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Abstract

Internet of Things (IoT) domains generate large volumes of high velocity event streams from sensors, which
need to be analyzed with low latency to drive decisions. Complex Event Processing (CEP) is a Big Data technique
to enable such analytics, and is traditionally performed on Cloud Virtual Machines (VM). Leveraging captive IoT
edge resources in combination with Cloud VMs can offer better performance, flexibility and monetary costs for
CEP. Here, we formulate an optimization problem for energy-aware placement of CEP queries, composed as an
analytics dataflow, across a collection of edge and Cloud resources, with the goal of minimizing the end-to-end
latency for the dataflow. We propose a Genetic Algorithm (GA) meta-heuristic to solve this problem, and compare it
against a brute-force optimal algorithm (BF). We perform detailed real-world benchmarks on the compute, network
and energy capacity of edge and Cloud resources. These results are used to define a realistic and comprehensive
simulation study that validates the BF and GA solutions for 45 diverse CEP dataflows, LAN and WAN setup, and
different edge resource availability. We compare the GA and BF solutions against random and Cloud-only baselines
for different configurations, for a total of 1764 simulation runs. Our study shows that GA is within 97% of the
optimal BF solution that takes hours, maps dataflows with 4− 50 queries in 1− 26 secs, and only fails to offer a
feasible solution ≤ 20% of the time.
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Internet of Things (IoT); Complex Event Processing (CEP); Cloud Computing; Edge Computing; Big Data
platforms; Query Partitioning; Low Power Processing; Distributed Scheduling; Energy-aware Scheduling; Meta-
heuristics

I. INTRODUCTION

Internet of Things (IoT) is a new computing paradigm where pervasive sensors and actuators deployed
in the physical environment, with ubiquitous communication, allow us to observe, manage and enhance
the efficiency of the system. The applications motivated by IoT spans cyber-physical city utilities such
as smart water management [1], health and lifestyle applications like smart watches [2], and even mobile
platforms such as unmanned drones and self-driving cars. A key requirement for IoT applications is to
apply analytics over the data collected from the distributed sensors to make intelligent decisions to control
the system. Often, these decisions are performed on data that is continuously streaming from the edge
devices at high input rates. These analytics and decision making may also be time-sensitive, and require
a low latency response, such as in a smart power grid [3].

Big Data platforms for stream and event processing enable continuous analytics for IoT applications [4].
They are designed for low latency processing of data or event streams, such as from physical sensors
or social network feeds [5], [6]. In particular, Complex Event Processing (CEP) engines allow users to
define intuitive SQL-like queries over event streams that are executed on tuples as they arrive [7]. They
are used to detect when thresholds are breached to trigger alerts, aggregate events over temporal windows,
or identify events with a specific pattern of interest. The queries can be composed as a dataflow graph for
online decision making in IoT applications [8]. CEP queries are often implemented as deterministic/non-
deterministic finite state automata by CEP engines [9], [10].
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A common information processing architecture is to move data from thousands or millions of edge
devices centrally into public Clouds, where CEP or other analytics engines hosted on Virtual Machines
(VM) can process the incoming streams, and data can be persisted for mining and visualization 1 2. Here,
the edge devices serve as “dumb” sensors that transmit the data to the Cloud for centralized analytics.

However, moving event streams from the edge to the Cloud introduces data transfer latency, and the
public network may become a bandwidth bottleneck for large deployments. There are associated monetary
costs for the use of Cloud VMs and network. Edge devices are getting powerful, energy-efficient, and
affordable. Their use is widespread as gateways in IoT deployments, and offer captive computing at low/no
cost. Lastly, having a hub and spoke model where all data is ingested to the Cloud does not give us any
fine-grained control over where data from the IoT deployment can go.

In this article, we propose approaches for distributed event-based analytics across edge and Cloud
resources to support IoT applications. We consider a deployment with multiple event streams generated
at the edge at high frequency, an analytics dataflow composed of CEP queries that should execute over
these streams, and multiple edge devices and public Cloud VMs to perform the queries. Our goal is to
find a distributed placement of these queries onto the edge and Cloud resources to minimize the end-
to-end latency for performing the event analytics. This placement must meet constraints of throughput
capacity on edge and Cloud machines, bandwidth and latency limits of the network, and energy capacity
of the edge devices. The latter is particularly novel – edge devices are often powered by batteries that are
recharged, say through solar panels, and hence have a limited energy budget between the recharge cycles.

Mobile Clouds [11] [12] benefit from off-loading computing from smart phones to the Cloud, but they
move parts of the application only to the Cloud and not other edge devices. Some support an edge-only
solution using transient devices, but are not amenable to stream processing [13]. Fog Computing offers
a low-latency “data center” close to the Edge with uplink to the Cloud, but lacks wide deployment,
programming models and scheduling algorithms [14]. Our work can extend to the Fog too. Peer-to-peer
(P2P) systems and query operator placement in Wireless Sensor Networks are relevant to IoT as well [15],
[16], but do not consider recent evolutions like Cloud computing and large data rates like we do. Our prior
short paper tackles a simpler problem of bi-partitioning a CEP pipeline between a single edge device and
the Cloud [17]. We address this more comprehensively here, and consider multiple edge devices, energy
constraints and offer detailed experiments.

We make the following specific contributions in this article.
1) We formulate the problem of query placement for a directed acyclic graph (DAG) with constant input

rate onto distributed edge and Cloud resources, having computing, network and energy constraints, as
a combinatorial optimization problem, with the objective function being to minimize the end-to-end
processing latency (§ IV).

2) We propose a costly but optimal brute force approach to solve this problem, and also a more practical
solution based on the Genetic Algorithm meta-heuristic (§ V).

3) We perform and present comprehensive, real-world micro-benchmarks for a wide class of 21 CEP
queries relevant to IoT, at different input event rates. These evaluate the throughput of a Raspberry
Pi edge and Microsoft Azure Cloud VM, the energy capacity of the Pi, and network characteristics
of edge and Cloud (§ VI).

4) Due to the lack of existing platforms for distributed event analytics across edge and Cloud, we
instead conduct a detailed and realistic simulation study using compute, energy and network property
distributions measured by the micro-benchmarks. We evaluate the effectiveness of the query placement
for 45 synthetic CEP dataflows, with varying numbers of queries, input rates, and resource availability.
We offer a rigorous analysis of the results, using both quality metrics and timing analysis (§ VII).

1 https://aws.amazon.com/iot/how-it-works/
2https://www.microsoft.com/en-in/server-cloud/internet-of-things/overview.aspx
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TABLE I: Example Siddhi CEP queries used in experiments

Query Type Siddhi Query Definition

Filter
define stream inStream (height int);
from inStream[height<150] select height
insert into outStream ;

Sequence
Match 3 events

from every e1 = inStream, e2 = inStream[e1.height==
e2.height], e3 = inStream[e3.height==e2.height]
select e1.height as h1, e2.height as h2, e3.height as h3
insert into outStream ;

Pattern
Match 3 events

from every e1=inStream -> e2=inStream[e1.height==
e2.height] -> e3=inStream[e2.height==e3.height]
select e1.height as h1, e2.height as h2, e3.height as h3
insert into outStream ;

Aggregate (Batch)
Window Size = 60

from inStream #window.lengthBatch(60)
select avg(height) as AvgHeight insert into outStream ;

Aggregate (Sliding)
Window Size = 60

from inStream #window.length(60)
select avg(height) as AvgHeight insert into outStream ;

II. BACKGROUND

This problem is motivated by our prior work at the University of Southern California and the City of
Los Angeles [3], and our current work at the Indian Institute of Science [18] on developing a Campus
IoT fabric for emerging smart utility applications. We use CEP engines to perform continuous queries
over one or more event streams, coming from smart meters and water level sensors, to detect patterns of
interest [19]. Each event is a tuple, and typically contains the timestamp, sensor ID and observed values.
Such event patterns can predict energy surges, trigger water pumping operations, and notify consumers
of surge pricing.

CEP engines register queries and execute them continuously over event streams for days or weeks [4],
[9]. CEP queries are of 4 four major types, as illustrated in Table I using data from a water level sensor.
Filter queries match a property predicate against fields in the incoming event, and only those events that
match the predicate are placed in the output stream. For example, ‘height < 150’ in row 1 of Table I
is the predicate that is matched, detecting a situation where the water level may have dropped below a
threshold. A Sequence query matches predicates on consecutive events, and if all predicates match the
sequence of events, those events are placed in the output stream. A Pattern query is similar, except that
the matching events do not have to be contiguous. For example, in row 3 of Table I, we match events with
the same heights for 3 successive events e1, e2 and e3, that is, there may be other non-matching events
between e1 and e2, and/or e2 and e3. Lastly, Aggregate queries apply an aggregation function, like
average, on a window of events. The window gives the count of consecutive events to be included, and
may be formed by sliding over the input stream incrementally, or by batching events into non-overlapping
windows.

The CEP queries can be composed into a directed acyclic graph (DAG) or a dataflow, where vertices
are queries and edges indicate events passed from the output of one query to the input of the downstream
query. Multiple queries may run within the same CEP engine on a machine, or different queries may
run on CEP engines in different machines and coordinate their execution using events streamed over the
network.

III. RELATED WORK

There are three primary related research areas relevant to our article: mobile Clouds, Fog and Peer-to-
Peer (P2P) computing, and query processing in sensor networks.

Mobile Cloud Computing [12] has grown as a research area that lies at the intersection of mobile
devices such as smart phones and the Cloud. The key idea is to use these personal devices as a thin
client to access rich services hosted on Clouds, forming a variation of a client-server model. In addition,
the concept of Cloudlets has been proposed as an additional layer that sits between the edge and the
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Cloud to help reduce latencies while offering superior computing power than the edge alone [20]. This
is conceptually the computing equivalent of Content Distribution Networks that move data closer to the
edge. Both these paradigms conceive of interactions between a single client and a remote Cloud/Cloudlet,
which is in contrast to our approach of leveraging the collective capabilities of distributed edge devices
and the Cloud.

Specific research papers have extended these broad concepts further. CloneCloud is an application
partitioning framework for mobile phones that off-loads a part of the application execution from the edge
device to device “clones” in a public Cloud [11]. Partitioning is done by migrating a thread from the
mobile device at a chosen point in the application to the clone in the cloud. After execution on the cloud, it
is re-integrated back onto the mobile device. It models energy as a function of CPU, display and network
state, and this is considered in their partitioning strategy. A further extension tries to improve upon this by
reducing state transfer costs for dynamic offloading [21]. Although CloneCloud partitions an interactive
application across mobile and Cloud, it does not address streaming analytics applications essential for the
IoT domain, where factors like latency and throughput need to be addressed, nor does it use multiple
edge devices.

