time a

page is encrypted. �e chain is stored in untrusted memory, and its
root is kept in the CPU, inaccessible from outside, what prevents
any tampering a�acks in memory, including replay. Paging is
completely handled by untrusted so�ware, in the local operating
system.

2.4 Improving Security with SGX

SGX has been successfully used to improve the security and privacy
of other systems. Code a�estation mechanism coupled with the
trusted environment provide an assurance that can enforce security
guarantees in a plethora of systems, a few of those described next.

Hoekstra et al. [18] show how SGX improves the security of sen-
sitive code and data within three scenarios. First, they use enclaves
in the client-side to store shared secrets with �nancial institutions,
and to generate one-time passwords based on such secrets. Second,
an enterprise-grade digital rights management system that stores
document encryption keys within user enclaves. Such keys are
distributed on demand, and discarded by the enclaves a�er use.
�e documents pass through the enclave for decryption, which in
turn generates encrypted bitmaps using the GPU symmetric key.
�ird, a video-conferencing application with IP-connected enclaves
that exchange encrypted media content and interact with the lo-
cal hardware using encrypted protocols. �ese systems prevent
malicious so�ware (including high-privilege ones) from gaining
access to the private data. Veri�able con�dential cloud computing
(VC3) is a MapReduce implementation with data con�dentiality
and integrity for both code and data that guarantees that the dis-
tributed computation globally ran correctly to completion and was
not tampered with [34]. To execute map and reduce tasks, VC3
instantiates enclaves with encrypted code in it. It implements a
key distribution protocol such that guarantees that any enclave
that contributes to the job runs the correct code and shares the
necessary keys for decrypting code and data. All data sent to tasks
is encrypted, as well as all data produced by the tasks. Mapper
and reducer tasks generate extra encrypted hashes that are used to
verify that they properly processed all their input data. Leveraging
enclaves, VC3 supports a threat model with powerful adversaries,
that may control all cloud so�ware and hardware, except for the
physical processors used in the tasks computations.

SCBR (secure content-based routing) implements a content-based
publish/subscribe engine [33] where all message �ltering is done
inside secure enclaves. All messages are encrypted when outside
enclaves, and the �lters operate on plaintext headers. It uses a
hybrid encryption scheme with di�erent keys for header and pay-
load to avoid sending all data through the enclave boundary. �is
improves performance and reduces the enclave memory footprint.
An experimental evaluation shows that SCBR adds small overheads
when compared to insecure plaintext matching outside enclaves.

Kim at al. [21] explored the possibility of using enclaves to pro-
vide security and privacy in network applications. �ey initially
demonstrate how to use enclaves to prevent so�ware-de�ned inter-
domain routers to disclose their routing policies or how the Tor
anonymity network [10] can be strengthened to run its directory
authorities to a�est each other. A�ackers can still launch denial-of-
service a�acks but they cannot alter the directory behavior. Also,

X-Search: Revisiting Private Web Search using Intel SGX Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

by pu�ing onion routers within enclaves, they can a�est their in-
tegrity and their admission can be done automatically so directory
authorities can be eliminated, and the routers can simply keep
track of their membership in a distributed hash table. Finally, they
present how enclaves can be used to securely introduce in-network
functionality into TLS sessions.

TrustJs is a framework for trustworthy execution of security-
sensitive JavaScript inside commodity browsers [16]. It leverages
enclaves to protect the client-side execution of JavaScript, enabling
a �exible partitioning of web application code. Being a�ested by
the server, the enclaved interpreter can be used to o�oad its com-
putation, which results in lower latencies in the user experience
and lower performance demand for the application servers.

Recent work investigate the resilience of SGX enclaves against
side-channel a�acks [36, 39]. �is problem is orthogonal to the
one investigated by this paper, and thus considered outside of the
scope.

3 ADVERSARY MODEL

As further detailed in the following section, the protocol presented
in this paper involves three premises: the client side, the X-Search
proxy nodes running on cloud platforms and the search engine.

We assume that the code and the platform on which client nodes
run are trusted. �en, as further presented in the following section,
our protocol relies on X-Search proxy nodes running on public
cloud platforms. We assume that these nodes are untrusted and
can behave in a Byzantine manner [22], that is they can arbitrarily
deviate from a correct behaviour (i.e., they can be subject to a
failure, a bug or even behave maliciously). Finally, we assume that
the search engine is honest but curious [14]. �is means that the
search engine behaves correctly when it comes to fetching answers
to a speci�c request but it may collect and exploit in all possible
ways the information they receive from clients. In particular, we
assume that the search engine was able to collect as preliminary
information about each user in the system a set of past queries.
�is preliminary information is stored in user pro�le structures.

Moreover, we also assume that if the search engine identi�es
that the client is relying on a private web search mechanism (e.g.,
an anonymous communication protocol or X-Search), it may run
state-of-the-art re-identi�cation a�acks (e.g., [13]) in order to re-
associate the received request to a known user pro�le. We further
assume that the search engine may collude with proxy nodes (e.g.,
TOR relays or proxy nodes in X-Search) in order to learn more
information about the anonymous client.

