
Algorithm and Architecture of a IV Low Power Hearing
Instrument DSP

Finn Mnrller Nikolai Bisgaard
GN Danavox GN Danavox

Maarkmvej 2A Maarkemej 2A
DK-2630 Taastrup DK-2630 Taastrup

+4572111111 +4572111111

finn@danavox.dk nb@danavox.dk

John Melanson
AudioLogic

4870 Sterling Drive
Boulder, CO 80301

+I 303 444 8445

john@audiologic.com

ABSTRACT
This paper presents a 1 V digital signal processor used in the
Danalogic hearing aid manufactured by GN Danavox. The
processor is the first general purpose programmable used in
behind-the-ear and in-the-ear hearing aid applications. It is
integrated with memories, in a 0.5~ CMOS process with standard
thresholds. At 2 MHz processing speed, the processor consumes
800pA from a single cell battery. Using a dual multiply-
accumulate architecture, the processor executes a 256 point block
floating-point FFT in just 2900 instruction cycles.

1. INTRODUCTION
Recent years of CMOS technology advances have increased the
focus on digital signal processing for hearing aid applications.
Even though several hearing-instrument manufactures offer
digital hearing aids, only few digital hearing instrument IC’s have
been reported in literature [2]. Some have digitally programmable
analog signal processing [3], while our previous work combine
hardwired digital signal processing with analog signal processing
[4]. One other reported hearing aid IC [l] offers the possibility to
construct different filter algorithms by allowing a 41 words
“program” to control the order of executing wave digital filters
and automatic gain control functions in an architecture highly
optimized for these two applications. However the focus on these
two functions prevents [I] from being able to perform standard
DSP algorithms like FFT’s and adaptive filters

One step is still missing in the development of digital hearing
instruments, namely to convert hearing aids from hardware design
into constructing DSP software on a general purpose Digital
Signal Processor. This paper presents this last step in the digital
hearing instrument evolution, thus offering far more flexibility in
tailoring the function of the hearing aid to the needs of the
individual hearing impaired user. The processor has been
constructed as a joint development project between Resound,
AudioLogic and Danavox and is implemented in a standard 0.Q
CMOS process. Using a performance metric of milliwats pr. mega

ISLPED99, San Diego, CA, USA
1999 ACM 1-58113.133.X/99/ooOS.

multiply-accumulates, the processor achieves 0.2 mW/Mmacs.
Recent publications on digital signal processors, operating at IV
supply [5] [6], employs multi threshold voltage 0.25l.t CMOS
processes in order to achieve similar performance.

The design of this DSP is described in the following sections.
First section II describes the top-level architecture with focus on
algorithm vs. architecture. Next section III describes the
algorithm/implementation relation of some of the key DSP
elements in order to achieve a low power performance metric.
Section IV outlines the measured results/performances and
compares this to existing commercial and published designs.
Finally section V concludes upon the architecture, and the design
strategies employed

2. TOP LEVEL ARCHITECTURE
The Top level architecture of the DSP is shown in Figure 1. The
processor is, based on a modified Harvard architecture with two
separate 16-bit data buses and one 32-bit program bus. The
program bus width also defines the width of the instruction
words, which can be fetched and executed from either program
ROM or RAM.

Figure 1 High level block diagram of the DSP architecture.
(control signals not shown)

The DSP is furthermore equipped with two data ROM and two
data RAM blocks, one for each data bus address space. Each data
address space has its own data address generator capable of
performing address calculations for data read/write in the ROM or
RAM blocks. The x and y data busses both interfaces to two
identical data path units, each containing a Pre-add Multiply-
Accumulate (PMAC) unit and data registers for temporary storage
of data and coefficient values. The PMAC unit is closer described
in the following section. The instruction decoder is driven by the
interrupt control unit which generates interrupts for the execution
control whenever audio samples are ready/required at 16 kHz

7

http://crossmark.crossref.org/dialog/?doi=10.1145%2F313817.313827&domain=pdf&date_stamp=1999-08-17

from the external interface. Interfacing to both the program bus
and the x data bus, the instruction decoder facilitates both direct
(through control signals to the address generators), indirect (via
the address generators) and immediate (via the x bus) addressing,
thus allowing all the common DSP addressing modes (inclusive
bit-reverse addressing for FFT’s)

do 10, loopend

required control signals (leading to smallest possible instruction
word width combined with ease of instruction decoding). For
complex number calculation and FFT the double multiply-
accumulate is a cost-effective compromise between consumed
silicon area and performance, i.e. two instruction cycles performs
a complex multiplication. The core radix-4 FFT butterfly can thus

al=aO+xl*xO; bl=bO+yl*xO; xO=xmem[iO]; iO+=l; yO=ymem[i4]; i4+=1
loopend: bl+=xO*(xl+yl); xO,yO=xymem[il]; il-=n

Figure 2: Instruction set example (not meaningful) displaying the instruction parallelism.