Others do deal with partitioning of data stream applications between mobile devices and Cloud to
maximize the throughput of stream processing [22]. This framework considers sharing VM instances
among multiple users in the Cloud to improve VM utilization, and solves the problem using a genetic
partitioning algorithm like us. The empirical evaluation, however, uses a QR code recognition application,
which is unlike the high rate event analytics that we support for IoT domains. Further, it does not consider
distributing tasks to multiple edge resources either.

Our own prior work [17] has considered a similar bi-partitioning of a CEP query pipeline between a
single edge device and the cloud. Factors like compute time on each query, incoming event rate and latency
between resources are used to find an edge-cut in the DAG such that latency is reduced. It also considers
enforcing privacy constraints on event streams to determine if a stream is allowed on a resource. It does
not, however, consider multiple edge devices and could be solved optimally using a dynamic programming
solution. Energy constraints were not considered either, and there was no empirical evaluation. Besides the
flexibility of multiple resources and energy constraints considered in our current article, we also present
robust benchmarks and empirical evaluation.

Distributed query processing on multiple edges and the Cloud have been considered for feed-following
applications [23]. Here, database views of applications that follow social network feeds are distributed
to edge devices, with query operators that are applied on the feeds by existing relational databases
engines. The problem is modeled as a view placement problem with the goal of optimizing communication
between sub-queries running on the edge and the Cloud. However, there is a difference between their
view placement and our query placement problem on edge devices. In the former, the edge devices can
communicate with each other only through the Cloud, causing a “star” network topology. This reduces
the optimization problem to linear time. We instead allow the edges to communicate with each other,
which is feasible as they are typically on the same private network.

Serendipity [13] is a more comparable work that uses remote computing collaboratively among closely
connected mobile devices. It explores off-loading of computationally intensive tasks onto other intermit-
tently connected mobile devices rather than the Cloud. In their model, jobs are distributed to nearby
mobile devices with the aim of reducing the job completion time and conserving the device’s energy.
Unlike us, their approach does not work for streaming applications, as that would not be viable for
transiently connected devices, and they do not consider Cloud resources either.

More broadly, the concept of Fog Computing is gaining traction in the IoT domain [24]. Here, the Cloud
with a massive centralized data center is supplanted by a fog of wireless edge devices that collaboratively
offer computing resources. These have the benefit of low-latency communication and the ability to self-
organize locally, but lack full (centralized) control and their availability is unreliable [25]. Fog computing
platforms are still in a nascent stage, but our approach to distributed analytics execution across edge
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devices (Fog) and the Cloud offers a model for coordinating their computation, and leveraging the best
features of these two paradigms.

As such, there has historically been work on such Peer-to-Peer (P2P) systems, where interconnected
nodes can self-organize into a network topology to share files, CPU cycles, storage and bandwidth [15].
Peers can offload execution of tasks to other peers to speed up their job completion, and significant work
on lookup services such as distributed hash tables have taken place. This type of content search and
retrieval requires guarantees on QoS parameters like timely results, utilization of resources, response time
and correctness. For e.g., [26] [27] give algorithms for distributing tasks to a set of peers using hierarchical
coalition formation. Our work operates on a more deterministic set of edge devices (peers), but can benefit
from the management services developed for ad hoc P2P systems. Issues like energy and mobile devices
were not relevant for those architectures but gain prominence in IoT ecosystems we target.

Yet another related area from a decade back is on query processing in Wireless Sensor Networks (WSN).
Here, distributed sensors (motes) deployed to measure environmental parameters assemble together to solve
streaming analytics task [28] [29]. Query plan optimizing and placement techniques have been explored
in the context of a large number of sensor nodes. A virtual tree topology is created with an elected
leader node which receives query requests from users, and sends smaller tasks to worker nodes having
the relevant streams [16]. Intermediate nodes in the tree can partially process the query or forward the
results back to the leader to build the final result set. Like us, these strategies try to reduce the energy
and communication costs on these embedded devices. Rather than consider individual queries that are
partitioned into sub-queries, we consider a DAG of queries with placement at the granularity of query.
CEP engines have a richer query model as well, and we also have access to Cloud VMs rather than
execute exclusively on motes on the edge.

IV. PROBLEM FORMALIZATION

In this section, we formally state the CEP query placement problem for a DAG, which we have
motivated, and formulate it as a constrained optimization problem. The solution approaches to the problem
are offered in the next section.

A. Preliminaries
The streaming dataflow application is composed as a Directed Acyclic Graph (DAG) of vertices and

edges: G = 〈V,E〉, where V = {vi} is the set of CEP queries that are the vertices of the DAG, and E is
the set of event streams that connect the output of query vi to the input of the next query vj , and form
the directed edges. E is given by:

E = {ei | ei = 〈vi, vj〉, vi ∈ V, vj ∈ V ∪ φ}

The output event(s) of a query follow duplicate semantics and are forwarded to all out-edges from a
vertex. Multiple in-edges to a query follow interleave semantics, meaning events from all in edges are
appended to a single logical input stream for the vertex. The queries that receive the initial input event
streams into the DAG are called source queries, VSRC , and are characterized by having no in-edges and
perform no computation. These are “no-op” tasks that generate and pass events downstream. Similarly,
the queries that emit the output streams from the DAG are called sink queries, VSNK , and have unbound
out-edges that are incident on a dummy vertex φ3.

∀vj ∈ V, VSRC = {vj| @ei = 〈vi, vj〉 ∈ E} and VSNK = {vj| ∃ej = 〈vj, φ〉 ∈ E}

A query executes on a specific computing resource rk and the set of all computing resources available
within the IoT infrastructure is given by R = {rk}. We consider two classes of computing resources –

3The dummy vertex φ allows sink queries to have edges to other queries, but identify a separate unbounded edge for the final DAG
outputs. Source queries are in fact equivalent to the dummy φ since they are a no-op.
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edge devices such as smart phones and Raspberry Pi’s, and Cloud resources such as VMs, each having a
specific computing capability. These two computing resources form two mutually exclusive sets, RE for
edge devices and RC for Cloud VMs, respectively. Thus, RE ∪ RC = R and RE ∩ RC = ∅. A resource
mapping function, M : V→ R, indicates the resource on which a query executes.

A query path pi = 〈v0, v1〉, ...., 〈vk, vk+1〉, ..., 〈vn, vn+1〉 of length n is a unique sequence of alternating
and distinct vertices and edges, starting at a source vertex, v0 ∈ VSRC and ending at a sink vertex,
vn+1 ∈ VSNK . P is the set of all paths in the DAG.

A selectivity function, σ(vi), for each query of the DAG gives a statistical measure of the average number
of output events generated for every input event consumed by the query. Using duplicate semantics, the
selectivity of each out-edge is same as the selectivity of the vertex writing to that edge. The stream rate
defines the number of events passing per unit time on a stream. The incoming rate of the DAG Ωin, is
the sum of the stream rates emitted by all source queries in the DAG. Similarly the outgoing rate denoted
by Ωout is the sum of output rate of events emitted by the sink queries onto the dummy sink φ. Then
selectivity the whole DAG, σ(G) = Ωout

Ωin .
The incoming rate, ωini for a vertex vi is the sum of stream rates on all in-edges, due to interleave

semantics. Given duplicate semantics, the outgoing rate, ωouti for a vertex vi is the product of its incoming
stream rate ωini and its selectivity σ(vi). For simplicity, if the output rate for all source queries vk ∈ VSRC

is uniform, we have ωoutk = Ωin

|VSRC | .
Using this, we recursively compute the input and output stream rates for downstream vertices vj , and

the outgoing stream rate Ωout for the entire DAG G as:

∀vj ∈ V, vi /∈ VSRC , ωouti = ωini × σ(vi) ωini =
∑

〈vj ,vi〉∈E

ωoutj Ωout =
∑

vi∈VSNK

ωouti

Compute latency, λki , is the time taken to process one event by a query vi on an exclusive resource rk. If
n queries are placed on the same resource rk, the latency for each query becomes

∑n
i λ

k
i , ∀(vi, rk) ∈M

due to round-robin scheduling 4. If λ is the latency time in seconds taken by a query to process a single
event on a resource, λ−1 is the throughput that can be processed by that query on that resource in 1 second.

Let the size of an event that is emitted by query vi on its out-edge(s) be denoted by di. The network
latency and network bandwidth between two resources rm and rn is denoted by lm,n and βm,n, respectively.
Therefore, the end-to-end latency along a path p ∈ P for a given resource mapping M can be defined
as Lp, the sum of the compute latency and the network transfer time. The maximum of these latencies
along all paths is LG , the end-to-end latency for the DAG, also called the makespan. The path which has
this maximum time is called the critical path.

Lp =
∑

〈vi,vj〉∈pi
(vi,rm)∈M
(vj ,rn)∈M

(
λmi +

(
lm,n + di

βm,n

))
LG = max∀p ∈P(Lp)

B. Constraints
Based on the motivating scenario introduced in the background, we define several constraints that need

to be satisfied when performing a mapping of queries to resources.
Constraint 1: All source vertices should be mapped to an edge device, while the sink vertices should

be on the Cloud.
vi ∈ VSRC =⇒ rk ∈ RE and vi ∈ VSNK =⇒ rk ∈ RC ∀(vi, rk) ∈M

This constraint ensures that source queries are co-located on the edge device that is generating the input
event stream. Likewise, given that analytics performed after the CEP are hosted on the Cloud, the sink
queries must be placed on the VM resource.

4For simplicity, we do not consider multi-thread execution of queries by a single CEP engine on a resource. Resources with multiple cores
can instead be modelled as multiple resources with ∞ bandwidth.
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Constraint 2: Given an input rate ωini on vertex vi, if the vertex is exclusively mapped to a resource
rk, it should not overwhelm the compute throughput capacity.

ωini <
1

λki
∀vi ∈ V

If multiple vertices are running on the same resource rk, then the input throughput ωini on a vertex vi that
the resource rk can handle is constrained by:

ωini <
1∑

(vj ,rk)∈M
vj /∈VSRC

λkj

(
1 + πm

)
∀vi ∈ V, vi /∈ VSRC , m =| vj | ∀(vj, rk) ∈M

The maximum event rate that a resource rk can handle when exclusively running a query vi is given by
the inverse of its latency 1

λki
, and for multiple queries it is the inverse of the sum of their latencies 1∑

λkj
.

However, there is likely to be additional overheads in the latter case. Here, πm is a function of m which
denotes the parallelism overhead of m queries, and is obtained through empirical evaluations. Hence, we
should ensure a mapping of a query to a resource such that it does not receive an input rate greater than
the compute throughput supported by that query on that resource.