4 X-SEARCH

We start this section by presenting an overview of our X-Search pro-
tocol (Section 4.1). �en, we detail how the unlinkability is ensured
(Section 4.2). Finally, we introduce the obfuscation and �ltering
mechanisms used to provide indistinguishability (Section 4.3).

4.1 Protocol Overview

To e�ciently protect users during Web search, X-Search combines
unlinkability and indistinguishability. As previously discussed in
Section 2 these two schemes are complementary as the former
hides the identity of the requesting user while the la�er hides her

query. Figure 2 depicts the architecture and the execution �ow of
X-Search. Speci�cally, the user interacts with the search engine
through an X-Search proxy node hosted on untrusted public cloud
services. We assume the X-Search proxy to be deployed on physical
nodes with available SGX instructions, a scenario that we expect
to be common in a near future.

As this proxy node acts as an intermediate node between the
search engine and the user, it hides the user identity (i.e., her IP
address). �e proxy node is also in charge of obfuscating the user
queries, and �ltering the results returned from the search engine
before forwarding them back to the user.

More precisely, the user starts by sending her query Qu to the
X-Search proxy (Figure 2 – ¶). �en, the proxy node generates
a new obfuscated query. To achieve that, the proxy retrieves k
random past queries Qp1, ...,Qpk (·) and aggregates them with
the original query in a random order using the logical OR operator.
Next, the proxy stores the initial query in the table of past queries
(¸) and sends one single obfuscated query to the search engine (¹).
�e search engine is queried by the proxy without using end-to-
end encryption 2. Contrary to state of the art indistinguishability
protocols, X-Search uses as fake queries past queries sent by real
users. �is allows to have fake queries that are e�ectively indis-
tinguishable from the user’s real one. �is is possible because past
queries are securely stored inside the TEE with no correlation to the
identity of their originating users, which prevents any malicious
entity from exploiting them.

As the obfuscated query can alter the results returned by the
search engine, e.g. by mixing results for the original query with
results for the additional aggregated past queries, the proxy node
includes a �ltering step. Once the search engine sends back the
results to the X-Search proxy (º), the �ltering removes the results
returned by the search engine that are not associated to the origi-
nal query. Finally, the remaining results are returned to the user
(»). �ese results are tampered by the proxy to remove any URL
redirection used for analytics for instance.

We note that the X-Search proxy node does not maintain indi-
vidual pro�le structures associated to each user. Instead, it only
updates a table containing the last x past queries. To improve per-
formance, the proxy uses multiples threads. �e query table is kept
in memory and shared among all threads. Moreover, the user sends
her query to the proxy node through an encrypted tunnel with an
end point inside the SGX enclave. Consequently, the protection of
the original query is ensured from the client until inside the TEE of
the proxy node. Once outside from the proxy in �ight toward the
search engine, the original query of the user is protected thanks to
the used obfuscation mechanism.

4.2 Enforcing Unlinkability

�e X-Search system o�ers to end users search unlinkability by
relying on a query broker. �is broker runs within the client’s
domain, such as a local daemon process executing alongside the
client’s Web browser. �e broker is in charge of the SGX a�estation
step. When the user issues a Web search query, her Web client
�rst connects to the local broker. �en, the broker encrypts the
request and forwards the cipher to an X-Search node hosted in an

2Using HTTPS could be also supported by the SGX enclave.

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA S. Ben Mokhtar, A. Boutet, P. Felber, M. Pasin, R. Pires, and V. Schiavoni

Client Search Engine

Figure 2: �e X-Search architecture and execution �ow.

untrusted cloud provider. �e X-Search node receiving the cipher
generates the obfuscated query as further detailed in the following
section. Before sending out the obfuscated query, the original one
is securely stored in the SGX reserved memory. When the search
engine sends back the response to the X-Search node, the la�er
�lters out the relevant results, i.e., those related to the original user
query, encrypts them and delivers them backward to the broker.
Finally, the broker decrypts the result and delivers it upward to the
Web client.

4.3 Enforcing Indistinguishability

To enforce indistinguishability, X-Search relies on an obfuscation
mechanism. �is mechanism (Algorithm 1) aims at hiding the user
queries among multiple fake queries. More precisely, the proposed
obfuscation mechanism randomly aggregates the original query
with k fake queries separated with logical OR operators (lines 2–8).
�ese fake queries come from the table of past queries maintained in
the private memory of the X-Search proxy (Algorithm 1, variableH).
Indeed, to avoid building irrelevant fake queries and possibly easily
identi�able by the adversary as fake (as discussed in Section 2.2),
the obfuscation mechanism of X-Search leverages real past queries
chosen at random. Using real past queries ensures that each sub-
query of the obfuscated query can be mapped by an adversary
conducting a re-identi�cation a�ack to an existing user pro�le,
thereby making the task of re-identi�cation more complicated to
perform.

As an SGX enclave has approximately 90MB of private memory
(Section 2.3), we need to bound the memory usage of the X-Search
proxy by limiting the size of H to only keep the x last queries sent
by users. �is size limitation acts as a sliding window where only
the most recent x queries are exploited. Once the obfuscated query
is generated, the initial query is stored in the history (line 9).

