
sTube+: An IoT Communication Sharing Architecture for Smart
After-sales Maintenance in Buildings

Chuang Hu

Department of Computing,

Hong Kong Polytechnic Univ.

cschu@comp.polyu.edu.hk

Wei Bao

School of Information Technology

The University of Sydney

wei.bao@sydney.edu.au

Dan Wang

Department of Computing

Hong Kong Polytechnic Univ.

csdwang@comp.polyu.edu.hk

Yi Qian

Dept. Electrical & Computer Eng.

University of Nebraska Lincoln

yqian2@unl.edu

Muqiao Zheng

School of Automation

Guangdong University of Technology

joe.zheng@fusquare.com

Shi Wang

Department of Computing

Hong Kong Polytechnic Univ.

winona.wang@connect.polyu.hk

ABSTRACT
Nowadays, manufacturers want to send the data of their products

to the cloud, so that they can conduct analysis and improve their

operation, maintenance and services. Manufacturers are looking

for a self-contained solution. This is because their products are

deployed in a large number of different buildings, and it is neither

feasible for a vendor to negotiate with each building to use the

building’s network (e.g., WiFi) nor practical to establish its own

network infrastructure. The vendor can rent a dedicated channel

from an ISP to act as a thing-to-cloud communication (TCC) link for

each of its IoT devices. The readily available choices, e.g., 3G is over

costly for most IoT devices. ISPs are developing cheaper choices for

TCC links, yet we expect that the number of choices for TCC links

will be small as compared to hundreds or thousands of requirements

on different costs and data rates from IoT applications.

We address this issue by proposing a communication sharing
architecture sTube+, sharing tube. The objective of sTube+ is to

organize a greater number of IoT devices, with heterogeneous data

communication and cost requirements to efficiently share fewer

choices of TCC links, and transmit their data to the cloud. We take

a design of centralized price optimization and distributed network

control. More specifically, we architect a layered architecture for

data delivery, develop algorithms to optimize the overall monetary

cost, and prototype a fully functioning system of sTube+. We eval-

uate sTube+ by both experiments and simulations. In addition, we

develop a case study on smart maintenance of chillers and pumps,

using sTube+ as the underlying network architecture.

CCS CONCEPTS
• General and reference→ General conference proceedings;
• Networks → Layering;

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

BuildSys’17, November 8–9, 2017, Delft, The Netherlands
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5544-5/17/11. . . $15.00

https://doi.org/10.1145/3137133.3137143

KEYWORDS
IoT, communication architecture, smart building, thing-to-cloud

ACM Reference Format:
Chuang Hu, Wei Bao, Dan Wang, Yi Qian, Muqiao Zheng, and Shi Wang.

2018. sTube+: An IoT Communication Sharing Architecture for Smart After-

sales Maintenance in Buildings . In Proceedings of 4th ACM Conference on
Systems for Energy-Efficient Built Environments (BuildSys’17). ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/3137133.3137143

1 INTRODUCTION
One important value proposition of the Internet of Things (IoT)

is the data generated by the IoT devices (a.k.a, things) [16]. When

sending such data to the cloud, with state-of-the-art data mining

techniques and the computational power of the cloud, the adding

value can be significant [19]. For example, it has been shown that

big building data (e.g., carbon dioxide (CO2) data from the heating,

ventilation and air conditioning (HVAC) systems) can be exploited

to predict traffic status of nearby roads [22]. Smart After-sales Main-

tenance and Services (SAMS), which will become the case study of

this paper, is another example. Manufacturers of air conditioners,

pumps, elevators, etc., are now transforming their machinery into

smart machinery. When sending the data of their products to the

cloud, SAMS can operate in a trouble-preventing mode instead of

trouble-shooting mode. This can substantially improve the quality

and reduce the cost of the product maintenance. Moreover, man-

ufacturers can learn the usage patterns of their customers. Thus

they can recommend other products and develop top-up services

based on such knowledge [13].

To fully realize the aforementioned applications, the things should

be accessible anywhere and anytime. One key question remains to

be answered: how to transmit the data from the things to the cloud,

in an easy-to-use and cost-effective way?

The vendor may develop a WiFi network for the IoT application.

However, WiFi needs additional infrastructure, e.g., a gateway that

finally relays data to the cloud. This is not suitable for SAMS. For

example, a vendor would like to monitor all its air conditioners in

a region, installed in a large number of buildings. The WiFi choice

needs deployment ofWiFi networks on a building-by-building basis.

In other words, the vendor is developing a separated network in-

frastructure. If using existing WiFi networks in the buildings, there

will be policy and security concerns. A building can easily have

products from tens of vendors. If each vendor wants its equipment

https://doi.org/10.1145/3137133.3137143
https://doi.org/10.1145/3137133.3137143
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3137133.3137143&domain=pdf&date_stamp=2017-11-08

BuildSys’17, November 8–9, 2017, Delft, The Netherlands Hu et al.

to infiltrate the WiFi network of the building, building operators

need to bear overwhelming liability. Simply-put, applications such

as SAMS are looking for an infrastructure-less solution.

The vendor may rely on the infrastructure of a service provider

(ISP) and rent a dedicated wireless communication channel for each

IoT device [5] to support the thing-to-cloud communication (TCC)
links. Current choices for TCC links are very limited. The readily

available 3G/4G is over-costly for the majority of IoT devices. The

industry has realized this problem and is actively developing less

costly wireless communication channels. User Experience-Category

(CAT) represents a group of technologies with much smaller data

rates and thus costs [15]. CAT1 was released in 2016 and CAT0

is under deployment [17]. Nevertheless, we may expect tens of

choices of communication channels with different costs and data

rates, yet we will face hundreds, if not thousands, of heterogeneous

requirements. In the SAMS example, the cost of CAT1 might be

justifiable for a chiller, yet it may be too costly for a fan.

We see a clear gap between the possible choices of TCC links,

and the number of requirements on different costs and data rates

from the IoT applications. To address this issue, we propose Sharing

Tube plus (sTube+) for IoT communication sharing. The objective

of sTube+ is to organize a greater number of IoT devices, with het-

erogeneous data communication requirements to efficiently share

fewer choices of TCC links, and transmit their data to the cloud.

An example SAMS application using sTube+ is shown in Fig. 1.

To bring sTube+ into reality, the challenges not only lie in the

TCC link sharing optimization, but also that there is currently no ar-
chitecture for IoT communication sharing data delivery.We propose

a design approach of centralized price optimization and distributed

network control. We architect a layered architecture for data deliv-

ery, optimize TCC link sharing, and prototype a functioning sTube+

system. We evaluate sTube+ with experiments and simulations.

Finally, we present a SAMS case study. In this case study, we collect

data from chillers and pumps, two core components of a centralized

HVAC system, and analyze their performance in the cloud. sTube+

serves as the underlying architecture in this case study.

The contributions of the paper can be summarized as:

• To the best of our knowledge, we are the first to clarify the

necessity, scope and example applications of IoT communi-

cation sharing, and we discuss why existing architectures

cannot meet the requirement (Section 2).

• We design a layered architecture for IoT communication

sharing data delivery (Section 4). We formalize a set of prob-

lems for TCC link sharing optimization, and develop algo-

rithms with provable bounds (Section 5). We prototype a

fully functioning system for sTube+ (Section 6).

• We comprehensively evaluate sTube+ (Section 7). In partic-

ular, we develop a SAMS case study, using sTube+ as the

underlying architecture (Section 8).

2 THE MOTIVATION AND RELATED
ARCHITECTURE

To ensure that a network architecture to be practically useful, it is

necessary to clarify its application scenarios and scope. We believe

that SAMS will be one killer application for sTube+. Since SAMS is

still at an emerging stage, we first briefly analyze an example SAMS

and its benefits. We then analyze the scope of sTube+, i.e., when

sharing is a must or superior. Finally, we discuss the differences

between existing architectures and sTube+.