Edge resources are generally run on batteries with a fixed capacity. Let the power capacity available
for an edge device rk be Ck, given in mAh, when fully charged. Let the base load (instantaneous current)
drawn by an edge device rk when no queries are running be given by µkB, in mA. Let εki be the incremental
power, beyond µkB, drawn on the edge resource rk ∈ RE by a query vi to process a single input event,
given in mAh. Let the time interval between charging this edge device rk, be denoted as τk, given in
seconds, be it through solar regeneration or by replacing the battery.

Constraint 3: The queries running on a edge device rk should not fully drain out the battery capacity
of that resource within the recharge time period τk.(

µkB × τk
)

+
∑

(vi,rk)∈M
vi /∈VSRC

rk /∈RC

(ωini × τk)× εki ≤ Ck

We assume that DAGs once registered with the engine and placed on resources run for a much longer
time (say days or weeks) than the recharge period (say 24 hours). Thus our optimization plan should take
this energy constraint into consideration 5.

C. Optimization Problem
Given a DAG G = 〈V,E〉 and a set of edge and Cloud resources R, find a resource mapping M for

each query vi ∈ V on to a resource rk ∈ R such that the mapping meets the Constraints 1, 2 and 3 while
minimizing the end-to-end latency for the DAG.

In other words, find the mapping that minimizes the end-to-end DAG latency,

L̂G = min
∀(V,R) ∈M

(LG)

Note that our optimization problem is orthogonal to the network topology, and the network character-
istics between pairs of resources in R is captured by their latency and bandwidth distributions. Similarly,
the resources themselves are abstracted based on their compute and energy capacity distributions for
processing specific queries.

5For simplicity, we consider that discharging of a battery by an edge resource is linear with time and its full recharge is instantaneous at
every time τk. In practice, batteries have non-linear discharge cycles based on their present capacity, and batteries charged by solar panels
may have charging/discharging constantly occurring during daytime.
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V. SOLUTIONS TO THE OPTIMIZATION PROBLEM

There have been a multitude of techniques that have been proposed to solve optimization problems,
much like the ones we have used [30]. Here, we present two approaches for solving the placement
problem: one, a Brute Force (BF) approach that gives the optimal solution while being computationally
intractable for large problem sizes, and the other which translates the problem to a Genetic Algorithm
(GA) meta-heuristic and gives an approximate but fast solution.

A. Brute Force Approach (BF)
Given the Constraint 1 that source vertices vi ∈ VSRC are pinned to the edge devices and sink vertices

vi ∈ VSNK are pinned to Cloud resources, our goal is to find a mapping for the n intermediate vertices
of the DAG to either edge or Cloud resources, where n =

(
|V| − (|VSRC |+ |VSNK |)

)
. In the process, we

wish to minimize the end-to-end latency of the query DAG and also meet the other two constraints.
The Brute Force (BF) approach is a naı̈ve technique which does a combinatorial sweep of the entire

parameter space. Here, each of the n vertices are placed in every possible |R| resources as a trial. For
each trial, the constraints are evaluated and if all are satisfied, the end-to-end latency for the DAG LG is
calculated for this placement. If this latency improves the known minimum latency from earlier trials, then
the current minimum latency is set to this smaller latency and the trial mapping stored as the current best
mapping. Once all possible mappings are tried, the current minimum latency value is the best end-to-end
latency, L̂G , and its respective mapping is returned.

1) Complexity Analysis: DAG scheduling in general is NP-complete except for some narrow conditions,
which our problem does not meet [31]. We transform a previous DAG scheduling problem that is proved
to be NP-complete into ours in polynomial time. Let T = {T1, T2, ..., Tn} be a set of task that have a
partial order to form a DAG, and R = {R1, R2, ..., Rr} be resources with a bounded capacity Bi. Each
task Ti has a latency time τi and a capacity requirement of Rj(Ti) ≤ Bj when run on resource Rj . [32]
have earlier shown that even checking the existence of a valid schedule from tasks T to resources R
while meeting a deadline D, the resource capacity bounds, and the partial task ordering is NP-Complete,
for more than two resources. We can get the fastest schedule by testing different integer values of D to
find the smallest with a valid schedule.

We transform this known NP-complete problem to our optimization problem, which is more complex, in
polynomial time, as follows. We map each task Ti ∈ T to a query vi ∈ V with running time τi replacing
the sum of the compute and network latencies, λmi +

(
lm,n+ di

βm,n

)
. We also transform the resource bounds

Bj into the compute and energy bounds in Constraints 2 and 3. Given a mapping of queries to resources
M : V → R, we can test its validity as a solution by checking constraints at each query and finding
the critical path in the DAG in O((|R| × |V|) + |E|) time, that is polynomial. Hence, this shows that our
optimization problem is NP-complete.

The BF algorithm gives a provably optimal solution since it considers all possible solutions. However,
its computational cost is high. Specifically, the asymptotic time-complexity of the Brute Force algorithm
is exponential, at O

(
(|V|+ |E|)× |R|n

)
.

B. Genetic Algorithm based Optimization Problem Solver
Finding an optimal placement of the query to resources is a non-linear optimization problem without

a real-valued solution, which makes it difficult to use heuristics like integer linear programming [11].
Many NP-complete problems have been practically solved using evolutionary meta-heuristic algorithms
like Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) [33]. Since GA has solved hard
graph-based problems like Job Scheduling and Travelling Salesman Problem (TSP) with considerable
accuracy in practice, we chose this technique to solve this optimization problem. Our problem poses an
extra challenge of satisfying the constraints too – converged solutions from such meta-heuristics may
cause compute, network, and/or energy violations. GA offers the flexibility of being modified to produce
solutions which satisfy multiple constraints, which we use.
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There are four integral components to a GA approach [33]. Chromosomes contain solutions to the
problem being solved. A Population is the set of all chromosomes whose solutions are being considered. A
Generation is the number of evolutions (iterations) that the chromosomes in the population have undergone.
The Objective Function gives the measure of fitness of a chromosome. Defining the GA solution requires
us to map our placement problem to each of these stages.

Let a chromosome Q = {q0, q1, ...qn−1} give the placement of a set of n =
(
|V| − (|VSRC |+ |VSNK)|

)
queries onto a set of resources R, where n is the number of variables in the GA. The chromosome’s values
qi are encoded with an integer value in the range [0, |R| − 1] such that it represents the resource number
to which the ith query gets mapped to. A set of chromosomes form a population and the population size,
p, is a fixed value across the generations. The 0th generation of the population is initialized randomly
with p chromosomes. In every generation, an optimization function F gives the fitness value F (j) for
the jth chromosome cj in the population. Since we want to minimize the end-to-end latency of the DAG
and GA attempts to maximize the fitness value, we define the fitness value for a chromosome solution by
subtracting the DAG’s end-to-end latency for this placement solution from a large positive constant.

Apart from the population which offers the current candidate solutions, we also maintain a best-fit
chromosome which is the solution with the best fitness value seen so far across all generations. After each
generation, the current population’s new chromosomes are compared with the best-fit chromosome to see
if an improved solution has been discovered, and if so, the best-fit chromosome is updated to this.

We use a “roulette wheel” algorithm to select the chromosomes from the current population to use
for evolution into the next generation’s population. Alternatively, linear rank-based selection and binary
tournament selection may also be used [34], [35]. For roulette wheel, we first calculate the total fitness
value for the current population, f . Then, we calculate the probability mass function (PMF), ρj , which
gives the probability of selecting a chromosome cj from the population (c0, c1, ..., cp−1). Next, we compute
the cumulative distribution function (CDF), δj of this PMF. These are given by:

f =
p−1∑
j=0

F (j) ρj = P(J = j) = F (j)

f
δj =

j∑
k=0

ρk

A random real number x in the range [0..1] is then generated. If x ≤ δ0, we select c0 into the population;
otherwise if x falls in the range (δj−1, δj], we select cj into the population. This selection step is repeated p
times to generate the next population. The selections are independent, and some chromosomes that have a
greater PMF may get selected multiple times. Thus, the chance of choosing a chromosome is proportional
to its fitness value, and hence inversely proportional to the end-to-end latency of that solution which we
want to minimize [36].

After a new population has been generated, we apply two recombination operators to further its
evolution: crossover and mutation. Crossover picks each chromosome into the crossover set with a
probability χ, thus giving a crossover set size of p× χ. Chromosomes in this set are randomly paired to
form “couples” for crossover; if the crossover set has an odd number of chromosomes, the last added chro-
mosome is dropped. During crossover between a pair of chromosomes ci = (q0, q1, ..., qm, qm+1, ..., qn−1)
and cj = (q′0, q

′
1, ..., q

′
m, q

′
m+1, ..., q

′
n−1), a random crossover point m is selected in the range [0..n −

1]. Then, the crossover results in the new chromosomes ĉi = (q′0, q
′
1, ..., q

′
m, qm+1, ..., qn−1) and ĉj =

(q0, q1, ..., qm, q
′
m+1, ..., q

′
n−1). The mutation operation helps jump (out of local minimas) to regions of the

solution space which may not have been searched before. The probability for mutation µ decides whether
a query qi in a chromosome will change its resource placement value or not, and if it mutates, the new
value for the query becomes a random integer in the range [0..(|R| − 1)]. We expect µ× (n× p) number
of queries to change their resource mapping values in each population.

For every generation, we repeat the steps: roulette wheel population selection from the previous
generation’s population; crossover to generate new chromosomes; mutation of these chromosomes; and
potential update of the best-fit chromosome based on the fitness values for chromosomes in this population.
These operations are repeated for g generations, which may be a constant or based on a convergence
function.
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Our optimization problem requires us to enforce constraints. There are three approaches to doing this
– remove solutions which violate constraints in each generation, give a penalty to the fitness value of the
violating chromosome, or have an encoder-decoder scheme so that invalid solutions do not occur in the
first place [33]. The first approach can constrain the search space of GA and cause the population to die
out, while the third approach is difficult, sometimes impossible, to formulate cleanly and also increases the
time complexity. Instead, we use a high-valued penalty function on invalid solutions to reduce the chance
that they will be selected and will cause them to eventually be pushed out. It also holds the possibility
that the generation having such invalid solutions can still evolve to a valid one.

We add a penalty value of log2(1 + γ × F (j)) to each chromosome cj , for each constraint that is
violated, where γ = 1.5. As the fitness value is large (since the end-to-end latency is subtracted from
a large positive constant), we use log2 to subdue the effect of the constant and also make the penalty
function non-linear. The penalty function is cumulative – when a chromosome violates both Constraints 2
and 3, the penalty doubles. We ensure that the constraint penalty is large enough to even accommodate
viable placements that exhibit a ping-pong-ping effect between edge and Cloud, i.e., 4 sequential tasks
are placed in Edge-Cloud-Edge-Cloud, causing 3 network trips.

