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ABSTRACT
Prior work in river forecasting has focused on applying regression
models to gage and discharge prediction since these are naturally
continuous dynamical functions. On the other hand, with dis-
cretized data, classi�ers can be adopted to solve this problem by
predicting a conditional probability distribution. Predicting this
distribution is important in at least two ways: (1) the variance of
the distribution can indicate the con�dence of the predicted ex-
pected values, and (2) the distribution can be used for computing
the probability that the gage or discharge exceeds or falls below
some threshold. �is paper presents a concrete river forecasting
framework with classi�ers including probabilistic graphical models
(PGMs) and arti�cial neural network classi�ers (ANNCs). �e pro-
posed framework is applied on real data for the Guadalupe river
basin (Texas) thereby enabling a detailed comparison among vari-
ous manners of forecasting studied, along with a set of guidelines
for their best use.
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1 INTRODUCTION
River forecasting is essential to human life and subsistence, espe-
cially for �ood or drought prediction, ever since early agriculture
has started to spread. More recently, the advent of hydropower
generation, especially in the context of run-of-river hydropower
projects [12], requires �ne grain forecasting capabilities for po-
tential energy availability. However, progress in forecasting river
behavior has stalled, mainly due to several challenges coming from
its application domain. First, the hydrologic eco-system is character-
ized by many inter-related factors with highly non-linear dynamical
dependencies [10]. Second, the metrics used for assessing certain
models must rely on their application domain. For example, to
forecast the dynamical behavior of rivers, the expected value of
future gage or discharge is produced as prediction, while for �ood
avoidance and hydropower availability, the probability that dis-
charge exceeds or is below a certain threshold is needed. �ird, the
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observed data are noisy, making complex forecasting models prone
to over��ing.

Much a�ention in river forecasting was placed on regression
models, ranging from linear models, to arti�cial neural network
regression (ANNR) 1. However, by quantizing the output variable
to multiple discrete levels, the problem may be transformed to
a classi�cation problem, and the continuous predicted value can
be computed based on the classi�cation results. �e advantages
of using classi�cation models are twofold: (1) Clustering continu-
ous values to discrete levels can alleviate the measurement noise,
thereby reducing the danger of over��ing. (2) Classi�ers usually
produce a probability distribution for the predicted variable instead
of just an expected value. In our work, we implement the river
forecasting problem on probabilistic graphical models (PGMs) and
arti�cial neural network classi�ers (ANNCs). A neighbor smooth-
ing (NBS) strategy is proposed to address the inherent over��ing
problem of PGMs due to their larger number of parameters.

�e rest of paper is organized as follows. In section 2, we intro-
duce prior work on river modeling. In section 3, the Guadalupe
river dataset is introduced. In section 4, implementation of regres-
sion and classi�cation models is described. Finally, in section 5, we
describe our experiment setup and results on Guadalupe river data.

2 RELATEDWORK
Past decades have witnessed great progress in river modeling and
forecasting. Approaches used can be divided into two types: (1)
conceptual models and (2) black-box models. Conceptual models
aim at simulating the physical processes and transforming inputs to
outputs guided by prior knowledge of the natural systems [11]. �e
development of conceptual models started early and have achieved
good performance over the years. An example is SWAT (Soil and
Water Assessment Tool), formed by combining and improving many
well-performed river models, such as CREAMS, SWRRB, etc. [4].

Black-box approaches, on the other hand, rely more on data
instead of knowledge of physical procedure. With much more data
available, the data-driven black-box models are witnessing an in-
creased popularity for river modeling. Before 1990s, traditional
linear models including autoregressive integrated moving average
(ARIMA) were most widely used [15]. However, river �ow fore-
casting is believed to be highly non-linear and not easily described
by simple models [10]. Hsu et al. used a neural network to model
rainfall-runo� process, and achieved be�er performance than linear
models [10]. Asadi et al. proposed a hybrid ANNR by combining
GA and Levenberg-Marquardt (LM) algorithm for learning feed
forward neural networks [5].

As the predicted variables (e.g. water �ow) are continuous, re-
gression models have been naturally adopted by almost all the
1For clarity, “ANNR” and “ANNC” are adopted to di�erentiate between ANNs used for
regression and classi�cation, respectively.
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previous work, while li�le work was done in the realm of classi�-
cation models for predicting a probability distribution. �e idea of
using classi�cation models for regression problems can be dated
back to 1984, when Breiman et al. performed inference using re-
gression trees that partition the range of continuous variables into
multiple sections [7]. However, this idea was explored by only a
few researchers, since most forecasting problems are formulated
as regression problems where the target is a single value, i.e., the
conditional expected value. River forecasting, however, is con-
cerned with predicting both the expected value and the conditional
probability distribution [13], which can be further used to answer
questions like: What is the probability that the river gage exceeds
the �ooding level or falls below the drought level? Or what is the
probability that the river discharge exceeds the threshold required
by hydropower generation? To the best of our knowledge, our
work is the �rst to employ classi�cation models including PGMs
and ANNC for regression problems in river forecasting. �is paper
compares regression and classi�cation models, as a guideline of
model selection for river forecasting.

