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ABSTRACT
This work explores the development of MemTri. A memory
forensics triage tool that can assess the likelihood of criminal
activity in a memory image, based on evidence data arte-
facts generated by several applications. Fictitious illegal sus-
pect activity scenarios were performed on virtual machines
to generate 60 test memory images for input into MemTri.
Four categories of applications (i.e. Internet Browsers, In-
stant Messengers, FTP Client and Document Processors)
are examined for data artefacts located through the use of
regular expressions. These identified data artefacts are then
analysed using a Bayesian Network, to assess the likelihood
that a seized memory image contained evidence of illegal
firearms trading activity. MemTri’s normal mode of opera-
tion achieved a high artefact identification accuracy perfor-
mance of 95.7% when the applications’ processes were run-
ning. However, this fell significantly to 60% as applications
processes’ were terminated. To explore improving MemTri’s
accuracy performance, a second mode was developed, which
achieved more stable results of around 80% accuracy, even
after applications processes’ were terminated.

CCS Concepts
•Applied computing → Computer forensics; Investi-
gation techniques; Evidence collection, storage and
analysis; System forensics;

Keywords
Digital Forensics; Triage; Cyber Crime; Digital Evidence;
Random Access Memory

1. INTRODUCTION
With the current advances in digital forensics, it is be-

coming more common for law enforcement personnel to en-
counter digital devices as part of seized evidence to be ex-
amined. This list of digital devices include various machines
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with different architectures and specifications (e.g. desktops,
laptops, mobile phones, tablets etc). The growing influx of
seized digital devices has generated a backlog of court case
evidence to be forensically examined [9]. A proposed solu-
tion for alleviating this evidence backlog is to develop triage
execution tools that incorporate data mining techniques [23].
The main aim of such triage tools is to quickly assess whether
a digital device contains relevant case evidence or not, and
how much priority should be placed on fully analyzing the
device.

Even though there are many crime classification triage
tools for disk and mobile forensics, there is a clear lack of any
such similar triage tool for memory forensics. The absence
of such memory forensics tools is considered as an obstacle
that prevents investigators from effectively analyzing digital
devices. This is mainly due to the fact that various research
has shown that memory can contain critical evidence such
as internet browsing data, network traffic, malware, pass-
words, cryptographic keys and decrypted content, some of
which may never be stored to disk [8, 10]. A possible reason
for the apparent low research in developing crime classifi-
cation triage tools for memory forensics is due to the com-
plexity in analyzing operating system (OS) memory struc-
tures, which is still a fairly adolescent area of research. The
open-source tools Volatility [31] and Rekall [29] have aided
in simplifying the analysis of such OS memory structures
by incorporating the academic research done by various au-
thors in reverse engineering these structures. In this paper,
we leverage from the various research incorporated into the
Volatility framework [31] and we propose MemTri – a mem-
ory triage application that analyzes OS memory structures.
It was simply decided to utilize the Volatility framework for
this project, due to it being the most widely utilized and
tested memory analysis tool in the academic community.
Another factor that may have contributed to the apparent
research in developing crime classification triage tools for
memory forensics, is due to the fact that acquiring memory
requires careful planning and skill in order to collect a ‘foren-
sically sound’ [34] memory image, which in-turn has led to
the slow adoption of performing memory image acquisitions
by law enforcement departments.

Another challenge in memory forensics is that, if the user
terminates the application process used to perform an illegal
activity then the freed virtual address space is often quickly
overwritten by other activity within the operating system.
However, Garfinkel et al. [6] showed that portions of unal-
located memory can remain unchanged for up to 14 days –



even when the system is actively being utilized. Therefore,
since some data artefacts may not be overwritten in unallo-
cated memory space by the OS, it is still possible to extract
such data artefacts for memory analysis, similar to carving
for files in a file system.

MemTri offers a way to quantitatively measure the likeli-
hood that a specific criminal offence was committed. The
results are based on an extended analysis of test evidence
data artefacts that were found in Random Access Memory
(RAM), and help us to determine the priority that should be
placed on fully examining a set of memory images. MemTri
is built on top of a Bayesian Network and the Volatility
Framework. Furthermore, in order to successfully achieve
our goal, we developed a certain set of algorithms through
which we can assess the effectiveness of locating data arte-
facts in RAM, after the process that generated the artefact
has terminated. This is of paramount importance since a
forensics analysis is likely to be held after the termination
of the application that used to create private information of
the “corrupted” parties.

1.1 Summary of Contributions
The contribution of this work is twofold. First, we con-

tribute to the field of memory artefact identification by pro-
viding regular expression patterns that can be used to iden-
tify different types of memory artefacts generated by various
applications, namely, Chrome, Tor, Filezilla, Skype, Wickr,
Libre Writer and Microsoft’s Notepad. MemTri, also con-
firms the regular expressions patterns designed by [27, 10]
to locate browser memory artefacts generated by visiting
websites and performing Google search engine queries. Fur-
thermore, we developed our regular expression patterns in
such a way that will enable us to successfully capture other
kinds of browser artefacts such as those generated when a
file is downloaded. In addition to that, M. Simon and J.
Slay [28] noted that Skype contact information and com-
munication content can be extracted from physical memory,
however did not provide regular expressions patterns to cap-
ture this data. In our work, we confirm the existence of such
Skype information in memory and we explicitly develop reg-
ular expressions to capture these Skype memory artefacts.