�is obfuscation mechanism impacts the results returned by the
search engine. Indeed, the results of the search engine contain a
mix of answers corresponding to (k + 1) queries (i.e., k fake queries
and the initial one). Consequently, the X-Search proxy �lters the

Algorithm 1: Generation of an obfuscated query
input: Q : initial query,

H : history of queries (H = Q0, ...,Qm),
k : the number of fake queries.

obfuscated�ery ← ∅ ;1

index ← random(k + 1) ;2

while sizeof(obfuscated�ery) <= k do3

if index = 0 then4

obfuscated�ery ← OR(Q) ;5

else6

obfuscated�ery ← OR(H [random(m)]) ;7

index ← index − 1;8

H ← Q ;9

return obfuscated�ery;10

returned results to remove those which are not related to the ini-
tial query. To do this �ltering step, the X-Search node exploits
the initial query and the associated fake queries. Algorithm 2 de-
scribes this �ltering process. For each result r from the result set,
the algorithm determines if it corresponds to the initial query as
following. A similarity score is assigned to each query (lines 5–6)
based on the title and the description of the result. �e function
nbCommonWords(q, e) computes the number of common words be-
tween a query q and an element e . A result r is considered related
to the initial query, and hence forwarded to the user, if the initial
query has the largest score (lines 7–8).

5 EXPERIMENTAL SETUP

In this section we present the experimental setup we used to evalu-
ate X-Search. �is comprises: the dataset we used, the comparison
baselines we compared against, the evaluation methodology and
the metrics used to assess the performance of X-Search.

X-Search: Revisiting Private Web Search using Intel SGX Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

Algorithm 2: Results �ltering.
input: Qu : initial query,

past�ery = {Qp1, . . . ,Qpk } : set of past queries,
R : set of results for Qu ∨Qp1 ∨ · · · ∨Qpk .

R̄ ← ∅ ;1

q+ ← {Qu ,Qp1, . . . ,Qpk } ;2

for r ∈ R do3

for qi ∈ q+ do4

score[qi] ← nbCommonWords(qi , title(r))5

+ nbCommonWords(qi , desc(r));6

if score[Qu] = maxqi ∈q+ score[qi] then7

R̄ ← R̄ ∪ {r } ;8

return R̄ ;9

5.1 Web Search Dataset

To assess X-Search, we use a real world Web search dataset from the
AOL query logs [29]. �is dataset contains approximately 21 million
queries, formulated by 650,000 unique users over three months
(from March to May of 2006). For the sake of comparison, we use
the same methodology as described in [32] to focus our evaluation
on the 100 most active users, as they are the most exposed to
an adversary willing to unveil their identities. Indeed, the most
active users have exposed more preliminary information to the
search engine through their past querying activity. To re�ect this
preliminary information collected by the search engine, we built
an o�-line pro�le for each user. To do that, we split the dataset in a
training set to build these user pro�les, and a testing set to apply
and to evaluate the privacy of X-Search. �e training set contained
two thirds of user queries and the testing set the remaining ones.

5.2 Comparison Baselines

We compare the robustness and quality of X-Search against two
baselines from the state-of-the art, namely Tor [10] and PEAS [32].
As described in Section 2.1.1, Tor leverages a proxy chain to provide
unlinkability. More precisely, this solution uses encryption schemes
to hide the identity of a user from the search engine perspective.
PEAS, in turn, combines unlinkability and indistinguishability by
hiding the identity of the requesting user as well as obfuscating
the original query with fake queries. Speci�cally, the unlinkability
property is ensured by a proxy composed of two trusted nodes re-
laying the original queries while the obfuscation is achieved locally
on the client by aggregating in a random order k fake queries with
the original one. �ese fake queries are generated from the graph of
co-occurrence between terms in the history of user queries. Lastly,
we also consider a Direct baseline solution, for which the users send
directly their queries to the search engine without any protection.
We do not compare X-Search against PIR-based solutions because
they require to use crypto-based search engines.

5.3 Methodology

�is section presents the methodology adopted to evaluate X-Search.
We assess X-Search along three dimensions: the o�ered privacy
(i.e., the protection of users’ queries), the achieved accuracy (i.e., the
quality of the results returned by X-Search), and the pure system

performance (i.e., the e�ciency of X-Search in terms of throughput,
latency and memory usage).

5.3.1 Privacy. To evaluate privacy, we leverage SimA�ack [31]
a re-identi�cation a�ack for which the code is available and that has
been shown to outperform previous a�acks including a machine
learning a�ack presented in [30]. To run this a�ack, we assume that
the a�acker holds a set of user pro�les built from the learning part
of the dataset. �en, we protect each query of the testing part using
X-Search before sending it to the search engine. �en, for each
obfuscated query, the a�ack tries to re-identify both the requesting
user and the initial query among fake ones.