1) Complexity Analysis for GA: In each generation of the GA, we need to find the objective value
for all the chromosomes present in the population. This means evaluating the critical path for the DAG
based on each mapping solution (chromosome) present in the population. Since we have g generations,
a population size of p chromosomes in each generation, and the time to find the longest path in the
DAG is O(|V|+ |E|) for each candidate solution, the asymptotic time complexity of the GA approach is
O(g × p× (|V|+ |E|)).

VI. MICRO-BENCHMARKS ON RESOURCE USAGE FOR EVENT ANALYTICS

We perform a series of micro-benchmark experiments to measure and build a distribution of the latency,
λki , for a query vi running on resource rk to process an event, and its incremental energy consumption,
εki . We also measure and construct distributions for network latency lm,n and bandwidth βm,n between
pairs of resources rm, rn. These offer real-world characteristics of the compute capacity used on the edge
and Cloud resources, their local area network characteristics, and the energy usage of edge devices for
event analytics. These empirical distributions are useful in themselves for IoT deployment studies, and
also inform the design and execution of our simulation study to evaluate the proposed query placement
solutions, presented in the next section.

A. Experimental Setup
We run experiments with different CEP query configurations, on edge and Cloud resources. We use

the popular Raspberry Pi 2 Model B v1.1 as our edge device, and a Standard D2 VM in Microsoft
Azure’s Southeast Asia data center as our Infrastructure-as-a-Service public Cloud. The Pi has a 900MHz
quad-core ARM Cortex-A7 CPU and 1GB RAM, while the Azure D2 VM has a 2.2Ghz dual-core (4
hyper-threads) Intel Xeon E5-2660 CPU and 7GB RAM. The Azure VM has as many hyper-threads as
the Pi’s cores, and is rated at about twice the clockspeed. It also has seven times the physical memory.
Both run Linux OS distributions.

We use WSO2’s Siddhi as our CEP engine [4] on both Pi and Azure. Siddhi is written in Java, open
sourced, and used for IoT applications 6. Queries are written in Siddhi’s APIs and compiled to executable
JARs that are run on the resources. Pi runs it in Oracle JDK SE 1.8 for ARM and Azure uses OpenJDK
SE 1.7.

We generate input event streams with synthetic integer values to represent a sensor’s observation stream.
Events are pre-fetched into memory, and replayed as 4-byte integers to Siddhi. The event values are
generated to meet the selectivity needed for a query, as discussed later in Table I. Output patterns matched

6http://wso2.com/library/articles/2014/12/article-geo-fencing-for-iot-with-wso2-cep/
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TABLE II: Summary of query configurations used in micro-benchmarks

Query ID Selectivity
(σ)

Input Event generation
for required selectivity

Pattern/
Window
length

Peak Rate
(Pi)
[e/sec]

Peak Rate
(Azure)
[e/sec]

Energy
used by Pi
[mA]

Fil 1.0 1.0 Random integer < 150 - 114,334 337,357 337.04
Fil 0.5 0.5 Random integer [0-299] - 152,026 401,454 336.91
Fil 0.0 0.0 Random integer >= 150 - 253,766 514,599 337.41
Seq3 1.0 1.0 Equal integers (10,10,10,...) 3 37,790 248,153 340.91

Seq3 0.5 0.5 5 equal integers followed by a
different integer (3,3,3,3,3,10,...) 3 47,042 297,712 342.45

Seq3 0.0 0.0 Unequal integers (3,7,9,...) 3 67,101 375,508 342.62
Seq5 1.0 1.0 Equal integers (10,10,10,10,10,...) 5 27,499 210,138 341.27

Seq5 0.5 0.5 9 equal integers followed by a
different integer (3,3,3,3,3,3,3,3,3,12,...) 5 34,247 250,769 342.42

Seq5 0.0 0.0 Unequal integers (3,4,7,8,9,...) 5 53,475 331,334 344.44
Pat3 1.0 1.0 Equal integers (10,10,10,...) 3 37,816 245,899 340.88

Pat3 0.5 0.5 Sequence of 3 equal and
3 random integers (3,4,3,5,3,100,...) 3 151 634 351.32

Pat3 0.0 0.0 Random integers 3 103 462 343.75
Pat5 1.0 1.0 Equal integers (10,10,10,10,10,...) 5 27,692 210,960 352.33

Pat5 0.5 0.5 Sequence of 5 equal and 5 random
integers (3,4,3,5,3,6,3,10,3,11,...) 5 151 631 351.59

Pat5 0.0 0.0 Random integers 5 104 459 352.45
Agg B 60 1/60 Random integers 60 128,053 331,670 393.68
Agg B 600 1/600 Random integers 600 129,529 333,295 396.55
Agg B 6000 1/6000 Random integers 6,000 122,558 327,424 387.84
Agg S 60 1.0 Random integers 60 63,221 241,126 393.92
Agg S 600 1.0 Random integers 600 62,096 239,917 393.72
Agg S 6000 1.0 Random integers 6,000 59,175 238,720 393.41

for a query are returned through a callback. Counters maintained at the input and output streams measure
the event rate per second, and are used to find the latency and throughput for each query.

We design the query benchmark by configuring the selectivity and length of patterns matched or
aggregated for the four major query types, to give 21 different queries as summarized in Table II. We
consider 3 configurations for filter queries with different selectivities: σ = 0.0 which does not match any
input events, σ = 0.5 which matches about half the input events, and σ = 1.0 which matches all input
events. For sequence queries, we consider two queries with sequence lengths of 3 and 5, and within each
have selectivities of 0.0, 0.5 and 1.0. Pattern queries of lengths of 3 and 5 are considered, with three
selectivities each. Aggregate queries are designed with window widths of 60, 600 and 6000, emulating
different temporal sampling frequencies for sensors. We include both sliding and batching window variants.

These 21 queries are used to benchmark several common performance parameters used to solve the
optimization problem. We measure the peak throughput rate of a query on the Pi and VM by replaying
input events through Siddhi queries without pause. The compute capability of the resource decides the
maximum input rate that is sustained. Since Siddhi is used in a single thread, the inverse of the peak
throughput for a query vi on a resource rk gives the expected latency per event, λki .

We measure the energy usage of the Pi as the current drawn (milli-Ampere, mA), measured using a
high precision multimeter which samples 4 values per second. The energy usage is measured under a
base-load, with no queries running, and a load condition for each query. We also measure the energy use
for input event rates of 100 e/sec, 1000 e/sec, and 10, 000 e/sec per query, besides the peak rate, since
in the real world, the input rate to a query may be lower than the peak supported rate. Each query runs
for 5 mins thus giving 1, 200 samples of current drawn for our distribution. The energy usage for Azure
is not relevant here as it is not a constraint.

We measure network latency using the nping command that sends a 40 Bytes TCP packet from a
source to a destination machine, and the destination responds with a 44 Bytes TCP packet. This gives
the round trip time (rtt) for the packet, and the network latency in a single direction as 1

2
× rtt. Network

bandwidth is measured using an iperf server on a destination machine, to which the source machine
connects and downloads data for 1 min (≈ 150 − 600 MB). We deploy 4 Raspberry Pis at different
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(a) Peak query rate on Pi & Azure (b) Energy at peak & variable rate

(c) Latency (d) Bandwidth

Fig. 1: Peak rate (a), Pi Energy usage (b) and Network Profile (c,d) from benchmarks

network locations in our campus along with 4 Azure VMs. Each pair measures their inter-device latency
and bandwidth using nping (≈ 1/min) and iperf (≈ 10/mins) for a 24 hour duration, while ensuring
that no two pairs overlap. This gives 10, 681 latency and 894 bandwidth samples between the edge pairs
within campus, and similarly 5, 240 and 775 samples from campus to Cloud.

B. Observations and Analysis
The peak input rates that can be sustained for different CEP queries on Pi and Azure are shown in

Fig. 1 as Box and Whiskers plots of the distributions. In general, the filter and batch aggregate queries
support a higher peak rate than the other query types, staying above 110, 000 e/sec and 320, 000 e/sec
for Pi and Azure, respectively. The Pi is about 3× slower than Azure in processing equivalent queries,
which is understandable given their different CPU architectures and clock speeds (900 MHz vs. 2.2 GHz).
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The peak rates of filter and sequence queries are inversely correlated with their selectivity. For example,
Seq5 1.0 sequence query of length 5 with σ = 1.0 supports a median rate of 27, 499 e/sec on Pi (Fig. 1a)
while Seq5 0.0, which has the same length but lower selectivity at σ = 0.0, supports a higher rate of
53, 475 e/sec. A similar trend is seen for the Azure VM too in Fig. 1a. As the selectivity reduces, fewer
output event objects have to be generated, which allows more input events to be processed.

However, this does not hold for pattern queries and the peak rate actually decreases sharply as the
selectivity decreases, from 27, 692 e/sec for Pat5 1.0 on the Pi to barely 104 e/sec for Pat5 0.0.
Pattern queries allow other events to occur between successive matching events. So as fewer events match,
Siddhi’s state machine maintains more partially matched states, and every future event checks with each
state to see if the full pattern matches. This increases the resource usage and lowers the throughput.

We also observe that for sequence and pattern queries, the peak rate decreases with an increase in
the pattern length, for example, on the Pi reducing from a median 37, 790 e/sec for Seq3 1.0, which
matches 3 events, to 27, 499 e/sec for Seq5 1.0, which matches 5 events. This is understandable –
as the match size increases, more in-memory states have to be maintained to match subsequent events
against.

In case of aggregate queries, batch windows support a higher peak rate than sliding windows since
the latter process many more windows than the former, and their selectivities are also very different. For
example, the batch aggregate query rate is double that of the sliding aggregate query on the Pi, though
it is less pronounced on Azure. However, the peak rate supported does not change as we increase the
window width, for both batch and sliding windows. Even though the window size grows, the number
of aggregation operations performed remain almost the same. All these distributions are tight, ensuring
reproducibility, and their relative trends are consistent for both Pi and Azure assuring us that these are
characteristics of the query and not a device artifact.

We report the total energy used by the Pi for each input event for different queries at the peak rate,
given as current drawn (in mA) in Figure 1b. Subtracting the base load current drawn by a freshly booted
Pi, ≈ 233 mA, gives the incremental current for the query per event. Multiplying this value by the duration
for which the query runs helps match the Constraint 3 of battery capacity for the Pi, given in mA·h. In
general, we do not see a significant difference in the energy used by filter, sequence and pattern queries,
largely falling between 336 − 353 mA. Different aggregate queries have comparable energy levels as
well, with their boxes between 382− 398 mA, though they are higher than filter due to the floating-point
operations required for aggregation.

