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Fault Recovery Time Analysis for Coarse-Grained

Reconfigurable Architectures

GANGHEE LEE, University of New South Wales

EDIZ CETIN, Macquarie University

OLIVER DIESSEL, University of New South Wales

Coarse-grained reconfigurable architectures (CGRAs) have drawn increasing attention due to their perfor-

mance and flexibility advantages. Typically, CGRAs incorporate many processing elements in the form of

an array, which is suitable for implementing spatial redundancy, as used in the design of fault-tolerant sys-

tems. This article introduces a recovery time model for transient faults in CGRAs. The proposed fault-tolerant

CGRAs are based on triple modular redundancy and coding techniques for error detection and correction. To

evaluate the model, several kernels from space computing are mapped onto the suggested architecture. We

demonstrate the tradeoff between recovery time, performance, and area. In addition, the average execution

time of an application including recovery time is evaluated using area-based error-rate estimates in harsh

radiation environments. The results show that task partitioning is important for bounding the recovery time

of applications that have long execution times. It is also shown that error-correcting code (ECC) is of limited

practical value for tasks with long execution times in high radiation environments, or when the degree of

task partitioning is high.
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self-repair;
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1 INTRODUCTION

With unprecedented growth in the variety of missions and applications in the harsh radiation
environment of space, advanced space computing based on high-performance and low-energy ar-
chitectures is becoming of paramount importance. The main challenge of designing space-based
processing architectures is mitigating the effects of radiation-induced Single-Event Upsets (SEUs).
An SEU occurs when a deposited charge causes a change of state in dynamic circuit elements,
which results in calculation errors. Thus, the provision of tolerance of SEU-induced faults must
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be considered for space computing. However, creating radiation-hardened space processors is a
lengthy, complex, and costly process. Hence, there is a large technological gap between commer-
cial and space-based architectures. For example, recent state-of-the-art Commercial Off-the-Shelf
(COTS) Field-Programmable Gate Arrays (FPGAs) (such as Virtex-6 and Virtex-7) are designed
with highly advanced technologies, high density, and high performance. However, the SRAM-
based configuration and data memories of these FPGAs are susceptible to radiation-induced errors.
Xilinx manufactures FPGAs specifically developed for space (such as Virtex-5QV and Virtex-4QV)
that are radiation hardened and radiation tolerant (Xilinx 2014). However, these devices suffer from
limited capacity and performance and are relatively expensive (Glein et al. 2015).

A primary enabling technology for advanced space computing is applying spatial redundancy
in the form of Triple Modular Redundancy (TMR) on COTS FPGAs. With this approach, the user
design is triplicated, with each module operating in parallel and relying on a voting circuit to
override a single erroneous output, provided that the other two modules agree. However, this ap-
proach may not satisfy the computing requirements of next-generation on-board space computing,
which demands high complexity, high-resolution image processing, and high-compression com-
putation (Cieslewski et al. 2008; Lovelly et al. 2014). Image processing, in particular, is becoming
increasingly complex because of resolution enhancement, stereo vision, and detection and tracking
of features across image frames. Currently, image processing relies on Application-Specific Inte-
grated Circuits (ASICs), since multiprocessors or FPGAs cannot meet the performance demands
at a sufficiently low power budget (Yoon et al. 2013).

Unlike FPGAs, which are fine-grained architectures with large routing area overheads and poor
routability (Hartenstein 2001), Coarse-Grained Reconfigurable Architectures (CGRAs) offer word-
level data paths resulting in improved performance, a reduction in place and route effort, and
reduced routing area overheads. Research into CGRAs has shown that they achieve superior den-
sity per watt (Mathstar 2007; Williams et al. 2010) than FPGAs when using word-level integer
operations. Although image processing has high complexity, most of the computation consists of
word-level integer operations. For integer processing applications, CGRAs therefore help to satisfy
the performance requirements of next-generation space applications.

