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ABSTRACT 

In this paper1 we propose a new approach to detect integer 
overflow vulnerabilities in executable x86-architecture code. The 
approach is based on symbolic execution of the code and the 
dual representation of memory. We build truncated control flow 
graph, based on the machine code. Layers in that graph are 
checked for the feasibility of vulnerability conditions. The 
proposed methods were implemented and experimentally tested 
on executable code. 
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1 INTRODUCTION 

Vulnerability detection is complex computational problem. 
In general this problem can be reduced to NP-complete problem 
Boolean satisfiability problem (SAT). The exact solution of this 
problem does not exist. All actual algorithms are based on 
exponential enumeration of possibilities. As a result the 
implementation of this approach cannot be effective in practice. 
There are variety of vulnerability detection technics which do 
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not involve complete enumeration. Heuristic approaches focus 
on a-priori known vulnerability characteristics detection rather 
than vulnerability detection itself. Consequently, these methods 
have a narrow scope of applications defined by a class of the 
input programs. As a result universal approach which allows 
automatically detecting vulnerabilities of known classes in actual 
programs does not exist. 

Practical methods have number of disadvantages. Fuzzing 
might be considered as a dynamic analysis method. The various 
options of fuzzing use prior knowledge of input data format and 
algorithm implementation bottlenecks. This allows reducing 
number of scope for complete enumeration [1]. Effective fuzzing 
requires substantial computational resources [2, 3] without 
guaranteed results. Fuzzing does not make possible to find all 
vulnerabilities in the program code. Furthermore this method is 
inappropriate for specific class vulnerability detection. 

Static analysis methods make use of symbolic execution. A 
part of the memory cells is supposed to be symbolic i.e. 
unknown. A set of constraints on symbolic values is built for 
potential vulnerability paths. Satisfiable set of constraints shows 
that vulnerability exists. For the first time idea of symbolic 
execution appears in the eighties of XX century [4, 5]. 
Application of basic method might cause numerous difficulties. 
A large set of constraints requires substantial computational 
resources. The number of interesting paths may be exponential. 
Another issue is an existence of cycles in control flow graph. 
Number of cycle traversal depends on symbolic values. 
Furthermore decision of complex set of constraints can be 
inappropriate for the required path. This problem is caused by 
incompleteness of third party effects consideration in set of 
constraints. 

This article proposes partial solutions for problems occur in 
the search of vulnerabilities using symbolic code execution. We 
introduce some new approach, which can significantly help to 
find a range of additional vulnerabilities during testing process.  

2 RELATED WORK 

A wide range of research was previously made due to 
address issues of symbolic execution method for executable code. 
Researchers from BitBlaze project (Berkley University, USA) 
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propose to resolve the problem of cycles with symbolic number 
of steps [6]. Proposed method is based on cohesive variable 
usage. The authors of the article use number of completed 
iteration in a cycle as a cohesive variable. Index variables inside 
of cycle can be computed using this variable. That allows 
building set of constraints without complete enumeration of all 
possible iteration numbers. However this approach is suitable 
only for simple dependencies of variables in loop body. The 
authors of paper [7] proposed selective symbolic code execution 
for large software complexes. Later this idea was used in systems 
called Driller [8], Mayhem [9]. It seems to be the right way to 
combine static and dynamic analysis in one approach. But this 
approach inherits all issues of fuzzing – scalability problem, the 
hardness of test case properly generation, error-based only 
vulnerability detection. The other important example is 
Springfield project [3] which was developed by Microsoft 
research unit. Proposed method is based on concolic code 
execution and parallel computations in high-performance cloud. 
Programs under investigation execute with an actual input data 
but this data is generated using symbolic execution and 
constraint solving. Upon the application of Microsoft their 
implementation of automatically theorem proving system allow 
using set of constraints with billionth size symbolic variables 
successfully. But this project is based on a huge computational 
architecture, which is not available in ordinary companies for 
private closed-source testing. So he is also could not be fully 
applied for integer overflow vulnerabilities detection in 
executable x86-architecture code. 