2.1 Chiller Maintenance: How SAMS Benefits
We are currently working on a real SAMS on centralized HVAC

systems. We analyze the benefit of SAMS by using chillers, one

core component of an HVAC system, as an example.

The current chiller maintenance consists of routine maintenance

and emergency repair, and their respective costs are USD $897.12

and USD $5639.94 (we use USD as the monetary unit in the rest of

this paper) per time [11]. An optimal maintenance plan is a balance

of routine maintenance and emergency repair. This is usually done

by analyzing the degradation of chillers. Intuitively, routine main-

tenance will be more frequent if a certain type of chiller degrades

faster. Chiller degradation is affected by many factors, such as its

intrinsic reliability and the usage pattern of the chiller. Note that

though the chiller reliability can be extensively tested in labs, the

usage pattern of a chiller is determined by customers, and is difficult

to know at the time that this chiller is being manufactured. This is

one key reason that SAMS can become superior.

The key indicator for the performance (degradation) of a chiller

is Coefficient of Performance (COP) [6]. Maintenance is needed if

the COP of a chiller is below a certain threshold.
1

To compare the current maintenance plan and SAMS, we ob-

tained four year data of ten chillers in three buildings. We calculated

the optimal plan for current maintenance with a routine mainte-

nance interval of 3.1 months (detailed calculation in [8]), leading

to a cost of $4052.64 per chiller per year. For SAMS, we can collect

the chiller data in real time. The cost reduces to $2813.66, with

an average maintenance interval of 3.89 months. This leads to a

30.58% saving. Note that this is only a baseline comparison. If we

consider joint maintenance of multiple equipment, a prediction of

equipment degradation, and that current maintenance plan has to

be conservative (e.g., shorter than 3.1 months), we can expect a

much greater gain from SAMS.

2.2 Communication Channels: Why Do We
Need Sharing

The state-of-the-art wireless communication channels provide a

variety of choices that trade off communication range, data rate, and

costs for different application needs. Yet the granularity of thing-to-

cloud communication choices may not be enough, in the sense that

for each IoT device with its own cost and data rate requirement, we

cannot find a well-matched thing-to-cloud communication channel.

Readily available self-contained solutions, e.g., 3G/4G [10], are

provided by ISPs. 3G/4G are over powerful and expensive for most

IoT applications. Alternative solutions include LTE Category 1

(CAT1) released in 2016 and the to-appear LTE Category 0 (CAT0).

New choices are being developed, yet the progress can not match

the surging requirements. More importantly, there may be require-

ments that will never be developed by ISPs. For example, CAT1 has

a monthly cost at around $1 for a data volume of 45 MB. Assume

that an equipment has a data volume of 50 MB but it can only afford

1
A low COP does not mean a direct chiller failure; yet it indicates sensible human

comfort down grade and substantial energy usage inefficiency.

sTube+ BuildSys’17, November 8–9, 2017, Delft, The Netherlands

Cloud

CameraThermostat
Dynamotor

Fan Elevator

Chiller

Solar Panel

S-node

N-node

TCC
Local

Figure 1: Smart After-Sales
Maintenance Services (SAMS).

ZigBeeZigBee
EthernetEthernet

A
p
p

N
et
w
o
rk

M
A
C

S-node N-node Cloud

BLEBLE

IEEE 802.15.4IEEE 802.15.4

ZigBeeZigBee BLEBLE

IEEE 802.15.4IEEE 802.15.4 CAT1CAT1

Chiller

Monitor
Chiller

Maintenance

er

ance

e

a

Pump

Maintenance

Pump

Monitor

CAT0CAT0

sTube+ Network Layer

Figure 2: A Layered Architecture.

LOC Data Modudd leLOC Data Module

Sensing Modudd leSensing Module

LOC Control

Modudd le

LOC Control

Module

Forwarding

Modudd le

Forwarding

Module

LOC Control

Modudd le

LOC Control

Module

TCC Modudd leTCC ModuleN-node

S-node

Cloud

Data Delivery
Sec: 4

TCC Liinkkk SSuubbuu sscccrrriiiippppptttiiiooonnn
and Placement Mooddduudddd llee

SSeeeccc:: 55

TCC Link Subscription
and Placement Module

Sec: 5

AAAApppplliiccaattionsApplications

MAC Control Modudd leMAC Control Module

MAC Control Modudd leMAC Control Module

Data Budget

Modudd le

Data Budget

Module

Figure 3: sTube+ module design.

$1. ISPs will not deliberately develop such plan since it makes CAT1

non-marketable. In a sharing environment, a close-by equipment

with residual data of 5 MB per month can be shared.

There are communication channels that are free but can only

form a local (LOC) network. Short-range channels include Zigbee,
Bluetooth, etc. They are good for device-to-device communication.

WiFi, LoRa and SigFox [12] can provide longer-range wireless ac-

cess. These are not self-contained since gateways are needed to

reach the cloud outside. In our design, IoT devices will form LOC

networks so as to share the TCC links. This paper, however, will

not emphasize on the design of the LOC networks.

2.3 Related Architecture to sTube+
Smart Building Networks: Modern buildings have building au-

tomation systems (BAS) to control building equipment [7]. Tradi-

tional BAS is mostly signal-based. An sMap architecture [4] was

developed to software-define traditional BAS. In sMap, the IoT de-

vices are organized into a mesh network, and a gateway is used.

The target of sMap and BAS is to manage thousands of devices,

from different vendors, within a building. The target of sTube+ is

to transmit the data of thousands of IoT devices, of the same ven-

dor, spread at hundreds of buildings, to the cloud. sTube+ differs

from sMap in the supporting application context. The spread of the

devices in buildings controlled by different building owners made

the gateway approach infeasible since a building-by-building based

deployment or agreement is needed.

Mobile Phones as Relays: One recent proposal to transmit

IoT data to the cloud is to use mobile phones as relays [21]. The

objective is to remove the gateway, which restricts the scalability.

An opportunistic network is constructed where IoT devices will

search for nearby mobile phones to relay data. sTube+ does not rely

on opportunistic data transmissions. sTube+ differs as it is clear on

who should run the transmission function.

Cellular Network/Edge Routers: Multiplexing data flow of

different devices is not new. Cellular base stations and edge routers

aggregate data flows. sTube+ differs from them in where to multi-

plex. The location of the multiplexing function of sTube+ is on the

IoT devices. Traffic flow multiplexing by base stations/edge routers

is controlled by ISPs; yet in sTube+, it is controlled by the vendors.

3G Data Sharing: Data sharing is not new. One example is

the hotspot function of mobile phones. 3G hotspot is local to a

few phones, and a simple master and slave design is enough. The

requirements for sTube+, as represented by SAMS applications,

need a scalable architecture that can handle the heterogeneity of

the hardware devices, multi-path routing, an overall optimization

of the cost of a vendor, etc. The level of complexity differs greatly.

Another example is represented by family plans, where multiple

sim cards are allowed. Yet family plans cannot share different plans,
and in our scenario, the vendor may register different plans for

overall optimization. In addition, it is questionable whether ISPs

will provide plans where thousands of sim cards, in particular those

with a large amount of small-size flows, can share a single plan.

Intrinsically, this means that ISPs take the burden and cut their

own profits for the benefit of vendors. As such, we believe that ISPs

will impose certain limit even if plans with multiple sim cards are

developed; making the vendor side sharing still important.

We further comment on two foundational networking paradigm

Wireless Sensor Networks (WSN) [1] and Fog Computing [3].

In WSN, since wireless sensors are energy constrained and commu-

nication dominates energy consumption, the optimization objective

is on all communication links within the WSN. The constraint of

sTube+ is the TCC links between things and clouds. Thus, sTube+

differs from WSN in the optimization objective. The idea of Fog

Computing is to relocate functions to the edge, either for a fast

response or for cost saving. Fog Computing is a conceptual frame-

work. sTube+ is developed for concrete application scenarios and

can be regarded as one instance of Fog Computing.

