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ABSTRACT

In this work, we propose a novel computer vision based fall
detection system, which could be applied for the health-care
of the elderly people community. For a recorded video stream,
background subtraction is firstly applied to extract the hu-
man body silhouette. Extracted silhouettes corresponding to
daily activities are applied to construct a convolutional neu-
ral network, which is applied for classification of different
classes of human postures (e.g., bend, stand, lie and sit) and
detection of a fall event (i.e., lying posture is detected in
the floor region). As far as we know, this work is the first
attempt for the application of the convolutional neural net-
work for the fall detection application. From a dataset of
daily activities recorded from multiple people, we show that
the proposed method both achieves higher postures classi-
fication results than the state-of-the-art classifiers and can
successfully detect the fall event with a low false alarm rate.
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1 INTRODUCTION

There is an increasing number of elderly people due to the
technologies development in the modern society. As shown in
[3], the old-age dependency ratio (which means the number
of people 65 and over relative to those between 15 and 64)
in the European Union (EU) is expected to 54 percent by
2050. The topic of home care for elderly people is becoming

Unpublished working draft. Not for distribution
Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICMI’17, November 2017, Glasgow, UK

© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

a more and more important issue. One important issue for
the home care is to detect whether an elderly person has
fallen or not.

According to [6], 87% of all fractures of the elderly people
group are caused by falls. An efficient fall detection system is
essential for monitoring an elderly person and can even save
his life in some cases. Different methods have been proposed
for detecting falls. [9, 17] utilized acceleration sensors based
method for fall detection. In their work, three axis accelera-
tion sensors are attached to the subject’s body in different
positions and the dynamic and static acceleration compo-
nents measured from these sensors were compared with ap-
propriate thresholds to determine a fall. Y. Zigel et al. in [20]
proposed a fall detection system based on both floor vibra-
tion and sound sensing. Temporal and spectral features were
extracted from signals and a Bayes’ classifier was applied to
classify fall and nonfall activities. Although these method-
s may appear to be suitable for fall detection in an ideally
simulated scenario, several problems do exist which prohibit-
s them from the real home applications due to the following
reasons: i). they are either inconvenient (elderly people have
to wear acceleration sensors) ii). they are easily affected by
noises (such as the TV sounds) in the environment (acoustic
sensors and floor vibration sensors).

In order to overcome these problems, computer vision
based fall detection techniques are adopted. In [14] and [15],
the head’s velocity information and the shape change infor-
mation were extracted from video recording and appropriate
thresholds were set manually to differentiate fall and non-fall
activities. However these two methods produce high false de-
tection rates (such as when a fast sitting activity was mis-
classified as a fall activity in [14]). In [2], multiple calibrat-
ed cameras were used to reconstruct the three-dimensional
shape of people. Fall events were detected by analyzing the
volume distribution along the vertical axis, and an alarm was
triggered when the major part of this distribution was abnor-
mally near the floor over a predefined period of time. With
the development of the machine learning techniques, some
of them have been applied for the computer vision based fall
detection. Neural network and support vector machine based
techniques have been applied for fall detection based on the
posture recognition as in [8] and [19] respectively. Motion
information were extracted from consecutive silhouettes as
features in [1] to train a hidden Markov model (HMM) for
classifying fall and non-fall activities.

The traditional machine learning methods, such as the
support vector machine follows shallow learning paradigm.
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They can’t represent the object of interest in a reasonably
structural and hierarchical way and rely carefully chosen
hand-crafted features. The limitations of the traditional ma-
chine learning methods are largely overcome by the deep
learning, which has gained strong attentions from the aca-
demic community and been widely applied in different in-
dustrial applications (e.g., voice classification, object detec-
tion/classification) as shown in the recent survey [13] by Y.
LeCun, Y. Bengio and G. Hinton. One type of the deep
learning techniques is the convolutional neural network (C-
NN), which exploits convolutional layers to extract highly
representative features and has been widely applied in im-
age processing tasks. As shown in [11], the CNN achieves a
much higher accuracy than the traditional machine learning
method for the ImageNet object classification.

In this work, a CNN based method is used for fall de-
tection. Firstly, human silhouette is extracted from the raw
video stream. Extracted silhouettes for different classes of
postures corresponding to daily activities (stand, sit, bend
and lie) are pre-processed and used to construct a CNN for
postures classification. Fall is then detected based on the
posture classification results, that is, a fall event is triggered
when a lying posture is detected in the floor region. As far as
we know, this is the first attempt for the CNN to be used in
the fall detection application. The organization of this paper
is shown as follows: Section 2 presents the background sub-
traction method we use to extract the human silhouette. C-
NN construction for postures classification and fall detection
is proposed for Section 3. Experimental results are shown in
Section 4 and Section 5 gives the final conclusions and future
works.