Figure 2 displays three sample instructions from the processor
instruction set. The example illustrates the parallelism available in
instruction execution. E.g. in a loop (instruction 1) two multiply
accumulate operations can be performed, concurrent with two
data memory reads, and two indirect address pointer updates. The
third sample instruction shows the PMAC operation in which the
content of two registers (xl and yl) are added before multiplied
by x0 and summed and stored with the previous value of the bl
register.

Clk: fl

Fetch: Fl F2
Decode: Dl D2
Execute: El E2

Figure 3: three stage instruction pipeline

The processor operates in a pipelined manner as shown in figure
3. Each instruction passes through three pipeline stages, fetch
decode and execute. This allows for simple clocking of registers
and pipe registers, but also for simple instruction control flow, as
the execute-phase contains all computation and data move
operations. This scheme also allows for zero overhead looping
and single cycle interrupts, by letting the interrupt control unit
slide in single instructions, e.g. fetching audio samples.

3. ALGORITHMS/ARCHITECTURE
In order to construct a DSP architecture suited for hearing aid
applications, with the flexibility of a general purpose DSP, we
first looked at different core algorithms which can be shown to be
cost effective for implementing different filtering and processing
functions. The selected suite of algorithms spanned FFTs, N-LMS
adaptive filters, FIR and IIR filtering, complex number filters and
multirate tilterbanks based on parallel all-pass filters [7]. Also
Log-domain processing and trigonometric operations was used in
the algorithm suite for optimizing the architecture.

An intensive study was performed mapping different FFT
butterfly’s and filter structures onto as simple and consistent a
data-path as possible. The degrees of freedom co-optimized were
number of registers, arithmetic architecture, memory accesses and

be executed in just 12 instruction cycles, leading to a 2900 cycle
256-point block floating point FFT.

The linear phase FIR filters and all-pass filters, benefits from the
ability to add two numbers before multiplying by a third. Parallel
all-pass sections are effective for performing band-split filtering
[7], which is a commonly used function especially in hearing aid
applications. The second order all pass section is given by:

yn = a0 * (in -m-2, + al * (x,-j - yn-l) + xn-2

This evaluation requires 4 MAC operations, but only 2 PMAC
operations. An 8th order linear phase FIR filter is given by:

yn = aO*(x,+x,-7) + al +(x,-~++fjJ + a2*(xn-2+xn-5;)

+ a3*(xn-3+x&

Which again can be performed in 8 MAC operations, but just 4
PMAC operations.

3.1 Pmac Architecture
The observed need for an adder function before the multiply-
accumulate unit would under normal circumstances generate an
extra delay in the execution phase, but as will be shown in the
following this delay can be minimized.

Booth encoding, of one multiplier input, has been shown in
literature to be an efficient way to reduce power consumption of
hardware multipliers. By reducing the number of partial products
to be added in the multiplier, the Booth encoder inherently
reduces the number of spurious switching events in the following
summation array/tree. In order to maintain a simple overall
clocking strategy, the complete execution cycle is contained in
just one clock cycle. Le. we would like the add-multiply-
accumulate operation to happen in one combinatorial circuit.
Inserting an adder of for instance ripple-carry or cany look-ahead
type on any of the inputs to a booth encoded multiplier increases
the delay of the PMAC operation. This is because the
multiplication cannot start before both multiplicand inputs are
ready and stable, thus inserting the adder delay directly in the
delay path. Also power consumption is hurt badly because carry
rippling in the pre-addition generates lots of extra spurious
switching events.

The circuit shown in figure 4 performs the addition of two inputs
a and b as an integral part of the Booth encoding process. The
function of the described element is as follows:

8

Sign,

One,

Two,

Figure 4 Booth adder/encoder element with only local
carry and standard booth select output signals

C2i=O

Sum c2i+l Enc.

0 0

1 1

2 4 -2

3 4 -1

4 4 0

5 4 1

C2i= 1

Sum C&+1 Enc.

1 1

2 2

3 4 -1

4 4 0

5 4 1

6 4 2

Figure 5 “truth-table” for the booth-encoder with integrated
preadder.

. Four bits of the inputs A = CiN ai,2i, and B = CiN bi.2i, and
a carry signal {a2i, b2i, a2i+l, b2i+l, cli} with weight { 1, 1,
2, 2, 1) are reduced by a full-adder and a half adder to four
outputs having weight { 1, 2, 2,4}.

. The “four” is propagated on as a carry (cli+l) to the next
pmac element.

. The wires having weight { 1, 2, 2) are used as input to an
encoder block with the “truth-table” shown in figure 4
(right).