3 THE PROBLEM AND DESIGN OVERVIEW
In sTube+, there are two types of links, the thing-to-cloud commu-

nication (TCC) links that directly connect to the cloud, and local

(LOC) links that are local and free. There are three types of nodes

(see Fig. 1), sensing nodes (connected to the SAMS equipment),

nodes with TCC links, and the cloud servers. In this paper, we

call them S-nodes, N-nodes and the clouds. Note that S-node and

N-node can be installed on the same physical equipment.

The problem is that given a pricing model of the TCC links, a

set of data volume requirements of the S-node, and the possible

locations for S-nodes and N-nodes, develop a TCC link/N-node

subscription and placement scheme, as well as a scheme for data

delivery between S-nodes and the cloud so that the overall monetary

cost of the TCC links can be minimized.
2

The challenge is that there is currently no architecture for data
delivery; yet the optimization for TCC link subscription is affected

by the data delivery architecture. For example, a fully centralized ar-

chitecture may lead to a joint optimization of TCC link subscription,

placement and the routing between S-nodes and the cloud.

We first clarify the features of the architecture: 1) the cloud has

the knowledge of all S-nodes, e.g., the vendor should know all its

2
We assume that the communication cost dominates because it is a monthly recurrent

cost. We ignore the hardware cost in this paper.

BuildSys’17, November 8–9, 2017, Delft, The Netherlands Hu et al.

equipment; and 2) S-nodes have heterogeneous requirements in

data volume, incremental deployment, new future functions, etc.

To this end, we choose a design of centralized price optimization
and distributed network control. More specifically, since the cloud

has the knowledge of the location and the rough data rates of all

S-nodes, it can compute, e.g., monthly, an overall optimization of

the TCC link subscription and placement. Yet for packet delivery,

and micro-level topology dynamics such as the peering of N-nodes

and S-nodes, a distributed network control is needed for scalability.

We first design a layered architecture that supports data delivery

of the S-nodes to the clouds (Section 4). We then formulate the

TCC link sharing problem and develop algorithms. Note that the

TCC link sharing optimization is a separate module from the data

delivery architecture (Section 5). In addition to cost optimization,

sTube+ needs to be reliable itself. Otherwise, we will be maintain-

ing sTube+ rather than the equipment. We achieve this by over

deployment of the TCC links (Section 5.4), as well as topology and

data delivery recovery when an N-node fails (Section 4.1). We also

discuss a special security concern where a vendor does not want

its SAMS data to be captured by other vendors (Section 4.3).

4 THE STUBE+ ARCHITECTURE
4.1 A Layered Architecture for Data Delivery

4.1.1 An End-to-End Approach. In SAMS, each S-node repre-

sents an equipment. Even though in our scenario, all equipment

belongs to the same vendor, they differ greatly in operation, main-

tenance and services. Each of the S-node and its associated cloud

application can be individually developed, e.g., by sub-divisions of

the vendor, and there may need possible future function extensions.

We thus choose an end-to-end approach and let N-nodes only be

responsible for traffic forwarding. From the application’s point of

view, the S-node talks with the cloud directly, see Fig. 2.

Note that the end-to-end approach requires the hardware of the

S-nodes to be able to support the IP layer. We believe that this is

reasonable since the accumulated value of the collected data in

long-term should outweigh such one-time hardware overhead.

4.1.2 Network Topology Control. With an end-to-end design,

the cloud, N-nodes and S-nodes are all involved in the network layer.

We now study how the topology/nexthops should be managed.

For a very small scale network, the cloud can adopt a central-

ized design, where it computes all connections and broadcasts the

peering results. For a general network, the cloud should not be

triggered by micro-level dynamics, i.e., the peering among N-nodes

and S-nodes. We choose to let the cloud only manage and monitor

the data budgets of N-nodes, i.e., the data volume allocated to an

N-node for its TCC link in a period of time. Note that the data bud-

gets of the N-nodes in a sub-area may be exhausted because certain

S-nodes have unexpected traffic, other N-nodes fail, new S-node

joins, etc. Nevertheless, the number of N-nodes is much smaller

than the number of equipment in the system and the frequency of

budget allocation and updates is low.

The nexthop of an N-node is the cloud directly.
3
In this paper,

we also do not consider multiple wireless hops where an S-node

3
Theoretically, an N-node can route from other N-nodes; yet this increases the com-

plexity and is not necessary for common cases.

N-nodesS-node

Broadcast residual

budget-index

Connection

established

Connection

established

rb-indeices

Connect

Request

Connect

Request

Compute connection

probability; Choose

new N-node nc
N-node nc

Figure 4: Nodes interaction
when periodically choosing

N-node.

N-nodeS-node

Resend check message

Connection

established

Heartbeat signal

Compute connection

probability; Choose

new N-node nc

“alive”ACK

Heartbeat signal

Heartbeat signal

Heartbeat signal

N-node nc
Connect

request

Connect

ACK

Connection

established

Resend check message

Send check message
X N-node fails

Figure 5: Nodes interaction
when the connected N-node

is failure.
uses other S-nodes to relay its data. As such, the remaining issue is

to settle the peering between S-nodes and N-nodes.

Our objective is to minimize the complexity. We make two

choices. First, we choose to let S-nodes take the initiative to manage

the peering with the N-nodes. In particular, an S-node may need to

use the data budget of multiple N-nodes. Therefore, letting S-nodes,

rather than N-nodes, take the initiative has much fewer overheads.

Second, we develop an N-node peering algorithm, where each S-

node makes independent decisions, yet the joint force collectively

adapts to various network and data budget dynamics.

The N-node peering algorithm (N-peering) of the S-nodes:
Each S-node maintains a set of neighboring N-nodes. Each N-node

periodically broadcasts its residual budget-index (rb-index) to all its

neighboring S-nodes. This rb-index is designed as an increasing

function of its remaining data budget. Periodically, S-node will

select to connect to one N-node based on these rb-indices sent from

its neighboringN-nodes. Specifically, letN be the set of neighboring

N-nodes of an S-node and Ii denote N-node i’s rb-index. The S-

node computes connection probabilities to each neighboring N-

node as pi =
Ii∑
j∈N Ij

, and connects to one of them according to

these probabilities. As a consequence, the N-node with a greater

remaining budget has a greater probability to be selected. We show

the nodes interact of the N-node peeing process in Fig. 4.

Neighbor maintenance of the S-nodes: Each S-node periodi-

cally sends heartbeat signals to check the availability/failure of its

neighboring N-nodes, and updates neighbor if the original neighbor

fails. The process is shown in Fig. 5. Specifically, the S-node peri-

odically sends heartbeat signal to the connected N-node and waits

“alive” ACK from it. If the S-node does not receive respond from

the N-node in time t , it resends heartbeat signal to the connected

N-node. If the S-node does not receive any respond after three heart

signal, the S-node regards the N-node as failure and updates to a

new neighbor. To minimize possible data loss, the S-nodes with a

higher data rates will have a shorter checking period. Let Tci be
the checking period of S-node i . Let Di be the successive data loss

that can be tolerated. Let ri be the data rate of S-node i . Let Tu be

the period needed to connect to a new neighbor. The S-node i sets

Tci =
Di
ri − 3t −Tu . Due to the reliable transmission provided by

CoAP (described in Section. 6.1), the data loss of an S-nodes occurs

only when the connected N-nodes fails.

4.2 Detailed Modules for a Functioning System
A functioning system has modules of all layers, see Fig. 3.

S-nodes have four modules. The sensing module connects to

the equipment and collects sensing data. The MAC control module

maintains the data link level connection between itself and the

N-nodes within its communication range. The LOC control module

sTube+ BuildSys’17, November 8–9, 2017, Delft, The Netherlands

maintains the network topology. The LOC data module transmits

the data to the N-node.

