
Designing Power Efficient Hypermedia Processors

Chunho Leet, Johnson Kin$, Miodrag Potkonjakt and William H. Mangione-Smithi
IDepartment of Computer Science and SDepartment of Electrical Engineering

University of California, Los Angeles, CA, USA
Email: {leec, miodrag} @cs.ucla.edu, djohnsonk, billms} @icsl.ucla.edu

Abstract

Distributed hypermedia system that supports collaboration is an
emerging platform for creation, discovery, management and deliv-
ery of information. We present an approach to low power system
design space exploration for distributed hypermedia applications.
Traditionally, low power design and synthesis of application spe-
cific programmable processors has been done in the context of a
given number of operations required to complete a task. Our ap-
proach utilizes the modem advances in compiler technology and
architectural enhancements that are well matched to the compiler
technology. This work is, to the best of our knowledge, the first
attempt to address the need for synthesis of low power hypermedia
processors. Also, this is the first work to address the power effi-
ciency through exploiting instruction level parallelism (ILP) found
in hypermedia tasks by an production quality ILP compiler.

Using the developed framework we conduct an extensive ex-
ploration of low power system design space for a hypermedia ap-
plication under area and throughput constraints. The framework
introduced in this paper is very valuable in making early low power
design decisions such as architectural configuration trade-offs in-
cluding the cache and issue width trade-off under area and through-
put constraint, and the number of branch units and issue width.

1 Introduction

Hypermedia represents a combination of hypertext and multimedia
technologies [4]. The concept of hypertext was proposed more than
50 years ago by V. Bush but T. Nelson is generally credited as the
first to coin the term “hypertext” [5].

In recent years there have been significant advances in mobile
computing which resulted in increasingly small and inexpensive
computers and wireless networking. The roles mobile hyperme-
dia systems must support present a unique challenge to system
designers since most media tasks are computation-intensive and,
by definition, they run in parallel side by side. Yet they are re-
quired to operate reliably and predictably while consuming as low
power as possible. For example, tasks such as video and audio en-
coding/decoding, text processing, image processing, authentication
and encryption/decryption should run in parallel to support hyper-
media systems for collaboration. At the same time, due to the fact
that the system must be mobile, they cannot afford to lavishly use
power as their desktop counterparts can.

We present an approach to low power system design space ex-
ploration for distributed hypermedia applications that support. Tra-
ditionally, low power design and synthesis of application specific
programmable processors has been done in the context of a given
number of operations required to complete a task. Our approach
utilizes the modem advances in compiler technology and architec-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
ISLPED99, San Diego, CA, USA
01999 ACM 1.58113.133-X/99/ooO8..$5.00

tural enhancements that are well matched to the compiler technol-
ogy. Advances in compiler technology for instruction-level paral-
lelism (ILP) have significantly increased the ability of a micropro-
cessor to exploit the opportunities for parallel execution that exist
in various programs written in high-level languages. State-of-the-
art ILP compiler technologies are in the process of migrating from
research labs to product groups [3, 91. At the same time, a num-
ber of new microprocessor architectures having hardware structures
that are well matched to most ILP compilers have been introduced.
Architectural enhancements found in commercial products include
predicated instruction execution, VLIW execution and split register
files [2].

2 Target Architecture

The target architecture we use resembles a multiprocessor system
with shared memory except that all the processors for a given hy-
permedia application scenario is assumed to be laid out on a single
die. A media task is assigned to one and only one of the processors.
More than one media application can be assigned to a processor if
the given performance constraints are guaranteed to be met, i.e, all
media tasks on the processor must be finished within a given time
limit. Shared memory is used for data communication between
tasks. Each processor maintains its own cache. When more than
one media application are assigned to a single processor, flushing
and refilling of the cache is needed and the run time measurement
platform takes it into account.

We divide tasks into quanta. One of the benefits of using the
notion of quantum is that it simplifies synchronization of several
applications running on multiple processors. Aside from optimal
use of allocated resources, running given tasks faster than required
will provide no benefit to users. Hence, the use of quanta equivalent
to the longest time frame with which tasks should be synchronized
gives a convenient task assignment unit to allocate resources.