While TMR-based FPGAs have been intensively researched for fault tolerance (Cetin et al. 2013,
2016; Cheatham et al. 2006; Ostler et al. 2009), there is far less research related to the fault tolerance
of CGRAs. The approach in Azeem et al. (2011) presents an error recovery technique based on an in-
struction retry using temporal redundancy. Since the approaches of Rakosi et al. (2009) and Alnajjar
et al. (2013) enhance the reliability of a CGRA by adding specialized hardware, they involve major
modifications of the architecture and incur significant area penalties. The Mean Time to Failure
(MTTF) due to SEUs is reported in Konoura et al. (2014). However, the authors do not address the
recovery time. Han et al. (2014) implement a fault-tolerant CGRA without area penalty but do not
provide a fault recovery model or a tradeoff analysis. The contributions of this article are:

• We introduce a fault-tolerant CGRA design that protects the Processing Elements (PEs),
memories, and control logic. Our approach is based on a software approach that does not
involve major modification of current CGRAs. The proposed design exploits spatial redun-
dancy afforded by the PEs and uses coding techniques such as parity checks and Error-
Correcting Codes (ECCs) to protect the configuration and data memories.

• While previous work has focused on architectural or software approaches to improving
the reliability of CGRAs (Alnajjar et al. 2013; Han et al. 2014; Konoura et al. 2014; Rakosi
et al. 2009), our work focuses on modeling the recovery time when standard CGRAs, whose
architectures have not been modified, and that implement TMR in software, are subjected
to radiation-induced errors.
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• An application is spatially partitioned into several subtasks, or a task is temporally repeated.
Irrespective of whether the application is spatially or temporally partitioned, voters are
inserted at the partition boundaries to check the outputs of each partition. We examine the
tradeoff between the number of partitions and recovery time, which includes the execution
time of voters, while considering the area of the CGRA design and the number of SEUs that
affect the recovery time.

The remainder of this article is organized as follows. Section 2 provides the background on fault-
tolerant CGRAs. In Section 3, we introduce our reliable CGRA design. In Section 4, we present a
novel recovery time analysis for the proposed CGRA, while in Section 5, we evaluate our recovery
model for the CGRA with several kernels from space-computing applications. Finally, conclusions
and future work are presented in Section 6.

2 BACKGROUND

2.1 Coarse-Grained Reconfigurable Architecture

Reconfigurable architectures are classified into two categories according to the level of reconfig-
urability: fine-grained architectures, such as FPGAs, which provide reconfigurability for bit-level
operations, and CGRAs, which support word-level operations. Although CGRAs are less flexible
when compared to FPGAs, they have higher performance-power-area efficiency for word-level
operations. Furthermore, modern medium- to large-scale FPGAs are configured via a bit-stream
of several tens of megabytes to program the millions of resources available on chip. In contrast,
CGRAs are programmed like a processor via a very wide instruction stream. Each instruction per-
forms a word-level operation on an individual PE of the CGRA. Thus, CGRAs provide shorter
reconfiguration time due to the smaller number of functional configuration bits.

As can be observed from Figure 1, a typical CGRA consists of four parts: an array of PEs, config-
uration (instruction) memory, data memory, and control logic. The control logic includes an RISC
processor, an external memory controller, a DMA controller, a configuration memory controller,
a data memory controller, and an execution controller. Among them, the PE array, configuration
memory, data memory, and their associated controllers constitute the main execution module,
which is referred to as a Reconfigurable Computing Module (RCM). The RISC processor controls
the DMA to copy the configurations and data for the RCM, and sets the RCM’s control registers
to start execution. The configuration memory is used to store the configuration context for the PE
array, whereas the data memory is used to store the data consumed or produced by the PE array.
Each PE in the PE array can independently perform different arithmetic operations. These opera-
tions in the PE array are configured cycle by cycle according to the context in the configuration
memory.

