K-5 Teachers’ Uses of Levels of Abstraction Focusing on Design

Jane Waite
Queen Mary University of London
London
jlwaite@qmul.ac.uk

William Marsh
Queen Mary University of London
London
d.w.marsh@gmul.ac.uk

ABSTRACT

Recent research with middle school and university students high-
lights two factors that contribute to programming success: 1) un-
derstanding the level of abstraction that you are working at, and
2) being able to move between levels. In this qualitative study we
explored levels of abstraction, and particularly the design level,
with five K-5 teachers. Here we outline 11 main findings. The teach-
ers interviewed use the design level for both programming and
writing. However, the two expert computing teachers have a far
greater depth of understanding of the opportunities for the use of
the design level, supporting pupils to understand the level they are
working at and helping them move between levels of abstraction
by using designs in novel ways. Further work is needed to investi-
gate whether our results are generalisable. Further exploration of
levels of abstraction and particularly how the design level helps K-5
learners learn to program, in the same way that planning supports
novices learning to write, is warranted.

ACM Reference format:

Jane Waite, Paul Curzon, William Marsh, and Sue Sentance. 2017. K-5 Teach-
ers’ Uses of Levels of Abstraction Focusing on Design. In Proceedings of
WIPSCE ’17, Nijmegen, Netherlands, November 8-10, 2017, 2 pages.
https://doi.org/10.1145/3137065.3137068

1 INTRODUCTION

Despite a lack of consensus on exactly what computational think-
ing is, proponents of computational thinking, surveys of compu-
tational thinking, and emerging curriculum frameworks propose
that abstraction forms a core component [5, 10, 15] with ambitious
potential and possibly exaggerated claims [12]. We investigate K-
5 teachers use of abstraction through the lens of one scenario of
abstraction: that of the levels of abstraction hierarchy, particularly
focusing on the design level.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

WiPSCE °17, November 8-10, 2017, Nijmegen, Netherlands

© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5428-8/17/11...$15.00

https://doi.org/10.1145/3137065.3137068

Paul Curzon
Queen Mary University of London
London
p.curzon@qmul.ac.uk

Sue Sentance
King’s College London
London
sue.sentance@kcl.ac.uk

2 RELATED WORK

Perrenet, Groote and Kassenbrood [8] proposed a levels of abstrac-
tion hierarchy explaining university students’ thinking about algo-
rithms. Armoni [1] suggested a framework for its use and to support
understanding renamed the object level the algorithm level. Statter
& Armoni [11] reported promising findings on using the hierarchy
in middle school programming. In earlier work [14] we aligned the
hierarchy with the work of others and renamed the object level to
the design level to support K-5 teachers understanding naming the
levels: problem, design, code and running the code.

3 AIMS AND APPROACH

Our aim was to better understand the opportunities for use of the
levels of abstraction hierarchy, particularly the design level, with
K-5 teachers. Using semi-structured interviews augmented with
unplugged activities we conducted in-depth interviews with five
K-5 teachers. A thematic qualitative data analysis approach was
used to analyse the transcriptions [6].

4 FINDINGS & DISCUSSION

We outline eleven of our most interesting findings. These are loosely
grouped by Magnusson, Krajcik & Borko’s PCK elements [7].
Goals & Objectives: Use of terms: Our five teachers used a va-
riety of conflicting terms for design, algorithm and code, and had
a limited vocabulary to describe running the code. The terms al-
gorithm and code, used as labels for different levels of abstraction,
were used interchangeably. Progression is aligned to learners build-
ing understanding based on precise vocabulary [2, 9]. Teachers
understanding of levels of abstraction may be limited and pupils’
progression in programming may be being compromised by a lack
of teachers’ shared understanding. Level of detail: Both novice and
expert teachers mentioned the level of detail included, or omitted,
by pupils at the design level in literacy and in programming. One
expert teacher explained that he demonstrated to pupils how to
include ‘less detail’ in computing design than might be expected in
plans for other subjects. Teachers” understanding of the amount of
detail needed for each level may impact on teaching and learning
of levels of abstraction. Familiarity with and using different design
types: All teachers showed familiarity, confidence and a depth of
understanding on the use of the design level in a variety of subjects,
such as Maths, Music and History. Teachers cited storyboards as
being good for sequencing, and concept maps being flexible to add
new ideas. All teachers said they used storyboards in English and