In comparison with others, our approach allows to detect 
memory corruptions at an early stage, in addition to the main 
task of integer overflows discovery. Our memory management 
mechanism simplifies that process by lazy memory initialization 
and runtime tracking the types of memory used. 

3 SYMBOLIC EXECUTION APPLICATION FOR 
INTEGER OVERFLOW VULNERABILITY DETECTION 

Proposed approach allows finding integer overflow 
vulnerabilities in binary code and other types of software errors 
such as uninitialized memory usage, numerical values 
dereferencing instead of address dereference, inappropriate 
operations with addresses, etc. 
The main idea of approach is to use symbolic code execution for 
vulnerable conditions construction for input variables. 
Afterwards these condition need to be solved. Proposed 
approach can be presented as the sequence of following phases: 
1. Control flow graph construction. The input file is used to 

construct control flow graph for the tested program. 
Additionally the input and output vertices should be 
detected. The input vertices represent parts of code which 
are the sources of external data (keyboard input, file 
reading, etc.). The output vertices are code parts where 
“dangerous functions” calls exist. “Dangerous functions” are 
memory allocation functions.  

2. Cutting of unused path in control flow graph. All vertices 
which are not used in any path from input vertex to output 
vertex should be cut. 

3. Symbolic entry construction. Input data and uninitialized 
memory cells are considered as symbolic. Every cell is 
represented as a pair including symbolic “number” and 
symbolic “address”.  

4. Symbolic emulation. Every path is processed independently. 
The process includes machine code instructions symbolic 
emulation. This process affects both part of the cells 
representation (number and address). The symbolic cells 
may lose one of these parameters if any operation is 
impossible. For example, addresses could not be multiplied 
by any value and numbers could not be dereferenced. 
Associated with representation conflicts finding allows to 
detect vulnerabilities or software errors. 

5. Condition system construction. The condition system 
describes approachability of output vertex from input 
vertex. The system is constrained during the paths 
exploration. Special condition is used as a last condition in 
the system. If this condition is met, the integer overflow 
occurs. 

6. Condition system feasibility checking. Created conditions 
are checked with the automatically theorem proving 
system. If system is feasible program is vulnerable. 
Satisfying set of system form vulnerable input data called 
proof of concept which is a provement for this 
vulnerability. 

Python language and additional software tools were used for 
experimental implementation of this approach. Implementation 
details are described in the following sections. 

4 CONTROL FLOW GRAPH CONSTRUCTION 

IDA Pro disassembler is meant to be used as a primary data 
source for the execution file. IDA allows getting disassembled 
code with the instructions identification. The built-in tool 
IDAPython makes it possible to construct control flow graph. 
The process involves separate blocks detection where every 
block is free of conditional branch operations. IDAPython is a 
powerful code analyses tool however there are substantial design 
constructions: 

 Built-in Python interpreter is suitable only for 32-bit 
mode. This fact imposes restrictions on accessible for analyses 
amount of memory (4 GB). 

 Plugin is unable to work outside the IDA Pro interactive 
console. This situation complicates possible parallel path 
processing in graph. 

In that regard the PaiMei framework was improved. This 
framework is an IDAPython script which is used to construction 
and code graph representation extraction to the file. 

Basic code blocks are used as the vertices of extracted graph. 
These basic blocks represent homogeneous code regions which 
are free of branch instructions, function calls and function return 
instructions (Figure 1).  
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Figure 1: Retrieving information from IDA Pro in 

graph form 

 
The branch conditions apply to form set of directed edges. 

Every edge is marked with a label which depends on last 
instruction of base block: 

 True/False: label is used if last instruction was a branch 
condition next two blocks are marked with the branch condition 
corresponding label, 

 jmp: this label is used in case of unconditional branch 
(not to the next instruction), 

 jmp_import: in case of jump to import section function, 
 call: is used if the last instruction was a function call, 
 after_call: if last instruction was a function call, an edge 

with this label is added to current block (not called function 
block).  

The labels will be used for symbolic variables condition 
construction during path proceeding.  

Extracted file will contain all required for analysis 
information about code. Consequently the future work will be 
based on with this extracted file usage rather than executable file 
employment. 