2.2 Transient Faults in CGRAs

While fabrication defects cause permanent faults, soft errors or SEUs due to alpha particles or
electromagnetic interference cause transient faults. SEUs typically perturb the logic circuits for a
duration of a few hundred picoseconds (Anghel and Nicolaidis 2000), giving rise to bit flips. To en-
sure resilience to transient faults in memories, often an error-correcting memory is used together
with circuitry to periodically read or scrub the memory of errors before the errors overwhelm the
error correction circuitry. On the other hand, soft errors in the logic circuits are often detected
and masked by redundancy. Duplicating or triplicating the execution units is referred to as spatial
redundancy, and repeating the computation is referred to as temporal redundancy.

A system that executes two copies of an application’s program is referred to as implementing
DMR (Dual Modular Redundancy). Both replicas are expected to be in the same state at all times.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 42. Publication date: November 2017.
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Fig. 1. Coarse-grained reconfigurable array architecture with a 4x4 PE array.

The same inputs are provided to each replica, and the same outputs are expected. The outputs of
the replicas are compared using a voter that is required to detect any disagreement between them.
While DMR affords error detection, it does not provide error correction since the correct output
cannot be determined. A system that uses three replicas is referred to as implementing TMR. TMR
incurs a larger area overhead than DMR for the benefit of determining which replica is in error
when a two-to-one vote is observed. Under this condition, the voter can also output the correct
result via a majority function.

2.3 Triple Modular Redundancy on CGRAs

Since a CGRA has an abundance of functional units in the PE array, it is preferable to adopt spa-
tial redundancy for resilience against transient faults. TMR can be implemented on the CGRA by
changing the configuration of the PEs using a software approach without incurring a fixed silicon
area overhead (Han et al. 2014) but at the cost of additional processing cycles.

To execute an application on a CGRA, the configurations of the CGRA corresponding to the
required functionality must be generated. The functionality of the application is generally ex-
pressed as a Dataflow Graph (DFG), with each node represented by a PE in the CGRA. The process
of generating the configuration involves mapping an application represented by a DFG onto the
PE array in the CGRA (Lee et al. 2011). Figure 2 shows an example of an Add Compare Select (ACS)
operation of a Viterbi decoder mapped with TMR onto a CGRA with an 8x8 PE array. There are
eight PEs in a column, and thus each TMR replica can be mapped to two PE rows as shown in
Figure 2(b). These replicas are proceeded by the triplicated voters as shown in the shaded region
of Figure 2(b). When TMR is applied to the PE array, the configuration memory is also triplicated
for each PE replica to have its own instruction copy.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 42. Publication date: November 2017.
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Fig. 2. An application mapping example. (a) Dataflow graph of ACS (Add-Compare-Select) operation in a

Viterbi decoder. (b) Three replicas of a TMR implementation of ACS on an 8x8 PE array.

Table 1. Architecture Alternatives

Component Fault-Tolerance Technique(s)

PE array TMR
Configuration memory TMR, Parity, ECC
Data memory TMR, Parity, ECC
Controller N/A

Since in CGRAs the PEs are mapped column-wise, the best size of the PE array for implementing
TMR with high PE utilization is a multiple of three. However, in this article, we are interested
in evaluating the performance of legacy CGRA architectures and implementations when TMR is
applied. The selection of the best PE array size is therefore not further considered.

