
Integer Overflow Vulnerabilities Detection in Software Binary
Code

Roman Demidov
Peter the Great St. Petersburg

Polytechnic University, Russia,
St. Petersburg,

29, Politekhnicheskaya ul.,
+7(812)5527632

rd@ibks.spbstu.ru

Alexander Pechenkin
Peter the Great St. Petersburg

Polytechnic University, Russia,
St. Petersburg,

29, Politekhnicheskaya ul.,
+7(812)5527632

alexander.pechenkin@ibks.ftk.spbstu.ru

Peter Zegzhda
Peter the Great St. Petersburg

Polytechnic University, Russia,
St. Petersburg,

29, Politekhnicheskaya ul.,
+7(812)5527632

zeg@ibks.ftk.spbstu.ru

ABSTRACT

In this paper1 we propose a new approach to detect integer
overflow vulnerabilities in executable x86-architecture code. The
approach is based on symbolic execution of the code and the
dual representation of memory. We build truncated control flow
graph, based on the machine code. Layers in that graph are
checked for the feasibility of vulnerability conditions. The
proposed methods were implemented and experimentally tested
on executable code.

CCS CONCEPTS

Security and privacy → System security → Vulnerability
management

KEYWORDS
Vulnerability finding, symbolic execution, symbolic memory,
vulnerability classification, control flow graph, integer overflow

1 INTRODUCTION

Vulnerability detection is complex computational problem.
In general this problem can be reduced to NP-complete problem
Boolean satisfiability problem (SAT). The exact solution of this
problem does not exist. All actual algorithms are based on
exponential enumeration of possibilities. As a result the
implementation of this approach cannot be effective in practice.
There are variety of vulnerability detection technics which do

1 Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.

SIN '17, October 13–15, 2017, Jaipur, IN, India
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5303-8/17/10..$15.00
https://doi.org/10.1145/3136825.3136872

not involve complete enumeration. Heuristic approaches focus
on a-priori known vulnerability characteristics detection rather
than vulnerability detection itself. Consequently, these methods
have a narrow scope of applications defined by a class of the
input programs. As a result universal approach which allows
automatically detecting vulnerabilities of known classes in actual
programs does not exist.

Practical methods have number of disadvantages. Fuzzing
might be considered as a dynamic analysis method. The various
options of fuzzing use prior knowledge of input data format and
algorithm implementation bottlenecks. This allows reducing
number of scope for complete enumeration [1]. Effective fuzzing
requires substantial computational resources [2, 3] without
guaranteed results. Fuzzing does not make possible to find all
vulnerabilities in the program code. Furthermore this method is
inappropriate for specific class vulnerability detection.

Static analysis methods make use of symbolic execution. A
part of the memory cells is supposed to be symbolic i.e.
unknown. A set of constraints on symbolic values is built for
potential vulnerability paths. Satisfiable set of constraints shows
that vulnerability exists. For the first time idea of symbolic
execution appears in the eighties of XX century [4, 5].
Application of basic method might cause numerous difficulties.
A large set of constraints requires substantial computational
resources. The number of interesting paths may be exponential.
Another issue is an existence of cycles in control flow graph.
Number of cycle traversal depends on symbolic values.
Furthermore decision of complex set of constraints can be
inappropriate for the required path. This problem is caused by
incompleteness of third party effects consideration in set of
constraints.

This article proposes partial solutions for problems occur in
the search of vulnerabilities using symbolic code execution. We
introduce some new approach, which can significantly help to
find a range of additional vulnerabilities during testing process.

2 RELATED WORK

A wide range of research was previously made due to
address issues of symbolic execution method for executable code.
Researchers from BitBlaze project (Berkley University, USA)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3136825.3136872&domain=pdf&date_stamp=2017-10-13

2

propose to resolve the problem of cycles with symbolic number
of steps [6]. Proposed method is based on cohesive variable
usage. The authors of the article use number of completed
iteration in a cycle as a cohesive variable. Index variables inside
of cycle can be computed using this variable. That allows
building set of constraints without complete enumeration of all
possible iteration numbers. However this approach is suitable
only for simple dependencies of variables in loop body. The
authors of paper [7] proposed selective symbolic code execution
for large software complexes. Later this idea was used in systems
called Driller [8], Mayhem [9]. It seems to be the right way to
combine static and dynamic analysis in one approach. But this
approach inherits all issues of fuzzing – scalability problem, the
hardness of test case properly generation, error-based only
vulnerability detection. The other important example is
Springfield project [3] which was developed by Microsoft
research unit. Proposed method is based on concolic code
execution and parallel computations in high-performance cloud.
Programs under investigation execute with an actual input data
but this data is generated using symbolic execution and
constraint solving. Upon the application of Microsoft their
implementation of automatically theorem proving system allow
using set of constraints with billionth size symbolic variables
successfully. But this project is based on a huge computational
architecture, which is not available in ordinary companies for
private closed-source testing. So he is also could not be fully
applied for integer overflow vulnerabilities detection in
executable x86-architecture code.