5 GRAPH RECTIFICATION 

It is necessary to find graph path which leads from input 
data to vulnerable areas. Basic blocks with external data reading 
will be used as input vertices. Account is taken of either reading 
from files (fread, scanf, recv), from command prompt, from 
register, etc., or taking external parameters as function 
arguments/previously initialized values. For the standalone code 
(exe files etc.) with the one entry point the first variant is more 
suitable. However, the second variant is more suitable for 
dynamic libraries (dlls, dylib etc.), where many functions can be 
called independently from the programs which use the target 
libraries. Blocks with memory allocation (malloc, new, 
HeapAlloc, etc.) will be used as output vertices. The names of 
functions apply for vertex identification. The graph rectification 
process can be divided into two sections (Figure 2): 

1. Recursive Depth-First-Search (DFS). Vertices which are 
included in interesting paths are marked colored. Algorithm 
will finish after the last start vertex recursion terminate. 
The algorithm terminates after the exit of the recursion in 
the last of the starting vertices. 

2. All uncolored vertices and adjacent edges should be 
removed from the graph. Remaining colored paths in the 
graph could be processed independently from each other. 

 

 

Figure 2: Control flow graph rectification with path 
detection 

6 PROGRAM MEMORY INTERNAL REPRESENTATION 

To analyze the program without its execution we propose to 
model uninitialized and external data as symbolic variables. The 
z3py framework applies as a base tool for symbolic values 
proceeding. This framework allows constructing complicated set 
of constraints and solving it effectively.  

It is necessary to form consistent vulnerability appearance 
conditions with the purpose of consistent conditions solving. 
This requires memory operations emulation. The following facts 
should be appreciated:  

 x86 architecture does not make a difference between 
numbers and addresses. 

 There is no information about variable types. Value 
treatment as signed or unsigned is shown only implicitly (near 
conditional branch instructions). 

 Uninitialized variables contain arbitrary values in high-
level programming languages (C, C++). This applies to 
corresponding memory cells during compilation. This memory 
considered to be external data source in case of symbolic 
execution. 

Proposed memory model appreciate this and other 
requirement. The memory is represented as an associative array. 
The lazy initialization is applied: memory cells will be created 
the first time when it will be use.  

The list of possible memory cells: 
 general purpose registers (“eax” - .. – “edi”); 
 local values on current function stack ([ebp+var_8]); 
 current function arguments ([ebp+arg_0]); 
 values from allocated dynamic memory buffer; 
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 memory areas located near symbolic address. 
Initially the analyzed path memory is empty. When memory 

management instruction is achieved, corresponding cell existent 
will be checked. If this cell does not exist it will be created with a 
new symbolic value production. If the cell is not used for reading 
this checking is not implemented. 

The content of created cells has a dual representation. The 
way cell will be used (as number or as address) is not known in 
advance. Therefore the symbolic execution influence both part of 
the representation (number part and address part) (Figure 3). 
This has been going until first instruction which allows 
determining cell content type (cell may contain number or 
address) would be achieved. Cell content which is meant to be 
used with arithmetic or bit operations will be interpreted as a 
number values. In this way, the attempt to dereference this cell 
indicates vulnerability existence. Instead, cell which value is 
used as a base in an indirect memory dereferencing could not be 
used as a numerical value during the current path proceeding.  

Figure 3 shows corresponding example. The ebx register was 
considered as a dual represented before dereferencing occurs. 
After dereference, register content is thought of address until 
current path is explored. This way detected value incorrect usage 
indicates possible vulnerabilities. 
 

 
Figure 3: Duality of memory processing during symbolic 

emulation 

7 SYMBOLIC EXECUTION 

Symbolic code emulation and code affected memory 
modification apply to each leading to destination vertex path in 
graph. At the same time condition for symbolic values initiating 

integer overflow may accumulate in some code areas. This can 
be following areas: 

 edges between vertices in the control flow graph, caused 
by conditional branches. Expression which representing 
conditional branch is added to corresponding variables condition 
system; 

 arithmetic instructions: add, sub, mul/imul, shl, etc. 
Added expression presents conditions which cause target cell 
overflow in any operation involved in path to output vertex 
(Figure 4). 