N-nodes have five modules. MAC control module maintains the

data link level connection between itself and the S-nodes. The

forwarding module relays the data received from its MAC layer by

forwarding the packet. The TCC module maintains the data link

level connection between the N-node and the clouds. The LOC

control module answers network layer queries from S-nodes. The

data budgetmodule maintains its data usage and accepts recharging

from the cloud if necessary.

The cloud runs applications. The cloud has a centralized TCC
link subscription and placement module. It computes data budgets

(details in Section 5) of N-nodes.

4.3 Security Concerns
IoT systems face various security problems. Common problems and

solutions can be found in [2]. A specific security concern for SAMS

is that a vendor does not want its data captured by other vendors.

For example, an attacker may eavesdrop the data transmission

from an S-node, or fake the identity of an N-node to conduct a

man-in-the-middle attack. Here, the challenge in sTube+ is that

S-nodes cannot connect to the Internet directly. As such, we need

to maintain the integrity of N-nodes.

We address this problem by a simple authentication design. First,

since each N-node is able to connect to the Internet, the communi-

cations between an N-node and the cloud can be safely established

by using standard Transport Layer Security (TLS) protocols. Sec-

ond, an S-node and N-node should also be able to verify each other

and establish a safe communication link. This can be achieved via

exchanging their public keys. The main issue here is that how the

S-node and N-node can verify each other’s public key when S-node

is disconnected from the Internet. In our scenario, since S-nodes

and N-nodes are produced by the same manufacturer, the manufac-

turer can hard code the certificate (derived from the manufacture’s

private key) when the node is produced, i.e., certificate pinning.

The manufacture’s public key is also pinned to the node. As a re-

sult, the two parties are able to verify each other even if they are

disconnected from the Internet.

5 TCC LINK SHARING OPTIMIZATION
The TCC link sharing problem is to answer which N-node (location)

should reserve a TCC link from the ISP and how much budget they

should reserve so as to minimize the overall monetary cost. We

formulate two TCC link sharing problems according to two widely

accepted pricing models. We show both problems are NP-complete

and propose approximation algorithms. We then study the problem

to maintain the reliability of sTube+.

5.1 Problem Formulation and Analysis
5.1.1 Network Topology. Let N = {n1,n2, ...,nN } denote the

set of locations of N-nodes. An N-node can be either installed or

vacant. Let f (nj) = 1 if nj is installed; f (nj) = 0 if nj is vacant.
Let S = {s1, s2, ..., sM } be the set of S-nodes. S-node si ’s data

usage in one billing cycle is ui . Let Sj denote the subset of S-nodes,
which can reach N-node nj . The term “reach” means that it is

possible for the S-node to deliver its data to the N-node through

some LOC links. Each S-node can reach at least one N-node.

Let ui j be the amount of data uploaded via nj . We have ui =∑
j :f (nj)=1 and si ∈Sj ui j . If nj is installed, the load at the TCC link of

nj , denoted by Uj , is the accumulated data amount uploaded by its

connected S-nodes. We have Uj =
∑
i :si ∈Sj ui j . Otherwise, Uj = 0.

5.1.2 Pricing Model. We consider two widely adopted models,

the pay-as-you-go (PAYG) model and the monthly-plan (MP) model.

For the PAYG model, at each N-node, a certain charge is applied

when the eachN-node uses up everyL data volume,i.e.,CPAYG (x) =∑⌈ xL ⌉
l=1 Pl . In practice, Pl ≥ Pl+1,∀l [9], and liml→+∞ Pl = Pmin .

There are two special cases of the PAYG model. The first is that

the price for all data volume steps are equal, called PAYG-E. The

second is the all-you-can-use (AYCU) model, where the price is b if

an N-node is installed and 0 if vacant. The amount of data usage is

unlimited under this pricing model.

For the MP model, the ISPs provide a set of monthly data plans,

denoted as D. Each N-node can select one data plan from D at the

beginning of each billing cycle. The data plan can not be changed

in one billing cycle. For monthly data planmh ∈ D, the price is

represented by Eq. (1). Price ch is charged for a fixed amount of

cap usage kh ; If the data usage hits this cap then a higher price d is

charged for each per data usage unit.

Cmh (x) =

{
ch ,x ≤ kh ,

ch + d(x − kh) ,x > kh .
(1)

5.1.3 Problem Formulation.

Problem 1 (PAYG TCC Sharing). Given the locations of S-nodes
and N-nodes, the monthly data volume of S-nodes, determine the
placement of N-nodes and the amount of data uploaded via N-nodes
for each S-node, to minimize the sum PAYG cost over all N-nodes.

TheMPmodel provides a set of monthly data plans. Choosing dif-

ferent data plans for N-nodes will cause different overall monetary

costs. Let dj ∈ D be the data plan employed by N-node nj .

Problem 2 (MP TCC Sharing). Given the locations of S-nodes
and N-nodes, the monthly data volume of S-nodes, determine the
placement of N-nodes, the employed data plan for N-nodes, and the
amount of data uploaded via N-nodes for each S-node, to minimize
the sum MP cost over all N-nodes.

5.1.4 Problem Analysis.

Theorem 1. Problems PAYG TCC Sharing and MP TCC Sharing
are both NP-complete.

Proof. We prove this theorem by transforming both problems

into the set cover problem [18]. Due to page limitation, all proofs

of this paper can be found in [8]. □

We note that intrinsically, the complexity comes from N-node

covering S-nodes (the placement of TCC links/N-nodes), rather than

from the pricing model (the subscription of the TCC link prices for

the N-nodes).

BuildSys’17, November 8–9, 2017, Delft, The Netherlands Hu et al.

5.2 The Approximation Algorithm for PAYG
TCC Sharing

5.2.1 The Algorithm. The overall problem can be divided into

two subproblems: TCC link placement to cover all S-nodes, and

subscription of a pricing plan at each placed N-node. The TCC link

placement to cover all S-nodes is a set cover problem. We adopt

the greedy algorithm in [18]. For price subscription, we develop a

simple algorithm where every N-node subscribes P1, i.e., the 1st
step price, and recharge Pl (l = 2, 3, ...) if necessary. We call this

algorithm Fast N-node Deployment (FND).

We would like to comment that FND will output a placement of

N-nodes with an implicit assumption that the S-nodes covered by

an N-node will peer with this N-node. Such best peering needs a

centralized control (e.g., after the cloud runs FND, it has to inform

all N-nodes and S-nodes). In our sTube+ design, the peering control

is distributed to S-nodes.

5.2.2 Approximation Ratio Analysis.

Theorem 2. The approximation ratio of FND is
2P 2

1

P 2

min
(lnM + 1).

Proof. The proof of Theorem 2 is non-trivial. There is a series

of transformation, which can be found in [8]. □

Please note that the factor lnM stems from the greedy set cover

algorithm [20]. It is the best-known approximation ratio in solv-

ing the set cover problem within a polynomial complexity. Since

the TCC sharing problem is more complicated than the set cover

problem, the factor lnM is unavoidable in this scenario.

5.3 The Algorithm for MP TCC Sharing

Algorithm 1 N-node placement and subscription, NPS(S,N).

1: InitializeZ = ∅,N ′ = 0,minset = ∅,mincost = +∞
2: [N ′,Z] ← greedySC(S,N)
3: while N ′ < |N | do
4: [N ′,Z] ← Node-Partition(Z,N ′)
5: [minset ,mincost] ← Binary-Search-Cost(Z,N ′)
6: end while
7: returnminset ,mincost

For theMP pricingmodel, the pricing plan does not have a convex

structure. We develop an N-node placement and subscription (NPS)

algorithm for MP pricing model. This algorithm is divided into two

sub-functions, Node-Partition(), and Binary-Search-Cost().
Given a node number N ′, Node-Partition() will decide a cov-

ering scheme by using N ′ nodes. Given a node covering scheme

Z, the sub-function Binary-Search-Cost() will search for the

minimized cost for this covering sets.

