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ABSTRACT 
This paper presents a 1 V digital signal processor used in the 
Danalogic hearing aid manufactured by GN Danavox. The 
processor is the first general purpose programmable used in 
behind-the-ear and in-the-ear hearing aid applications. It is 
integrated with memories, in a 0.5~ CMOS process with standard 
thresholds. At 2 MHz processing speed, the processor consumes 
800pA from a single cell battery. Using a dual multiply- 
accumulate architecture, the processor executes a 256 point block 
floating-point FFT in just 2900 instruction cycles. 

1. INTRODUCTION 
Recent years of CMOS technology advances have increased the 
focus on digital signal processing for hearing aid applications. 
Even though several hearing-instrument manufactures offer 
digital hearing aids, only few digital hearing instrument IC’s have 
been reported in literature [2]. Some have digitally programmable 
analog signal processing [3], while our previous work combine 
hardwired digital signal processing with analog signal processing 
[4]. One other reported hearing aid IC [l] offers the possibility to 
construct different filter algorithms by allowing a 41 words 
“program” to control the order of executing wave digital filters 
and automatic gain control functions in an architecture highly 
optimized for these two applications. However the focus on these 
two functions prevents [I] from being able to perform standard 
DSP algorithms like FFT’s and adaptive filters 

One step is still missing in the development of digital hearing 
instruments, namely to convert hearing aids from hardware design 
into constructing DSP software on a general purpose Digital 
Signal Processor. This paper presents this last step in the digital 
hearing instrument evolution, thus offering far more flexibility in 
tailoring the function of the hearing aid to the needs of the 
individual hearing impaired user. The processor has been 
constructed as a joint development project between Resound, 
AudioLogic and Danavox and is implemented in a standard 0.Q 
CMOS process. Using a performance metric of milliwats pr. mega 
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multiply-accumulates, the processor achieves 0.2 mW/Mmacs. 
Recent publications on digital signal processors, operating at IV 
supply [5] [6], employs multi threshold voltage 0.25l.t CMOS 
processes in order to achieve similar performance. 

The design of this DSP is described in the following sections. 
First section II describes the top-level architecture with focus on 
algorithm vs. architecture. Next section III describes the 
algorithm/implementation relation of some of the key DSP 
elements in order to achieve a low power performance metric. 
Section IV outlines the measured results/performances and 
compares this to existing commercial and published designs. 
Finally section V concludes upon the architecture, and the design 
strategies employed 

2. TOP LEVEL ARCHITECTURE 
The Top level architecture of the DSP is shown in Figure 1. The 
processor is, based on a modified Harvard architecture with two 
separate 16-bit data buses and one 32-bit program bus. The 
program bus width also defines the width of the instruction 
words, which can be fetched and executed from either program 
ROM or RAM. 

Figure 1 High level block diagram of the DSP architecture. 
(control signals not shown) 

The DSP is furthermore equipped with two data ROM and two 
data RAM blocks, one for each data bus address space. Each data 
address space has its own data address generator capable of 
performing address calculations for data read/write in the ROM or 
RAM blocks. The x and y data busses both interfaces to two 
identical data path units, each containing a Pre-add Multiply- 
Accumulate (PMAC) unit and data registers for temporary storage 
of data and coefficient values. The PMAC unit is closer described 
in the following section. The instruction decoder is driven by the 
interrupt control unit which generates interrupts for the execution 
control whenever audio samples are ready/required at 16 kHz 
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from the external interface. Interfacing to both the program bus 
and the x data bus, the instruction decoder facilitates both direct 
(through control signals to the address generators), indirect (via 
the address generators) and immediate (via the x bus) addressing, 
thus allowing all the common DSP addressing modes (inclusive 
bit-reverse addressing for FFT’s) 

do 10, loopend 

required control signals (leading to smallest possible instruction 
word width combined with ease of instruction decoding). For 
complex number calculation and FFT the double multiply- 
accumulate is a cost-effective compromise between consumed 
silicon area and performance, i.e. two instruction cycles performs 
a complex multiplication. The core radix-4 FFT butterfly can thus 

al=aO+xl*xO; bl=bO+yl*xO; xO=xmem[iO]; iO+=l; yO=ymem[i4]; i4+=1 
loopend: bl+=xO*(xl+yl); xO,yO=xymem[il]; il-=n 

Figure 2: Instruction set example (not meaningful) displaying the instruction parallelism. 