In comparison with others, our approach allows to detect
memory corruptions at an early stage, in addition to the main
task of integer overflows discovery. Our memory management
mechanism simplifies that process by lazy memory initialization
and runtime tracking the types of memory used.

3 SYMBOLIC EXECUTION APPLICATION FOR
INTEGER OVERFLOW VULNERABILITY DETECTION

Proposed approach allows finding integer overflow
vulnerabilities in binary code and other types of software errors
such as uninitialized memory usage, numerical values
dereferencing instead of address dereference, inappropriate
operations with addresses, etc.
The main idea of approach is to use symbolic code execution for
vulnerable conditions construction for input variables.
Afterwards these condition need to be solved. Proposed
approach can be presented as the sequence of following phases:
1. Control flow graph construction. The input file is used to

construct control flow graph for the tested program.
Additionally the input and output vertices should be
detected. The input vertices represent parts of code which
are the sources of external data (keyboard input, file
reading, etc.). The output vertices are code parts where
“dangerous functions” calls exist. “Dangerous functions” are
memory allocation functions.

2. Cutting of unused path in control flow graph. All vertices
which are not used in any path from input vertex to output
vertex should be cut.

3. Symbolic entry construction. Input data and uninitialized
memory cells are considered as symbolic. Every cell is
represented as a pair including symbolic “number” and
symbolic “address”.

4. Symbolic emulation. Every path is processed independently.
The process includes machine code instructions symbolic
emulation. This process affects both part of the cells
representation (number and address). The symbolic cells
may lose one of these parameters if any operation is
impossible. For example, addresses could not be multiplied
by any value and numbers could not be dereferenced.
Associated with representation conflicts finding allows to
detect vulnerabilities or software errors.

5. Condition system construction. The condition system
describes approachability of output vertex from input
vertex. The system is constrained during the paths
exploration. Special condition is used as a last condition in
the system. If this condition is met, the integer overflow
occurs.

6. Condition system feasibility checking. Created conditions
are checked with the automatically theorem proving
system. If system is feasible program is vulnerable.
Satisfying set of system form vulnerable input data called
proof of concept which is a provement for this
vulnerability.

Python language and additional software tools were used for
experimental implementation of this approach. Implementation
details are described in the following sections.

4 CONTROL FLOW GRAPH CONSTRUCTION

IDA Pro disassembler is meant to be used as a primary data
source for the execution file. IDA allows getting disassembled
code with the instructions identification. The built-in tool
IDAPython makes it possible to construct control flow graph.
The process involves separate blocks detection where every
block is free of conditional branch operations. IDAPython is a
powerful code analyses tool however there are substantial design
constructions:

 Built-in Python interpreter is suitable only for 32-bit
mode. This fact imposes restrictions on accessible for analyses
amount of memory (4 GB).

 Plugin is unable to work outside the IDA Pro interactive
console. This situation complicates possible parallel path
processing in graph.

In that regard the PaiMei framework was improved. This
framework is an IDAPython script which is used to construction
and code graph representation extraction to the file.

Basic code blocks are used as the vertices of extracted graph.
These basic blocks represent homogeneous code regions which
are free of branch instructions, function calls and function return
instructions (Figure 1).

 3

Figure 1: Retrieving information from IDA Pro in

graph form

The branch conditions apply to form set of directed edges.

Every edge is marked with a label which depends on last
instruction of base block:

 True/False: label is used if last instruction was a branch
condition next two blocks are marked with the branch condition
corresponding label,

 jmp: this label is used in case of unconditional branch
(not to the next instruction),

 jmp_import: in case of jump to import section function,
 call: is used if the last instruction was a function call,
 after_call: if last instruction was a function call, an edge

with this label is added to current block (not called function
block).

The labels will be used for symbolic variables condition
construction during path proceeding.

Extracted file will contain all required for analysis
information about code. Consequently the future work will be
based on with this extracted file usage rather than executable file
employment.