3 RELIABLE CGRA DESIGN

A fault occurring in the PE array can be detected and masked via TMR implementation. However,
the system is also vulnerable to errors in the instruction and data memories and the support-
ing control circuitry. This brings about the need for techniques to detect and correct these errors.
Table 1 shows some architectural alternatives for the design of a reliable CGRA with spatial redun-
dancy. Like logic, memory modules can be protected using TMR. Furthermore, memory modules
can be protected using parity or ECC. Parity indicates whether the number of ones in a memory
word is even or odd. Parity allows detection of some memory errors, but cannot correct errors. By
using a Hamming code (Hamming 1950) with additional parity bits, ECC can detect some errors
and also correct a limited range of errors. However, implementing an ECC-protected memory in-
curs a larger area penalty in comparison with a parity implementation. The designer can choose
to combine any of the fault-tolerance techniques referred to in Table 1 to design a reliable CGRA.
For example, a PE array employing a TMR implementation and configuration (or data) memory
with ECC is a possible design candidate.
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When selecting a design candidate, care must be taken with the hardware overheads. For exam-
ple, parity checks result in an area overhead but afford shorter recovery time as the parity helps to
identify errors and narrow down the affected region in memory. In this article, we do not consider
approaches that incur significant area overheads. We only consider approaches that can be easily
adopted in legacy CGRAs. As a result, the insertion of a voter between the memory and the PE
array is not considered as it incurs a large area penalty and requires major modification of the
architecture (Alnajjar et al. 2013). For the same reason, the triplication of the controllers is also not
considered. Instead, we use a software approach to implement TMR as in Han et al. (2014) for the
PE array and incorporate coding techniques such as parity and ECC for the memories.

If errors originate in the controller, TMR voters implemented in the PE array may not detect
any errors, since all voters may agree even though all replicas generate incorrect results. We may
solve this problem by inserting detection logic into the controller, such as DMR. However, if the
DMR comparator suffers an error, the system is unable to detect the error. In this article, we rely
on indirect detection methods that are implemented using voters in the PE array using a software
approach. The reliability enhancement of the controller requires major hardware modifications
that are beyond the scope of this article.

A second consideration for designing a reliable CGRA is task partitioning for TMR. If we do
not partition the application into several subtasks, we can only identify an error at the very end
of execution, when the outputs are checked. Thus, we cannot identify the specific location of
the error, and the longer period between checks increases the likelihood that multiple errors in
multiple replicas overcome the protection afforded by TMR. In these cases, we may need to reload
the entire memory contents of the CGRA and repeat execution to correct the errors. By inserting
voters judiciously at the partition boundaries, the propagation of errors to the next partition is
prevented, and thus the system can be made more reliable by reducing the time to isolate and
repair faults. In the case of recovery, it is sufficient just to resume the task that is in error, or to
update the configuration memory or data memory for that task. However, to resume the task, we
need a checkpoint at each partition boundary. Checkpoints store the state, such as memory and
register values, at convenient points, such as at the conclusion of each task. If we do not have a
checkpoint, even though the application is partitioned into several subtasks, we cannot resume the
task that is in error, but need to re-execute all the tasks of the application. Checkpointing reduces
the recovery time compared with the complete re-execution of the application. However, we have
to consider the number of partitions created since a large number of TMR partitions results in
performance degradation as more time is spent on voting operations at the partition boundaries.

4 RECOVERY TIME ANALYSIS

For the rest of this article, we will assume that the PE array of the CGRA is protected from SEUs
with TMR implemented in software; that is, all operations are triplicated and results of subtasks are
voted upon. The checkpoint system used in this analytical model is based on a software approach
controlled by a RISC processor in the CGRA as listed in Pseudocode 1.

As indicated in Pseudocode 1, the task in each partition, Ti , is programmed to copy the inter-
mediate results from local memory (CGRA data memory) to external memory at each partition
boundary. The checkpoint system increases the memory bandwidth and adds to the latency of
an application. While the need for greater memory bandwidth cannot be avoided, the additional
latency can be hidden by parallelizing Ti ’s communication (saving checkpoints) with Ti+1’s exe-
cution. When errors, which cannot be masked by voters, are detected via voters in task Ti , the
erroneous task is re-executed until at least two out of three voters agree or the number of errors
does not exceed the maximum allowed. If the errors are judged to stem from the local memory,
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Pseudocode 1: Checkpoint System

foreach partitioned task, Ti do

ErrorCount = 0;

do

if ErrorCount is not zero and errors stem from the local memory then

reload data for Ti from the external memory;

end

execute Ti ;

if at least two out of three voters in Ti agree then

ErrorCount = 0;

save voted results of Ti to the external memory;

else

ErrorCount++;

if ErrorCount exceeds a threshold then

terminate Ti and reset the system;

end

end

while ErrorCount is not zero;

end

the task’s source data needs to be reloaded before re-executing the task. When the error cannot be
cleared, execution of the task is terminated, the system is reinitialized, and execution recommences
with task T0.