Figure 1: Guadalupe river basin is shown by the light blue
area. �e dark blue stream is the trace of main Guadalupe
river. Figure generated from ArcGIS [3].

3 DATASET
Guadalupe river (shown in Figure 1) is located in the southeast of
U.S., contains abundant hydropower resources, and is also prone to
�uctuations. Guadalupe basin has a 3256 km2 catchment area. Its
length is 370 km, starting from (30◦05′17′′N , 99◦38′32′′W ), and
�owing into Gull of Mexico at (28◦24′07′′N , 96◦46′57′′W ). �e
average discharge of Guadalupe river is 34m3/s [2]. Data ranging
from April to late July in 2016 are studied, as drastic �uctuations
of river �ow happen in this period, making it harder to forecast.
�e data, provided by United States Geological Survey (USGS) [1],
include gages, discharges, and precipitations at 15-minute inter-
vals. �erefore, each time series has 11520 time steps. Gages and
discharges of six big nodes are predicted, four of which are joint
nodes with parent nodes from multiple branches. �ey are selected
because the prediction for joint nodes exhibits more challenges.
Features of eleven nodes, including the six nodes to predict, are col-
lected in total, serving as inputs for forecasting. �ese se�ings can
scale to any number, and we are showing these joint nodes because
they are potentially more suitable for hydropower generation due
to the large discharges.

4 METHODOLOGY
In this section, we �rst provide an overview of river models by for-
mulating the forecasting problem, and introducing regression and

classi�cation models for river modeling. We then show how two
classi�ers, PGM and ANNC, can be used for the regression problems.
Finally, we discuss metrics for assessing prediction performances.
4.1 Model Overview

4.1.1 Problem Formulation. We aim at forecasting two fea-
tures characterizing river dynamics: gage and discharge. Gage is
the water level, also called water stage. Discharge is the volume of
water running per unit time, also called water �ow or runo�. Along
the river, there are several stations, also called nodes, measuring
gage, discharge and precipitation at their own locations in real time.
Suppose N nodes on a river are studied. We denote the gage at then-
th node (n ∈ {1, ...,N }) as time series G (n) = {G

(n)
1 , ...,G

(n)
t , ...}, its

discharge as D (n) = {D
(n)
1 , ...,D

(n)
t , ...}, and precipitation as P (n) =

{P
(n)
1 , ..., P

(n)
t , ...}. �en river forecasting has (1) input (predictors):

{G
(N)
tc−th+1, ...,G

(N)
tc }, {D

(N)
tc−th+1, ...,D

(N)
tc } and {P (N)tc−th+1, ..., P

(N)
tc },

where N = {1, 2, ...,N }, tc is current time, and th is history window
size; and (2) output (targets): E(G (n)

tc+tl |F
(N)
tc ) and E(D (n)

tc+tl |F
(N)
tc ),

where n ∈ N, tl is lead time, i.e. how long in the future we are
predicting, and F (N)

tc is the accumulated information up to and
including time tc for nodes N.

4.1.2 Classification Models. Classi�ers solve the problem:
arдmaxy∈C P (y (d ) |~x ), where ~x is the predictor, y (d ) is a discrete
variable denoting a class, the superscript d indicates that the target
y is a discrete variable, and C is the set of classes.

A regression problem can be transformed into a classi�cation
problem by discretizing the continuous target variable y into multi-
ple levels. Let us denote the number of levels as K . �en, the range
of y is split into K bins, with K centroids. Classi�cation models pro-
duce an estimation of P (y (d ) |~x ). Discriminative models, including
ANNC, Multinomial Logistic Regression (MLR) and Random Forest
(RF), �rst compute K scores for the K classes, and then output the
class with the highest score. �e normalized K scores estimate
P (y (d ) |~x ) over y (d ) ∈ C where |C| = K . Generative models in-
cluding PGMs �rst compute P̂ (y (d ) , ~x ) for all y (d ) ∈ C, and then
output arдmaxy (d ) ∈C P̂ (y (d ) , ~x ). Since P̂ (y (d ) |~x ) =