https://doi.org/10.1145/3137065.3137068
https://doi.org/10.1145/3137065.3137068

WiPSCE *17, November 8-10, 2017, Nijmegen, Netherlands

labelled diagrams in Science. Concept maps, labelled diagrams and
storyboards were mentioned as being used across a wide range
of subjects including computing. The expert computing teachers
showed a more in-depth understanding of the design level of ab-
straction for computing. They explained how storyboards were
good for animations as they show sequence clearly, and how mind
maps were better for games as common features can be easily
shown. How different design types exemplify the level of abstrac-
tion at which one is working at, or are effective to support transition,
requires further investigation.

Students’ understanding: Synergy with teaching writing & Self
regulation: Novice and expert computing teachers, mentioned the
importance of, and utility of, using planning, a form of design, to
support self-regulation for novice writers as they learn to write.
Self-regulation, planning, revising and editing compositions is rec-
ommended as having high impact on improvement of writing[3, 4].
Novice writers use their plan to focus on one part of it at a time,
transition levels of abstraction as they write that part, revise and
edit, and check back to the plan. Similarly, a design in programming
becomes a personalised scaffolding map that supports traversing
the levels of abstraction as learners decompose their problem, im-
plement each component, debug each part as they run the code
and check back to the problem level, before moving onto the next
component of their design.

Instructional Strategies: Aide memoire: All teachers mentioned
the role of a design in managing the process of pupils progressing
their programming project. Design served as an aide memoire of
what was to be done, what had been done and what to do next.
Completeness, coverage, cohesion: One teacher drew attention to the
use of design to help pupils finish work improving completeness,
another to the design helping pupils check coverage, and another
to how design kept pupils on track improving cohesion. Here the
quality of the finished piece is improved by using the design level
to manage a complex task. There are links to cognitive load theory
[13] which asserts that if a complex scenario is broken down into
discrete units then the complex task becomes easier to solve. Anno-
tation: The expert teachers mentioned adding notes, such as code
constructs, to designs, both before and after coding had started.
Annotations not only transitioned the levels of abstraction, but
were also used for differentiation and to provide a record of the
original and changed ideas supporting a growth mindset. Pair pro-
gramming: One expert teacher raised the idea of using a design as
a contract between pupils when working in pairs. What next?: An
expert teacher also pointed out design was useful for him as well as
pupils, as he could see what was needed to be taught to implement
ideas planned. Each strategy may draw attention to the level of
abstraction one is working at or support transition across levels.
However, further investigation is needed to explore this.

Assessment: Do-ability: The expert teachers required pupils
to consider ’do-ability’Do-ability’ is understanding whether one
can, at one’s current and anticipated level of experience and within
the time frame of a project, implement a design, within the con-
straints of the programming language being used. Self-assessment:
The expert teachers required pupils to mark their design with a
self-assessment of their confidence to implement its components.
Both these assessment activities straddle the design and code level.

J. Waite et al.

5 CONCLUSIONS

Despite a limited population of participants, our findings suggest
that the levels of abstraction hierarchy may be useful for review-
ing pedagogy for programming. Our novice and expert teachers
situate work at the design level in programming as well as in other
subjects. Our expert teachers use design in novel and interesting
ways including using it to facilitate movement across the levels of
abstraction. However, our findings require further investigation to
assess whether they are generalisable. We suggest there is partic-
ular merit in investigating the use of design as a self-regulation
tool to develop independence for novice and struggling program-
mers in the same way that planning is used to support novice and
struggling writers.