In this section, we introduce a mathematical recovery time model based on the proposed check-
point system. Then, we evaluate the tradeoff between the recovery time and the application exe-
cution time.

4.1 Recovery Time Modeling

If an SEU affects the CGRA, then this could be observed as discrepancies in the output of the three
TMR replicas. In this case, assuming only one replica is affected, we can continue processing after
the voted results have been stored. This is referred to as an “error” in the CGRA. However, if SEUs
affect two or more replicas, then this is observed as a disagreement between all voters and leads
to a so-called failure of the CGRA. In this case, we need to re-execute the failed task after recovery
processing. Recovery processing refers to the activities undertaken to recover the normal state of
operations and to resume processing from the point of execution when an error was detected. In
detail, SEUs may be observed in the (1) PE array, (2) configuration and data memory, or (3) control
logic. (1) If the failure stems from errors in the PE array, it might be corrected by a simple re-
execution without any recovery processing. When checkpoints are used, we can re-execute from
the last checkpoint. Otherwise, we need to restart from the beginning of the application. (2) If the
failure was caused by memory errors, we need to reload the corrupted memory region with the
correct data before re-execution. (3) Finally, if the failure originated in the control logic, registers
in the control logic need to be reloaded, which involves reinitializing the system.

A state diagram showing transitions between CGRA system states and their corresponding re-
covery times is depicted in Figure 3. As can be observed, there are four states that represent the
status of the CGRA:
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Fig. 3. State transitions between CGRA system states and their corresponding recovery times.

1) INIT state: The CGRA commences initialization. The time for initialization, denoted as tI N IT ,
can be expressed as

tI N IT = tOS + tDMA +

k−1∑

i=0

tCMi
+

k−1∑

i=0

tDMi
+ tEC , (1)

where tOS represents the boot time of the RISC processor, tDMA the DMA setup time, tCMi
the

time to copy configurations for task Ti from the external memory to the configuration memory,
tDMi

the time to copy source data for task Ti from the external memory to the data memory, and
tEC the setup time for the execution controller, respectively, whereas k represents the number
of tasks the application is partitioned into, namely, {T0, T1, . . . ,Tk−1}. Since booting the CGRA is
a one-time operation, tOS does not critically affect the recovery time of the CGRA. However, in
the event that checkpoints are not used and the application’s execution time is less than tOS , it
will dominate the recovery time, since the system must be reset. In the proposed CGRA, the DMA
and execution controller registers are programmed by the RISC processor via memory-mapped
IO. Therefore, tDMA and tEC are proportional to the number of internal registers of the hardware
unit, and tCMi

and tDMi
are proportional to the amount of source data for the application.

2) NORM state: The CGRA operates in TMR mode executing each partitioned task. If there is
an SEU, this is detected by the voters at the partition boundary. The time to detect an error in the
partitioned task Ti , denoted as tDi

, can be expressed as

tDi
= MAX (tEi

, tMi
) (2)

with

tEi
= tRi

+ tVi
, (3)

where tEi
represents the execution time of the partitioned task Ti , tRi

represents the replicated
module’s execution time, and tVi

is the voting time. tRi
is determined by the number of partitions,

and tVi
is proportional to the number of data values passing between the partitioned tasks. tMi

represents the error detection (and/or correction) time of the memory used for the partitioned task
Ti . If we add additional hardware logic for error detection and correction to the memory, the error
correction and detection operations can be undertaken concurrently with tEi

. Then tDi
is defined

as the maximum of tEi
and tMi

. Note that tEi
is only valid when voters, which are implemented in

the PE array, detect errors. If a voter does not detect the error, for example, when the error occurs
in the execution controller, tEi

is not bounded by the execution time of the partitioned task. These
errors cannot be detected or corrected by TMR and will therefore not be considered in this article.