The overall algorithm NPS() is an iterative algorithm. It starts

from the minimum set cover (line 2, greedySC()) and then the sub-

function Node-Partition() will gradually increase the number of

N-nodes (line 4). Then the sub-function Binary-Search-Cost()
will determine the cost of such partition (line 5). The algorithm

stops when the number of nodes is greater than the number of

possible locations of N-nodes (line 3).

5.4 Improving the Reliability of sTube+
Both S-node and N-node may fail. We assume that the probability

that an S-node fails, ps , is much less than the equipment itself.

In production, S-node (as the communication module) should be

integrated into the equipment. We see that the failure rate of the

communication module of a device is typically very low. Taking

the mobile phone as an example, batteries, screens, etc are much

easier to fail than the bluetooth, WiFi, and 3G/4G modules.

We say that an S-node experiences a service outage if it cannot
reach any N-node or it experiences a failure. Let the probability of

failure of N-nodes be pn . The service outage probability of si can

be computed as pout(si) = 1 − (1 − ps)(1 − p
Ri
n), where Ri is the

number of N-nodes that is reachable by si . As such, the average

outage probability of S-nodes is pout =
1

M
∑M
i=1 pout(si).

Problem 3 (TCC Sharing-Availability). Let preq be a threshold
of the required average outage probability, we aim to deploy enough
N-nodes such that pout < preq.

We develop algorithm TCC-OD with over-deployment of N-

nodes as follows. We compute pout under the current network

topology. If pout < preq, we iteratively install one additional N-node
that can maximally decrease pout.

6 IMPLEMENTATION
We present an implementation of the sTube+ architecture. This

includes the MAC layer, network layer, and application layer.

6.1 The Network Stack
MAC layer:We implement IEEE 802.15.4, ZigBee, and Bluetooth

as the MAC layer for the LOC network. We choose CAT1 as the

MAC layer for the TCC link.

Network layer: We choose 6LoWPan (IPv6) as the networking

layer protocol. There are two special challenges.

The first is that our CAT1 only supports IPv4. Moreover, it only

provides application layer interfaces. Thus, we develop an IPv6-IPv4

converter. It locates in the application layer of the N-node (see Fig.

6), yet it emulates the network layer. It has two functions: packet

format transformation and IPv6-IPv4 address mapping.

For packet format transformation, the packet we get from the

LOC network is an IPv6 packet. We remove all headers to get the

application packet. Then we put such packet to the CAT1 interface.

The address mapping is done by mapping a group of IPv6 address

to an IPv4 address (the address of CAT1) and a port. Every N-

node establishes a table of the mapping. Each entry in this table

is automatically inserted when the first packet from the S-node

reaches the N-node, i.e., N-node allocates each S-node connected

to it a universal port with the CAT1’s IPv4 address.

The second challenge is that in practice, an S-node should have

a fixed IP address. Yet in our implementation, each S-node gets

its IPv6 address from N-node using the uIP library from Contiki,

making the IP address dynamic. Since the interaction between

an S-node and the cloud is bi-directional, the dynamic IP address

can break the interaction. To this end, in the application layer, we

develop a notification mechanism such that if the IP address of the

S-node changes, the S-node will notify the cloud.

sTube+ BuildSys’17, November 8–9, 2017, Delft, The Netherlands

CoAP

UDP

IPv6

6LowPan

IEEE

802.15.4

MAC

IEEE

802.15.4

PHY

CoAP

UDP

IPv6

Ethernet

MAC

Ethernet

PHY

IEEE

802.15.4

PHY

IEEE

802.15.4

MAC

6LowPan

IPv6

IPv6/4 Converter

CAT1

PHY

CAT1

MAC

CAT1

IPv4

CAT1

UDP

Cellular

Network

S-node N-node Cloud

Figure 6: End-to-End
Communication.

Arduino STM32 Raspberry Pi

CC2650 CC2650 CC2650

(1) Arduino
S-node

(2) STM32

S-node
(3) Raspberry Pi

S-node

Figure 7: The S-node.

CC2650 Raspberry Pi

RS-232
CAT1

MAX3232

Figure 8: The N-node.

S1 S2 S3 S4 S5

N1 N2 N3

Figure 9: The network
topology of the experiments.

ECO FND
(a) PAYG-E

0

1

2

3

4

5

C
o
s
t

p
e
r

m
o
n
th

 (
$
)

ECO NPS
(b) MP

0

5

10

15

20

Figure 10: The monthly cost
of different schemes.

0 10 20 30 40 50 60 70 80
Sampling period (s)

0

2

4

6

8

10

12

P
a
c
k
e
t

lo
s
s

Figure 11: The packet loss as
function of sampling period.

Application layer:We use CoAP and UDP for application layer

protocols. sTube+ chooses the optional reliable transmission model

of CoAP. Specifically, reliable transmission in CoAP is achieved by

marking individual messages with the confirmable flag.

6.2 Hardware Choices
The S-nodes:We use Arduino MEGA 2560, STM32 and Raspberry

Pi 3 Model B as the S-node hardware board (Fig. 7) by considering

the different requirements of the capability of hardware board from

the equipment and the hardware cost. For example, for the Fan, only

the speed of fan should be sensing and the cheap Arduino board

can meet its requirement; While for the chiller, the S-node gains

the sensing data from the chiller control interface and Modbus RTU

protocol should be run on hardware board, thus the more powerful

and expensive raspberry pi should be adopted. For the LOC module,

we use a Texas Instruments CC2560 SimpleLink
TM

Wireless MCU

for the 802.15.4 radio interface.

The N-nodes: We use a Raspberry Pi 3 Model B as the N-node

platform (Fig. 8). For LOC side, we use a Texas Instruments CC 2560

SimpleLink
TM

Wireless MCU for the 802.15.4 radio interface. Then

this module is connected to Raspberry Pi using a USB-to-serial cable.

For the TCC side, As the interface of Raspberry Pi is TTL, while the

interface provided by CAT1 is RS-232, we use the MAX3232 as a

converter. The baud rate of the serial port is 19200 bits per second,

i.e. 2400 bytes per second. The CAT1 module supports speeds of 5

Mbps upload and 10 Mbps download. Thus, the maximum sample

rate the proposed approach can adapt is 2400 bytes per second. We

rent CAT1 data plans from Telecom Anonymity.

The Cloud: We rent a server in Cloud Anonymity with 8 cores

of 2.5 GHz, and a total memory of 128GB. The data in the cloud are

stored in XML format.

7 EVALUATION
7.1 Experiment

7.1.1 System Setup. The network topology is shown in Fig. 9.

There are three N-nodes and five S-nodes. The links are configured

as in the figure. We set S1 and S2 to transmit 200 bytes at once

every three minutes, and S3, S4 and S5 to transmit 600 bytes at once

every minute. We use two pricing models. The first one is provided

by China TeleCom, a PAYG-E model, where each 40MB costs $1.

The second is a MP model where available monthly data plans are

shown in Table 1 with $0.6 charged for each 1 MB exceeding the

cap, i.e., d = 0.6 in Eq. (1).

We compare three algorithms: 1) Exclusive channel occupation

(ECO), the scheme without IoT sharing, 2) FND, and 3) NPS.

7.1.2 Experiment Results. The system is turned on for 3 days and

the overall data usage is scaled to one month under the controlled

experiment.We derive the overall monthly cost of different schemes.

The result is shown in Fig. 10. From Fig. 10(a), we see that in the

PAYG-E model, FND leads to a cost saving of 40% as compared with

ECO; In Fig. 10(b), for the MP model, NPS leads to a cost saving of

48% as compared with ECO. This matches our expectation since

sTube+ TCC link sharing will bring significant cost reductions.

Next, we will evaluate different configurations using simulations

and we will see that the saving can be more significant when the

network is larger.