More precisely, SimA�ack is based on a similarity metric sim(q, Pu)
that characterizes the proximity between a queryq and a user pro�le
Pu . �is pro�le represents the preliminary information associated
to user u collected by the adversary. �is preliminary information
can be viewed as the history of queries of the users before they
protect their Web search activities. In our case, Pu contains queries
that belong to the training set of user u. �e similarity metric used
by SimA�ack accounts the cosine similarity of q and all queries
part of the user pro�le Pu , and returns the exponential smoothing
of all these similarities ranked in ascending order. We empirically
set the smoothing factor at 0.5 as it provides the best performances.

To achieve the re-identi�cation from the obfuscated query of
X-Search, we compute the similarity metric for each sub-query
embedded in the obfuscated query and each user for which the
adversary has a pro�le. If only one couple of query and user have the
highest similarities, SimA�ack returns this couple corresponding to
the initial query and to the initial requester. Otherwise, the a�ack
is unsuccessful.

5.3.2 Accuracy. �e obfuscation mechanism of X-Search (i.e.,
adding past queries) impacts the results returned by a search engine.
Consequently, we evaluate the capacity of X-Search to �lter results
not related to the initial query before forwarding them back to
the user. To achieve that, for a given initial query, we compare
results returned by the search engine for this query and the results
returned for the associated obfuscated query a�er the �ltering step.

Our experiments use the Bing search engine. Search queries
are directed to the http://www.bing.com/search=q? address. As
the OR operator implemented by Bing only works with single-
word queries, we simulated the execution of an obfuscated query
Qobf = Qp0 OR ... OR Qu OR ... OR Qpk by submi�ing each sub-
query Qpi and Qu independently and by merging the (k + 1) result
sets. To circumvent the query×day limit imposed by Bing, for each
value of k (i.e., the number of fake queries), we run the experiment
on a random subset of the testing set composed of 100 queries.
Unless otherwise speci�ed, we consider the �rst 20 results in our
accuracy-related experiments.

5.3.3 Performance. To evaluate the performances of X-Search
from a system perspective, we implemented a fully-functioning
prototype. Our implementation uses C++ and rely on the Intel SGX
SDK (v1.8) libraries and tools [20]. �e prototype is deployed on
a machine with an Intel® Core™ i7-6700 processor [1] and 8GiB
RAM running on Ubuntu 14.04.1 LTS (kernel 4.2.0-42-generic).

�e main performance bo�lenecks when using intel SGX are
known to be the transitions between trusted and untrusted modes

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA S. Ben Mokhtar, A. Boutet, P. Felber, M. Pasin, R. Pires, and V. Schiavoni

(inside/outside the enclaves) and the intensive usage of memory,
with two stages: (i) when exceeding the processor’s last cache level,
which requires cache eviction and the consequent cryptographic
and integrity checks; and (ii) when exceeding the EPC size, trigger-
ing memory swaps scheduled by the underlying operating system.
An excessive memory usage can be caused by the management
of the past queries inside the enclave’s protected memory. We
evaluate this aspect of X-Search in Section 6.3. Furthermore, in
order to avoid unnecessary and costly mode transitions, we limit
the enclave interface to allow only essential operations that deal
with sensitive information. Procedure calls made by the vulnerable
code are called ecalls (enclave calls), whereas the ones made the
enclave trusted code are called ocalls (outside calls). �e enclave
interface o�ered by the X-Search node is as follows:

ecalls

init(parameters) Setup options for X-Search.
reqest(sock, bu�, len) Provision of data to the enclave,

coming from the given socket.
ocalls

sock connect(host, port) Performs the DNS lookup and
connection to server, returns
the socket �le descriptor.

send(sock, bu�, len) Sends data through the given
socket.

recv(sock, bu�, len) Receives data from the given
socket.

close(sock) Close socket �le descriptor.

We measured the system capacity by observing latency for in-
creasing throughput con�gurations when X-Search was con�gured
to reply immediatly to requests. Memory usage was assessed by
populating the past queries store inside the enclave with a real
dataset and observing its occupancy. Finally, we measured respone
times considering the complete chain, including the search engine
delays. Results are described in Section 6.3.

5.4 Metrics

We consider three types of metrics in our evaluation. �e privacy
metric measures the level of protection o�ered by X-Search and
its ability to preserve the users’ privacy. �e accuracy metric, in
turn, assesses the quality of the query results provided to users
according to their original queries. Lastly, system metrics evaluate
the performance and the e�ectiveness of our solution.

5.4.1 Privacy. To assess the privacy we consider the re-
identi�cation rate. �is rate aims to retrieve for each protected
query, both the content of the initial query and the identity of the
associated user. �e re-identi�cation rate is de�ned as follow:

re-identi f ication rate =
|Qid |
|Q |

where Qid is the set of correctly re-identi�ed queries (i.e., re-
identi�cation of both the initial query and the associated user),
while Q is the set of original queries sent by users. �is metric is
de�ned between [0, 1] where 0 represents the best solution (i.e.,

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

0 1 2 3 4 5 6 7

R
e

-I
d

e
n

ti
fi
c
a

ti
o

n
 R

a
te

k (number of fake queries)

X-Search
PEAS

Figure 3: X-Search reduces the number of de-anonymized

queries compared to PEAS.

no re-identi�cation) and 1 represents the worst solution (i.e., all
queries are re-identi�ed).