Second, we contribute to the memory forensics triage field.
MemTri analyzes a memory image and provides an output
rating which measures the likelihood level of a specific crim-
inal activity. This can be considered as the fundamental
contribution of this work since, to the best of our knowl-
edge, there is a complete lack of published research where
authors attempt to develop a digital forensics triage tool
aimed specifically at analyzing criminal activity found in
a memory image. This work, examines the effectiveness
of two designed approaches for locating criminal evidence
in memory. The first approach, involves using the Volatil-
ity Framework to dump the memory of target applications
which are then searched for evidence. The second approach,
involves scanning the entire memory for evidence. The pro-
vided results give valuable insights regarding which of these
approaches is generally better suited for a memory forensics
triage environment.

1.2 Organization
The rest of this paper is organized as follows. In Section 2,

we describe related works regarding existing triage solutions
in the field of digital forensics. In Section 3, we introduce

the system model, as well as the preliminaries that MemTri is
built on. In Section 4, we introduce how MemTri works and
in Section 5 we describe the development phase. In Section 6
we present implementation and performance evaluation re-
sults while in Section 7 we discuss some anomalies that were
noted throughout the evaluation. Finally, in Section 8 we
conclude the paper.

2. RELATED WORK
In this section we review the most important works that

have been published in the field of digital forensics and we
specifically focus on existing triage solutions.

According to [26], the definition of triage in regards to
digital forensics is “a process in which digital evidence is
ranked in terms of importance or priority”. There have been
proposed various methodologies for developing triage tools
for the main branches of digital forensics, i.e. disk foren-
sics, memory forensics, mobile phone forensics and network
forensics.

Bogen et al. [1] developed Redeye – a disk document triage
tool. Redeye, utilizes a corpus-based term weighting scheme
(TF-ICF) and semi-supervised machine learning to triage
identification of documents that relate to a specific case.
The corpus-based term weighting scheme mainly assesses
the similarity between documents based on the frequency of
a word and its position in relation to other keywords. Doc-
ument analysts are then able to identify documents that are
most likely similar/related to certain key documents they
have marked as relevant to an investigation. The system
further monitors the tags and comments made by analysts
in order to ‘learn’ which type of documents are of particular
importance to an investigation. Moreover, Redeye success-
fully aided to significantly reduce the completion time of a
forensic analysis. Even though Redeye focuses on a different
field of forensics than MemTri, it demonstrates the ability of
supervised machine learning techniques (similarly utilized
by MemTri’s Bayesian Network) to successfully triage tasks
in an investigation.

Li et al. [13] developed a memory triage tool that uses
fuzzy hashing to intuitively identify malware by detecting
common pieces of malicious code found within a process.
Authors, identified a limitation with the asymmetric dis-
tance computation of existing fuzzy hashing algorithms and
assess four key insights, based on precision and recall, which
can improve the fuzzy hashing algorithms’ performance. The
improvement of such fuzzy hashing algorithms aids investi-
gators to more quickly and accurately determine whether a
machine has been affected by malware before attempting a
full investigation. MemTri’s performance is similarly tested
using such performance measures which can reveal key areas
of triage-related improvements.

Walls et al. [35] developed DEC0DE, a mobile phone foren-
sics triage tool. DEC0DE, uses block hash filtering (BHF),
Viterbi’s algorithm and Decision Tree inference. During
BHF, similar byte streams between mobile phone models,
which most likely will contain operating system data that
is not relevant to the investigator, are removed. Hence,
the remaining data is likely to be user’ data such as call
logs and address book information. This data is further
processed using Viterbi’s algorithm and Decision Tree infer-
ence to improve the recall and precision of the filtered data.
Authors, highlighted that mobile phone forensics triage can
help to gather key information upfront for use in suspect



interviews, before the full analysis is performed which can
take months to complete due to backlog of devices to be
analyzed. Similarly, MemTri provides the digital investiga-
tor with a quick assessment of key evidence artefacts found
in a memory image which can then be used as persuasive
evidence in a suspect interview.

In [12], authors developed a network triage application
that uses a client-server model in order to search multiple
client machines for evidence. An automated network triage
(ANT) server that hosts various services is used to config-
ure and boot PXE enabled clients. When the client machine
boots, a batch script is simply ran to search for keywords,
patterns and file hashes on the client machine’s disk. This
network forensics triage tool can essentially help to locate a
machine within a network that was most likely involved in
the crime being investigated. Thus the identified machine
can be seized/prioritized for further investigation. With-
out such a triage tools an investigator would have to ana-
lyze all the machines in the network individually which is
impractical/time-consuming.

The aforementioned works, show that triage tools have
proven to be a valuable solution to the ‘data volume chal-
lenge’ [23]. Generally, these triage solutions offer a quick way
of narrowing down the devices to those that contain critical
data before a full digital forensics analysis is performed.

3. SYSTEM MODEL AND PRELIMINARIES
In this section we describe the system model as well as

some basic concepts that will be used in the rest of the paper.
Suspect Machine (SM): For the needs of our work,

four types of software applications, namely Internet Browser
(Tor, Chrome), Instant Messenger (Wickr, Skype), Docu-
ment Processor (Windows Notepad, Libre Writer) and FTP
Client (Filezilla), are examined. Therefore, we created sev-
eral Windows 7 virtual machine instances where we pre-
installed the various software applications listed earlier. These
applications are also referred to as the ‘target applications’.
Each virtual machine is then shutdown and a copy of the
virtual machine files is made. These copied files are referred
to as the base virtual machine image which is used as the
starting point for performing the suspect activity analysis.

