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Abstract 

Distributed hypermedia system that supports collaboration is an 
emerging platform for creation, discovery, management and deliv- 
ery of information. We present an approach to low power system 
design space exploration for distributed hypermedia applications. 
Traditionally, low power design and synthesis of application spe- 
cific programmable processors has been done in the context of a 
given number of operations required to complete a task. Our ap- 
proach utilizes the modem advances in compiler technology and 
architectural enhancements that are well matched to the compiler 
technology. This work is, to the best of our knowledge, the first 
attempt to address the need for synthesis of low power hypermedia 
processors. Also, this is the first work to address the power effi- 
ciency through exploiting instruction level parallelism (ILP) found 
in hypermedia tasks by an production quality ILP compiler. 

Using the developed framework we conduct an extensive ex- 
ploration of low power system design space for a hypermedia ap- 
plication under area and throughput constraints. The framework 
introduced in this paper is very valuable in making early low power 
design decisions such as architectural configuration trade-offs in- 
cluding the cache and issue width trade-off under area and through- 
put constraint, and the number of branch units and issue width. 

1 Introduction 

Hypermedia represents a combination of hypertext and multimedia 
technologies [4]. The concept of hypertext was proposed more than 
50 years ago by V. Bush but T. Nelson is generally credited as the 
first to coin the term “hypertext” [5]. 

In recent years there have been significant advances in mobile 
computing which resulted in increasingly small and inexpensive 
computers and wireless networking. The roles mobile hyperme- 
dia systems must support present a unique challenge to system 
designers since most media tasks are computation-intensive and, 
by definition, they run in parallel side by side. Yet they are re- 
quired to operate reliably and predictably while consuming as low 
power as possible. For example, tasks such as video and audio en- 
coding/decoding, text processing, image processing, authentication 
and encryption/decryption should run in parallel to support hyper- 
media systems for collaboration. At the same time, due to the fact 
that the system must be mobile, they cannot afford to lavishly use 
power as their desktop counterparts can. 

We present an approach to low power system design space ex- 
ploration for distributed hypermedia applications that support. Tra- 
ditionally, low power design and synthesis of application specific 
programmable processors has been done in the context of a given 
number of operations required to complete a task. Our approach 
utilizes the modem advances in compiler technology and architec- 
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tural enhancements that are well matched to the compiler technol- 
ogy. Advances in compiler technology for instruction-level paral- 
lelism (ILP) have significantly increased the ability of a micropro- 
cessor to exploit the opportunities for parallel execution that exist 
in various programs written in high-level languages. State-of-the- 
art ILP compiler technologies are in the process of migrating from 
research labs to product groups [3, 91. At the same time, a num- 
ber of new microprocessor architectures having hardware structures 
that are well matched to most ILP compilers have been introduced. 
Architectural enhancements found in commercial products include 
predicated instruction execution, VLIW execution and split register 
files [2]. 

2 Target Architecture 

The target architecture we use resembles a multiprocessor system 
with shared memory except that all the processors for a given hy- 
permedia application scenario is assumed to be laid out on a single 
die. A media task is assigned to one and only one of the processors. 
More than one media application can be assigned to a processor if 
the given performance constraints are guaranteed to be met, i.e, all 
media tasks on the processor must be finished within a given time 
limit. Shared memory is used for data communication between 
tasks. Each processor maintains its own cache. When more than 
one media application are assigned to a single processor, flushing 
and refilling of the cache is needed and the run time measurement 
platform takes it into account. 

We divide tasks into quanta. One of the benefits of using the 
notion of quantum is that it simplifies synchronization of several 
applications running on multiple processors. Aside from optimal 
use of allocated resources, running given tasks faster than required 
will provide no benefit to users. Hence, the use of quanta equivalent 
to the longest time frame with which tasks should be synchronized 
gives a convenient task assignment unit to allocate resources. 

We develop a simple area model based on SA-110. We use 
different core models for the VLIW and superscalar machine con- 
figurations for the experiment. The difference comes mainly from 
the different complexity of the issue units found in superscalar ma- 
chines and VLIW machines. We estimate the area of superscalar 
issue units based on the area complexity o(n2) since the complex- 
ity of dependency checking algorithm is O(n2). When a VLIW 
machine is considered, the issue unit area is generally of complex- 
ity O(n) or sub-linear. The area of an arbitrarily configured super- 
scalar machine is given by 

Area = ?tf’ssueAissue i- WwAaw + (1) 
nbtanch A brench + Ikern A mem + Amisc 

The terms 72iaaue, -hue, ‘Raw, AALIJ, nbranch. Abronch, nmemr 

A mem and Amise are the issue width, the baseline issue unit area, 
the number of ALUs, the area of a single ALU, the number of 
branch units, the branch unit area, the number of memory units, the 
area of single memory unit and miscellaneous area, respectively. 