2 BACKGROUND SUBTRACTION

In visual surveillance, a common approach for discriminating
moving objects from the background is detection by back-
ground subtraction. In this work, the codebook background
subtraction method [10] is applied. Compared with other
methods such as single-model based as in [7, 18] and mixture
of Gaussians (MoG) method [16], there is no parametric as-
sumption on the codebook model and it can achieve better
performance by exploiting more comprehensive information
from the color space information as in [10].

The codebook method is a pixel-based approach and ini-
tially a codebook is constructed for each pixel during a train-
ing phase. Assuming the training dataset I contains a num-
ber of N images: I = {imag1, ..., imagN}, then for a single
pixel (x,y) it hasN training samples imag(x, y)1, ..., imag(x, y)N .
From these N training samples, a codebook is constructed
for this pixel, which includes a certain number of codeword-
s. Each codeword, denoted by c, consists of an RGB vector

v = (R,G,B) and a 6-tuple aux = (Î , Ǐ, f, λ, p, q). Meanings
of the six parameters in aux are described in Table 1.

The details of the training procedure are given in [10] and
the trained codebooks of pixels are then used for background

Table 1: Meaning of the codeword components

Î Maximum intensity represented by the codeword
Ǐ Minimum intensity represented by the codeword
f Number of times of the codeword being matched
λ Maximum negative runtime length (MNRL)
p The first frame in which this codeword was created
q The last frame in which this codeword was matched

subtraction purpose. For an incoming colour frame f, its pix-
el f(x, y) = (R(x, y), G(x, y), B(x, y)) (a 3-dimensional vec-
tor) is determined as a foreground or background pixel by
comparing f(x, y) with codewords in the codebook of this
pixel. If f(x, y) is not matched with any codeword, then it is
a foreground pixel;otherwise, it is taken as the background.
We say f(x, y) matched the codeword c if the following two
conditions are met:

colordist(f(x, y), c) ≤ ε

brightness(I, ⟨Î , Ǐ⟩) = true (1)

where ε is a preset threshold value for comparison, I repre-

sents the norm of f(x, y), Î and Ǐ are the first two parameters
of the 6-tuple aux vector of the codeword c.

The colordist(f(x, y), c) measures the chromatic difference
between two colour vectors, which can be calculated by:

colordist(f(x, y), c) =

√
∥ f(x, y) ∥2 −⟨f(x, y),v⟩

∥ v ∥2 (2)

where v represents the RGB vector v = (R,G,B) of code-
word c, and ∥ · ∥ and ⟨·⟩ denote respectively the Euclidean
norm and dot product operations.

The brightness(I, ⟨Î , Ǐ⟩) is defined as:

brightness(I, ⟨Î , Ǐ⟩) =
{

true if Ilow ≤∥ f(x, y) ∥≤ Ihi
false otherwise

(3)

where Ilow = αÎ and Ihi = min{βÎ, Ǐ
α
} are parameters

which are set empirically.
Background subtraction examples are shown in Figure. 1.

When a human object appears in the camera view, its silhou-
ette region is extracted from the original video recording.

(a) (b) (c)
Figure 1: Background subtraction results. (a). the back-
ground scene (b). video frame with the object of interest

(c). extracted human silloutte by the background subtrac-
tion
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Figure 2: The structure of the developed convolutional neural network.

3 CNN FOR POSTURES
RECOGNITION AND FALL
DETECTION

The human silhouettes corresponding to different daily ac-
tivities are extracted from video recordings by the aforemen-
tioned background subtraction method, which are further
used to construct a CNN for the fall detection. For the C-
NN construction, firstly the minimum bounding rectangle
(MBR) of every silhouette is extracted. All the MBRs are
resized to be the same (30*30) for the CNN training, with
the aspect ratio of the silhouette region being kept; besides,
each pixel of the resized image is normalized to be within
[0,1].

The structure of the trained CNN is shown as in Figure.
2. The extracted human silhouette is taken as the input of
the convolutional layers, which exploit two sets of six filters
for feature maps generations with Relu activation function
being applied to obtain the final neurons outputs. A down-
sampling of 2*2 is applied to reduce redundant components
for a more concise representation. The outputs after two con-
volutional layers are fed into two fully-connected layers, with
128 and 64 neurons respectively. Finally, an output layer with
four neurons generates probabilities of activity classes, with
a sigmoid function being taken as the activation function.
For training the network, the categorical cross-entropy cost
function is adopted. Based on the cost function, the root
mean square propagation (RMSProp) method [12] is adopt-
ed for estimating the weights of the CNN, with batches of
64.