P̂ (y (d ),~x )
P (~x ) , the

normalized P̂ (y (d ) , ~x ) is an estimation of P (y (d ) |~x ).
To predict E(y |~x ), instead of simply using the centroid of a

bin [20][6], we leverage the estimated P̂ (y (d ) |~x ), and compute the
weighted average of bin centroids: Ê(y |~x ) = ∑K

i=1 P̂ (y
(d ) = i |~x )Bi ,

where Bi is the centroid of the i-th bin.
To predict the p (y |~x ), two approaches are adopted: (1) maxi-

mum likelihood estimation (MLE) by ��ing a pre-assumed type
of distribution [17], and (2) kernel smoothing (KNS) which pre-
dicts p (y |~x ) by: p̂ (y |~x ) = 1

h
∑K
i=1 P̂ (y

(d ) = i |~x )F(y−Bih ), where h is
a factor determining smoothness, and F(·) is the kernel function
with constraint Ey (F(y)) = 0 and

∫ ∞
−∞

F(y)dy = 1. KNS works like
kernel density estimation, but uses a discrete distribution instead
of data samples to predict the continuous distribution [17].

4.2 Probabilistic Graphical Models
4.2.1 Graph Structure. A PGM uses a graph structure to

describe the dependency of di�erent variables. Since the river topol-
ogy naturally de�nes the node dependencies, the graph structure
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Figure 2: Le�: river topology for node 1-3. Middle: a con-
cise structure of node dependency. Right: node dependency
extended with a time dimension.

simply follows this topology. Note that for almost all the rivers,
there is a constant direction of the �ows, and there are no cycles,
which makes a directed acyclic graph (DAG) assumption reasonable.
In this paper, a directed probabilistic graphical model is considered.
A simple example is shown in Figure 2.

4.2.2 Neighbor Smoothing. Training PGMs requires es-
timating the conditional probability distribution (CPD) of target
variables, given each combination of the predictor values. �e CPD
is estimated by counting the number of corresponding instances
in the training set, and storing them in a look-up table. �e look-
up table can be very sparse yet in the worst case, its size grows
exponentially with predictors and discrete levels.

To address the sparsity-based over��ing, we propose a neigh-
bor smoothing (NBS) approach which adds to each row with its
“neighbor” rows in the inference phase. To de�ne neighbors, we
�rst de�ne the distance between two condition vectors in the look-
up table C1 : (X1 = x1,X2 = x2, ...,Xm = xm ) and C2 : (X1 =
x ′1,X2 = x ′2, ...,Xm = x ′m ) as D (C1,C2) =

∑m
i=1 |xi − x ′i |, where

m is the number of predictors. Two conditions are de�ned as
h-hop neighbors if their distance is h. NBS estimates CPD by:
P (Y | ~X = ~x ) = 1

Z
∑H
h=0
∑

~x ′∈Vh (~x )
αhP (Y | ~X = ~x ′), where Vh (~x )

is the set of h-hop neighbors of ~x , H is the pre-de�ned maxi-
mum number of hops, αh is a decay factor for h-hop neighbors
(0 < αh+1 < αh < 1), and Z is a normalizing coe�cient used to
ensure that the sum of P (Y | ~X = ~x ) over all Y values is 1.

�e intuition behind NBS is that it allows to increase the size
of training data by Gibbs sampling with a small probability of
distortion. By increasing the ratio of training size over parameter
amount, over��ing is alleviated.

4.3 ANNC and ANNR
A�er discretizing targets of the training set, an ANNC is trained
using the backpropagation algorithm, withK output neurons where
K is the number of bins of the target variable. �e label of each
instance in the training set is a vector of length K , where only one
of the K values is 1, indicating the correct bin. Since the outputs of
so�max function are considered as a proxy of probability distribu-
tion of the target variable [19][9], we select the so�max function as
the activation function of the output layer. In the inference phase,
the K values of the output neurons are used as an estimation of
the CPD of the K classes, i.e. P̂ (y (d ) |~x ). Di�erent from ANNC,
the architecture of an ANNR has only one output neuron, and no
activation function for the output layer (or equivalently, a linear
activation function). ANNR is also trained with backpropagation
algorithm [18].

4.4 Metrics
River models can help with two types of questions: (1) what is
the expected target value, and (2) what is the con�dence interval
or the probability that a given target feature falls in some range.
Correspondingly, R squared (R2) and mean log-likelihood (MLL)
are adopted to assess the prediction performance.

R2 measures the relative distance between true and predicted
values. R2 = 1 −

∑N
i=1 (yi−f (~xi ))

2∑N
i=1 (yi−ȳi )2

, where f (·) is the model function
that predicts E(yi | ~xi ), ~xi is the input of i-th instance in the testing
set, yi is the true target value of i-th instance, and N is the size of
testing set.