The distribution of the total energy use for query types with σ = 1.0 but for different input event
rates of 100 e/sec, 1000 e/sec, 10, 000 e/sec and their peak rate is shown in Figure 1b. We see that
the median current drawn by the Pi is relatively the same for all rates, other than the peak, which has a
higher consumption. For example, Fil 1.0 100, Fil 1.0 1000 and Fil 1.0 10000, which are
the filter query with σ = 1.0 and at rates of 100 e/sec, 1000 e/sec, and 10, 000 e/sec, all draw between
322− 324 mA while at the peak rate, the same query Fil 1.0 Peak uses a higher 338 mA. However,
we do see that for input rates of 10, 000 e/sec, several queries have a wider distribution, displaying the
transient energy usage behaviour for the Pi under certain cases.

The network latency between the Pi’s on campus is variable (Fig. 1c, left), in the range 0.31− 80 ms,
though the median is lower at 5.08 ms. This is because the Pi’s are at different segments in the campus
topology, with 4 hops within the private network. The Pi to Azure latency is in general higher at 51.93−
82.06 ms, with a median of 76.77 ms. This reflects the latency from Bangalore, India to the Microsoft
data center in Singapore where the VMs are placed, across the public Internet. The network bandwidth
between the Pi’s on campus is 88 − 94 Mbps (Fig. 1d, left) – close to the network interface limit of
100 Mbps for the Pi’s. These values do not exhibit the variability seen in the latency. In comparison, the
bandwidth between the Pi’s and the Azure VMs is lower, at a median 60 Mbps, and varies widely by
±20 Mbps due to higher congestion in the public Internet relative to the private campus network.

Constraint 2 requires the empirical evaluation of the parallelism overhead πm. We run m = 2 to m = 10
queries concurrently in Siddhi on the Pi and the Azure VM, and find a linear fit of the parallelism overhead
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for m queries relative to a single query performance, given as a % penalty on the input rate supported.
We have:

πm = −1.12× (m− 1)− 5.68, ∀rk = Pi and πm = −0.35× (m− 1)− 3.80, ∀rk = Azure

VII. SIMULATION STUDY OF DISTRIBUTED QUERY PLACEMENT

Our problem formalization and solution are generalizable to any edge or Cloud resource, network, and
DAG. However, since it is not possible to formally bound the quality of GA solutions [37], [38], we
instead perform detailed simulations to evaluate the placement of CEP queries across the edge and Cloud
resources as provided by the proposed algorithms. These comprehensive simulations use realistic query,
DAG, resource and network distributions, sourced from our micro-benchmarks and from public datasets.
We ensure that every variable present in the optimization problem is varied. We evaluate the relative
quality and speed of solutions given by the brute-force and our GA meta-heuristic approaches.

A. Experimental Setup
1) DAG Generation and Static Characteristics: Our evaluation considers a broad collection of syn-

thetically generated DAGs composed out of the CEP queries introduced and benchmarked above. We use
the Random Task and Resource Graph (RTRG) tool [39], developed for embedded systems research, to
generate dataflows with different numbers of CEP queries (vertices). We generate DAGs with a maximum
vertex out-degree of 1–5 edges. We then map the benchmarked CEP queries onto each vertex in the DAG.
We first randomly set a vertex to one of the query types – filter, sequence, pattern, batch aggregate or
sliding aggregate, with equal probability. Next, we uniformly select a variant of this query type from
Table II, to give coverage to query type and selectivity in each DAG 7. We generate DAGs with 4− 50
vertices, of which 1 or 4 are source queries (VSRC) – the latter only for larger DAGs. DAGs may consume
multiple streams, and it impacts the downstream rate and the selectivity, and also varies the number of
unconstrained queries available for placement.

We avoid local effects of the random DAG generator tool by generating 3 DAGs for each configuration
to give a total of 45 DAGs (Table III). We see a fair coverage of the different query types in each DAG.
The selectivity σ(vi) of each query vi is used to generate the overall selectivity for the DAG recursively.
The DAGs’ selectivities also have a wide range, from σ = 0.04− 458.28. This, when combined with the
input rate to the DAG, determines the output rate of the DAG 8. For a sample input rate of 1000 e/sec,
the DAGs’ expected output rates range from 20 − 114, 000 e/sec 9.We identify as max query, the one
with the highest relative input rate in the DAG that may be a bottleneck, and tabulate its input selectivity
and peak input rate. In some cases, like query 50_4_3, the rate for the max query is much higher than
the DAG’s output rate.

2) Dynamic Characteristics of DAGs and Network: Besides the above static characteristics of the
DAG, dynamic runtime characteristics of the edge, Cloud and network can vary in the real-world. For
each DAG, we sample from real-world distributions the values of the latency (λki ) of each query vi running
on each resource rk; the network latency and bandwidth (l, β) for each out-edge from a vertex (edge-
edge, edge-Cloud); and the energy usage (εki ) on the edge device for each query, at the input rate it is
processing 10.

7For these experiments, we consider all queries in Table II except Pat3 0.5, Pat3 0.0, Pat5 0.5 and Pat5 0.0. These four
have a sharply lower peak throughput rate compared to the other queries, and their inclusion makes it difficult to automatically generate
synthetic DAGs having a feasible solution. This gives us 17 queries in all as candidates to map onto vertices in the DAG.

8In case of multiple sinks in the DAG, the output rate is determined as the sum of the output rates from all of them, and the selectivity
of the DAG reflects this as well.

9DAGs with multiple source vertices divide the input rate evenly between the sources.
10For simplicity, we assume that all edge devices have the same computing capacity, and similarly for the Cloud VMs. However, the

analytical model does consider edge and Cloud resources of different capabilities.
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TABLE III: Configuration of DAGs used in simulation study. Counts of source and sink vertices, and
different query types present in each DAG is listed. Selectivity and rates for the DAG and the query in
the DAG with the maximum input rate are also shown.

DAG
ID1

Sources Sinks Filter Seq. Pattern Agg B Agg S Max Qry
I/P σ

DAG σ Max Qry
I/P Rate2

DAG
O/P Rate2

4 1 1 1 1 0 1 2 0 0 1.50 1.50 1,500 1,500
4 1 2 1 2 1 0 1 1 0 1.00 1.00 1,000 1,000
4 1 3 1 1 1 1 0 0 1 2.00 2.00 2,000 2,000
6 1 1 1 3 1 2 1 1 0 6.00 6.00 6,000 6,000
6 1 2 1 3 1 2 1 1 0 2.50 0.06 2,500 60
6 1 3 1 3 1 1 3 0 0 9.50 6.00 9,500 6,000
8 1 1 1 2 1 3 2 0 1 2.00 2.00 2,000 2,000
8 1 2 1 2 0 3 2 1 1 12.0 12.0 12,010 12,010
8 1 3 1 1 0 1 2 3 1 1.00 1.00 1,000 1,000

10 1 1 1 2 4 0 4 0 1 40.5 40.5 40,500 40,500
10 1 2 1 1 0 3 3 1 2 4.13 2.10 4,130 2,100
10 1 3 1 2 0 4 3 0 2 56.0 56.0 56,000 56,000
10 4 1 4 3 1 1 1 2 1 18.9 18.9 4,720 4,720
10 4 2 4 2 1 4 0 0 1 21.7 12.0 5,430 3,000
10 4 3 4 1 0 1 3 1 1 116 116 29,000 29,000
12 1 1 1 2 4 3 3 0 1 41.6 41.6 41,600 41,600
12 1 2 1 2 2 2 3 3 1 1.55 0.01 1,550 10
12 1 3 1 3 2 0 5 2 2 29.0 0.01 29,000 10
12 4 1 4 1 2 1 3 1 1 42.3 21.1 10,570 5,280
12 4 2 4 2 1 5 0 0 2 49.0 14.5 12,250 3,630
12 4 3 4 2 1 3 3 1 0 56.0 56.0 14,000 14,000
20 1 1 1 2 1 6 6 2 4 4.11 2.95 4,110 2,950
20 1 2 1 3 2 5 5 5 2 14.8 14.8 14,780 14,780
20 1 3 1 2 3 3 7 5 1 6.13 6.13 6,130 6,130
20 4 1 4 2 1 2 7 2 4 458 458 114,570 114,570
20 4 2 4 2 0 5 7 2 2 78.0 15.7 19,500 3,930
20 4 3 4 1 3 4 2 3 4 186 62.8 46,510 15,700
30 1 1 1 1 1 6 10 7 5 84.3 1.68 84,260 1,680
30 1 2 1 1 3 11 10 3 2 7.55 7.55 7,550 7,550
30 1 3 1 2 4 10 8 2 5 2.00 0.72 2,000 720
30 4 1 4 1 3 5 8 6 4 40.7 0.20 10,180 50
30 4 2 4 2 2 11 4 5 4 16.0 0.80 4,000 20
30 4 3 4 1 4 8 8 4 2 155 16.0 38,760 4,160
40 1 1 1 2 2 12 13 8 4 9.95 0.04 9,950 40
40 1 2 1 1 5 11 9 6 8 151 76.6 150,690 76,600
40 1 3 1 1 5 8 8 5 13 24.4 0.32 24,410 320
40 4 1 4 2 4 15 9 4 4 104 4.44 26,000 1,110
40 4 2 4 2 1 7 14 9 5 16.0 6.44 4,000 1,610
40 4 3 4 1 3 8 11 8 6 875 2.44 218,840 610
50 1 1 1 1 10 14 10 4 11 122 72.9 121,580 72,950
50 1 2 1 1 6 15 15 4 9 64.7 64.7 64,670 64,670
50 1 3 1 2 7 17 12 4 9 6.00 1.03 6,000 1,030
50 4 1 4 2 3 14 19 5 5 48.5 0.12 12,120 30
50 4 2 4 3 3 11 15 12 5 305 0.44 76,320 110
50 4 3 4 2 9 13 10 5 9 1,003 102 250,780 25,600
1 The 1st number in the DAG ID is the number of vertices, 2nd is the number of source vertices, and 3rd is a count for the 3 versions.
2 Based on a DAG input rate of 1000 e/sec

Besides the network benchmarks from our campus Local Area Network (LAN), our simulations also
consider public measurements from the widely-used PlanetLab project [40], to capture the performance
of edge devices in a Wide Area Network (WAN). Specifically, for edge to edge latency, we use the dataset
from [41] that gives the pair-wise rtt between 490 PlanetLab nodes at global universities, over a 9 day
period. We extract 4, 312, 980 valid measurements into a distribution. We source edge to edge bandwidths
from [42], which provides 2, 448 pair-wise measurements from 50 random PlanetLab nodes. Lastly, [43]
offer detailed latency and bandwidth measurements between edge and Cloud, for 80 geographically
distributed PlanetLab nodes and 40 Amazon EC2 Cloud instances in 8 regions. This gives 867, 489
valid samples of the edge to Cloud latency, and 771, 433 data-points for their bandwidth distribution.
Figs. 1c(right) and 1d(right) show the latency and bandwidth distributions for these PlanetLab datasets
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that have been used in prior research, and are representative of the heterogeneity of network traffic in wide-
area IoT deployments. As we see, their latency distributions are wider and higher, while their bandwidths
are lower, relative to our campus private network.