. The encoder scheme is then as follows: When the sum of the
inputs is less than two the encoder simply outputs the value
(encoded as Signi, Onei and Twoi) possibly added by the
“one” coming from c2i. When the sum of the three inputs are
greater than or equal to two, a value of “four” is propagated
to the next stage (as c2i+l). This is shown as an “or-gate” in
figure 4.

. The correct numerical value is then generated on {Signi,
Onei and Twoi} according to the table in figure 5. This
correspond to the cases Sumc{2,3,4,5} for c2i = 0, and the
cases Sume { 3,4,5,6} for c2i = 1

The Booth pre-adder is easily extended to accept 2’s complement
signed inputs A = -aN*2N + CiN-1 ai.2i and B = -bN.2N + CiN-’

bi.2i, by replacing the FA in tigure 4 with a “full-subtraction” for
the MSB element adding the -aN and -bN. Numerous
architectures with more efftcient gate-level implementations can
be found for this element, but the general scope of this idea
remains the same: To perform the addition of two numbers almost
“for free”, when doing booth encoding in a hardware multiplier

3.2 Multiplier summation tree
From a power saving point of view, another interesting part of the
architecture is the part following the booth partial product
generator. As the PMAC operation is executed non-pipelined, this
unit needs to be carefully analyzed with respect to spurious
transients in order to keep power consumption low. The design
issues here are speed and power consumption vs. ease of
implementation. Array summation structures are inherently well
suited for custom layout, but their speed and power performance
are poor compared to tree structures. Tree structures, however, are
somewhat difficult to construct regular layout for. These are
therefore often constructed using standard cell place and route
tools, thus increasing the wiring capacitance over custom
implementation.

Summation

Structure

Pre-add/partial products
JJL&JJLLL1

Figur 6 Different architectures for the summation
structure are examined

In order to analyze this, 5 different summation structures were
studied, each capable of fitting into the “summation structure”
box of figure 6. The 5 architectures were:
cg: Array containing carry propagate (ripple-carry) adders

cs3: Array containing carry save Full-adders.

cs4: Array containing only carry save 4:2 counters

tr2: Binary tree consisting of carry propagate adders

tr4: Wallace tree containing Full-adders and 4:2 counters

Cg and tr2 consist of carry propagate adders, thus they have
their own final ripple adders, which therefore substitutes the CLA
adder in bottom of figure 6.

The following assumptions were made in the analysis:

1. Full adders, 4:2 counters and the radix-16 carry look-ahead
adder are implemented using standard CMOS gates with up
to 4 inputs.

2. Each CMOS gate has a generic unit delay.
3. The inputs (partial products) are assumed arriving at the

input of the summation tree at the same time.
Assumption 1) and 3) are realistic assumptions for both custom
and standard cell implementations, if e.g. the Booth-mux. partial
product selectors contains a self latching function. Assumption 2
is a pretty rough approximation. However, as this experiment
serves as the basis for selection of architecture and
implementation style, assumption 2) is sufficiently precise.

of nodes in Gate delays Average # of node
structure. transitions.

C-P 1264 82 7.42

cs3 1392 48 3.67

cs4 1251 38 2.26

tr2 1315 47 2.03

tr4 1279 30 1.56

Table 1 Gate delay and number of average node transitions
pr. multiply cycle for each of the analyzed architectures

Table 1 displays the number of CMOS gate delays for each of the
examined summation architectures. Also the average number of
transitions pr. node are calculated for each structure. Calculating
the power-delay product, the generic tr4 Wallace tree architecture
outperforms the best array structure (cs4) by almost a factor of 2.
This indicates that the fastest possible tree structure available is a
cost efficient implementation even if implemented using
automatic place and route tools.

Figure 7 “Tr4” The selected summation tree structure
feeding into the final Carry Look-ahead adder (CLA)

3.3 Memory Subsystem
The On-chip memory subsystem is divided into both program
RAM and ROM, and data RAM and ROM divided into separate
memory spaces. For a processor with a 32-bit instruction word,
the fetching and decoding of instructions can be viewed as a

necessary “overhead” on the computation load of the necessary
signal processing algorithms. Much care has been put into the
optimization of the memory configuration.

one word
R&V cache I

I I

p addr p data p addr p data

Figur 8 Architecture of the on-chip memory banks

Figure 8 shows the architecture of the on chip RAM and ROM
blocks. In the RAM case a one-word cache register is inserted
between the processor core and the memory core. This can be
seen as a “delayed write register”, thus for a 3 stage pipeline, a
whole processor execution phase can be used to write an
instruction in Program RAh4.