We develop a simple area model based on SA-110. We use
different core models for the VLIW and superscalar machine con-
figurations for the experiment. The difference comes mainly from
the different complexity of the issue units found in superscalar ma-
chines and VLIW machines. We estimate the area of superscalar
issue units based on the area complexity o(n2) since the complex-
ity of dependency checking algorithm is O(n2). When a VLIW
machine is considered, the issue unit area is generally of complex-
ity O(n) or sub-linear. The area of an arbitrarily configured super-
scalar machine is given by

Area = ?tf’ssueAissue i- WwAaw + (1)
nbtanch A brench + Ikern A mem + Amisc

The terms 72iaaue, -hue, ‘Raw, AALIJ, nbranch. Abronch, nmemr

A mem and Amise are the issue width, the baseline issue unit area,
the number of ALUs, the area of a single ALU, the number of
branch units, the branch unit area, the number of memory units, the
area of single memory unit and miscellaneous area, respectively.

We use the model for the cache power dissipation given in
[6, 71. There are five components in the core power dissipation

276

http://crossmark.crossref.org/dialog/?doi=10.1145%2F313817.313951&domain=pdf&date_stamp=1999-08-17

model we used: power dissipation by the issue unit, integer ALU,
branch unit, memory unit, and other miscellaneous power con-
sumption such as clock generator. The power dissipation model
for superscalar machines is given by

E 2
core = nissaeEtssye + nALUEALu + (2)

nbronchEbranch •k nm,,Emem -kEmiac

Thete~Sni,,,,, Eissoev nALU, EALU, nbranch, Ebronchr nmem,

E,,, and Emisc are the issue width, the baseline issue unit en-
ergy, the number of ALUs, the energy of a single ALU, the num-
ber of branch units, the branch unit energy, the number of memory
units, the energy of single memory unit and miscellaneous energy,
respectively.

The benchmark set used in this experiment is composed of com-
plete media applications which are publically available and coded
in a high-level language. We use 8 applications culled from avail-
able image processing, communications, cryptography and DSP
applications. Detailed descriptions of the applications can be found
in [8].

We use the IMPACT tool suit [I] to measure run times of me-
dia applications on various machine configurations. The IMPACT
C compiler is a retargetable compiler with code optimization com-
ponents especially developed for multiple-instruction-issue proces-
sors. The target machine for the IMPACT C can be described using
the high-level machine description language (HMDES). A high-
level machine description supplied by a user is compiled by the
IMPACT machine description language compiler.

3 Problem Formulation

We collect run-times (expressed as a number of cycles) and cache
performance of the benchmarks on 175 different machine configu-
rations (25 cache configurations for 7 processor configurations).

Measured run-times and cache performance of benchmarks through
simulations are used to compute the energy based on the power
model. The simulated power consumption measurements we use
are made with two levels of the shutdown technique: component
level and system level. We assume that when a component (e.g.,
ALU, branch unit, etc.) is idle, it can be shutdown (lower level
shutdown). Also, when there is no task to execute, a processor can
be shutdown (higher level shutdown).

Low Power Hypermedia Synthesis Problem

Instance: Given a set T of n media applications, G, i = 1,2, . .., n,
asetofmpr0cess0rs,pj,j = 1,2,...,m,theruntimeseij
and the cache performance fij of the media applications a;,
i = 1,2, n on the machines cj, j = 1,2, m and con-
stants C, E and P,

Question: Is there a multisubset (subset in which more than one
instance of a processor can be included) M of Ic processors,
p1, 1 = 1,2, . ..) A, 1 5 k 5 n, such that CjEM Apj 5 C,
m=jeM CiEtj eij 2 E and CjeM Wtjj < P? Apj is the
area of the machine pj, tj is the set of tasks that are assigned
to the machine j and wjj is the power consumption of the
processor pj when a task set tj is assigned to the processor.

Theorem. The Low Power Hypermedia Synthesis Problem is
NP-complete.