Evidence Search Engine (ESE): The Evidence Search
Engine component is responsible for extracting evidence arte-
facts from the ‘suspect’ memory image and translating them
into features that can be used by a bayesian network anal-
yser. This approach was mainly inspired by [10, 27, 28]
which showed that intuitive evidence artefacts can be re-
trieved by simply searching for ASCII/Unicode data pat-
terns generated by specific applications. The first step in
the operation of the ESE is to identify the running processes
within the memory image that match the target applications
mentioned earlier. The ‘committed’ virtual address space of
the target application processes are then dumped into a file
referred to as the ‘procdump’ file. The ASCII and Unicode
content of the ‘procdump’ file are then extracted out into
another file, referred to as the ‘proctext’ file, in prepara-
tion for filtering. The next step of filtering out the evidence
artefacts within the application’s process is done through the
use of regular expressions. These regular expressions are se-
lected during the execution of training phase which is later
discussed in Section 4.2. This regular expressions approach
is also flexible in that it can locate evidence artefacts in a
memory image regardless of the OS environment in which

the artefacts were generated. Additionally, regular expres-
sions can be executed fairly quickly to locate evidence within
large datasets. This intuitiveness, flexibility and speed of-
fered by regular expression evidence searching methods, are
essential traits for the development of an effective digital
forensics triage tool. These regular expressions are selected
during the execution of a training phase that is discussed
later in Section 4. When an evidence artefact is found, the
final step is to associate the artefact with a feature(s). In
this case, a feature is synonymous with a scenario id shown
in Table 2. The entire ESE process of locating the evidence
artefacts in a process’ virtual address space and converting
them to features is illustrated in Figure 1. The features are
then entered into the BNA component to assess the level of
illegal firearms criminal activity found.

Memory Image 
(RAM)

Target Application 
Processes

Process Dump

Process TextFiltered EvidenceFeatures

Locate Running

Processes

Extract Virtual

Memory

Extract ASCII
& Unicode

Reg. Expression

Matches

Scenario ID

Association

Figure 1: Designed steps for MemTri’s Evidence
Search Engine component

Bayesian Network Analyser (BNA): The second main
component of the MemTri application is the Bayesian Net-
work Analyser (BNA). The BNA is responsible for analysing
the evidence found by the ESE in the ‘suspect’ memory im-
age, in order to produce an output rating of the likelihood
the suspect was involved in illegal firearms trading. The
BNA consists of a Bayesian Network Model (BNM) that is
designed with three layers, i.e. the hypothesis layer, sub-
hypothesis layer and evidence layer as shown in Figure 2.
Each node in the Bayesian Network is designed to capture
three probability states; ‘Yes’, ‘No’ and ‘Uncertain’.

The hypothesis layer consists of one node (H1) that repre-
sents the overall conclusion about whether the suspect used
the seized computer for illegal firearms trading (see Fig-
ure 2). Therefore, the hypothesis layer stores the final nu-
meric output rating result of the MemTri application, which
is essentially the posterior probability of the ‘Yes’ state of
the hypothesis node.

The sub-hypotheses layer represents the various types of
applications that the suspect was likely to use in performing
an illegal firearms trading activity (see Figure 2). As such,
the sub-hypothesis layer is modelled to contain four nodes
(H2 – H5), one for each application type that is examined.
The MemTri application also displays an output rating (i.e.
the ‘Yes’ posterior probability state) for each of the sub-
hypothesis nodes, so that the digital investigator can easily
analyze which application types contain the most relevant
evidence in the investigation.

The evidence layer represents the artefacts of evidence
that are likely to be found, given that the suspect conducted
an illegal firearms trading activity with any of the applica-
tion types modeled in the sub-hypotheses layer. For exam-
ple, evidence node E1 (see Table 1) represents the occurrence
of any relevant web engine search evidence, given that the



suspect used an Internet Browser application type (repre-
sented by the sub-hypothesis node H2) to perform an illegal
firearms trading activity. If an evidence artefact is found, as
indicated by the outputted features of MemTri’s ESE com-
ponent, the state of the corresponding evidence node is set
as ‘observed’ (i.e. its ‘Yes’ posterior probability state is set
to 100%). The evidence nodes are the only nodes directly
updated in the Bayesian Network. The state of all other
nodes are automatically updated through the performance
of Bayesian Inference, which ultimately calculates the final
output rating at the hypothesis layer.

The Bayesian Inference process relies on digital forensics
expert knowledge, which is encoded into the node edges
of the Bayesian Network, in the form of ‘Likelihood’ Joint
Probability Tables. The calculations are performed in a way
that the ‘Prior’ probability values for three possible states
of all nodes, are equally set to 33.33%. Hence, there are no
initial biases about the illegal activity found in the ‘suspect’
memory images.

An overview of the entire design for the BNM, along with
the relevant meaning of all the nodes, can be found in Fig-
ure 2 and Table 1 respectively. This designed BNM is gener-
ally easy to interpret, in that the linking of the nodes shows
a logical analysis/reasoning between the evidence observed
and the hypothesis answers being tested for. For example,
nodes (E1 – E4) all represent the evidence that relate di-
rectly to the sub hypothesis H1 being tested, which in turn
is a part of the overall main hypothesis H being tested.
This ease of interpretation of the BNM supports a timely
decision-making process, which is a favourable feature when
seeking to triage a criminal investigation.