For the design of the program ROM, the selected algorithm suite
showed that supplying the ROM with two g-word “pages” (an
“even” and an “odd” page) of read cache improves power
consumption. Optimizing the memory configuration against the
“inner algorithm loops” during the instruction set design phase
shows that all “inner loops” in the algorithm suite are shorter than
16 instruction words. This calls for two 8 word ROM caches,
from which the core algorithm loops can be executed. The inner
loops are thus placed as a library of callable “macros” in on chip
ROM. Circular addressing in up to a 16 word loop enables the
processor to execute out of ROM cache 90% of the time. This
way the power hungry bit-lines and sense-amplifiers in the
memories can be kept quiet most of the execution time.

Table 2 Current consumption, Supply voltage, maximum clock
frequency and miliwats / mega multiply-accumulate pr. second
for four commercial low power dsp’s, and two dsp’s published

literature

4. RESULTS
The DSP is integrated with an Audio input/output processor and
external interface. It measures 28mm2, and consumes 800pA

10

from a 1.0 Volt supply, when operated at 2.0 MHz. The
performance metric mW/M mats for the processor is shown in
table 2

Using its double MAC architecture and build in ROM twiddle
factor tables, the processor executes a 256 point complex block-
floating point FFT in just 2900 instruction cycles. For comparison
the Motorola 56009 needs 8650 instruction cycles for this
application (Table 3).

Processor 64 tab FIR filter 256 point BFP FFT

ADSP2104 64 cycles 7372 cycles

Motorola 56009 64 cycles 8650 cycles

TMS320c5x 64 cycles 83 10 cycles

Danalogic DSP 32 cycles 2900 cycles

Table 3 Comparing the algorithm execution performance of
three commercial available DSP’s to the execution

performance of the Danalogic DSP

This shows that the operation parallelism at 2.0MHz operation
allows for fairly advanced algorithms to be executed. Thus, in the
Danalogic hearing instrument the DSP executes several different
algorithms simultaneously: FFT equalizing and multi band
compression, noise reduction, adaptive feedback cancellation and
a two-microphone zoom algorithm is processed concurrently.

Chip area: 28 mm2

Current: 0.8 mA

Supply voltage: l.OV

Max speed: 2 MHz

Word width: 16 bit

Transistors: 544k

ROM bits: 13lk

RAM bits: 49k

Figure 9: Main specifications of the Danalogic DSP.

5. CONCLUSION
This paper has described a programmable digital signal processor
for hearing aid applications. This fills out the last gap in the
digital hearing aid evolution history i.e. effectively moves hearing
aid construction: from Hardware to DSP Software design.

The construction of a general purpose DSP under the very tight
size and power constraints in a hearing aid, is only made possible
by co-optimizing all levels of the system simultaneously. As
demonstrated in chapter III, synergies need to be found from the

11

application through algorithm, architecture, arithmetic and
implementation levels. To reach the listed performance metrics,
co-design exploiting just the limit between HW and SW is not
enough. All levels from algorithm down to transistor level needs
to be optimized, and their interactions needs to be exploited.

It is our belief that the transformation from hardware to software

we 10 Die photograph of the Danalc

design enables far more advanced applications to be implemented
for hearing aids in the future. Adaptive signal processing and
“intelligent” algorithms are good examples of algorithms which
could be implemented on a programmable platform, where their
hardwired counterparts are almost impossible to implement
without “turning” chips multiple times.

6. REFERENCES
PI Harry NeuteBoom, Ben M. J. Kup and Mark Janssens: “A
DSP-Based Hearing Instrument Ic”, in IEEE Journal of solid-
state Circuits, vol.32 no. 11, November 1997.
PI J. Krokstad et. Al: “An all digital concha hearing aid” in

IEEE Workshop on Applications of Signal Processing. to Audio
and Acoustics, Paper Summaries, pp. 85-88, 1993.
[31 F. Callias et al. “A set of four IC’s in CMOS technology
for a programmable Hearing aid”, in IEEE Journal of Solid-state
Circuits, vol. 24, pp 301-3 12, Apr. 1989
[41 N. Bisgaard and Ole Dyrlund: Acoustic feedback part 2:
A digital system for suppression of feedback”, Hearing
Instruments, vol. 42, no. 10, 1991.
[51 Wai Lee et al. “A 1-V Programmable DSP for Wireless
Communications”, in IEEE Journal of Solid-state Circuits, vol.
32, no. 11, November 1997.
Kl Shin’ichiro Mutoh et al. “A 1-V Multithreshold-Voltage
CMOS Digital Signal Processor for Mobile Phone Application”,
IEEE JSSC, vol. 31, no.1 1, November 1996.
[71 P Vaidyanathan, “Multirate Systems and Filter Banks”
Englewood Cliffs, NJ: Prentice Hall, 1993. ISBN o-13-605718-7