Figure 2 displays three sample instructions from the processor 
instruction set. The example illustrates the parallelism available in 
instruction execution. E.g. in a loop (instruction 1) two multiply 
accumulate operations can be performed, concurrent with two 
data memory reads, and two indirect address pointer updates. The 
third sample instruction shows the PMAC operation in which the 
content of two registers (xl and yl) are added before multiplied 
by x0 and summed and stored with the previous value of the bl 
register. 

Clk: fl 

Fetch: Fl F2 
Decode: Dl D2 
Execute: El E2 

Figure 3: three stage instruction pipeline 

The processor operates in a pipelined manner as shown in figure 
3. Each instruction passes through three pipeline stages, fetch 
decode and execute. This allows for simple clocking of registers 
and pipe registers, but also for simple instruction control flow, as 
the execute-phase contains all computation and data move 
operations. This scheme also allows for zero overhead looping 
and single cycle interrupts, by letting the interrupt control unit 
slide in single instructions, e.g. fetching audio samples. 

3. ALGORITHMS/ARCHITECTURE 
In order to construct a DSP architecture suited for hearing aid 
applications, with the flexibility of a general purpose DSP, we 
first looked at different core algorithms which can be shown to be 
cost effective for implementing different filtering and processing 
functions. The selected suite of algorithms spanned FFTs, N-LMS 
adaptive filters, FIR and IIR filtering, complex number filters and 
multirate tilterbanks based on parallel all-pass filters [7]. Also 
Log-domain processing and trigonometric operations was used in 
the algorithm suite for optimizing the architecture. 

An intensive study was performed mapping different FFT 
butterfly’s and filter structures onto as simple and consistent a 
data-path as possible. The degrees of freedom co-optimized were 
number of registers, arithmetic architecture, memory accesses and 

be executed in just 12 instruction cycles, leading to a 2900 cycle 
256-point block floating point FFT. 

The linear phase FIR filters and all-pass filters, benefits from the 
ability to add two numbers before multiplying by a third. Parallel 
all-pass sections are effective for performing band-split filtering 
[7], which is a commonly used function especially in hearing aid 
applications. The second order all pass section is given by: 

yn = a0 * (in -m-2, + al * (x,-j - yn-l) + xn-2 

This evaluation requires 4 MAC operations, but only 2 PMAC 
operations. An 8th order linear phase FIR filter is given by: 

yn = aO*(x,+x,-7) + al +(x,-~++fjJ + a2*(xn-2+xn-5;) 

+ a3*(xn-3+x& 

Which again can be performed in 8 MAC operations, but just 4 
PMAC operations. 

3.1 Pmac Architecture 
The observed need for an adder function before the multiply- 
accumulate unit would under normal circumstances generate an 
extra delay in the execution phase, but as will be shown in the 
following this delay can be minimized. 

Booth encoding, of one multiplier input, has been shown in 
literature to be an efficient way to reduce power consumption of 
hardware multipliers. By reducing the number of partial products 
to be added in the multiplier, the Booth encoder inherently 
reduces the number of spurious switching events in the following 
summation array/tree. In order to maintain a simple overall 
clocking strategy, the complete execution cycle is contained in 
just one clock cycle. Le. we would like the add-multiply- 
accumulate operation to happen in one combinatorial circuit. 
Inserting an adder of for instance ripple-carry or cany look-ahead 
type on any of the inputs to a booth encoded multiplier increases 
the delay of the PMAC operation. This is because the 
multiplication cannot start before both multiplicand inputs are 
ready and stable, thus inserting the adder delay directly in the 
delay path. Also power consumption is hurt badly because carry 
rippling in the pre-addition generates lots of extra spurious 
switching events. 

The circuit shown in figure 4 performs the addition of two inputs 
a and b as an integral part of the Booth encoding process. The 
function of the described element is as follows: 
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Sign, 

One, 

Two, 

Figure 4 Booth adder/encoder element with only local 
carry and standard booth select output signals 

C2i=O 

Sum c2i+l Enc. 

0 0 

1 1 

2 4 -2 

3 4 -1 

4 4 0 

5 4 1 

C2i= 1 

Sum C&+1 Enc. 

1 1 

2 2 

3 4 -1 

4 4 0 

5 4 1 

6 4 2 

Figure 5 “truth-table” for the booth-encoder with integrated 
preadder. 