5 GRAPH RECTIFICATION

It is necessary to find graph path which leads from input
data to vulnerable areas. Basic blocks with external data reading
will be used as input vertices. Account is taken of either reading
from files (fread, scanf, recv), from command prompt, from
register, etc., or taking external parameters as function
arguments/previously initialized values. For the standalone code
(exe files etc.) with the one entry point the first variant is more
suitable. However, the second variant is more suitable for
dynamic libraries (dlls, dylib etc.), where many functions can be
called independently from the programs which use the target
libraries. Blocks with memory allocation (malloc, new,
HeapAlloc, etc.) will be used as output vertices. The names of
functions apply for vertex identification. The graph rectification
process can be divided into two sections (Figure 2):

1. Recursive Depth-First-Search (DFS). Vertices which are
included in interesting paths are marked colored. Algorithm
will finish after the last start vertex recursion terminate.
The algorithm terminates after the exit of the recursion in
the last of the starting vertices.

2. All uncolored vertices and adjacent edges should be
removed from the graph. Remaining colored paths in the
graph could be processed independently from each other.

Figure 2: Control flow graph rectification with path
detection

6 PROGRAM MEMORY INTERNAL REPRESENTATION

To analyze the program without its execution we propose to
model uninitialized and external data as symbolic variables. The
z3py framework applies as a base tool for symbolic values
proceeding. This framework allows constructing complicated set
of constraints and solving it effectively.

It is necessary to form consistent vulnerability appearance
conditions with the purpose of consistent conditions solving.
This requires memory operations emulation. The following facts
should be appreciated:

 x86 architecture does not make a difference between
numbers and addresses.

 There is no information about variable types. Value
treatment as signed or unsigned is shown only implicitly (near
conditional branch instructions).

 Uninitialized variables contain arbitrary values in high-
level programming languages (C, C++). This applies to
corresponding memory cells during compilation. This memory
considered to be external data source in case of symbolic
execution.

Proposed memory model appreciate this and other
requirement. The memory is represented as an associative array.
The lazy initialization is applied: memory cells will be created
the first time when it will be use.

The list of possible memory cells:
 general purpose registers (“eax” - .. – “edi”);
 local values on current function stack ([ebp+var_8]);
 current function arguments ([ebp+arg_0]);
 values from allocated dynamic memory buffer;

4

 memory areas located near symbolic address.
Initially the analyzed path memory is empty. When memory

management instruction is achieved, corresponding cell existent
will be checked. If this cell does not exist it will be created with a
new symbolic value production. If the cell is not used for reading
this checking is not implemented.

The content of created cells has a dual representation. The
way cell will be used (as number or as address) is not known in
advance. Therefore the symbolic execution influence both part of
the representation (number part and address part) (Figure 3).
This has been going until first instruction which allows
determining cell content type (cell may contain number or
address) would be achieved. Cell content which is meant to be
used with arithmetic or bit operations will be interpreted as a
number values. In this way, the attempt to dereference this cell
indicates vulnerability existence. Instead, cell which value is
used as a base in an indirect memory dereferencing could not be
used as a numerical value during the current path proceeding.

Figure 3 shows corresponding example. The ebx register was
considered as a dual represented before dereferencing occurs.
After dereference, register content is thought of address until
current path is explored. This way detected value incorrect usage
indicates possible vulnerabilities.

Figure 3: Duality of memory processing during symbolic

emulation

7 SYMBOLIC EXECUTION

Symbolic code emulation and code affected memory
modification apply to each leading to destination vertex path in
graph. At the same time condition for symbolic values initiating

integer overflow may accumulate in some code areas. This can
be following areas:

 edges between vertices in the control flow graph, caused
by conditional branches. Expression which representing
conditional branch is added to corresponding variables condition
system;

 arithmetic instructions: add, sub, mul/imul, shl, etc.
Added expression presents conditions which cause target cell
overflow in any operation involved in path to output vertex
(Figure 4).

Figure 4: Construction of buffer size constraints

When the output vertex is reached, set of constraints is

retrieved from corresponding memory cell. After that state-of-
the art theorem prover Microsoft z3 (open source) is applied to
check if solution for this set exists. Solution existence indicates
that there is vulnerability. Satisfying set of construction system
represents vulnerable set of external or uninitialized data which
leads to integer overflow in current path.

Depending on the kind of analyzed code symbolic execution
can take place in two different modes:
1. Full-paths mode. Accumulation of system conditions occurs

in the forward direction when moving from the source to
the destination node. In this case, system of vulnerable
constraints imposed only on the external data of the
program and on uninitialized variables when moving along
each path.

2. Partial-paths mode, or layer-by-layer mode. This mode
allows to analyze code, where there is no single entry point
into the program – for example, DLL libraries. Various
library functions can run independently from each other by
different programs with different parameters. This implies
the need for vulnerability testing of individual functions of
such libraries.