We use the model for the cache power dissipation given in 
[6, 71. There are five components in the core power dissipation 
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model we used: power dissipation by the issue unit, integer ALU, 
branch unit, memory unit, and other miscellaneous power con- 
sumption such as clock generator. The power dissipation model 
for superscalar machines is given by 

E 2 
core = nissaeEtssye + nALUEALu + (2) 

nbronchEbranch •k nm,,Emem -kEmiac 

Thete~Sni,,,,, Eissoev nALU, EALU, nbranch, Ebronchr nmem, 

E,,, and Emisc are the issue width, the baseline issue unit en- 
ergy, the number of ALUs, the energy of a single ALU, the num- 
ber of branch units, the branch unit energy, the number of memory 
units, the energy of single memory unit and miscellaneous energy, 
respectively. 

The benchmark set used in this experiment is composed of com- 
plete media applications which are publically available and coded 
in a high-level language. We use 8 applications culled from avail- 
able image processing, communications, cryptography and DSP 
applications. Detailed descriptions of the applications can be found 
in [8]. 

We use the IMPACT tool suit [I] to measure run times of me- 
dia applications on various machine configurations. The IMPACT 
C compiler is a retargetable compiler with code optimization com- 
ponents especially developed for multiple-instruction-issue proces- 
sors. The target machine for the IMPACT C can be described using 
the high-level machine description language (HMDES). A high- 
level machine description supplied by a user is compiled by the 
IMPACT machine description language compiler. 

3 Problem Formulation 

We collect run-times (expressed as a number of cycles) and cache 
performance of the benchmarks on 175 different machine configu- 
rations (25 cache configurations for 7 processor configurations). 

Measured run-times and cache performance of benchmarks through 
simulations are used to compute the energy based on the power 
model. The simulated power consumption measurements we use 
are made with two levels of the shutdown technique: component 
level and system level. We assume that when a component (e.g., 
ALU, branch unit, etc.) is idle, it can be shutdown (lower level 
shutdown). Also, when there is no task to execute, a processor can 
be shutdown (higher level shutdown). 

Low Power Hypermedia Synthesis Problem 

Instance: Given a set T of n media applications, G, i = 1,2, . .., n, 
asetofmpr0cess0rs,pj,j = 1,2,...,m,theruntimeseij 
and the cache performance fij of the media applications a;, 
i = 1,2, . . . . n on the machines cj, j = 1,2, . . . . m and con- 
stants C, E and P, 

Question: Is there a multisubset (subset in which more than one 
instance of a processor can be included) M of Ic processors, 
p1, 1 = 1,2, . ..) A, 1 5 k 5 n, such that CjEM Apj 5 C, 
m=jeM CiEtj eij 2 E and CjeM Wtjj < P? Apj is the 
area of the machine pj, tj is the set of tasks that are assigned 
to the machine j and wjj is the power consumption of the 
processor pj when a task set tj is assigned to the processor. 

Theorem. The Low Power Hypermedia Synthesis Problem is 
NP-complete. 

Proof. We transform the Equal Subset Problem (ESP) to a spe- 
cial case of the Low Power Hypermedia Synthesis Problem. For a 
given task set T, ITI = n and a set M of 2 identical processors, 
each integer number in the ESP is mapped to the power consump- 
tion measurement, which is obtained by applying shutdown tech- 
nique, of each media task in T. In order to minimize the power 

consumption by applying the voltage scaling, we need to assign the 
tasks to the processors in such a way that the sums of the assigned 
tasks’ power consumption measurements obtained using the shut- 
down technique should be as close to each other as possible. 

4 Synthesis Algorithm 

We develop heuristic algorithms for the low power hypermedia pro- 
cessor. We use a simulated annealing based algorithm to allocate 
resources given area and performance constraints. Allocated pro- 
cessors are then used by a force-directed heuristic [IO] to assign the 
set of hypermedia tasks. 

We supply five sets of inputs to the algorithm: a set of hyperme- 
dia tasks, a set of available processors, area constraints, timing con- 
straints and a set of power consumption measurements of each task 
on each available processor, The initial power consumption mea- 
surements is obtained by measuring power consumption of each 
task on each processor with the shutdown technique. The algo- 
rithm returns two sets of outputs: a set of allocated processors and 
their assigned tasks and the total power consumption after voltage 
scaling. 

There are four major components in the simulated annealing 
based algorithm: the power consumption measurement, the neigh- 
bor solution generation, the temperature update function, the equi- 
librium criterion and the frozen criterion. Firstly, the power con- 
sumption measurement is made after the set of hypermedia tasks 
are assigned to a tentatively allocated processors. The tentative as- 
signment is done by a force-directed heuristic. Secondly, a neigh- 
bor solution is generated by replacing one processor in the current 
tentative solution set by one from the available processor set includ- 
ing a null processor (i.e., not adding any). Thirdly, the temperature 
is updated by the standard geometric cooling schedule. Fourthly, 
the equilibrium criterion is specified by the number of iterations of 
the inner loop, which is set to 65. Lastly, the termination criterion 
is given by the temperature. If the temperature falls below 0. I, the 
simulated annealing algorithm stops. 