We now study the operation behavior of sTube+. We run sTube+

for 70minutes. During this period, we intentionally add some events

as shown in Table 2, to emulate node failures, budget exhaustion

events, etcetera in N-nodes, etc. We show the operations of sTube+

in Fig. 12. Here we have four sub-charts. The top three charts show

the package received and sent by N1, N2, and N3 respectively. The

bottom chart shows the residual budget of N1, N2 and N3.

At t1, N2 is off. We see that S3 and S4, which are originally

attached to N2, switch to N1 and N3 respectively at t2. At t3, we
turn on N2. This does not immediately trigger the return of S3 and
S4, since it is the S-nodes who initiate the peering of S-nodes and N-
nodes in our design. At t4, where N-nodes broadcast their residual
budget-indices (rb-indices), all S-nodes independently recompute

their peering relationship, and S3 and S4 reconnect to N2. At t5, the
data budget of N3 is exhausted, and this triggers a recharge of the

data budget of N3 as explained in Section 5. At t6, the data budget of
N2 is exhausted, and N2 sends small rb-index to show “low balance”,

S3 and S4 change connections to N1 and N3 respectively.

We only observe one packet loss at one event, t1. The loss oc-
curred because the failure happened before neighbor updates. We

conduct 3 days experiment without N-node failure, and we observe

that no data loss occurs. We also conduct experiment on the topol-

ogy only containing S3, N1 and N2. We set the check period to

be 1 minutes. We manually turn off N1 and record the number of

the packet loss of S3 under different sampling period. The result is

shown in Fig. 11. We can observe that the number of packet loss is

at most one when the sampling period is greater than ten seconds.

Note that in practice, the sampling period can be bigger than five

BuildSys’17, November 8–9, 2017, Delft, The Netherlands Hu et al.

Type Price Volume

1 3 $ 10 MB

2 5 $ 50 MB

3 12 $ 200 MB

4 32 $ 700 MB

5 40 $ 1 GB

6 85 $ 3 GB

7 135 $ 8 GB

8 210 $ 15 GB

Table 1: The monthly
data plans.

1

3

5

N
1

S
1
S
2
S
3
S
4
S
5

1

3

5

N
2

Data Check rb-index

1

3

5

N
3

0 70

Time

0

20

40

B
a
la

n
c
e
 (
K
B

)

t
1
t
2

t
3

t
4

t
5

t
6

N
1

N
2

N3

Figure 12: The behavior of FND under
the controlled environment.

Time Event and explanation

t1 Turn off N2 to emulate N2 failure.

t2 N2 does not reply to heartbeat messages so that

the failure is detected. S3 and S4 connect to N1

and N3 .

t3 Turn on N2 to emulate N2 recovery.

t4 New rb-index received. Since N2 has a larger bal-

ance, S3 and S4 change connections to N2 .

t5 Even N3 sends small rb-index to show “low bal-

ance”, S5 has to stick to it so that N3 recharges.

t6 N2 sends small rb-index to show “low balance”, S3 ,
S4 change connections to N1 and N3

Table 2: Explanation of the behavior of
FND shown in Fig. 12

PAYG PAYG-E AYCU MP
Group

0

500

1000

1500

2000

2500

3000

C
o
s
t

p
e
r

m
o
n
th

 (
$
)

ECO

FND

NPS

Figure 13: The cost of ECO
and sTube+ under different

pricing models.

MO EO M-E MEO
Group

0

1500

3000

4500

C
o
s
t

p
e
r

m
o
n
th

 (
$
) ECO

NPS

Figure 14: The cost of ECO
and NPS under different

traffic models.

0 20 40 60 80 100
 Underutilized ratio (%)

0

20

40

60

80

100

P
e
rc

e
n
ti

le
 (

%
)

ECO-1

ECO-20

ECO-50

NPS-1

NPS-20

NPS-50

Figure 15: The CDF of
underutilized ratio of

data volume.

0 10 20 30 40 50 60
Exceed percentage

0

20

40

60

80

100

P
e
rc

e
n
ti

le
 (

%
)

Fix

Random

N-peering

Figure 16: The CDF of the
exceed load percentage

of N-nodes.

seconds. It is also possible to fine-tune the neighbor update interval

and check period to reduce packet losses.

7.2 Simulation
We now use simulations to evaluate sTube+ in large-scale networks

and under various parameter settings.

7.2.1 Simulation Setup. We set the network topology by deploy-

ing S-nodes and N-nodes randomly and uniformly in a 100 × 100

m
2
plane. There are 1000 S-nodes and 100 N-node locations. In our

tech-report [8], we also evaluate more complicated scenarios where

S-nodes and N-nodes are normally distributed leading to similar

results. The default data traffic pattern is called Mice and Elephants

Only (MEO) where the data volume of 95% S-nodes is uniformly

distributed from 1 MB to 3 MB, and the data volume of the rest 5%

of S-nodes is uniformly distributed from 30MB to 50MB. We will

evaluate other traffic patterns in Section 7.2.2 as well.

We study four pricing models: 1) PAYG, the first 40 MB costs $1,

i.e., L = 40, P1 = 1, the prices of the following 40 MB steps are $0.8,

i.e., P2, P3, . . . = 0.8; 2) PAYG-E, each 40MB costs $1; 3) AYCU, $3

is charged without data usage limitation; and 4) MP, the monthly

data plans are shown in Table 1 with $0.6 charged for each 1 MB

exceeding the cap, i.e., d = 0.6.

7.2.2 Simulation Results. We first compare ECO and FND under

three PAYGmodels in Fig. 13.We see that FND shows amuch higher

cost saving as compared to our experiment results. This matches

our expectation since the advantage of sharing becomes more sig-

nificant when there are more S-nodes to share. FND outperforms

PAYG, PAYG-E and AYCU by 91%, 89% and 95% respectively. The

AYCU has higher saving compared to PAYG and PAYG-E. This is

because the data usage of AYCU is unlimited and more S-nodes can

share one TCC link without leading to cost increase. The PAYG

has higher saving ratio compared to PAYG-E. The reason is that

the price of the step in PAYG becomes cheaper as the TCC link

purchases more steps. Thus more S-nodes sharing one TCC link

leads to a cheaper average cost and higher saving percentage.

In Fig. 13, we also compare ECO and NPS under the MP pricing

model. We see a cost saving of 78% which is less than that of PAYG.

This is because, in MP pricing model, the cost gap of two adjacent

plans is bigger, thus if the data volume of one monthly data plan can

not meet the requirement of a N-node, the N-node should purchase

the other one whose price is much higher. while in the PAYG model,

the TCC link can purchase steps which are cheaper one by one.

The Impact of Determined Traffic Pattern:We consider four

data traffic patterns of S-nodes: 1) Mice Only (MO): the data usage

of each S-node is uniformly distributed from 1 MB to 3 MB, 2)

Elephants Only (EO): the data usage of each S-node is uniformly

distributed from 30 MB to 50 MB, 3) From Mice to Elephants (M-E):

the data usage of each S-node is uniformly distributed from 1MB

to 50 MB, and 4) our default MEO.

In Fig. 14, we show the costs of NPS under the aforementioned

four traffic patterns in MP pricing model (we also evaluate the

overall costs of PAYG, PAYG-E and AYCU under the four traffic

patterns in [8]). NPS outperforms ECO by 83%, 57%, 66% and 78%

underMO, EO,M-E andMEO respectively.We observe that a greater

average data volume of S-nodes will lead to a smaller cost saving

gap between NPS and ECO. The reasons are: 1) More nodes can

share one step without increasing extra cost if the data volumes

of nodes are small; 2) Compared to serving S-nodes with big data

volume, sTube+ can serve S-nodes with small data volume well

since the fine data volume is easier to be arranged. This illustrates

that NPS works effectively under the four traffic patterns.