Figure 2: Designed Bayesian Network Model for the
MemTri Application

Bayesian Network: In digital forensics triage, law en-
forcement personnel often has to make quick decisions based
on evidence found on a crime scene. Thus, a soundly built
Bayesian Network can efficiently aid in determining the best
course of action to be taken based on the evidence found.
The Bayesian Network model is an acyclic graph that en-
codes the conditional independence relationship of the graph
nodes. We decided to build the Bayesian Network based on
the model proposed in [24], since it is simple to interpret and
has proven successful in correctly analyzing real-life crimi-
nal investigations. Comparative studies have also analyzed
that Bayesian approaches, have on average the best accuracy
performance (88.5%) [15] compared to other supervised ma-
chine learning (SML) techniques such as Support Vector Ma-
chines, Decision Trees and K-Nearest Neighbour. This com-
bination of accuracy and ease of interpretation supported
by Bayesian Network approaches, are favourable traits when
seeking to triage a criminal investigation. Additionally, Bayesian
Networks handles missing evidence most elegantly, since it

Type Nodes Description
Hyptothesis H1 The suspect performed illegal firearms trading activity on the seized computer

H2 The suspect utilised an Internet Browser to perform illegal firearms trading
H3 The suspect utilised an Instant Messenger to perform illegal firearms trading
H4 The suspect utilised a Document Processor to perform illegal firearms trading
H5 The suspect utilised a FTP Client to perform illegal firearms trading

IBE* E1 Web engine search for illegal firearms trading related content
E2 Visited a website known to contain illegal firearms trading content
E3 Downloaded file suspected of containing illegal firearms trading content
E4 An anonymous type Internet Browser was used

IME* E5 Has contact information for a known illegal firearms dealer
E6 Sent message suspected to be related to illegal firearms trading
E7 Transferred file suspected of containing illegal firearms trading content
E8 An anti-disk forensics Instant Messenger was used

DPE* E9 Typed content related to illegal firearms trading
E10 Disk location of file suspected of containing illegal firearms content
E11 Document was password protected

FTPE* E12 FTP Connection to Server IP suspected to be used for illegal firearms trading
E13 FTP Client user credentials used to connect to illegal firearms trading server
E14 Transferred file suspected of containing illegal firearms trading content

Table 1: Symbolised meaning of the nodes in
MemTri’s BNM; Internet Browser Evidence, In-
stant Messenger Evidence, Document Processor Ev-
idence, FTP Client Evidence

is naturally incorporated into its design. Handling missing
evidence is of paramount importance for successful forensics
investigations, since evidence can often be missing due to
it being destroyed or not yet discovered. For the needs of
our work, we used the Netica [18] software to set up our
Bayesian Network.

4. MEMTRI
Having described the system model, we are now ready to

proceed with the actual description of MemTri.

4.1 Suspect Machine Preparation
The suspect memory images are collected through a virtu-

alisation memory acquisition technique. VMware’s hypervi-
sor handles the virtual machine’s memory management and
facilitates the dumping of the virtual machine’s memory con-
tents into the ‘.vmem’ file, when it enters a suspended state.
According to Gruhn et al. [7], virtualisation memory acqui-
sition techniques generally produce the best quality mem-
ory images in terms of atomicity and integrity. This is due
to the fact that virtual machines can be immediately sus-
pended which halts all activity in the virtual machine. With
VMware, the entire main memory of the virtual machine is
dumped in a ‘.vmem’ file when suspended. Therefore, virtu-
alisation memory acquisition methods provide perfect atom-
icity [7]. There is also negligible change to the memory of the
running virtual machine from the time the digital investiga-
tor decides to suspend the machine to the collection of the
‘.vmem’ memory image file. Hence, virtualisation memory
acquisition methods also exhibit perfect integrity [7].

Suspect Activity Scenarios. The first step in the genera-
tion of the suspect activity scenarios (SAS) is determining
the set of operations that can be performed with a specific
application type. For example, internet browsers can per-
form download operations while instant messengers can send
and receive messages. The next step involves the identifica-
tion of a set of words, website URLs and contact names,
collectively referred to as ‘case words’, that are particular
interesting to an illegal firearms trading investigation. The
final step is designing the actual SASs, based on the combi-



nation of an application operation with certain ‘case words’.
This, will help us to simulate the performance of an illegal
firearms trading activity. The list of developed SASs are
shown in Table 2.

App. Type Alias Scenario ID Scenario Description

Internet Browser WEB W1
Perform a google search for content relating to
illegal firearms trading

W2
Visit a website that is flagged as containing con-
tent related to illegal firearms trading

W3
Download a file that is suspected to contain illegal
firearms trading content

W4 Utilise the Tor browser

Instant Messenger MSG M1
Add a suspected illegal firearms dealer to messen-
ger contact list

M2
Send a message containing language relating to
illegal firearms dealership

M3
Transfer a file that is suspected to contain illegal
firearms trading content

M4 Utilise the Wickr messenger application

Document Processor DOC D1
Type content into a document related to illegal
firearms dealership

D2
Save/Open a file that is suspected to contain ille-
gal firearms trading content

D3 Open a password protected document

FTP Client FTP F1
Connect to FTP Server (enter the server’s IP ad-
dress)

F2
Connect to FTP Server (enter the user creden-
tials)

F3
Transfer a file that is suspected to contain illegal
firearms trading content

Table 2: List of developed suspect activity scenarios

Based on the designed SASs, we gathered two sets of mem-
ory images. The first set, is used to train MemTri to locate
data artefacts generated by each of the SASs. These mem-
ory images are referred to as ‘training images’. To generate
the training images, each of the SASs is performed on a
separate base virtual machine image. Then, the memory
collected is examined for data artefact patterns (see Sec-
tion Section 4.2).