6 FURTHER WORK

We plan to explore in more detail the relationship between abstrac-
tion, design and levels of abstraction. Our next steps also include:
further literature review and survey of experts; a review of curricula
material for incorporation of design and other levels of abstraction;
a survey of teachers to verify the findings presented here with
a wider audience; work with a focus group of teachers to create
guidance on the practical application of the levels of abstraction
particularly the design level, in K-5 programming teaching.

REFERENCES

[1] Michal Armoni. 2013. On Teaching Abstraction in Computer Science to Novices.
Journal of Computers in Mathematics and Science Teaching 32, 3 (2013), 265-284.

[2] Joanne Carlisle, Jane Fleming, and Beth Gudbrandsen. 2000. Incidental word
learning in science classes. Contemporary Educational Psychology 25, 2 (2000),
184-211.

[3] Steve Graham, Alisha Bollinger, C Olson, Catherine DAoust, Charles MacArthur,

Deborah McCutchen, and Natalie Olinghouse. 2012. Teaching elementary school

students to be effective writers. What Works Clearinghouse, US Department of

Education (2012).

Steve Higgins, Maria Katsipataki, Dimitra Kokotsaki, Robert Coe, Lee Elliot

Major, and Robbie Coleman. 2013. The Sutton Trust-Education Endowment

Foundation Teaching and Learning Toolkit: Technical Appendices. Education

Endowment Foundation, London (2013).

[5] Jeff Kramer. 2007. Is abstraction the key to computing? Commun. ACM 50, 4
(2007), 36-42. https://doi.org/10.1145/1232743.1232745

[6] Udo Kuckartz. 2014. Qualitative text analysis: A guide to methods, practice and
using software. Sage.

[7] Shirley Magnusson, Joseph Krajcik, and Hilda Borko. 1999. Nature, sources,
and development of pedagogical content knowledge for science teaching. In
Examining pedagogical content knowledge. Springer, 95-132.

[8] Jacob Perrenet, Jan Friso Groote, and Eric Kaasenbrood. 2005. Exploring students’
understanding of the concept of algorithm: levels of abstraction. ACM SIGCSE
Bulletin 37, 3 (2005), 64-68. https://doi.org/10.1145/1067445.1067467

[9] Edward Sapir. 1921. An introduction to the study of speech. Language (1921).

[10] Deborah Seehorn, Tammy Pirmann, Todd Lash, Letici Batista, Dylan Ryder, Vicky
Sedgwich, Irene Lee, Dianne OGrady-Cunniff, Bryan Twarej, Daniel Mox, Julia
Bell, Laura Blankenship, Lori Pollock, and Uche Chinma. 2016. Interim CSTA
K-12 Computer Science Standards. (2016).

[11] David Statter and Michal Armoni. 2016. Teaching Abstract Thinking in Introduc-
tion to Computer Science for 7th Graders. In Proceedings of the 11th Workshop in
Primary and Secondary Computing Education. ACM, 80-83.

[12] Matti Tedre and Peter J Denning. 2016. The long quest for computational think-

ing. In Proceedings of the 16th Koli Calling Conference on Computing Education

Research. 24-27.

Jeroen JG Van Merrienboer and John Sweller. 2005. Cognitive load theory

and complex learning: Recent developments and future directions. Educational

psychology review 17, 2 (2005), 147-177.

[14] Jane Waite, Paul Curzon, William Marsh, and Sue Sentance. 2016. Abstraction

and common classroom activities. In Proceedings of the 11th Workshop in Primary

and Secondary Computing Education. ACM, 112-113.

Jeannette M Wing and Valerie Barr. 2011. {Jeannette M. Wing@ PCAST; Barbara

Liskov Keynote }. Commun. ACM 54, 9 (2011), 10-11.

[4

[13

[15

https://doi.org/10.1145/1232743.1232745
https://doi.org/10.1145/1067445.1067467

	Abstract
	1 Introduction
	2 Related Work
	3 Aims and Approach
	4 Findings & Discussion
	5 Conclusions
	6 Further Work
	References