Function call stack is formed along a given path upon
reaching the end vertex using the depth-first search. This
allows to work with the functions in the reverse order of
their execution along a given path. In the layer-by-layer
mode symbolic execution of the code starts with the top
(the innermost) function on the call stack. Upon reaching
the destination vertex the generated system of vulnerable

 5

conditions is checked for solvability. In the case of
solvability, the function is considered as vulnerable and the
symbolic execution performs for the following function on
the call stack (Figure 5). Next destination node in this case
will be the place a call to the vulnerable function.

 As before, the conditions of the destination node
reachability are accumulated. The set of constraints to
verify the current function is complemented by a set of
constraints that link the symbolic variables of the affected
function with symbolic values for these parameters in the
emulation round of the current function. In addition to the
parameter values, all the symbolic values are recursively
binding in the current and vulnerable functions, which are
descendants of these values and are initialized through their
dereference.

Figure 5: Layer-by-layer vulnerability checking

One can observe (Figure 6) an example of layer-by-

layer mode operation for 2 functions. A set of vulnerable
constraints, built for function sub_4040 contains 3 types of
constraints:

 constraints for calling function sub_4141,
 constraints describing the reachability of a

function call sub_4141 from the current function
sub_4040,

 constraints, linking the symbolic values that are
actually passed to a function sub_4141 from
current function sub_4040 with the symbolic
variables of these parameters.

Figure 6: Constraint set construction for the following

function from the call stack

System constraints are checked for solvability

sequentially from the innermost function. If the system is
solvable, it indicates that this function is vulnerable. If at any
stage of the computation process, the constraints system become
insolvable, a further test along this path is not performing.

8 CONCLUSION

This approach was implemented to optimize existing
solutions and approbate new approaches in case of memory
vulnerabilities detection. The method was tested on the program
executable code which was borrowed from educational resource
for the “Protocol security analysis” course in Saint-Petersburg
State Polytechnic University. In simple cases method was able to
detect integer overflows, additional vulnerabilities of
uninitialized variables usage, etc. in program binary code.

 However there are still some fundamental issues coming
from aspects of code static analysis with symbolic computations
methods:

 cycle existence – amount of iteration calculation is not
possible to be found with static analysis;

 exponential increase of analyzed path amount due to
conditional branch number;

 there are debugging execution branches created by
compiler rather than programmer;

 complexity of system calls emulation and library
procedure semantics;

 limited prospects of automatically theorem proving
system, complexity of gotten symbolic values condition systems.

6

 Some of these issues can be partially solved by modern
large-scale concolic approaches (the previously mentioned
SAGE), or selective paths processing (S2E platform). However,
today it seems unsolvable to deal with “exponential explosion”
problem in general case.

REFERENCES
[1] Pechenkin, A.I., Lavrova, D.S. Modeling the search for vulnerabilities via the

fuzzing method using an automation representation of network protocols. Aut.
Control Comp. Sci. (2015) 49: 826. DOI:
https://doi.org/10.3103/S0146411615080325.

[2] Pechenkin, A.I., Nikolskiy, A.V. Architecture of a scalable system of fuzzing
network protocols on a multiprocessor cluster. Aut. Control Comp. Sci. (2015)
49: 758. DOI: https://doi.org/10.3103/S0146411615080313.

[3] Fuzzing @ Microsoft – A Research Perspective, Patrice Godefroid, Microsoft
Research, ACSC 2017.

[4] Robert S. Boyer, Bernard Elspas, Karl N. Levitt SELECT--a formal system for
testing and debugging programs by symbolic execution, Proceedings of the
International Conference on Reliable Software, 1975, page 234--245, Los
Angeles, California. DOI: https://doi.org/10.1145/800027.808445.

[5] James C. King, Symbolic Execution and Program Testing. Communications of
the ACM, Vol. 19, Num. 7, 1976. DOI: https://doi.org/10.1145/360248.360252.

[6] Prateek Saxena, Pongsin Poosankam, Stephen McCamant, Dawn Song. Loop-
Extended Symbolic Execution on Binary Programs. In the Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA), July 2009. DOI: https://doi.org/10.1145/1572272.1572299.

[7] Vitaly Chipounov, Vlad Georgescu, Cristian Zamfir, George Candea. Selective
Symbolic Execution. Appears in Proceedings of the 5th Workshop on Hot
Topics in System Dependability (HotDep), Lisbon, Portugal, June 2009.

[8] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, Giovanni Vigna,
Driller: Augmenting Fuzzing Through Selective Symbolic Execution. NDSS’16,
21-24 February 2016, San Diego, CA, USA. DOI:
https://doi.org/10.14722/ndss.2016.23368.

[9] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert and David Brumley.
Unleashing MAYHEM on Binary Code. Carnegie Mellon University Pittsburgh.
May, 2016. PA. DOI: https://doi.org/10.1109/SP.2012.31