The second set, is used to test MemTri’s ability to suc-
cessfully identify multiple SASs performed in a simulated
criminal activity environment. These memory images are
referred to as the ‘test images’. To generate the test im-
ages, a set of 20 experiments were performed involving mul-
tiple scenario ids. The scenario ids were selected based on a
sampling criteria aimed to cover a reasonable spread of the
possible sample space in the Bayesian Network. A better
method for selecting the scenario ids would be to implement
a Bayesian Network random sampler such as Gibbs sam-
pler [11]. However, this is one of the future directions we
plan to follow.

4.2 Collection of the Memory Images
For the needs of this work, we consider two kinds of mem-

ory images, namely training and test memory images.

Generating the Training Memory Images. Each of the
SASs listed in Table 2 was performed on a copy of the base
virtual machine image and a memory image was collected
for each. This resulted in a total of 14 memory ‘training
images’. The training images are essentially used to teach
MemTri how to identify the data artefacts generated when
a SAS has been performed. In order to accomplish this, the
ASCII and Unicode text of each training image was searched
manually for notable patterns that held the evidence data

being sought. The ASCII and Unicode text were extracted
from the training images using the Linux strings utility and
the evidence data was examined in a typical text editor. Sev-
eral data artefact patterns were manually identified for each
SAS performed in the training images and regular expres-
sions are programmed into MemTri’s ESE to identify these
patterns.

Generating the Test Memory Images. The test images
were generated based on 20 designed experiments. Each
experiment was conducted on a copy of the base virtual ma-
chine image, after which a memory image was collected at
three different points. The first point of memory collection
was done while the target applications were still running.
This is referred to as the ‘Running Phase’ test images. The
virtual machine was then resumed and the target applica-
tions were terminated. Immediately after terminating the
target applications, the virtual machine was suspended and
a second memory image was collected. This second point of
memory collection is referred to as the ‘Stopped Phase’. The
virtual machine was then resumed for the final time and left
to run idly for 5 minutes. Then, the virtual machine was sus-
pended and a third memory image was collected. This third
point of memory collection is referred to as the ‘Delayed
Phase’. At the end, a total of 60 test images (≈ 4GB each)
were collected to test MemTri’s ability to locate and analyse
evidence artefacts after completing its training phase.

5. MEMTRI APPLICATION DEVELOPMENT
MemTri was built in the C++ programming language. In

the following paragraphs we discuss how MemTri’s mode of
operations, ESE and BNA were developed.

5.1 Modes of Operation
MemTri was initially developed with one mode of oper-

ation, referred to as ‘normal mode’. Normal mode uses
Volatility’s pslist plugin to locate the Windows 7 processes
using the link-list enumeration method. The committed vir-
tual addresses space for each target application process is
then dumped into a file using Volatility’s ‘memdump’ plugin,
which is later searched for evidence artefacts. It was later
observed that the Windows _EPROCESS structure is usually
unlinked from the active process list immediately after the
process is terminated; thus, MemTri’s normal mode of op-
eration would not locate the process to dump its contents.
Therefore, another method named ‘scan mode’ was intro-
duced, in order to improve MemTri’s ability to locate evi-
dence artefacts even after the process has been terminated.

With scan mode, MemTri essentially scans the entire phys-
ical address space of the memory image for processes and
evidence artefacts. In this case, Windows 7 processes are
located using the pool scanning technique implemented by
Volatility’s ‘psscan’ plugin. As we will see later, there are
also minor differences in the regular expressions utilised to
discover evidence artefacts. Since scan mode searches evi-
dence artefacts independently from locating _EPROCESS struc-
tures, it is able to locate evidence artefacts even after the
target application processes have been terminated. How-
ever, a possible disadvantage of scan mode is that it may
not be able to locate an evidence artefact that spans across
a page boundary since it searches the unordered physical
address space of the memory image rather than the ordered
virtual address space of the application’s process, as done in



normal mode.

5.2 Evidence Search Engine Implementation
The ESE contains the following four main steps:

1. Locate the target applications process structures in
memory.

2. Extract the unicode and ASCII text from memory.

3. Search for evidence artefacts that occurred as a result
of SASs performed.

4. Generate features that can be assessed by the Bayesian
Network.

The implementation of the ESE for MemTri running in
normal and scan mode is slightly different. The differences
will be explained along the way in the following paragraphs.

Locating the Target Application Processes.
In normal mode, MemTri locates processes by link list enu-

meration using the ‘pslist’ plug-in, while in scan mode
by pool scanning using the ‘psscan’ plug-in. Both plug-
ins output a list of the processes found which is parsed by
the process filter() function. This function, searches for the
names of the target application processes which are exam-
ined for evidence artefacts and associates it with the relevant
application type.

Extracting ASCII and Unicode Text.
To extract ASCII and Unicode text from memory, the

Volatility plug-in ‘memdump’ is first used to dump the target
processes’ committed virtual address space to a file. The
process memory dump files are named after their respec-
tive process id (PID) and stored in a folder called ‘proc-
dump’. Dumping the process’ virtual address space to a
file is handled by the process dump() function. The ASCII
and Unicode text of the process memory dump files are then
extracted and stored in a folder called ‘proctext’. In scan
mode, the ASCII and Unicode texts are extracted directly
from the actual memory image file. A function process text()
is responsible for extracting the ASCII and Unicode when
MemTri is executed in either mode. In order to extract this
information from either the process memory dump file or the
memory image file itself, MemTri performs a command-line
execution of the ‘strings2.exe’ [16] utility with the respective
file as an input parameter.