The trained CNN can then be applied for classifying dif-
ferent types of postures. When a lying posture is detected
within the floor region, a fall is reported. For the floor re-
gion, it can either be marked manually or detected by an
unsupervised method based on the foot positions [19].

4 EXPERIMENTAL RESULTS

In this part, we show the performance of our fall detection
system in a real home environment. A USB camera was used
for recording the real video sequence with the image size of

Figure 3: Posture samples simulated by different partic-

ipates in different orientations.

320 × 240, the recorded video sequence is processed by us-
ing VC++ 6.0 (with OpenCv library 1.0) for background
subtraction and Keras [5] for the CNN training. 10 people
were invited to attend the experiments for simulating differ-
ent postures (bend, sit, lie and stand)and activities (both
fall and non-fall).

4.1 Posture classification results
comparison

A posture dataset containing 3216 postures (including 804
stands, 769 sits, 810 lies and 833 bends) were recorded for
testing the developed CNN. As in [18], each person was asked
to simulate postures in different directions so that the con-
structed classifier is robust to view angles. Some samples are
shown in Figure. 3.
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Table 2: Postures classification accuracies comparisons by different classifiers

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

1-v-a 96.25% 94.12% 94.06% 92.58% 93.75% 93.51% 92.65% 96.31% 89.83% 90.74%

1-v-1 95.94% 94.43% 95.31% 91.94% 92.19% 92.04% 91.18% 96.62% 88.47% 90.74%

CNN 96.88% 97.83% 96.56% 92.58% 95.31% 92.04% 93.24% 96.62% 93.56% 94.75%Original postures Feature maps

Figure 4: Original postures and selective feature maps
extracted by the CNN.

Different classes of postures are used to construct the CNN
structure shown in Fig. 2. For the trained CNN, firstly we
show representative feature maps extracted by the CNN in
Figure. 4, from which we can see that the CNN captures
the silhouette edge as distinctive features for the posture
classification. That coincides with our intuition that a binary
human silhouette image and be well represented by its edge.

Secondly, comprehensive comparisons are made between
the CNN and multi-class support vector machine [4] (includ-
ing both the one-versus one (1-v-1) and one-versus-all (1-v-a)
versions) for classifying the postures collected from every in-
dividual (P1-P10 as in Table 2). For testing the postures clas-
sification performance for a particular individual, postures
of others are used for training. For the multi-class SVMs,
the linear kernel is applied for both computational efficiency
and the ability to separate high dimensionality features. The
parameters of both the CNN and SVM based methods are
tuned to be the optimal for a fair comparison. Comparison
results are shown in Table 2, which show the advantage of
the CNN. The CNN outperforms the SVM based methods
for the majority of individual cases with higher classification
accuracies.

4.2 Fall detection comparison

For evaluating this fall detection system, each person is asked
to simulate different falling and non-fall activities in different
directions. As mentioned previously, fall is detected when

(a) (b)
Figure 5: An example of simulated fall. The ground re-
gion of (a) is marked as blue as in (b) and the posture
silhouette within the ground region is marked red.

the lying posture is detected by the CNN within the ground
region, as shown in Figure. 5.

The classification of fall and non-fall activities is shown
in Table 3. We can observe that the proposed CNN based
fall detection systems could accurately detect falls (with only
one fall is not detected among the totally recorded falls) with
a low false alarm rate (3 out of 310 non-falls are misclassified
as falls). The misclassifications are attributed to the reason
that the bend posture in some directions is viewed similar to
the lie posture and we can adopt multiple cameras to capture
different posture views for ameliorating it.

Table 3: Performance of the CNN based fall detection

Activity types Numbers Detected falls Detected nonfalls

Falls 98 97 1

Walk around 92 0 92

Sit on sofa/chair 86 0 86

Bend 132 3 129

5 CONCLUSIONS

In this work, we proposed a novel CNN based computer vi-
sion fall detection method. A codebook background subtrac-
tion algorithm was adopted to extract the human silhouette
region. Extracted silhouettes are pre-processed and applied
to train a CNN, for both the postures classification and fall
detection. Experimental results show the proposed CNN clas-
sifier both achieves better performance than the traditional
ones for posture classification, as well as obtains a high fall
detection accuracy. For the future works, we will exploit in-
formation from multi-modality sensors (such as audio and
video sensors) together with deep learning techniques for de-
veloping a more robust fall detection system.
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