The Impact of Price Granularity: The granularity means the

data volume gap between two adjacent price plans. For example,

in our default pricing model, the granularity of prices is 40MB for

the PAYG model. It is possible that ISPs can develop more wireless

channels with fine-grained prices models. However, to beat the cost

of sTube+, ISPs have to develop price models with unrealistic gran-

ularity. In Fig. 15, we present the cumulative distribution function

sTube+ BuildSys’17, November 8–9, 2017, Delft, The Netherlands

2 3 4 5 6 7 8 9 10
p
req

 (%)

0

20

40

60

80

100

O
v
e
rd

e
p
lo

y
 (

%
) ECO

NPS

Figure 17: The over-deploy
ratio of ECO and NPS as a

function of pr eq .

2 7 10 15 30
Times per month

0

200

400

600

800

C
o
s
t

p
e
r

m
o
n
th

 (
$
) 789

566

472 454 449

Figure 18: The monthly cost
of NPS as a function of

update period.

PAYG PAYG-E AYCU MP
Group

0

500

1000

1500

2000

2500

3000

C
o
s
t

p
e
r

m
o
n
th

 (
$
) ECO

FND

NPS

Figure 19: The cost of ECO
and sTube+ under dynamic

traffic pattern.

0 5 10 15 20
More subscribed percentage (%)

0

500

1000

1500

2000

2500

C
o
s
t

p
e
r

m
o
n
th

 (
$
) ECO NPS

Figure 20: The cost of ECO
and sTube+ as function of

more subscribed percentage.
(CDF) of the ratios of underutilized data volume of N-nodes under

ECO and NPS, when granularities are 1 MB, 20 MB and 50 MB

respectively. We can observe that the underutilized data volume

ratio of all N-nodes of NPS is under 10% under the 1 MB, 20 MB

and 50 MB granularity. For the ECO, the underutilized data volume

ratios of N-nodes range from 0% to 100%, only when the granularity

is down to 1 MB, most of the N-nodes’ underutilized data volume

ratios are under 10%. This illustrates that if ECO wants to reach the

performance of sTube+, ISPs should provide unrealistic granularity

pricing models. On the other hand, the proposed TCC sharing can

address this problem without requiring fine granularity.

The Performance of theN-PeeringAlgorithm:We compare

our N-peering algorithm with two algorithms employing NPS for

the TCC links. Fixed N-node Connection (Fix): each S-node ran-

domly connects to one active N-node and sticks to it. Periodic

Random N-node Connection (Random): each N-node randomly

selects one active N-node every update period.

We show the CDF of the exceed percentage of traffic loads of N-

nodes in Fig. 16. Please note that the higher exceed percentage will

lead to the worse performance, since a higher rate price is charged

for each exceeding data usage unit. 80% N-nodes of Random and

90% N-nodes of N-peering do not exceed the subscribed data usage,

but the percentile becomes only 49% for Fix. Compared with Fix, we

notice that most N-nodes do not use up the subscribed data usage,

through using Random and N-peering, with the help of periodic

budget updating. Moreover, compared with Random and Fix, the

exceed percentage of N-peering is much smaller. Such observations

suggest that N-peering is beneficial to balance the traffic loads

among N-nodes and distribute the traffic loads with the help of

rb-index in more cost-efficient fashions.

The Performance of Over-Deployment on Reliability: In
order to meet the required average outage probability pr eq , sTube+
employs the TCC-OD algorithm (Section 5.4) to over-deploy more

N-nodes. We call the ratio between the number of over-deployed N-

nodes and the number of N-nodes computed by NPS as over-deploy
ratio. Fig. 17 shows the required over-deploy ratio as a function

of pr eq under ECO and NPS. We observe that ECO needs to over-

deploy much more N-nodes than that of NPS to meet the same

pr eq . When pr eq is bigger than 6%, NPS is not required to deploy

additional N-nodes; when pr eq is 2%, we only need to over-deploy

10% N-nodes for NPS but 89% for ECO. This illustrates that, to meet

the same reliability, much fewer N-nodes should be deployed for

sTube+ employing TCC-OD algorithm, compared with ECO.

The Performance on theUpdate Period:We study the effects

of broadcasting frequency of rb-index of N-peering. We observe

that the overall cost is decreased by 41% for NPS when the fre-

quency is increased from 2 to 10 each month, as shown in Fig. 18.

This illustrates that a reasonably frequent broadcast of rb-index is

helpful to further reduce the overall cost. However, the cost reduces

less than 5% when the frequency is increased from 10 to 30 each

month. This illustrates that too frequent rb-index broadcasting is

not necessary as it will not reduce the cost.

The Impact of Dynamic Traffic Pattern: In dynamic traffic

pattern, each S-node has a basic monthly data volume with a certain

fluctuation. We study the MEO basic traffic pattern and each S-node

has an up to 20% fluctuation.

In Fig. 19, we first compare ECO and FND under three PAYG

models. We see that FND outperforms PAYG, PAYG-E and AYCU by

90%, 90% and 95% respectively which is similar to the cost saving

ration compared to the determined traffic pattern. This is because,

under the PAYG pricing model, the data volume is purchased step

by step, thus the dynamic traffic pattern has no influence to the

cost compared to the determined traffic pattern.

In Fig. 19, we also compare ECO and NPS which subscribes the

data volume according to the basic monthly data volume. We see

a cost saving of 62% which is less than that of determined traffic

pattern. This is because the data volume is subscripted at begin of

the billing cycle, and if the purchased data volume cannot cover

the usage, the exceeded data volume is charged much higher price.

Under the MP pricing model, we can purchase more data volume

than the basic monthly data volume. In Fig. 20, we show the cost

of ECO and NPS as function of percentage of more data volume

purchased than the basic monthly data volume. We see that, if we

purchase 14% more of the basic data volume, we can get the least

cost. Thus, the cost can be reduced by purchasing more data volume

than the basic data volume.

8 A CASE STUDY
We are developing a SAMS for a centralized air-conditioning system

(Fig. 21 is an illustration of a centralized air-conditioning system

with water tower, chillers to cool down the water, pumps to push

water circulation, air handling unit (AHU) to use cold water to cool

down the air, and fans to push air circulation. Finally, cold air will

air-condition the offices and the temperature is controlled by the

amount/speed of cold air allowed into an office).

We compute the performance of a chiller by Coefficient of Per-

formance (COP, COP =
4.181×Fr×(Tr−Ts)

Wc
) and the performance of

a pump by Water Transfer Coefficient (WTC, WTC =
Q
Wp

) [14].

We develop the sensingmodule on Raspberry Pi to collect the raw

data in Table 3. Chillers and pumps have standard APIs to output

data from their embedded sensors. Using chiller as an example,

a chiller controller uses a ModBus RTU protocol with an RS-485

interface. Modbus RTU protocol is a query-response protocol. We

implement an application in Raspberry Pi using the standard library

libmodbus to query the chiller through Modbus RTU protocol. The

BuildSys’17, November 8–9, 2017, Delft, The Netherlands Hu et al.

Tower AHU Cold waterHot water Cold airHot airFan

Pump Chiller

Pump

Figure 21: A typical centralized
HVAC system.

Chiller1Pump1

Chiller2Pump2

Pump5

Chiller3Pump3

Pump6

Chiller4Pump4

Pump7

S

N

S

S

S

S

S

SS

S

S

S
Pump8

RS-485

S

Figure 22: SAMS supported by the
sTube+ architecture.

Anonymity

Figure 23: The data usage of the
4 chillers and 8 pumps.

Para. Description

Fr Condenser flow rate (m3/h)
Tr The returning chilled water temperature (

◦C)

Ts The supplying chilled water temperature (
◦C)

Wc Chiller power input (kWh)
Q Heat transfer to circulating water (k J)
Wp Pump power input (kWh)

Table 3: The parameters for computing COP and WTC.
communication between USB port of Raspberry Pi and RS-485 need

a USB/RS485 Converter module as the electrical level difference.

Our hardware is shown in Fig. 22.