5.4.2 Accuracy. �e evaluation of the accuracy consists in com-
paring the lists of results associated to the original query and the
results returned with the obfuscated query aggregating the original
query and fake ones. To measure the accuracy, we consider the
precision (i.e., correctness) and the recall (i.e., completeness) as
de�ned below:

precision =
|Ror ∩ Rxs |
|Rxs |

recall =
|Ror ∩ Rxs |
|Ror |

where Ror is the set of results returned by the search engine for
the original query, and Rxs the set of results returned by X-Search.
Both metrics are in [0, 1]. �e best accuracy is provided with a
precision and a recall at 1.

5.4.3 System Metrics. To evaluate the behavior of X-Search
from a systems perspective, we consider the following metrics.
First, we measure the throughput (requests/second) to assess the
scalability of X-Search by measuring its capability to operate prop-
erly (adequate response times) even with a growing number of
users requesting the service. Second, looking at occupancy (in MB)
using a memory pro�ler we assess the e�ciency of our working
prototype. Finally, we look at the latency to serve the search results
back to the users once they send their queries.

6 EVALUATION

�is section presents the experimental evaluation of X-Search over
three dimensions: the privacy, the accuracy and the system per-
formance, respectively described in Sections 6.1, 6.2, and 6.3. Our
evaluation draws the following conclusions: (1) X-Search be�er
resists state-of-the-art re-identi�cation a�ack, (2) it has a limited
impact on the accuracy of the results returned to users, and (3)
system-wise, it outperforms its competitors, sometimes by orders
of magnitude.

6.1 Privacy

We start by evaluating the capacity of X-Search to preserve the
user privacy and to improve user protection compared to PEAS. To
this end, we measure the robustness of X-Search against a classical

X-Search: Revisiting Private Web Search using Intel SGX Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5 6 7

A
c
c
u

ra
c
y

k (number of fake queries)

Precision
Recall

Figure 4: Results returned by X-Search are close to results

associated to the original query.

re-identi�cation a�ack. Figure 3 shows the re-identi�cation rate
for PEAS and X-Search for di�erent values of fake requests, i.e., k .
Results for k = 0 represent the re-identi�cation rate for a solution
enforcing only unlinkability (e.g., Tor). In this case (i.e., without
query obfuscation), an adversary using only the history of user
queries as preliminary information, is able to re-associate almost
40% of novel queries to their originating user. �is con�rms that
unlikability solutions alone are not su�cient to e�ectively protect
users against re-identi�cation a�acks.

Adding only one fake query drops this re-identi�cation rate to
16% for X-Search and almost 20% for PEAS. �is di�erence comes
from the fake query generation process. Indeed, using real past
queries makes X-Search more robust to the re-identi�cation a�ack
as all sub-queries of the obfuscated query can be mapped to past
queries of other users, which creates confusion from the a�acker
side. On the contrary, generating fake queries based on the co-
occurrence of terms does not ensure PEAS to build fake queries
closer to a user pro�le than the original one.

�e re-identi�cation rate decreases accordingly to k (i.e., the
number of fake queries). For all value of k , X-Search provides a
be�er protection to the users (i.e., 1−re-identi�cation rate) than
PEAS. �e improvement of X-Search over PEAS varies from 23%
for k = 1 to 35% for k = 7.

6.2 Accuracy

�e accuracy of X-Search can be measured by evaluating the impact
of the obfuscation and the �ltering mechanisms on the search
results returned to users. Speci�cally, we study if the �ltering
mechanism is able to remove results related to the fake queries
while keeping the ones related to the initial query. Figure 4 depicts
the precision and the recall of X-Search according to an increasing
value of k . As expected, these curves show that both the recall and
the precision slightly decrease according to k . However, the results
returned to users are still accurate. For instance with k = 2, the
value of the recall is higher than 80%. �is means that more than
80% of the results returned to users with X-Search are the same
results as the ones returned if the original query was sent directly
to the search engine. Moreover, the measured precision in this case
is higher than 80%, which means that only around 20% of the results
returned to users can be associated to a fake query and not to the
initial query. �ese numbers con�rm that X-Search preserves the
quality of the results returned by the search engine.

1

10

100

1000
3000

100 1000 10000 30000

L
a

te
n

c
y
 (

m
s
,

lo
g

 s
c
a

le
)

Throughput (req/s, log scale)

Tor PEAS X−Search

Figure 5: Latency/tput rate comparison for X-Search proxy,

PEAS and Tor.

6.3 System Performance

We evaluate the system performance of X-Search to answer the
following questions: (1) is our implementation fast? (2) is it memory-
e�cient and can it be executed within the current SGX memory
limitations? and (3) is it usable and responsive to end-users?.

We begin by looking at the throughput/latency ratio of the X-
Search proxy. To perform this experiment, we iteratively increase
the rate at which requests are directed toward the X-Search proxy,
until the point where the latency to handle each request becomes
too high. For this experiment, we rely on the wrk2 workload genera-
tor [38] to measure the throughput and latency based on the request
rates issued to the X-Search proxy. Note that these measurements
are taken without actually hi�ing the web search engine, to be�er
understand the saturation point of the proxy. We compare against
Tor and PEAS.3 �ese results are presented in Figure 5. We plot
the number of requests per second and the observed latency per
request on the x-axis and y-axis, respectively. Due to the di�erent
magnitude of performances, this plot uses a log-log scale.