We simulate the runtime variability of these parameters by sampling from the box plot distributions in
Figs. 1. We first pick one of the two quartile ranges, (Q1−Q2) or (Q2−Q3), with equal chance. Then,
with a uniform probability, we select a value from that inter-quartile range. This technique is simple,
reproducible from the box plots, and also captures the variability in the measured parameter values.

For each vertex vi in each DAG, we apply the sampling technique on these box plots to deter-
mine its runtime parameters: 〈λpii , λazurei , εazurei 〉, indicating the latencies for running this query on the
Pi and Azure VM, and the energy consumed when running it on the Pi, respectively. Similarly, for
each edge between vertices vi, vj in each DAG, we sample and determine its network characteristics:
〈lpi−pii,j , lpi−azurei,j , βpi−pii,j , βpi−azurei,j 〉, which are the latencies and bandwidths from edge to edge and edge to
Cloud, respectively. Separate simulations are done for campus LAN and PlanetLab WAN setups.

3) Input Rates to Generated DAGs: Given the diversity in the structure and selectivities of the generated
DAGs, we need to carefully determine meaningful input rates Ωin to them such that a feasible solution is
highly likely, and realistic. We select two different static input stream rates for our study, 100 e/sec and
1000 e/sec. These ensure that sufficient queries can run on the edge without forcing all of them to the
Cloud. At rates of 100 e/sec and 1000 e/sec, 90% and 95% of all queries, respectively, present in the
DAGs will receive an input rate smaller than the Q1 input rate supported for that query on the Pi, thus
forcing no more than 5− 10% of queries to run in the Cloud.

We also check if each DAG meets these two tests and otherwise regenerate them: 1) A DAG should
have no query whose effective input rate for a DAG input of 1000 e/sec is greater than the Q3 peak input
rate for it on Azure, ensuring the VM can handle this query’s throughput, 2) We eliminate trivial DAGs
whose effective selectivity is zero.

4) Edge Resources in Deployment: As the queries in a DAG increase, its resource needs will increase
too. The sink queries need to run in the Cloud, so we are assured of having one Cloud VM available.
However, each additional VM will have a monetary cost. So, we limit this study to use a single Azure
VM, i.e., |RC | = 1. On the other hand, an IoT deployment may have hundreds of gateway edge devices.
So we consider 3 scenarios for the edge devices available for the query placement. In a liberal setup, the
number of edge devices plus the single Azure VM equals the number of queries (|RE| = |V| − 1). In a
centrist setup, the number of edge devices is one-half the number of queries in the DAG (|RE| = |V|

2
),

while in a conservative setup, the number of edge devices is one-quarter the number of queries in the
DAG (|RE| = |V|

4
).

We assume a 24 hour battery recharge cycle for the edge device, i.e., τk = 86, 400 sec for all edges
rk. From Fig. 1b, we see that the mean of the median current draw by the Pi at the peak rate across all
queries is 358 mA. So, in 24 hours, an active Pi would, on average, consume ∼ 8, 600 mAh. We use
this as the battery capacity parameter Ck.

5) Brute Force and Genetic Algorithm Configuration: Both BF and GA algorithms are implemented
using C++. All experiments to solve the optimization problem are run on a server with an AMD Opteron
6376 CPU with 32 cores rated at 2.3GHz, having 128GB of RAM and running CentOS 7. We configure
the GA with a population size p = 50, crossover probability χ = 0.50, and mutation probability µ = 0.15.
Rather than fix a static number of generations, g, we test if the solution has converged as follows. After
running the GA for a minimum of 15, 000 generations to avoid local convergence effects, we check after
each generation if the best fitness value has not changed in the last 50% of generations. We set an upper
bound of 1, 000, 000 generations.

B. Observations and Analysis
1) End-to-end Latencies of the Solutions: Here, we evaluate the effectiveness of the GA algorithm in

offering a low-latency for the DAG and a feasible solution, and compare its qualitative performance with
the BF and a baseline algorithm.
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Fig. 2: Comparing end-to-end latency of GA and BF using Campus LAN for different resource setups
and input rates. Each plot has 21 DAGs with 4–12 queries that BF could solve within 12 hrs.

Comparing GA with BF. Figs. 2 and 3 show scatter plots comparing latencies for the GA solution with
the optimal BF solution, for Campus LAN and PlanetLab WAN networks respectively. Here, we show
results for DAG with ≤ 12 queries since BF takes > 12 hours to run for larger DAGs. The plots are for (a)
liberal, (b) centrist and (c) conservative edge resource availability, with input rates of (i) Ωin = 100 e/sec
and (ii) 1000 e/sec. The shape indicates the number of queries in the DAG, while the color gives the
number of source queries.

We see that GA (Y axis) performs very well, falling close to the 1:1 line indicating that its solutions are
close to BF’s optimal (X axis). When the input rate is 100 e/sec for DAGs with liberal setup on campus,
GA converges to near-optimal values for DAG sizes up to 8 queries, but for 10 queries, the solution is
marginally higher (+4.5%) than optimal. With fewer edge resources in the centrist setup, GA gives the
exact optimal solution for all but 8 DAGs, and near-optimal for these 8 (+6.8%). Reducing the resources
further in the conservative setup gives a perfect GA solution in all cases. Intuitively, by limiting the search
space for GA – with fewer resources or fewer queries in the DAG to place – we improve its chances of
converging to the optimal result.

A dominating factor in the end-to-end latency is the network latency. Our micro-benchmarks show that
the Q1 latency between a campus Pi and Azure is 52 ms. Since we limit the source queries to be on
the edge and the sink to be on the Cloud, this Q1 latency is the minimum latency for any placement
solution. But based on the data center used, this network latency can be much lower, and the benefits of
a near-optimal solution will be more significant. For example, a recent Azure South India Data Center
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Fig. 3: Comparing end-to-end latency of GA and BF using PlanetLab WAN network for different resource
setups and input rates. Each plot has 21 DAGs with 4–12 queries that BF could solve within 12 hrs.

shows a 40 ms latency, and others report values of 25− 80 ms [44].
GA Solution on Large DAGs. While BF is intractable for DAGs with > 12 queries, we can find GA
solutions for all 45 DAGs that are simulated. Figs. 4 and 5 show the latencies on campus and PlanetLab
for all these DAGs, with different input rates, and resource availability. We see that the latencies increase
as the DAG size grows due to the longer critical path through more numbers of queries between the source
and sink. There are also minor variations in the latencies for DAGs with similar configurations (shaded
similarly) due to the random DAG generation. In liberal and centrist setups at 100 e/s, the end-to-end
latency is mostly ≤ 1000 ms on campus (Fig. 4(i)) and ≤ 2500 ms on PlanetLab (Fig. 5(i)), reflecting
the LAN and WAN network latencies that accumulate between queries. It is occasionally higher for the
conservative setup with fewer edge devices. In general, at Ωin = 100 e/sec the edges can retain most of
the queries without overwhelming their compute or energy capacities. However, for 1000 e/sec input rate
shown in Figs. 4(ii) and 5(ii), we see two types of outliers.

One, the GA solution converges to a valid solution but with a higher latency for DAGs like 50_4_2
on liberal and centrist on campus († at the top of the figures). This happens when the solution places
successive queries on the edge followed by Cloud, and back to the edge and then Cloud in a ping-
pong-ping manner. This causes the edge-to-Cloud network latency to be paid 3×, causing an increase of
≈ 230 ms in Pi to Cloud latency for DAGs like 50_4_2 and 40_4_3. DAGs on conservative resources
like 50_4_3 at 100 e/sec and 30_4_3 at 1000 e/s are worse with 5× and 7× network penalties on
campus, respectively. This arises when the GA solution causes constraint violations on the edge for some
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Fig. 4: End-to-end latency from GA solution using Campus LAN for different resource setups and input
rates. Each plot shows all 45 DAGs, with 4–50 queries each.

query in the DAG and is forced to move it to the Cloud, but its subsequent query is moved back to an
edge to avoid a constraint violation on the VM.

Two, queries of some DAGs have high input rates of ≥ 100, 000 e/sec (Table III, Max Rate column)
due to high selectivities of previous queries, compounded by the DAG input rate of 1000 e/sec. For
such DAGs like 20_4_1, 30_1_1, 40_1_2, and 50_4_3, the GA often converges to an invalid
solution for all resource configurations, with energy and/or throughput rate violations (?/∗ at the top of
the figures). There is no tangible impact of the network setup on the number of violations. The latency
value of the GA solution is in the tens of seconds (truncated in the plots), which reflects the penalty
applied by the GA for solutions that violate constraints. In the absence of a BF solution for these DAGs,
we cannot state if the GA is unable to find a valid solution, or if a valid solution does not even exist. Our
experiments do show that occasionally, rerunning the GA several times helps identify a better or feasible
solution, and this approach can be used, given the low GA computational cost. Otherwise, we inform the
user that the given resources – compute capacity, energy capacity or resource count, are insufficient to
meet the requirements of the DAG. This can help users with capacity planning.