We deployed one N-node on a chiller and 12 S-nodes, four chillers

and eight pumps (Fig. 22). All our nodes are powered by AC and

we ran our system for 12 consecutive days. Our cloud monitored

the data consumed by each S-node (Fig. 23). Our system can lead to

a great cost reduction. In our case, We employ the PAYG-E pricing

model provided by China TeleCom. The total data traffic of four

chillers and eight pumps in 10 days was 13.76 MB. The monthly

communication cost of our system is $2 . If adopting the ECO

method, the cost is $12 which is six times to our method. Note that,

$2 is also the optimal cost we can get under the real pricing model.

9 CONCLUSION
One core value of the Internet-of-Things is the data of the things

(i.e., IoT devices). Yet, transmitting the data to the cloud is still not

pervasively achievable. The industry is actively developing vari-

ous communication choices to support the diverse requirements

of IoT data transmission. We demonstrated in this paper, that the

number of IoT communication choices may not easily catch up the

requirements. We carefully analyzed example application scenarios.

We proposed a solution of sTube+ on IoT communication sharing.

The design of sTube+ includes a layered data delivery architecture,

algorithms for cost optimization, and a prototype of a fully func-

tioning system. We further develop a case study of chiller and pump

maintenance, where sTube+ acts as the underlying architecture.

ACKNOWLEDGMENTS
We would like to acknowledge the support of the University of

Sydney DVC Research/Bridging Support Grant. This work was

supported in part by the National Natural Science Foundation of

China under Grant 61272464 and in part by RGC/GRF under Grant

PolyU 5264/13E. This work was also supported by the National

Science Foundation under grant CNS-1423408.

REFERENCES
[1] Ian F Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. 2002.

Wireless sensor networks: a survey. Computer networks 38, 4 (2002), 393–422.

[2] Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The internet of things:

A survey. Computer networks 54, 15 (2010), 2787–2805.
[3] Mung Chiang and Tao Zhang. 2016. Fog and IoT: An overview of research

opportunities. IEEE Internet of Things Journal 3, 6 (2016), 854–864.
[4] Stephen Dawson-Haggerty, Xiaofan Jiang, Gilman Tolle, Jorge Ortiz, and David

Culler. 2010. sMAP: a simple measurement and actuation profile for physical

information. In Proceedings of the 8th ACM Conference on Embedded Networked
Sensor Systems. ACM, 197–210.

[5] Almudena Díaz-Zayas, Cesar A García-Pérez, Álvaro M Recio-Pérez, and Pedro

Merino. 2016. 3GPP standards to deliver LTE connectivity for IoT. In Internet-of-
Things Design and Implementation (IoTDI), 2016 IEEE First International Conference
on. IEEE, 283–288.

[6] Nofirman Firdaus, Bambang Teguh Prasetyo, and Thomas Luciana. 2016. Chiller:

Performance Deterioration and Maintenance. Energy Engineering 113, 4 (2016),

55–80.

[7] Jingkun Gao, Joern Ploennigs, and Mario Berges. 2015. A data-driven meta-data

inference framework for building automation systems. In Proceedings of the 2nd
ACM International Conference on Embedded Systems for Energy-Efficient Built
Environments. ACM, 23–32.

[8] Chuang Hu. 2017. sTube+: An IoT Communication Sharing Architecture for Smart
After-sales Maintenance in Buildings. Technical Report. https://goo.gl/hXEimZ.

[9] Jianwei Huang and Lin Gao. 2013. Wireless network pricing. Synthesis Lectures
on Communication Networks 6, 2 (2013), 1–176.

[10] Jing Jiang and Yi Qian. 2016. Distributed Communication Architecture for Smart

Grid Applications. IEEE Communications Magazine 54, 12 (2016), 60–67.
[11] Joseph HK Lai, Francis WH Yik, and Aggie KP Chan. 2009. Maintenance cost

of chiller plants in Hong Kong. Building Services Engineering Research and
Technology 30, 1 (2009), 65–78.

[12] Steven Latre, Philip Leroux, Tanguy Coenen, Bart Braem, Pieter Ballon, and Piet

Demeester. 2016. City of things: An integrated and multi-technology testbed

for IoT smart city experiments. In Smart Cities Conference (ISC2), 2016 IEEE
International. IEEE, 1–8.

[13] Jay Lee, Chao Jin, and Zongchang Liu. 2017. Predictive Big Data Analytics and

Cyber Physical Systems for TES Systems. In Advances in Through-life Engineering
Services. Springer, 97–112.

[14] Mehdi Mahdavikhah and Hamid Niazmand. 2013. Effects of plate finned heat

exchanger parameters on the adsorption chiller performance. Applied Thermal
Engineering 50, 1 (2013), 939–949.

[15] Ghasem Naddafzadeh-Shirazi, Lutz Lampe, Gustav Vos, and Steve Bennett. 2015.

Coverage enhancement techniques for machine-to-machine communications

over LTE. IEEE Communications Magazine 53, 7 (2015), 192–200.
[16] Dusit Niyato, Xiao Lu, Ping Wang, Dong In Kim, and Zhu Han. 2016. Eco-

nomics of Internet of Things: An information market approach. IEEE Wireless
Communications 23, 4 (2016), 136–145.

[17] JS Roessler. 2015. LTE-Advanced (3GPP Rel. 12) Technology Intro-

duction. https://cdn.rohde-schwarz.com/pws/dl_downloads/dl_application/

application_notes/1ma252/1MA252_2e_LTE_Rel12_technology.pdf

[18] Petr Slavík. 1996. A tight analysis of the greedy algorithm for set cover. In

Proceedings of the twenty-eighth annual ACM symposium on Theory of computing.
ACM, 435–441.

[19] Anna Maria Vegni, Valeria Loscri, Alessandro Neri, and Marco Leo. 2016. A

bayesian packet sharing approach for noisy iot scenarios. In Internet-of-Things
Design and Implementation (IoTDI), 2016 IEEE First International Conference on.
IEEE, 305–308.

[20] Neal E Young. 2008. Greedy set-cover algorithms. In Encyclopedia of algorithms.
Springer, 1–99.

[21] Thomas Zachariah, Noah Klugman, Bradford Campbell, Joshua Adkins, Neal

Jackson, and Prabal Dutta. 2015. The internet of things has a gateway problem.

In Proceedings of the 16th International Workshop on Mobile Computing Systems
and Applications. ACM, 27–32.

[22] Zimu Zheng, Dan Wang, Jian Pei, Yi Yuan, Cheng Fan, and Fu Xiao. 2016. Urban

Traffic Prediction through the Second Use of Inexpensive Big Data from Buildings.

In Proc. ACM CIKM’16. Indianapolis, IN.

https://goo.gl/hXEimZ
https://cdn.rohde-schwarz.com/pws/dl_downloads/dl_application/application_notes/1ma252/1MA252_2e_LTE_Rel12_technology.pdf
https://cdn.rohde-schwarz.com/pws/dl_downloads/dl_application/application_notes/1ma252/1MA252_2e_LTE_Rel12_technology.pdf

	Abstract
	1 Introduction
	2 The Motivation and Related Architecture
	2.1 Chiller Maintenance: How SAMS Benefits
	2.2 Communication Channels: Why Do We Need Sharing
	2.3 Related Architecture to sTube+

	3 The Problem and Design Overview
	4 The sTube+ Architecture
	4.1 A Layered Architecture for Data Delivery
	4.2 Detailed Modules for a Functioning System
	4.3 Security Concerns

	5 TCC Link Sharing Optimization
	5.1 Problem Formulation and Analysis
	5.2 The Approximation Algorithm for PAYG TCC Sharing
	5.3 The Algorithm for MP TCC Sharing
	5.4 Improving the Reliability of sTube+

	6 Implementation
	6.1 The Network Stack
	6.2 Hardware Choices

	7 Evaluation
	7.1 Experiment
	7.2 Simulation

	8 A Case Study
	9 Conclusion
	Acknowledgments
	References