Proof. We transform the Equal Subset Problem (ESP) to a spe-
cial case of the Low Power Hypermedia Synthesis Problem. For a
given task set T, ITI = n and a set M of 2 identical processors,
each integer number in the ESP is mapped to the power consump-
tion measurement, which is obtained by applying shutdown tech-
nique, of each media task in T. In order to minimize the power

consumption by applying the voltage scaling, we need to assign the
tasks to the processors in such a way that the sums of the assigned
tasks’ power consumption measurements obtained using the shut-
down technique should be as close to each other as possible.

4 Synthesis Algorithm

We develop heuristic algorithms for the low power hypermedia pro-
cessor. We use a simulated annealing based algorithm to allocate
resources given area and performance constraints. Allocated pro-
cessors are then used by a force-directed heuristic [IO] to assign the
set of hypermedia tasks.

We supply five sets of inputs to the algorithm: a set of hyperme-
dia tasks, a set of available processors, area constraints, timing con-
straints and a set of power consumption measurements of each task
on each available processor, The initial power consumption mea-
surements is obtained by measuring power consumption of each
task on each processor with the shutdown technique. The algo-
rithm returns two sets of outputs: a set of allocated processors and
their assigned tasks and the total power consumption after voltage
scaling.

There are four major components in the simulated annealing
based algorithm: the power consumption measurement, the neigh-
bor solution generation, the temperature update function, the equi-
librium criterion and the frozen criterion. Firstly, the power con-
sumption measurement is made after the set of hypermedia tasks
are assigned to a tentatively allocated processors. The tentative as-
signment is done by a force-directed heuristic. Secondly, a neigh-
bor solution is generated by replacing one processor in the current
tentative solution set by one from the available processor set includ-
ing a null processor (i.e., not adding any). Thirdly, the temperature
is updated by the standard geometric cooling schedule. Fourthly,
the equilibrium criterion is specified by the number of iterations of
the inner loop, which is set to 65. Lastly, the termination criterion
is given by the temperature. If the temperature falls below 0. I, the
simulated annealing algorithm stops.

The force-directed heuristic is a global optimizing algorithm in
that it makes one decision at a time by comparing all the possi-
ble decision choices and selecting one that is least constraining to
the future decisions. There are three major steps in each iteration
in which one decision is made: construction of distribution graphs
(DG), computation of force (F) and self force (SF) for each pos-
sible decision choice. For example, if we have a set of 8 tasks and
a set of 3 processors, there are 24 possible decision choices. Thus
24 SF’s are computed and we choose the smallest SF. For exam-
ple, SF,,,, being the smallest means the assignment of the task ai
to the processor ps is the choice selected by force-directed heuris-
tic. When each and all tasks are assigned, voltage scaled power
consumption measurements are made and returned.

5 Experimental Results

We evaluate the tools and algorithms by running extensive experi-
ments ranging from the area constraint of 30rnm2 to 155mm2 and
the timing constraints 0.03 through 0.09 seconds. The timing con-
straint 0.03 secccds represents the time to process 1 mpeg frame at
the rate of 30 frames per second. The implementation technology
is assumed to be 0.35~. For each area constraint and timing con-
straint combination, we obtain three different solutions using the
optimizing algorithm (OA: the combination of simulated annealing
based algorithm and force-directed heuristic), the simple-minded
division algorithm (SA) and the largest possible processor selec-
tion (LA). SA simply divides a given area constraints into two or
more processor areas and allocates identical processors. SA uses
the same force-directed heuristic used by OA to assign tasks to al-
located processors. LA allocates one largest processor that satisfies
the area constraint.

277

Figure 1: Power consumption results measurements made for a
range of synthesized system: power consumption ranges are shown
for each area and performance constraints