2) Query Occupancy on Resources using GA: Fig. 6 shows histograms of the number of queries placed
on edge and Cloud resources, across all the DAGs using GA. They give the frequency of queries (Y axis)
present in edge devices hosting 1, 2, 3, . . . , etc. queries and in the Cloud VM (X Axis), totalling to 1026
queries across 45 DAGs. Different input rates (a,b,c,d) and resource availability (i,ii,iii) for Campus and
PlanetLab networks are shown. We see that for the liberal case, for both network setups and event rates, a
large fraction of queries (> 300) are present in exclusive edge devices, hosting just that query (Edge_1
in X Axis). About half as many queries are paired up on edge devices (Edge_2), and this decreases
sharply for 5 − 7 queries present in the same edge. The Cloud VM (Cloud_*) hosts about as many
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Fig. 5: End-to-end latency from GA solution using PlanetLab WAN for different resource setups and input
rates. Each plot shows all 45 DAGs, with 4–50 queries each.

queries as Edge_2.
As we reduce the edge resource availability in the centrist and conservative setups, we see a gradual

shift toward more queries placed in the same edge device and in the Cloud VM. With half the number
of edges, the centrist setup almost has as many cases of edges having 1 query as 2 queries, and with a
conservative setup, the edges with 2 and 3 queries dominate. PlanetLab typically has more queries per
resource than the campus LAN since its network latency between edges is higher. So the increase in
compute latency due to query collocation on a resource or moving to the VM is smaller than the cost of
edge network latency. We also see that the Cloud VM is assigned more queries, growing to ≈ 20%. As
the number of edge resources decrease, there is a tendency to require more queries to be packed in fewer
edge resources. When queries map to the same edge, the maximum rate supported by that edge for each
additional query decreases, thus increasing the chance of throughput violations on the edge. Hence, this
pushes more of the queries to the Cloud, until the VM violates.

3) Comparison with Baseline Approaches: In addition to the optimal BF solution, we consider the
merits of GA with respect to a naı̈ve random placement algorithm (RND) that maps queries randomly on
any available edge or Cloud resources in each trial. If a solution is valid (i.e., does not violate constraints)
and has a lower latency than a previous best trial, the best solution is updated to the current solution. This
is repeated 15, 000 times, similar to the median number of GA generations. Another baseline we report
and briefly discuss is a Cloud-only placement (CO) approach.

As a cumulative measure of the relative latency quality, we define percentage latency deviation of a
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Fig. 6: Frequency of the number of queries placed on each resource by GA, using different rates, resource
allocations, and network setups. [1026 queries per plot]

“worse” solution w over a “better” one b for a set of n DAGs as:

Eb→w =

n∑
i=1

(L′i − Li)

n× Li
× 100%
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TABLE IV: Comparison of the quality of the different placement algorithms
In

Rate
Re-

sources Latency Deviation % Invalid% Avg. Edge Resources Used%

(e/sec) EBF→GA* EGA→RND GA RND CO BF* GA* RND* GA RND
EBF→RND* EGA→CO

100 liberal 2.92 3.87 5.03 1.92 0.00 0.00 15.56 41.51 45.40 47.87 55.53 58.65
1000 liberal 2.86 3.20 15.20 5.89 11.11 11.11 46.67 43.10 45.16 46.92 53.83 54.62

100 centrist 0.69 0.98 7.051 1.75 0.00 0.00 15.56 61.33 63.37 64.73 72.45 74.21
1000 centrist 1.23 2.40 13.68 5.63 13.33 13.33 46.67 66.61 69.33 71.17 78.80 80.20

100 conserv. 0.00 0.16 7.42 1.71 0.00 0.00 15.56 78.57 78.57 79.94 87.59 88.44
1000 conserv. 0.00 0.00 4.66 6.01 20.00 20.00 46.67 82.54 82.54 82.54 90.26 90.31

*These are calculated for DAGs size upto 12 to compare with available BF solutions.

where L′i is the latency for DAG i given by the “worse” solution such as GA, Li is the latency value
for the DAG by the “better” solution such as BF, and Li is the average latencies for the latter. Here, we
consider only DAGs where solutions from both algorithms are valid. Smaller this value, closer the worse
solution is to the better one.

A second evaluation measure we use is percentage invalid, which reports the fraction of DAGs for
which an algorithm was not able to converge to a valid solution, that is, one that does not meet all the
constraints. Here, the lack of convergence either means that the “worse” algorithm under-performs, or,
that a feasible solution does not exist.

Lastly, percentage edge resources used is the ratio between the number of edge devices on which
queries are actually placed by the algorithm compared to the number of edge devices available. Here,
a lower fraction means fewer Pi’s are used, indicating a better capacity utilization of the active devices
having at least one query on them.

Table IV compares these quality metrics for the four approaches, BF optimal, GA, RND and CO.
The latency deviation % values compare BF with GA and RND, and GA with RND and CO, for their
relative pairwise performance. In each pair, only DAGs for which valid solutions were available from
both algorithms are considered. The invalid % are evaluated for all 45 DAGs in GA, RND and CO. The
average of the edge used % over DAGs with valid solutions is also reported for each approach that uses
the edge.

We observe that the latency deviation of both GA and RND for valid solutions is not far from the
optimal solution, with under 4% deviation (EBF→GA and EBF→RND). GA outperforms both RND and CO
consistently on latency, improving by 5 − 15% (EGA→RND) and 1.7 − 6% (EGA→CO). We see that the
latency benefits at 1000 e/sec is better than at 100 e/sec due to the increased difficultly in finding an
optimal solution at higher rates. While the RND solution has the same fraction of invalid solutions with
constraint violations as GA (11 − 20%), using both edge and Cloud, the CO approach has 15 − 47%
of invalid solutions due to over-allocation of all queries in the DAG on the Cloud VM. Overall, GA
out-performs RND and CO in terms of the solution quality.

We also see from Table IV that the edge resources used % for the GA placement solutions are closer
to the BF solution for the initial 12 DAGs, and it is also consistently smaller than the RND approach in
all cases. A lower value is better here as it indicates a prudent use of available edge resources, allowing
idle devices to be turned off. As expected, the edge usage grows as we move from liberal to conservative
setups.

4) Alternative Configurations: While we skip a detailed discussion, we report results from experiments
with additional configurations. Using 〈Ck = 8600, τk = 12〉 and 〈Ck = 17200, τk = 24〉 as battery
capacities and recharge cycles both show that GA has latencies that are within 3% of BF for liberal,
within 1% for centrist and always converges to BF in conservative case. Further, relative to roulette
wheel, both rank and tournament selections in GA offer an improvement of < 0.6% in latency for the
conservative scenario and a better reduction 1.1% with 1000 e/sec for liberal scenario. This is due to
reduced overcrowding of chromosomes that can cause pre-mature convergence. There is no change in the
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(a) Max. % increase in input rate, without violation (Campus) (b) Observed vs. Expected time (Campus)

Fig. 7: Max. % Increase in rate (a) for a solution, and Time complexity (b) for GA & BF

fraction of invalid solutions. But for centrist setup, there is > 2% increase in latency with rank and > 1%
with tournament method with 100 e/s. A similar trend also follows for 1000 e/s though with < 1%
increase. Hence, it is worth examining alternate resource capacities and selection strategies in practice.

We also consider the viability of a GA solution under dynamic input rates. Fig 7a shows the %
increase in input rate to a DAG above a base rate, before the GA placement solved for the base rate
violates constraints. For a given solution, the end-to-end latency is not affected by the input rate increase
but energy or compute capacity violations may occur. We see that a rate increase of 10% causes violations
in < 25% of the DAGs. 75% of the DAGs fail using the original GA solution when the rate increases
by 46 − 405%, depending on the setup. This indicates the head-room available for a given GA solution
before it has to be updated when the input rate increases.

5) Time Complexity of the Solutions: Fig. 7b shows a scatter plot of the wall clock times to solve
various DAGs against the asymptotic time complexity for BF and GA given earlier. We multiply the
complexity by a constant derived using linear regression. BF time till DAG size 12 that could complete
and GA time for all 45 DAGs are shown.

In this Log-Log plot, we clearly see a strong linear correlation between the expected and observed
times for both algorithms. BF’s runtime has a wide range, spanning 10µs− 10, 000’s of seconds for DAG
with 4−12 queries. The GA runtimes for all DAGs with 4−50 queries are tightly clustered at 1−26 sec.
The complexity for GA is proportional to the DAG size and the number of generations. For example,
while DAGs 20_1_2 and 50_1_2 take the same number of generations to converge for 100 e/sec rate
with liberal resources, the wall clock time for the latter is 3× higher than the former.

We see, as expected, variations in the runtimes for DAGs with the same size but different numbers
of source and sink vertices – these are pre-pinned to specific edge and Cloud resources, respectively,
reducing the number of queries to schedule. The time taken for centrist and conservative resources is also
much lower than the liberal ones since their search space is significantly smaller due to the number of
available edge resources halving at each resource scenario.

BF has time complexity that is exponential with the number of resources. For DAGs of size 12 with
one source, its time for a liberal case is 48 mins− 11.8 hours; it takes minutes for centrist and seconds
for conservative. For a DAG size of 14, BF will take ≈ 107 days using liberal resources (which we could
not complete), while it takes 13 mins for conservative and 4 mins for centrist. GA takes < 26 secs for
all cases we examine – DAG sizes till 50 and up to 50 resources, and with runtime matching the expected
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time complexity. This makes it generally usable for diverse configurations. However, since we run GA for
at least 15, 000 iterations, BF can be faster than GA when fewer resources are available and for smaller
DAGs. In such cases, BF is a feasible option.

VIII. DISCUSSION

In any emerging area that sees the confluence on multiple technologies such as Internet of Things,
Cloud computing, Big Data, and mobile platforms, addressing specific research problems opens the door
for more such problems and opportunities that exist. Here, we summarize our key findings, and highlight
a host of future experiments and research that arise from this study.

A. Key Outcomes
There are several key takeaways from this article, beyond what was discussed in the analysis sections,

that have a broader impact beyond just the immediate problem we address.
Edge and Cloud. We see that edge devices like the Pi perform 1

3

rd as well as similar Cloud VMs for
CEP event analytics, and both have similar performance trends for different query categories. They are
also cheaper than the Cloud in the long-term, if they are already deployed and available as part of IoT
deployments.

However, Clouds are still useful when we consider aggregation across many streams, or from edge
devices that span private networks, and when the throughput limits required are very high. The ability to
have many cores in a single VM helps as well, but allowing in-memory communication between many
queries present in the same VM. That said, we also see that the punitive cost in the end-to-end latency
is the network latency between edge and Cloud, and its variability as well. So for highly time-sensitive
applications, a much-closer data center or a private Cloud on the same network will be necessary. The
bandwidth appears to be less of a concern, given the small event sizes which even cumulatively or at a
high rate are tolerable.

We have used real-world, high-precision measurements of energy usage in our edge resources for a
variety of event queries. This goes beyond current literature that limits itself to examining CPU, memory
and network usage, which are poorer approximations of energy use. For e.g., in all cases, while the CPU
and memory utilization by each query is stable at about 98% (single core) and 3%, respectively, we see
two discrete energy levels for the sequence-like and aggregate queries. This shows the importance of
practical validation.

Scheduling Approaches. Our benchmarks also show that the Pi consumes discrete levels of power for
the different queries, that allows for predictable energy modeling. In fact, given the tight bounds of these
consumption levels, we can approximate the power levels to just three categories: base load, filter-like
queries, and aggregate queries.