The force-directed heuristic is a global optimizing algorithm in 
that it makes one decision at a time by comparing all the possi- 
ble decision choices and selecting one that is least constraining to 
the future decisions. There are three major steps in each iteration 
in which one decision is made: construction of distribution graphs 
(DG), computation of force (F) and self force (SF) for each pos- 
sible decision choice. For example, if we have a set of 8 tasks and 
a set of 3 processors, there are 24 possible decision choices. Thus 
24 SF’s are computed and we choose the smallest SF. For exam- 
ple, SF,,,, being the smallest means the assignment of the task ai 
to the processor ps is the choice selected by force-directed heuris- 
tic. When each and all tasks are assigned, voltage scaled power 
consumption measurements are made and returned. 

5 Experimental Results 

We evaluate the tools and algorithms by running extensive experi- 
ments ranging from the area constraint of 30rnm2 to 155mm2 and 
the timing constraints 0.03 through 0.09 seconds. The timing con- 
straint 0.03 secccds represents the time to process 1 mpeg frame at 
the rate of 30 frames per second. The implementation technology 
is assumed to be 0.35~. For each area constraint and timing con- 
straint combination, we obtain three different solutions using the 
optimizing algorithm (OA: the combination of simulated annealing 
based algorithm and force-directed heuristic), the simple-minded 
division algorithm (SA) and the largest possible processor selec- 
tion (LA). SA simply divides a given area constraints into two or 
more processor areas and allocates identical processors. SA uses 
the same force-directed heuristic used by OA to assign tasks to al- 
located processors. LA allocates one largest processor that satisfies 
the area constraint. 
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Figure 1: Power consumption results measurements made for a 
range of synthesized system: power consumption ranges are shown 
for each area and performance constraints 

Figure 1 shows power consumption of synthesized systems by 
OA and LA for various area and timing constraints. Area con- 
straints are represented by the horizontal axis and for each area 
constraint a number of results for various timing constraints are 
plotted along the vertical axis. The scatter plot clearly shows obvi- 
ous strength of the OA. Figure 2 shows the same results but only for 
the timing constraint 0.03. It compares the OA, SA and LA. The 
results indicate that even a simple-minded collection of identical 
processors can perform better than one monolithic processor. The 
power improvements achieved by OA compared to LA range from 
39% to 70% (average 54%). SA improves power consumption by 
20% to 59% (average 41%) over LA. For some area constraint re- 
gion (bigger than 85 mm’), the LA performs slightly better than 
SA. The reason behind this generally impressive results of OA is 
that customized processors for each tasks provide more opportu- 
nity for power savings from two directions. The ILP compiler pro- 
duces optimized code in terms of the number of execution cycles. 
The other is from the efficient use of allocated resources. If we 
can allocate resources in such a way that all of them are used all 
the time and the execution cycles are minimized given constraints, 
we can maximize the opportunity of voltage scaling. Although we 
shutdown individual components when they are not used, voltage 
scaling is in general more effective method to save power. When a 
large monolithic processor is used, it may offer more opportunity 
to shutdown individual components of the system since resource 
requirements of each individual task are different. On the other 
hand, since we need to meet the timing constraints, there are less 
opportunity to scale voltage. 

Most significant power reduction is observed area constraints 
between 30 and 65mm2. Bigger area than 65mm2 offers minimal 
power improvements. Interestingly, the results shown in Figure 2 
show that more than one machines are required to maximize power 
savings. This is consistent with the fact that specifics of individ- 
ual applications should be used to fully utilize limited amount of 
resources. In this experiment, we found that 65mm2 of area is 
enough to fit in a set of processors that provides ability to run the 
hypermedia application in a power efficient manner. 

30 40 50 60 70 80 90 100 110 I20 I30 140 I50 

Area constraints 

Figure 2: Power consumption measurements made for a range of 
synthesized system: power consumption ranges are shown for each 
area and one performance constraint (0.03) 

6 Conclusion 

The availability of production quality ILP compilers and commer- 
cial DSPs with architectural enhancements stimulated the idea of 
programmable processors that are tuned to specific applications. 

We developed an effective framework and efficient algorithms 
and tools to rapidly explore low power hypermedia processor de- 
sign space. We conducted an extensive exploration of the low 
power design space under area and timing constraints. The frame- 
work addresses the need for the low power hypermedia design by 
exploiting the ILP found in media applications by ILP compilers 
that target multiple-instruction-issue machines although we found 
that low power design of the hypermedia system does not benefit 
much from it. Nevertheless, the algorithms and tools we developed 
showed impressive results. 

We found that the framework introduced in this paper can be 
very valuable in making early design decisions such as power and 
architectural configuration trade-off, cache and issue width trade- 
off under area constraint, and the number of branch units and issue 
width. 
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