Evidence Filtering and Feature Generation.
Evidence is filtered out from the extracted ASCII and

Unicode text using regular expressions. Advantages of this
regular expressions implementation is that it is simple to
implement and can recall high volumes of evidence. Addi-
tionally, this method is flexible in that it can locate evidence
artefacts regardless of the type of the OS the memory image
was captured from. However, this implementation ignores
non-ASCII and non-Unicode data that can contain evidence.
Another evidence searching implementation could have been
to navigate the process memory structures in order to ac-
cess data, for example in the process’ heap. This was sim-
ilarly done by Okolica and Peterson [19] to access the con-
tents of the windows clipboard through examining process
heap data. This method, theoretically should allow all evi-
dence relating to a process to be examined. However, it may

not be a flexible approach since it commonly requires con-
stant reverse engineering of memory structures every time
a new Windows OS is launched. The ‘yarascan’ plug-in
by Volatility essentially implements both the navigation of
process memory structures (more specifically the VAD Tree
structure) and regular expressions, to perform contiguous
searching of memory. However, it requires a long time to
return search results, which is not a suitable for a triage
environment.

MemTri utilises the ‘grep’ [30] utility to perform the reg-
ular expression pattern searches. It was decided to use the
‘grep’ utility since it was found to be significantly faster
than a previous implementation that utilised the standard
C++ <regex> library to search for regular expressions.

The set of regular expressions actually utilised by MemTri,
differ based on the operation mode executed. In normal
mode all of the regular expressions are available for use.
The rationale is that since the regular expressions are ap-
plied within the constrained context of the process’ memory,
it is generally safe to apply both ‘strong ’ and ‘weak ’ regular
expressions with little risk of identifying false positives. On
the other hand, with scan mode, a limited number of reg-
ular expressions are actually utilised. More precisely, some
of the ‘weak’ regular expressions are excluded. The ratio-
nale for this implementation is that since scan mode searches
the entire memory image, the straightforward use of ‘weak’
regular expressions is likely to identify many false positive
results. It was therefore decided that in order to use some
of the ‘weak’ regular expressions, an ‘application launch’
verification process first had to be passed. The ‘applica-
tion launch’ verification process, simply involves searching
for unique regular expression patterns that are generated
when an application is launched. These ‘application launch’
patterns were identified by simply comparing the text in a
memory image which the application was launched from an-
other image in which it was not launched. Certain patterns
that were found to be unique in the memory image that con-
tained the launched application were then selected for use
in the verification process.

To identify artefacts that are particularly relevant to an
investigation, a set of ‘case words’ are referenced from text
files. Then, the function load case words() is responsible for
reading the corresponding ‘case database’ text files into the
MemTri application. The regular expressions incorporate
these ‘case words’ to provide a sort of semantic searching
feature to locate relevant evidence artefacts. This imple-
mentation approach allows a digital investigator to flexibly
use the MemTri application for different kinds of criminal
investigations, by simply updating the ‘case database’ text
files with ‘case words’ that are particularly important to that
investigation.

The counts of the regular expressions in the ESE that
successfully located evidence artefacts in the memory image
are stored in feature variables. These feature variables are
the input data that the Bayesian Network uses to identify
which evidence nodes should be set as ‘observed ’.

5.3 Bayesian Network Analyser Implementa-
tion

The Bayesian Network Model for MemTri’s BNA compo-
nent is implemented using the ‘dlib’ library [11]. This li-
brary was chosen simply because it contains all the necessary
structures required for building a Bayesian Network Model.



BNA implementation has three main stages:

1. Building the Bayesian Network Model.

2. Entering the Joint Probability Table values based on
Expert’s Knowledge.

3. Perform Bayesian Network Inference based on evidence
observed.

Building the Bayesian Network Model.
The Bayesian Network Model (BNM) utilised by MemTri

is implemented design shown in Figure 2. There is 1 main
hypothesis node, 4 sub hypothesis nodes and 14 evidence
nodes. The linking of the node’s edges to form the Bayesian
Network, is done exactly according to the designed model
illustrated in Figure 2. This BNM is utilised for both normal
mode and scan mode.

Joint Probability Tables Setup.
The next stage in building the BNA is entering the prob-

ability values for the ‘Likelihood’ Joint Probability Tables
(JPT), which are referenced during the Bayesian Inference
process. These ‘Likelihood’ JPT values are gathered through
a memory forensics expert questionnaire. We used this on-
line questionnaire to collect responses anonymously from
several digital forensics companies and private digital foren-
sics expert practitioners. A weighted average of the response
results are then entered as the ‘Likelihood’ JPT’s values.

Bayesian Inference on Evidence.
The final stage is to analyse the evidence found via Bayesian

Inference, which produces the investigation triage output
ratings. Initially, a Bayesian Inference process is performed
in order to update all the ’Prior’ probability nodes’ states to
equally be 33.333%. The function mark observed evidence()
then assesses the feature array variables generated by the
ESE and marks the state of the respective evidence nodes
as ‘observed’, based on the evidence found. After marking
relevant evidence nodes’ states as ‘observed’, Bayesian In-
ference is performed using the join tree algorithm [11]. The
final output rating results are then displayed by printing the
’Yes’ state values of the main hypothesis node H and the
sub-hypothesis nodes H2 to H5. It was decided not only to
print the final output rating of the main hypothesis node
but also to include the ratings of sub-hypothesis nodes, so
that the digital investigator can clearly see which type of
target applications most likely contained evidence relevant
to the actual investigation.