. Four bits of the inputs A = CiN ai,2i, and B = CiN bi.2i, and 
a carry signal {a2i, b2i, a2i+l, b2i+l, cli} with weight { 1, 1, 
2, 2, 1) are reduced by a full-adder and a half adder to four 
outputs having weight { 1, 2, 2,4}. 

. The “four” is propagated on as a carry (cli+l) to the next 
pmac element. 

. The wires having weight { 1, 2, 2) are used as input to an 
encoder block with the “truth-table” shown in figure 4 
(right). 

. The encoder scheme is then as follows: When the sum of the 
inputs is less than two the encoder simply outputs the value 
(encoded as Signi, Onei and Twoi) possibly added by the 
“one” coming from c2i. When the sum of the three inputs are 
greater than or equal to two, a value of “four” is propagated 
to the next stage (as c2i+l). This is shown as an “or-gate” in 
figure 4. 

. The correct numerical value is then generated on {Signi, 
Onei and Twoi} according to the table in figure 5. This 
correspond to the cases Sumc{2,3,4,5} for c2i = 0, and the 
cases Sume { 3,4,5,6} for c2i = 1 

The Booth pre-adder is easily extended to accept 2’s complement 
signed inputs A = -aN*2N + CiN-1 ai.2i and B = -bN.2N + CiN-’ 

bi.2i, by replacing the FA in tigure 4 with a “full-subtraction” for 
the MSB element adding the -aN and -bN. Numerous 
architectures with more efftcient gate-level implementations can 
be found for this element, but the general scope of this idea 
remains the same: To perform the addition of two numbers almost 
“for free”, when doing booth encoding in a hardware multiplier 

3.2 Multiplier summation tree 
From a power saving point of view, another interesting part of the 
architecture is the part following the booth partial product 
generator. As the PMAC operation is executed non-pipelined, this 
unit needs to be carefully analyzed with respect to spurious 
transients in order to keep power consumption low. The design 
issues here are speed and power consumption vs. ease of 
implementation. Array summation structures are inherently well 
suited for custom layout, but their speed and power performance 
are poor compared to tree structures. Tree structures, however, are 
somewhat difficult to construct regular layout for. These are 
therefore often constructed using standard cell place and route 
tools, thus increasing the wiring capacitance over custom 
implementation. 

Summation 

Structure 

Pre-add/partial products 
JJL&JJLLL1 

Figur 6 Different architectures for the summation 
structure are examined 

In order to analyze this, 5 different summation structures were 
studied, each capable of fitting into the “summation structure” 
box of figure 6. The 5 architectures were: 
cg: Array containing carry propagate (ripple-carry) adders 

cs3: Array containing carry save Full-adders. 

cs4: Array containing only carry save 4:2 counters 

tr2: Binary tree consisting of carry propagate adders 

tr4: Wallace tree containing Full-adders and 4:2 counters 

Cg and tr2 consist of carry propagate adders, thus they have 
their own final ripple adders, which therefore substitutes the CLA 
adder in bottom of figure 6. 

The following assumptions were made in the analysis: 

1. Full adders, 4:2 counters and the radix-16 carry look-ahead 
adder are implemented using standard CMOS gates with up 
to 4 inputs. 



2. Each CMOS gate has a generic unit delay. 
3. The inputs (partial products) are assumed arriving at the 

input of the summation tree at the same time. 
Assumption 1) and 3) are realistic assumptions for both custom 
and standard cell implementations, if e.g. the Booth-mux. partial 
product selectors contains a self latching function. Assumption 2 
is a pretty rough approximation. However, as this experiment 
serves as the basis for selection of architecture and 
implementation style, assumption 2) is sufficiently precise. 

# of nodes in Gate delays Average # of node 
structure. transitions. 

C-P 1264 82 7.42 

cs3 1392 48 3.67 

cs4 1251 38 2.26 

tr2 1315 47 2.03 

tr4 1279 30 1.56 

Table 1 Gate delay and number of average node transitions 
pr. multiply cycle for each of the analyzed architectures 

Table 1 displays the number of CMOS gate delays for each of the 
examined summation architectures. Also the average number of 
transitions pr. node are calculated for each structure. Calculating 
the power-delay product, the generic tr4 Wallace tree architecture 
outperforms the best array structure (cs4) by almost a factor of 2. 
This indicates that the fastest possible tree structure available is a 
cost efficient implementation even if implemented using 
automatic place and route tools. 