We observe that X-Search scales well, and it is capable of serving
up to 25, 000 requests/sec with sub-second latencies. Instead, PEAS
deteriorates much faster, with as few as 1000 requests/sec being
served with a sub-second latency. In our experiments, Tor performs
very poorly: handling as few as 100 requests/sec at an average reply
latency of 8.86 milliseconds, around 10× slower than X-Search
serving 1000 requests/sec. �is result con�rms our implementation
to be fast and scalable.

Next, we investigate how much memory is required by the obfus-
cation scheme. For this experiment, we used a much larger dataset
than the one described in Section 5. Speci�cally, we use all the 6
millions unique queries available in the AOL dataset. We leverage
Valgrind’s Massif [35] to trace and pro�le the heap memory alloca-
tions executed by the xsearch process. Figure 6 presents our result.
Observing the trend of the X-Search curve, it is clear that the EPC
size is largely su�cient to store at least 1M queries, a number that
can support with ease the obfuscation mechanism.

We complete this part of the evaluation by evaluating the user-
perceived performance of the system, e.g. the end-to-end latency
of a Web query from the submission to the reception of the results.
Due to rate limiting schemes adopted by the Bing’s search engine,

3Note that PEAS and Tor require custom clients to forge messages following their
protocol, whereas X-Search can be used with third-party clients issuing regular
HTTP requests, such as wget or curl.

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA S. Ben Mokhtar, A. Boutet, P. Felber, M. Pasin, R. Pires, and V. Schiavoni

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

M
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

Queries stored (x10
4
)

Usable EPC (90 MB) X−Search

Figure 6: X-Search: memory usage. �ememory allowed for

a single enclave can �t more than 1M queries before hitting

the SGX EPC’s memory limits.

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5

C
D

F
 (

%
)

Seconds

search round-trip-time

Direct
X-Search (k=3)

Tor

Figure 7: User-perceived web search round-trip time for 100

queries with X-Search, over the Tor network and directly

contacting the web search engine.

in this experiment we only issue 100 queries, picked at random
between the AOL dataset. We compare the observed latency be-
tween three di�erent scenarios: (1) the client contacting directly
the web engine (hence without any privacy guarantees), (2) the
same set of queries being routed via the Tor network, and �nally
(3) using X-Search. Figure 7 presents the results as a Cumulative
Distribution Function (CDF) of the measured round-trip network
latencies. We can observe that X-Search allows for much faster
replies: the median response time is 0.577 seconds, and the 99th
percentile is 0.873 seconds. �e results over the Tor network are
surprisingly bad from a user-perspective: the median time to route
a Web search over the onion routers was 1.06 seconds at the time of
our experiments (May 2017), while the 99th of the queries complete
in up to 3 seconds.4 �e Tor network largely exceeds well-known
usability margins [27], while X-Search o�ers a usable and secure
browsing experience.

7 CONCLUSION

User behavior tracking by major service providers is one of the
main privacy threats in today’s Internet. �is is particularly the
case with search engines, as they are among the most widely used
online services and search queries reveal sensitive information
about individual users, such as their age, sex, or religious or political
preferences. Solutions exist in the literature for enabling users to

4We could not conduct a similar experiment using PEAS due to a bug in the code.

access Web search engines in privacy-preserving way. However,
these solutions either do not resist malicious adversaries or are
robust but have poor performance.

In this paper, we proposed a novel architecture for privacy-
preserving Web search, which relies on a trusted execution en-
vironment (Intel SGX) to support stronger adversarial models than
existing solutions. Our system, X-Search, operates as a proxy which
stores and leverages user past queries within a protected SGX en-
clave and generates obfuscated queries on behalf of the user. It does
so by aggregating random past queries in such a way that the search
engine is not able to distinguish which one is the original query,
but still provides relevant results for the user. Upon receiving a
response from the search engine, the X-Search proxy �lters results
to only forward those related to the initial query.

We have implemented a working prototype and evaluated it
both analytically and experimentally using real-world datasets. Our
observations indicate that X-Search can indeed provide accurate
results without disclosing personal information about individual
users. Most importantly, X-Search does so with a throughput that
is orders of magnitude higher than its competitors, i.e., the PEAS
and Tor protocols.

ACKNOWLEDGMENTS

�e research leading to these results has received funding from
the European Commission, Information and Communication Tech-
nologies, H2020-ICT-2015 under grant agreement number 690111
(SecureCloud project). Rafael Pires is also sponsored by CNPq, Na-
tional Counsel of Technological and Scienti�c Development, Brazil.

REFERENCES

[1] Intel® Core™ i7-6700. h�p://ark.intel.com/products/88196/
Intel-Core-i7-6700-Processor-8M-Cache-up-to-4 00-GHz.

[2] Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian.
2016. XPIR: Private information retrieval for everyone. Proceedings on Privacy
Enhancing Technologies 2 (2016), 155–174.