Figure 1 shows power consumption of synthesized systems by
OA and LA for various area and timing constraints. Area con-
straints are represented by the horizontal axis and for each area
constraint a number of results for various timing constraints are
plotted along the vertical axis. The scatter plot clearly shows obvi-
ous strength of the OA. Figure 2 shows the same results but only for
the timing constraint 0.03. It compares the OA, SA and LA. The
results indicate that even a simple-minded collection of identical
processors can perform better than one monolithic processor. The
power improvements achieved by OA compared to LA range from
39% to 70% (average 54%). SA improves power consumption by
20% to 59% (average 41%) over LA. For some area constraint re-
gion (bigger than 85 mm’), the LA performs slightly better than
SA. The reason behind this generally impressive results of OA is
that customized processors for each tasks provide more opportu-
nity for power savings from two directions. The ILP compiler pro-
duces optimized code in terms of the number of execution cycles.
The other is from the efficient use of allocated resources. If we
can allocate resources in such a way that all of them are used all
the time and the execution cycles are minimized given constraints,
we can maximize the opportunity of voltage scaling. Although we
shutdown individual components when they are not used, voltage
scaling is in general more effective method to save power. When a
large monolithic processor is used, it may offer more opportunity
to shutdown individual components of the system since resource
requirements of each individual task are different. On the other
hand, since we need to meet the timing constraints, there are less
opportunity to scale voltage.

Most significant power reduction is observed area constraints
between 30 and 65mm2. Bigger area than 65mm2 offers minimal
power improvements. Interestingly, the results shown in Figure 2
show that more than one machines are required to maximize power
savings. This is consistent with the fact that specifics of individ-
ual applications should be used to fully utilize limited amount of
resources. In this experiment, we found that 65mm2 of area is
enough to fit in a set of processors that provides ability to run the
hypermedia application in a power efficient manner.

30 40 50 60 70 80 90 100 110 I20 I30 140 I50

Area constraints

Figure 2: Power consumption measurements made for a range of
synthesized system: power consumption ranges are shown for each
area and one performance constraint (0.03)

6 Conclusion

The availability of production quality ILP compilers and commer-
cial DSPs with architectural enhancements stimulated the idea of
programmable processors that are tuned to specific applications.

We developed an effective framework and efficient algorithms
and tools to rapidly explore low power hypermedia processor de-
sign space. We conducted an extensive exploration of the low
power design space under area and timing constraints. The frame-
work addresses the need for the low power hypermedia design by
exploiting the ILP found in media applications by ILP compilers
that target multiple-instruction-issue machines although we found
that low power design of the hypermedia system does not benefit
much from it. Nevertheless, the algorithms and tools we developed
showed impressive results.

We found that the framework introduced in this paper can be
very valuable in making early design decisions such as power and
architectural configuration trade-off, cache and issue width trade-
off under area constraint, and the number of branch units and issue
width.

HI

VI

131

[41

151

[61

[71

[El

[91

I101

P. P. Chang, S. A. Mahlke, W. Y. Chen. N. J. Warter, and W. m. W. Hwu. IM-
PACl? An architectural framework for multiple-instruction-issue processors. In
Inrernational Symposium on Computer Architecture, 1991.

R. P. Colwell, R. P. Nix, J. 1. O’Donnell, D. B. Papworth, and P. K. Rodman. A
VLlW architecture for a trace scheduling compiler. In Pmceedings ofASPLOS-
II, pages 180-192.1982.
I. A. Fisher. Trace scheduling: A technique for global microcode compaction.
IEEE Transacrions on Computing, C-30:478-490,1981.
K. Gronbaek and R. Trigg. Design issues for a Dexter-based hypermedia sys-
tem. Communications of ACM, 37(2):4149, February 1994.
F. Halasz. Reflections on note-cards: Seven issues for the next generation of
hypermedia systems. Communications of ACM, 31(7):836-852, July 1988.
M. B. Kamble and K. Ghosse. Analytical energy dissipation models for low
power caches. In Pmceedings 1997 Inlernntional Symposium on Low Power
Elcctnmics and Design, pages 143-148,1997.
1. Kin, M. Gupta. and W.H. Mangione-Smith. The filter cache: An energy
efficient memory stnactwe. In Proceedings of301h Annual International Sym-
posium on MicmarchiIecture, 1997.
C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench: A tool for
evaluating and synthesizing multimedia and communications systems. In In-
ternational Symposium on Microarchitectures, 1997.
W. m. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. I. Water, R. A.
Bringmann. R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, 1. G. Helm.
and D. M. Lawy. The superblock: An effective technique for VLJW and
superscalar compilation. Journal of Supercomputing, 1993.

P. G. Paulin and J. P. Knight. Force-directed scheduling for the behavioral
synthesis of ASICS. IEEE Transactions on CAD, 8(6):661-679, June 1989.

278