Figure 7 “Tr4” The selected summation tree structure 
feeding into the final Carry Look-ahead adder (CLA) 

3.3 Memory Subsystem 
The On-chip memory subsystem is divided into both program 
RAM and ROM, and data RAM and ROM divided into separate 
memory spaces. For a processor with a 32-bit instruction word, 
the fetching and decoding of instructions can be viewed as a 

necessary “overhead” on the computation load of the necessary 
signal processing algorithms. Much care has been put into the 
optimization of the memory configuration. 

one word 
R&V cache I 

I I 

p addr p data p addr p data 

Figur 8 Architecture of the on-chip memory banks 

Figure 8 shows the architecture of the on chip RAM and ROM 
blocks. In the RAM case a one-word cache register is inserted 
between the processor core and the memory core. This can be 
seen as a “delayed write register”, thus for a 3 stage pipeline, a 
whole processor execution phase can be used to write an 
instruction in Program RAh4. 

For the design of the program ROM, the selected algorithm suite 
showed that supplying the ROM with two g-word “pages” (an 
“even” and an “odd” page) of read cache improves power 
consumption. Optimizing the memory configuration against the 
“inner algorithm loops” during the instruction set design phase 
shows that all “inner loops” in the algorithm suite are shorter than 
16 instruction words. This calls for two 8 word ROM caches, 
from which the core algorithm loops can be executed. The inner 
loops are thus placed as a library of callable “macros” in on chip 
ROM. Circular addressing in up to a 16 word loop enables the 
processor to execute out of ROM cache 90% of the time. This 
way the power hungry bit-lines and sense-amplifiers in the 
memories can be kept quiet most of the execution time. 

Table 2 Current consumption, Supply voltage, maximum clock 
frequency and miliwats / mega multiply-accumulate pr. second 
for four commercial low power dsp’s, and two dsp’s published 

literature 

4. RESULTS 
The DSP is integrated with an Audio input/output processor and 
external interface. It measures 28mm2, and consumes 800pA 
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from a 1.0 Volt supply, when operated at 2.0 MHz. The 
performance metric mW/M mats for the processor is shown in 
table 2 

Using its double MAC architecture and build in ROM twiddle 
factor tables, the processor executes a 256 point complex block- 
floating point FFT in just 2900 instruction cycles. For comparison 
the Motorola 56009 needs 8650 instruction cycles for this 
application (Table 3). 

Processor 64 tab FIR filter 256 point BFP FFT 

ADSP2104 64 cycles 7372 cycles 

Motorola 56009 64 cycles 8650 cycles 

TMS320c5x 64 cycles 83 10 cycles 

Danalogic DSP 32 cycles 2900 cycles 

Table 3 Comparing the algorithm execution performance of 
three commercial available DSP’s to the execution 

performance of the Danalogic DSP 

This shows that the operation parallelism at 2.0MHz operation 
allows for fairly advanced algorithms to be executed. Thus, in the 
Danalogic hearing instrument the DSP executes several different 
algorithms simultaneously: FFT equalizing and multi band 
compression, noise reduction, adaptive feedback cancellation and 
a two-microphone zoom algorithm is processed concurrently. 

Chip area: 28 mm2 

Current: 0.8 mA 

Supply voltage: l.OV 

Max speed: 2 MHz 

Word width: 16 bit 

Transistors: 544k 

ROM bits: 13lk 

RAM bits: 49k 

Figure 9: Main specifications of the Danalogic DSP. 

5. CONCLUSION 
This paper has described a programmable digital signal processor 
for hearing aid applications. This fills out the last gap in the 
digital hearing aid evolution history i.e. effectively moves hearing 
aid construction: from Hardware to DSP Software design. 

The construction of a general purpose DSP under the very tight 
size and power constraints in a hearing aid, is only made possible 
by co-optimizing all levels of the system simultaneously. As 
demonstrated in chapter III, synergies need to be found from the 
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application through algorithm, architecture, arithmetic and 
implementation levels. To reach the listed performance metrics, 
co-design exploiting just the limit between HW and SW is not 
enough. All levels from algorithm down to transistor level needs 
to be optimized, and their interactions needs to be exploited. 

It is our belief that the transformation from hardware to software 

we 10 Die photograph of the Danalc 

design enables far more advanced applications to be implemented 
for hearing aids in the future. Adaptive signal processing and 
“intelligent” algorithms are good examples of algorithms which 
could be implemented on a programmable platform, where their 
hardwired counterparts are almost impossible to implement 
without “turning” chips multiple times. 
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