[3] Avi Arampatzis, Pavlos S Efraimidis, and George Drosatos. 2013. A query
scrambler for search privacy on the internet. Information retrieval 16, 6 (2013),
657–679.

[4] Sonia Ben Mokhtar, Gautier Berthou, Amadou Diarra, Vivien �éma, and Ali
Shoker. 2013. Rac: A freerider-resilient, scalable, anonymous communication
protocol. In Distributed Computing Systems (ICDCS), 2013 IEEE 33rd International
Conference on. IEEE, 520–529.

[5] Justin Brickell and Vitaly Shmatikov. 2006. E�cient anonymity-preserving data
collection. In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 76–85.

[6] Claude Castelluccia, Emiliano De Cristofaro, and Daniele Perito. 2010. Private
information disclosure from web searches. In International Symposium on Privacy
Enhancing Technologies Symposium. Springer, 38–55.

[7] David Chaum. 1988. �e dining cryptographers problem: Unconditional sender
and recipient untraceability. Journal of cryptology 1, 1 (1988), 65–75.

[8] Henry Corrigan-Gibbs and Bryan Ford. 2010. Dissent: accountable anonymous
group messaging. In Proceedings of the 17th ACM conference on Computer and
communications security. ACM, 340–350.

[9] Victor Costan and Srinivas Devadas. Intel® SGX Explained. Technical Report.
Cryptology ePrint Archive, Report 2016/086, 2016.

[10] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: �e second-
generation onion router. Technical Report. DTIC Document.

[11] Josep Domingo-Ferrer, Agusti Solanas, and Jordi Castellà-Roca. 2009. h(k)-Private
information retrieval from privacy-uncooperative queryable databases. Online
Information Review 33, 4 (2009), 720–744.

[12] Craig Gentry. 2009. Fully Homomorphic Encryption Using Ideal La�ices. In
Proceedings of the Forty-�rst Annual ACM Symposium on �eory of Computing
(STOC ’09). ACM, New York, NY, USA, 169–178. DOI:h�ps://doi.org/10.1145/
1536414.1536440

[13] Arthur Gervais, Reza Shokri, Adish Singla, Srdjan Capkun, and Vincent Lenders.
2014. �antifying Web-Search Privacy. In Proceedings of the 2014 ACM SIGSAC

http://ark.intel.com/products/88196/Intel-Core-i7-6700-Processor-8M-Cache-up-to-4_00-GHz
http://ark.intel.com/products/88196/Intel-Core-i7-6700-Processor-8M-Cache-up-to-4_00-GHz
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440

X-Search: Revisiting Private Web Search using Intel SGX Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

Conference on Computer and Communications Security (CCS ’14). 966–977.
[14] Oded Goldreich. 2003. Cryptography and Cryptographic Protocols. Distrib.

Comput. 16, 2-3 (Sept. 2003), 177–199.
[15] David Goldschlag, Michael Reed, and Paul Syverson. 1999. Onion routing.

Commun. ACM 42, 2 (1999), 39–41.
[16] David Goltzsche, Colin Wulf, Divya Muthukumaran, Konrad Rieck, Peter Piet-

zuch, and Rüdiger Kapitza. 2017. TrustJS: Trusted Client-side Execution of
JavaScript. In Proceedings of the 10th European Workshop on Systems Security.
ACM, 7.

[17] Aniko Hannak, Piotr Sapiezynski, Arash Molavi Kakhki, Balachander Krish-
namurthy, David Lazer, Alan Mislove, and Christo Wilson. 2013. Measuring
Personalization of Web Search. In Proceedings of the 22Nd International Confer-
ence on World Wide Web (WWW ’13). ACM, New York, NY, USA, 527–538. DOI:
h�ps://doi.org/10.1145/2488388.2488435

[18] Ma�hew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan
Del Cuvillo. 2013. Using Innovative Instructions to Create Trustworthy So�ware
Solutions. In Proceedings of the 2Nd International Workshop on Hardware and
Architectural Support for Security and Privacy (HASP ’13). ACM, New York, NY,
USA, Article 11, 1 pages. DOI:h�ps://doi.org/10.1145/2487726.2488370

[19] Daniel C Howe and Helen Nissenbaum. 2009. TrackMeNot: Resisting surveillance
in web search. Lessons from the Identity Trail: Anonymity, Privacy, and Identity
in a Networked Society 23 (2009), 417–436.

[20] Intel Corp. h�ps://01.org/intel-so�ware-guard-extensions.
[21] Seongmin Kim, Youjung Shin, Jaehyung Ha, Taesoo Kim, and Dongsu Han. 2015.

A �rst step towards leveraging commodity trusted execution environments for
network applications. In Proceedings of the 14th ACM Workshop on Hot Topics in
Networks. ACM, 7.

[22] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. �e Byzantine generals
problem. ACM Transactions on Programming Languages and Systems (TOPLAS)
4, 3 (1982), 382–401.

[23] Amy N Langville and Carl D Meyer. 2011. Google’s PageRank and beyond: �e
science of search engine rankings. Princeton University Press.