The GA meta-heuristic has shown to be robust and scalable in solving the non-linear optimization
problem. It gives optimal or near-optimal solutions, where it is possible to compare against the optimal BF;
gives results with low end-to-end latency values for larger problems; has a limited number of cases where
it was unable to provide feasible solution (in one was indeed possible); and can be consistently solved
within seconds. With the complexity plots showing a high correlation between expected and observed
runtime, the GA holds promise for providing good placement solutions for much larger IoT deployments,
on the order of thousands of resources and DAGs.

That being said, for small scale IoT deployments with under ten resources and small DAGs, BF offers
optimal solutions within a reasonable time and should be chosen. BF can also be complemented with
techniques like Dynamic Programming to possible speed up the time, though it would not have a tangible
impact on exponential time complexity. GA however offers the flexibility of trading-off runtime and
solution quality. It can be limited to finding a solution within a fixed time budget, and the GA evolves
for that duration and results the best solution seen that far.
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Supplementary benefits. A variation of this simulation study is to estimate the least number of edge
and Cloud resources required to support a certain number of streams and query workloads while meeting
specific QoS required for the application. Such “What if” studies are crucial for emerging domains in
IoT to better plan deployments that may take months and millions of dollars, and conserve the resources
required for future workloads.

B. Future Experiments
There are additional experiments and studies that can be considered to validate the proposed solution

in a more diverse environment.
1) We do not consider multi-threaded or multi-core execution in our study. Siddhi supports a limited for

of multi-threading, which we did not leverage in our study to simplify the experiments, and one can
always run multiple copies of Siddhi on independent cores. Given the prevalence multi-core CPUs
in even edge devices, this needs to be considered. This will make edge devices like the Pi even more
favorable.

2) While our benchmarks considered the most common CEP patterns, these could be complemented with
a wider variety of sample queries from among these types. Using queries from real-world deployments
will also make the workloads more representative. Also, while our benchmarks considered pattern
queries with low selectivity, these were not used in our synthetic DAGs since they produced DAGs
with very low output rates and selectivities. A special class of DAGs including such low-rate queries
can be considered. In a similar vein, we should also consider a wider variety event types, with
different payloads. Our prior work on benchmarking for distributed stream processing systems offers
some possibilities [45].

3) Our benchmarks do not consider the energy cost for the network (LAN/WLAN) transmission. In this
work current drawn by Pi is measured only for running Siddhi queries on the Pi, with events being
generated locally. For a more realistic scenario, the energy cost for both the wireless and the LAN
interface need to be measured, and included in the simulation study.

4) We have seen scenarios with just two types of networks, private campus and public Cloud. However,
even within these networks, there is bound to be variability. Edge devices (or VMs) could be at
different parts of the topology in the private network (or the data center), and the latency costs may
be different due to multiple switches coming in the way. While we used a high speed uplink from
campus to the public Internet, the network behavior from edge to Cloud may be different when using
a home broadband or cellphone carriers. There is also a growth in the number of Cloud data centers
with, for e.g., three new Azure data centers coming online in India as we are writing this article.
Choosing the best/nearest data center when having a multi-city deployment, and the network costs
between the data centers need attention too.

5) Even within edge devices, we have considered the Raspberry Pi 2 Model B, and there exist newer/-
faster models like the Pi 3, embedded versions like the Pi Zero, and other DIY platforms like the
Arduino, Intel Edison, etc. While our current work targets platforms that run Linux and Java for
the analytics platforms, these concepts can also be extended to more constrained devices and recent
platforms. Clouds offer different VM favors as well that could be considered.

6) It would be useful to understand the appropriate mix of the different numbers of edge and Cloud
resources, e.g. more Cloud VMs, fewer edges, fixed number of edge devices for different DAGs, etc.
These would offer better insight on the resource usage by solutions from the optimization solver.

7) While we have considered two input rates for our simulation study, it would be useful to observe
the impact on latency, infeasible solutions generated and resource usage as we increase the rate to
higher levels as well.

8) We have used real-world benchmarks to drive the simulation study. However, to offer even higher
guarantees of the practical viability and relevance of our work, the placement solutions obtained from
the optimization solvers should be tested with real life deployments having multiple edge devices
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and the Cloud. This will be yet another stepping stone toward translating research into practice for
analytics across edge and Cloud for IoT.

C. Future Research
There are several promising research avenues to explore further in this emerging area of event analytics

across edge and Cloud.
1) Resource usage was not a primary consideration for our problem definition, even though we reported

the resource usage on the edge for different solutions. While the constraints ensured that solutions
were limited to the full compute and energy capacity of a resource, our optimization goals did not
consider resource usage across devices – whether to ensure the utilization of the edge was balanced
(e.g. to ensure no single Pi is overloaded, and they all drain their battery at the same rate), or to
ensure that the utilization on edge and/or Cloud was high for active devices/VMs (e.g. to ensure we
get full value for VMs that are paid for, or to allow some inactive edge devices to be turned-off or
duty cycled if others with high utilization can take the workload).

2) This article considers the problem of scheduling a single DAG on to the edge and Cloud that are fully
available. However, practical situations have DAGs that may arrive periodically, or exit after a few
days or weeks. There may also be analytics from multiple domains that share the same IoT fabric
and devices. In such cases it is required to place multiple DAGs on to the same set of resources, or
place a DAG on edge and Cloud resources that only have partial capacities available. Knowing the
entry and exit schedules of the DAGs will also better inform us as to plan for future submissions or
capacity availability.

3) Model VM cost into the equation. In our work VM cost has not been included, but this cost may
become significant as we increase the number of VMs. This calls for conservative use of VMs and
keep queries on edge as much as possible.

4) Our problem dealt with input rates that arrive at a constant rate, and this is reasonable since many
sensors are deployed to generate events at a constant sampling interval. The impact of input rate
variability on the optimization solution was not considered. While we observe that there is not a lot
of variability in the energy usage for different event rates, it may be that changing the input rate to
the DAG will cause different solutions to be generated. Given the long-running nature of the event
dataflows, the impact of variable input rates or periodic changes to the input rates on the solutions
that are generated should be considered.
More generally, we assume a fixed set of edge and Cloud resources in our problem, and a single
solution that is deployed when the DAG is submitted. Since such event analytics run for days or weeks
at a time, many factors may change in this period: event rates may change significantly, edge devices
may fail or be taken down for planned maintenance, solar energy generation may be lower due to a
cloudy day causing edges with longer recharge cycle, network behavior may vary, and connectivity
between edge-edge or edge-Cloud may go down all together, and so on. So we should consider our
ability to change the solution on the fly as the environmental conditions change, and also to provide
robustness to guarantee the latency QoS. Additional strategies to consider may include dynamically
moving tasks between edge and Cloud or vice versa, replicating the queries across multiple devices,
etc.

5) Lastly, one aspect that we had introduced briefly in an earlier work and remains relevant still is
that of planning placement of queries to preserve the privacy of data [17]. IoT deployments offer an
unprecedented ability to observe the environment around us. As a result, some of the sensor streams on
which we perform analytics may contain sensitive information that would be embarrassing or illegal
if compromised [46], [47]. Incorporating privacy constraints as a first-class entity in the placement
problem across edge and Cloud is important. Here, we may wish to limit the event streams that go
out of the private network, have variable trust in different edge resources, or introduce “anonymizing”
queries at the trust boundaries. This is a vast and important area that requires exploration.
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IX. CONCLUSION

Existing literature on using edge and Cloud resources focus on a few application quality parameters,
such as latency and throughput; limited system characteristics like CPU, network and power; or specific
architectures such as Cloud-only, Mobile-Cloud and Fog Computing. In this paper, we have identified a
unique combination of these dimensions essential for IoT: reducing latency for streaming dataflows across
edge and Cloud, while conserving energy and bound by the compute capabilities of the devices.

Our micro-benchmark results offer a novel glimpse on the compute, network and energy performance
of edge devices and Cloud VMs for individual CEP queries. The diverse experiments with different query
types and event rates offer a broad set of performance distributions that are valuable to evaluate other
resource platforms for event analytics, and for realistic simulation studies, as we have described.

We formulate the query placement problem for a CEP dataflow on to edge and Cloud resources as an
optimization problem, with constraints on the compute and energy capabilities of the resource based on
realistic IoT deployments. We propose a Brute Force (BF) approach to solving it optimally, and also map
this problem to a Genetic Algorithm (GA) pattern that is solved while considering the constraints.

We validate and evaluate the problem and solution approaches using a comprehensive simulation study
that includes a diverse set of synthetic DAGs that are embedded with static and runtime properties that are
sourced from the real-world distributions. We have obtained results for 45 DAGs having 17 query types,
with 3 resource configurations, 2 input rates, 2 network setups, using the BF and GA approaches and
a random and a Cloud-only baselines. Sampling the parameter values from the benchmark distributions
during these simulations mimics variability of real IoT deployments.

Our analysis shows that GA gives optimal or near-optimal solutions comparable to BF, and provides a
better trade-off between lower latency and more frequent feasible solutions than the random or Cloud-only
placement baselines. It also offers solutions within seconds for even DAGs as large as 50 queries on 50
edge and Cloud resources, while the BF takes 12 hours for a 12-query DAG using liberal resources,
and weeks for larger DAGs. GA also tells users of the resource constraint that caused a solution to be
infeasible, helping with capacity planning. 75% of the DAGs can also withstand a 10% increase in input
rate without a constraint violation. These are promising results that can inform practical IoT deployments
using sound theory and experimental results.

In future, these experiments can be enhanced by considering network energy costs, more diverse
edge/Cloud resources and networks, additional input rates, and variable ratios of edge devices and Cloud
VMs. It will also help to actually deploy and validate the solution. There is also a swathe of new research
ideas to pursue in this nascent area. Defining placement problems to collocate multiple DAGs on the same
set of resources will allow multiple users and domains to share the same set of IoT resources. Finding
the minimum number of edge resources and VMs required for a given workload, with associated costs,
becomes a related problem to plan IoT installations. Temporal dynamism in all respects – input rates event,
availability of edges, performance of the network, period between battery recharge – requires sustained
attention and improved heuristics. Network links and (edge) resources may suffer from transient failures,
requiring fault-resilience. Variable-rate events generated from probability distributions such as Poisson or
Zipfian, or realistic IoT data streams can be used for empirical validation [45], [48]. Lastly, a key research
problem is to design approximation algorithms with stronger quality guarantees and formal bounds than
the GA heuristic, while still offering a practically usable computational complexity that is validated with
realistic DAGs.
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