 

 
Figure 4: Construction of buffer size constraints 

 
When the output vertex is reached, set of constraints is 

retrieved from corresponding memory cell. After that state-of-
the art theorem prover Microsoft z3 (open source) is applied to 
check if solution for this set exists. Solution existence indicates 
that there is vulnerability. Satisfying set of construction system 
represents vulnerable set of external or uninitialized data which 
leads to integer overflow in current path. 

Depending on the kind of analyzed code symbolic execution 
can take place in two different modes: 
1. Full-paths mode. Accumulation of system conditions occurs 

in the forward direction when moving from the source to 
the destination node. In this case, system of vulnerable 
constraints imposed only on the external data of the 
program and on uninitialized variables when moving along 
each path. 

2. Partial-paths mode, or layer-by-layer mode. This mode 
allows to analyze code, where there is no single entry point 
into the program – for example, DLL libraries. Various 
library functions can run independently from each other by 
different programs with different parameters. This implies 
the need for vulnerability testing of individual functions of 
such libraries. 

Function call stack is formed along a given path upon 
reaching the end vertex using the depth-first search. This 
allows to work with the functions in the reverse order of 
their execution along a given path. In the layer-by-layer 
mode symbolic execution of the code starts with the top 
(the innermost) function on the call stack. Upon reaching 
the destination vertex the generated system of vulnerable 
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conditions is checked for solvability. In the case of 
solvability, the function is considered as vulnerable and the 
symbolic execution performs for the following function on 
the call stack (Figure 5). Next destination node in this case 
will be the place a call to the vulnerable function. 

 As before, the conditions of the destination node 
reachability are accumulated. The set of constraints to 
verify the current function is complemented by a set of 
constraints that link the symbolic variables of the affected 
function with symbolic values for these parameters in the 
emulation round of the current function. In addition to the 
parameter values, all the symbolic values are recursively 
binding in the current and vulnerable functions, which are 
descendants of these values and are initialized through their 
dereference. 
 

 
Figure 5: Layer-by-layer vulnerability checking 

 
One can observe (Figure 6) an example of layer-by-

layer mode operation for 2 functions. A set of vulnerable 
constraints, built for function sub_4040 contains 3 types of 
constraints: 

 constraints for calling function sub_4141, 
 constraints describing the reachability of a 

function call sub_4141 from  the current function 
sub_4040, 

 constraints, linking the symbolic values that are 
actually passed to a function sub_4141 from 
current function sub_4040 with the symbolic 
variables of these parameters. 

 
Figure 6: Constraint set construction for the following 

function from the call stack 
 
System constraints are checked for solvability 

sequentially from the innermost function. If the system is 
solvable, it indicates that this function is vulnerable. If at any 
stage of the computation process, the constraints system become 
insolvable, a further test along this path is not performing. 

 

8 CONCLUSION 

This approach was implemented to optimize existing 
solutions and approbate new approaches in case of memory 
vulnerabilities detection. The method was tested on the program 
executable code which was borrowed from educational resource 
for the “Protocol security analysis” course in Saint-Petersburg 
State Polytechnic University. In simple cases method was able to 
detect integer overflows, additional vulnerabilities of 
uninitialized variables usage, etc. in program binary code. 

  However there are still some fundamental issues coming 
from aspects of code static analysis with symbolic computations 
methods: 

 cycle existence – amount of iteration calculation is not 
possible to be found with static analysis; 

 exponential increase of analyzed path amount due to 
conditional branch number; 

 there are debugging execution branches created by 
compiler rather than programmer; 

 complexity of system calls emulation and library 
procedure semantics; 

 limited prospects of automatically theorem proving 
system, complexity of gotten symbolic values condition systems. 
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 Some of these issues can be partially solved by modern 
large-scale concolic approaches (the previously mentioned 
SAGE), or selective paths processing (S2E platform). However, 
today it seems unsolvable to deal with “exponential explosion” 
problem in general case. 
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