6. IMPLEMENTATION AND RESULTS
In this section, MemTri’s performance is analysed based

on accuracy, precision and recall These are common perfor-
mance measurements to assess similar tools and were also
utilised in [14, 13, 5, 22, 35]. The formulas for the afore-
mentioned performance measurements are all based on vari-
ables that count the number of true positive (TP), true nega-
tive (TN), false positive (FP) and false negative (FN) results
produced.

6.1 Performance

The performance results, measures MemTri’s ability to de-
tect certain events performed by a suspect with the tar-
geted applications, based on the regular expressions devel-
oped during the training phase.

6.1.1 Accuracy
The accuracy, measures how close the actual results pro-

duced by MemTri were to the expected results. MemTri’s
normal and scan mode accuracy results for three collection
phases (running, stopped and delayed) are calculated using
the following formulae:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Figure 3: MemTri’s average accuracy results for ex-
ecutions in normal and scan mode across the three
phase sets of test images

An average of MemTri’s accuracy performance for each
phase set of test images is illustrated in Figure 3. As can be
seen, MemTri’s normal mode accuracy performance of 95.7%
was 2.5% better than scan mode’s accuracy performance
(93.2%), for the ‘Running’ phase test images. Therefore,
when the target application processes are still running in
memory, MemTri’s normal mode is better able to differenti-
ate which SASs were performed, compared to scan mode.
However, for the ‘Stopped’ and ‘Delayed’ phase test im-
ages, MemTri’s normal mode accuracy performance dropped
over 34% to 61.4% and 60.0% respectively. MemTri’s scan
mode on the other hand, experienced a smaller ≈ 12% drop
in accuracy performance for the ‘Stopped’ and ‘Delayed’
phase test images, to 81.4% and 78.6% respectively. There-
fore, when the target application processes are terminated,
MemTri’s scan mode approach identifies more correctly the
SASs that were performed in such cases, compared to nor-
mal mode.

One factor that negatively impacted on both normal and
scan mode’s accuracy performance, was that MemTri failed
to locate evidence artefacts with misspelt words. However,
this is something to be expected since the dictionary we used
was only intended for testing and research purposes and it
is not considered as complete.

The other factors that affected normal and scan mode’s
accuracy performance, pertained specifically to the imple-
mentation differences of each mode. These factors are dis-
cussed later under the precision and recall respectively. Es-
sentially, since precision and recall are more targeted subset



measurements of accuracy performance, a fall in precision
or recall results in a fall in accuracy and vice versa.

6.1.2 Precision
Precision, measures the probability that a predicted pos-

itive result reported by MemTri is actually correct based
on the SASs that were performed on the test image. The
precision results for MemTri’s execution on each of the test
images, are calculated using the following formulae:

Precision =
TP

TP + FP
(2)

Figure 4: MemTri’s average precision results for ex-
ecutions in normal and scan mode across the three
phase sets of test images

An average of MemTri’s precision performance for each
phase set of test images are illustrated in Figure 4. As can
be seen, MemTri’s normal mode maintained higher precision
performances of 93.2%, 90.6% and 89.2%, for the ‘Running’,
‘Stopped’ and ‘Test’ phases respectively, compared to scan
mode which had precision performances of 90.8%, 83% and
81.7% respectively. Therefore, in the cases where MemTri
predicts that it has positively identified a specific scenario
as being performed, normal mode is more likely to have pre-
dicted correctly compared to scan mode.

The main assessed reason for normal mode’s better preci-
sion performance is that when MemTri is executed in normal
mode, only the process’ committed virtual address space re-
gion is searched. Hence, noise patterns that may similarly
exist elsewhere in the memory image are filtered out. Scan
mode on the other hand, searches the entire memory image
for data artefact patterns. This, resulted in a regular ex-
pression, which is designed to locate a specific data artefact
pattern for a target application, matching another similar
data artefact pattern generated by some other application.
Such cases mainly occurred with ‘weak’ regular expression.
Nonetheless, both normal and scan mode were able to main-
tain a reasonably high precision performance (above 80%)
for all three phase sets of test images. The higher the preci-
sion performance of a digital forensics triage tool, the more
evidential supports it lends for the issuance of a search war-
rant [35].

6.1.3 Recall
Recall, measures MemTri’s ability to correctly identify all

the memory evidence artefacts that were generated by per-
forming the SASs. The recall results for MemTri’s execution

on each of the test images are calculated using the following
formulae:

Recall =
TP

TP + FN
(3)

Figure 5: MemTri’s average recall results for execu-
tions in normal and scan mode across the three sets
of phase test images

An average of MemTri’s recall performance for each phase
set of test images is illustrated in Figure 5. As can be
seen, MemTri’s normal mode recall performance of 99.4%
was 3.3% better than scan mode’s recall performance of
96.1%, for the ‘Running’ phase test images. Therefore, when
the target application processes are still running in memory,
MemTri’s normal mode is able to identify correctly a greater
number of SASs that were preformed, compared to scan
mode. However, for the ‘Stopped’ and ‘Delayed’ phase test
images, MemTri’s normal mode recall performance dropped
significantly by over 83% to 15.7% and 12.9% respectively.
MemTri’s scan mode on the other hand, experienced a much
smaller drop in recall performance of≈ 28% for the ‘Stopped’
and ‘Delayed’ phase test images, to 69.8% and 63.3% respec-
tively. This drop in recall for both normal and scan mode is
consistent with the observations made in Garfinkel et al.’s [6]
research, which illustrated that memory addresses freed im-
mediately after terminating a process, is initially quickly
overwritten then more gradually by the OS when in an idle
state. As such, it is expected that after a target application
process terminates, MemTri is likely to recall less data arte-
facts due to some of the artefacts being overwritten by the
system’s activity.