MLL assesses the quality of predicted probability distribution.
MLL = 1

N
∑N
i=1 log p̂ (yi |~xi ), where N is the size of testing set,

p̂ (y |~xi ) is the predicted CPD for the target value of the i-th instance,
and yi is the true target value of the i-th instance.

5 EXPERIMENT
5.1 Setup
�e experiment is conducted on Guadalupe river described in sec-
tion 3. �e work�ow of experiments follows the commonly ac-
cepted procedure: (1) data preprocessing, (2) model calibration, and
(3) model validation [8].

Five models are compared: last-value forward (LVF), stepwise
multiple linear regression (SWMLR), ANNR, PGM, and ANNC. �eir
setup con�gurations are shown in Figure 3. LVF simply uses current
value as a prediction for future. SWMLR is a linear model with
varying history steps [14]. ANNR and ANNC both have one hidden
layer with sigmoid activation function, and hidden neurons twice
the number of input neurons [16]. ANNR has one output neuron
with linear activation function, while ANNC has K output neurons
with so�max function where K is the discrete levels. Five-fold cross
validation is adopted. �e average values for R2 and MLL over �ve
folds are reported for each model.

Model Input Output History 
Steps1 𝒕𝒉

Linearity Number of 
Parameters

LVF 𝐺$%
('),𝐷$%

(')

𝐺$%+$,
(') ,	  

𝐷$%+$,
(')

1 Linear 0

SWMLR
𝐺$%.$/+0

ℕ2 ,… ,𝐺$%
ℕ2

𝐷$%.$/+0
ℕ2 ,… , 𝐷$%

ℕ2

𝑃$%.$/+0
ℕ2 ,… , 𝑃$%

ℕ2

3 Linear 16-25

ANNR 5 Non-linear 1351-3361

PGM 1 Non-linear >1M2

ANNC 5 Non-linear 1810-4090

Figure 3: Model setup.1History steps are selected by step-
wise testing for SWMLR, ANNR and ANNC. It is set to 1 for
PGM due to large memory requirements.2PGMs have an ex-
ponential number of parameters, but more than 99.9% are
zero. Parameters for each target variable vary with the num-
ber of neighbor nodes and available features.

5.2 Results
Di�erent models are compared in Figure 4. �e models are shown in
the format “(model name)-(th )”, where th is the history window size.
For SWMLR, ANNR, and ANNC, th is selected by stepwise testing,
while th is set to 1 for PGM due to the exponentially increase in
number of parameters. KNS is used to estimate distribution.
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Figure 4: R square and MLL results of �ve models. (1) and (3) are results of gage forecasting; (2) and (4) are results of discharge
forecasting.
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Figure 5: Predicted result vs. true values for one node with
(1) SWMLR and (2) PGM. �e green bar shows the three-
standard-deviation range.

Classi�cation models are better for long term forecasting
than regression. (i) In terms of R2, classi�cation models are be�er
at long-term forecasting while regression models work be�er in
immediate future, with a cuto� of six hours. Since longer-term
forecasting models more complicated relation between predictors
and targets, classi�cation models can capture the causal e�ects bet-
ter. Besides, classi�cation models can mitigate e�ects of noise by
discretization, while regression models are more prone to extreme
noise. However, for shorter-term gage and discharge prediction,
even the LVF model has be�er performance than classi�cation
models which lose accuracy due to quantization. (ii) When MLL is
considered, classi�cation models always work be�er than regres-
sion models. �e assumption made by regression models that noise
should have stationary mean and variance does not always hold.
However, classi�cation models estimate distributions according to
the inputs provided. Figure 5 shows the three-standard-deviation
range of the prediction results for a node’s discharge using SWMLR
and PGM. Except for a few points, PGM captures the true value
with higher con�dence than SWMLR. Since PGM predicts the vari-
ance based on inputs while SWMLR predicts a constant variance,
in general PGM works be�er than SWNLR. �e few outlier points
with high variance in the PGM graph correspond to time steps for
which the input training data also has very high variance.

6 CONCLUSIONS
In this paper, we compare regression and classi�cation models for
river gage and discharge forecasting. MLL is introduced as a metric
to assess the estimated probability distribution, while R2 is used
to assess the expected prediction. Experiment results on real data
for Guadalupe river (Texas) show that classi�cation models always
work be�er in terms of MLL. For R2, regression models work be�er
for shorter-term predictions, while classi�cation models are be�er
for longer-term predictions. To discretize continuous variables,

K-means works be�er than linear and density-based approaches.
To estimate continuous distribution using a discrete one, KNS is
superior to MLE. �e methodology can be extended to include
additional predictors relevant for multi-modal renewable energy
generation besides hydropower (e.g., wind or solar) or to other
domains where time series forecasting is of interest.
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