[24] Yehuda Lindell and Erez Waisbard. 2010. Private web search with malicious adver-
saries. In International Symposium on Privacy Enhancing Technologies Symposium.
Springer, 220–235.

[25] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Sha�,
Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013. Innovative instructions
and so�ware model for isolated execution. In HASP 2013, �e Second Workshop
on Hardware and Architectural Support for Security and Privacy, Tel-Aviv, Israel,
June 23-24, 2013. 10. DOI:h�ps://doi.org/10.1145/2487726.2488368

[26] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. 2011. Can Homo-
morphic Encryption Be Practical?. In Proceedings of the 3rd ACM Workshop on
Cloud Computing Security Workshop (CCSW ’11). ACM, New York, NY, USA,
113–124. DOI:h�ps://doi.org/10.1145/2046660.2046682

[27] Jonathan W. Palmer. 2002. Web Site Usability, Design, and Performance Metrics.
Info. Sys. Research 13, 2 (June 2002), 151–167. DOI:h�ps://doi.org/10.1287/isre.
13.2.151.88

[28] Hweehwa Pang, Jialie Shen, and Ramayya Krishnan. 2010. Privacy-preserving
similarity-based text retrieval. ACM Transactions on Internet Technology (TOIT)
10, 1 (2010), 4.

[29] Greg Pass, Abdur Chowdhury, and Cayley Torgeson. 2006. A Picture of Search.
In Proceedings of the 1st International Conference on Scalable Information Systems
(InfoScale ’06). ACM, New York, NY, USA, Article 1. DOI:h�ps://doi.org/10.1145/
1146847.1146848

[30] Sai Teja Peddinti and Nitesh Saxena. 2014. Web search query privacy: Evaluating
query obfuscation and anonymizing networks1. Journal of Computer Security
22, 1 (2014), 155–199.

[31] Albin Petit, �omas Cerqueus, Antoine Boutet, Sonia Ben Mokhtar, David Coquil,
Lionel Brunie, and Harald Kosch. 2016. SimA�ack: Private Web Search under
Fire. Journal of Internet Services and Applications 7, 1 (2016), 2.

[32] Albin Petit, �omas Cerqueus, Sonia Ben Mokhtar, Lionel Brunie, and Harald
Kosch. 2015. PEAS: Private, E�cient and Accurate Web Search. In Trustcom/Big-
DataSE/ISPA, 2015 IEEE, Vol. 1. IEEE, 571–580.

[33] Rafael Pires, Marcelo Pasin, Pascal Felber, and Christof Fetzer. 2016. Secure
Content-Based Routing Using Intel So�ware Guard Extensions. In Proceedings of
the 17th International Middleware Conference (Middleware ’16). ACM, 10. DOI:
h�ps://doi.org/10.1145/2988336.2988346

[34] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustwor-
thy data analytics in the cloud using SGX. In Security and Privacy (SP), 2015 IEEE
Symposium on. IEEE, 38–54.

[35] J. Seward, N. Nethercote, and J. Weidendorfer. 2008. Valgrind 3.3 - Advanced
Debugging and Pro�ling for GNU/Linux Applications. Network �eory Ltd.

[36] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza.
2016. AsyncShock: Exploiting Synchronisation Bugs in Intel SGX Enclaves.
Springer International Publishing, Cham, 440–457. DOI:h�ps://doi.org/10.1007/
978-3-319-45744-4 22

[37] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson.
2012. Dissent in Numbers: Making Strong Anonymity Scale.. In OSDI. 179–182.

[38] wrk2. Wrk2. h�ps://github.com/giltene/wrk2.
[39] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel

a�acks: Deterministic side channels for untrusted operating systems. In Security
and Privacy (SP), 2015 IEEE Symposium on. IEEE, 640–656.

[40] Sha Yang and Anindya Ghose. 2010. Analyzing the relationship between organic
and sponsored search advertising: Positive, negative, or zero interdependence?
Marketing Science 29, 4 (2010), 602–623.

https://doi.org/10.1145/2488388.2488435
https://doi.org/10.1145/2487726.2488370
https://01.org/intel-software-guard-extensions
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1145/2046660.2046682
https://doi.org/10.1287/isre.13.2.151.88
https://doi.org/10.1287/isre.13.2.151.88
https://doi.org/10.1145/1146847.1146848
https://doi.org/10.1145/1146847.1146848
https://doi.org/10.1145/2988336.2988346
https://doi.org/10.1007/978-3-319-45744-4_22
https://doi.org/10.1007/978-3-319-45744-4_22
https://github.com/giltene/wrk2

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Private Web Search
	2.2 Open Challenges in Private Web Search
	2.3 Intel Software Guard Extensions
	2.4 Improving Security with SGX

	3 Adversary model
	4 X-Search
	4.1 Protocol Overview
	4.2 Enforcing Unlinkability
	4.3 Enforcing Indistinguishability

	5 Experimental setup
	5.1 Web Search Dataset
	5.2 Comparison Baselines
	5.3 Methodology
	5.4 Metrics

	6 Evaluation
	6.1 Privacy
	6.2 Accuracy
	6.3 System Performance

	7 Conclusion
	References