MemTri has a higher recall performance in normal mode
than with scan mode for the ‘Running’ phase test images.
The main reason for this is that normal mode uses all the
available regular expressions while scan mode uses a lim-
ited set of regular expressions to search for evidence. More
specifically, scan mode excludes some ‘weak’ regular expres-
sions. Furthermore, for the ‘Stopped’ and ‘Delayed’ phase
test images, MemTri’s normal mode experienced a significant
drop in recall of ≈ 83% compared to scan mode which only
dropped by ≈ 28%. The main reason for this is that when
a process is terminated, its _EPROCESS structure is usually
immediately unlinked from the OS’s list of active processes.
Normal mode relies on enumerating the list of active pro-
cesses to locate the target process’s VAD Tree structure,
which in-turn is needed to dump the process’ virtual mem-
ory address space before searching for evidence. Therefore,



if the process has been unlinked from the active process list
by the Window OS, MemTri’s normal mode will not locate
any evidence. A few instances were observed where a closed
application process was simply marked as terminated and
remained attached to the OS’s active list of processes.

Overall, the results of this work indicate that the evi-
dence recall performance of a Memory Forensics Triage tool
is likely to diminish, if the suspect terminates the applica-
tion used to commit the criminal activity. In such cases, it is
better to use scan mode to uncover leads in an investigation,
since it has a better stable recall performance of over 60%
compared to normal mode which is under 16%.

6.1.4 Overall Performance
Generally the accuracy, precision and recall performance

of MemTri indicates that if the targeted application processes
are running, the better approach for locating evidence in
memory is to search the committed virtual address space of
the running process as done with normal mode. However, if
the targeted application processes have been exited, the scan
mode approach implemented by MemTri of simply searching
the entire memory image, is better in such cases.

Overall, MemTri’s scan mode implementation produces
more stable results across all three phases during which the
test images were collected. The normal mode implementa-
tion however, better identifies the relevant evidence artefacts
in a memory image when the targeted application processes
are still running.

7. OBSERVATION AND ANOMALIES
This section discusses any observations and anomalies that

were noted throughout the evaluation of MemTri. Apart
from that, the description of the observations and anoma-
lies is coupled with a discussion regarding their impact on
the generated results.

We start by discussing a common anomaly observed within
various test images generated for this project. The ob-
servation was that the virtual memory addresses of a tar-
get application process dump at times contained data that
was generated by another target application. For exam-
ple, data generated from performing a scenario with the Tor
browser application, was found within the process dump for
the Skype messenger application. This data was then iden-
tified by MemTri as being generated by the scenario with
different id.This anomaly could have simply occurred due to
freed memory addresses from the Tor application being ac-
quired by the Skype application. When memory is freed in
a Windows OS environment, its content remains intact until
overwritten by the activity of another application process.

Another reason for this anomaly could be due to a phe-
nomenon that occasionally occurs during memory acquisi-
tion which is referred to as ‘page smear’ [2]. Page smear
occurs when a memory image contains pages of data that is
associated with varying times of system activity. Therefore,
it is possible that at the time Skype’s (_EPROCESS) struc-
ture was captured, it’s currently referenced virtual memory
space could have been later updated with pages resulting
from concurrent activity performed by the Tor application
process.

8. CONCLUSION
In this paper, we presented MemTri. A Memory Foren-

sics triage tool that identifies data artefacts in memory for
certain Internet Browsers, Instant Messengers, Document
Processors and FTP Client applications, using regular ex-
pressions. This work, demonstrated that even after a tar-
geted application process was terminated, some data arte-
facts could still be extracted from unallocated regions of
memory. MemTri was implemented with two modes of op-
eration, i.e normal mode and scan mode. MemTri’s normal
mode implementation produced more accurate results in the
cases where the targeted processes were still running, since
it effectively filtered out noise patterns. However, its per-
formance was severely impacted when processes were termi-
nated. Scan mode on the other hand, maintained a fairly
high and stable performance even after processes were ter-
minated. Overall, this work demonstrated that a significant
amount of data artefacts can be found in main memory,
which can offer valuable information to a law enforcement
personnel seeking to triage an investigation.

We hope that this project will inspire further research into
developing digital forensics triage tools, that will focus on
assessing criminal activity found in main memory. Further-
more, this work only utilised a limited set of case-specific
words to locate evidence. The next stage is to implement a
Knowledge-based Natural Language Processing (NLP) sys-
tem into MemTri’s Evidence Search Engine which utilizes
a domain-specific dictionary [25]. This upgrade will allow
MemTri to effectively locate evidence in the context of any
specified criminal investigation, thus making it practical for
use in a real-life environment. In addition to that, we plan to
integrate our tool in a trusted cloud environment such as the
one presented in [20, 21, 32, 33] and allow users from differ-
ent geographical locations to enhance the dictionary based
on their experience. Finally, adding a weight on each of the
existing words has the potential to improve the effectiveness
of our tool since it will be easier for a digital investigator
to identify real criminal activities and categorize them by
their importance. This can be done by utilizing a reputation
system that will collect users’ votes in a privacy-preserving
way [3, 4, 17].
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