If the detection is classified as an “error,” we can continue processing due to the error masking
provided by voters. However, if the detection is observed as a “failure,” the failed task must be
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Table 2. Memory Error Detection Results

Number of SEUs Detection Result for 3 Different
in Each Replica Memory Protection Methods

Rep0 Rep1 Rep2 TMR TMR+Parity TMR+ECC

1bit - - Error Error -
1bit 1bit - Failure Failure -
1bit 1bit 1bit Failure Failure -
2bit 1bit 1bit Failure Failure Error
2bit 2bit 1bit Failure Failure Failure

re-executed. If there is a checkpoint at each boundary of the partitioned task Ti , we can resume
execution after the checkpointed state has been reloaded. We classify the failure into three cases
according to the source of the error, be it the PE array, memory, or control logic.

If a failure originated in the PE array, the recovery time for taskTi , denoted as tR_P Ei
, represents

the state transition from the NORM state to the NORM state in Figure 3 and can be expressed as

tR_P Ei
= tDi

+ tEC , (4)

where tDi
is the detection time of task Ti , and tEC is the setup time for the execution controller,

which represents the time to reprogram the execution controller to resume the failed task Ti .
Coding techniques, such as ECC, result in an area overhead in the memory block. However,

with coding, we can often identify the specific SEU location and may even be able to correct it. If
no SEU is found in the memory when the voter indicates a failure, we presume that the SEUs exist
in the PE array. However, if we find SEUs in the configuration memory or the data memory, the
memory contents must be corrected.

3) MEM_R state: If a failure originated in the configuration memory or the data memory, we
need to overwrite the respective memory contents by reloading them from the external memory.
The time for overwriting the memory for task Ti , denoted as tOi

, can be expressed as

tOi
= tDMA + tCMi

+ tDMi
, (5)

where tCMi
represents the reload time of the configuration memory for task Ti , tDMi

represents
the reload time of the data memory for taskTi , and tDMA is the setup time of the DMA controller.
In particular, if we have memory protected by parity, then tOi

becomes the time to overwrite the
number of words of the memory where the error has occurred. Alternatively, if we have ECC-
protected memory, we do not need to overwrite the memory contents for recovery. However,
when the number of errors exceeds the capability of the ECC, it may experience a failure, which
then requires overwriting. Table 2 lists the ability of memory to detect errors according to the
various number of SEUs and protection methods employed. ECC is assumed to have a 1-bit error
correction capability per replica.

Recovery from a failure of the memory for task Ti follows the state transitions along the
NORM −MEM_R − NORM path, which can be expressed as

tR_MEMi
= tDi

+ tOi
+ tEC . (6)

4) CTRL_R state: If the error persists after the memory is overwritten, we infer that the error
must exist in the control logic or that errors are so severe that TMR or overwriting the memory
cannot solve them. In this case, we need to clear errors by reinitializing the system.
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Table 3. Recovery Time According to the Presumed Error Type

Recovery Scheme Presumed Error Type Recovery Time

Checkpoint

Error -
Failure in PE tDi

+ tEC

Failure in memory tDi
+ tOi

+ tEC

Failure in controller tDi
+ tREi−1 + tI N IT

No checkpoint
Error -
Failure tDi

+ tREi−1 + tI N IT

The recovery from a failure of the controller for task Ti follows the state transitions along the
NORM −CTRL_R − IN IT − NORM path, which can be expressed as

tR_CT RLi
= tDi

+ tREi−1 + tI N IT (7)

with

tREi−1 =

i−1∑

j=0

tD j
, (8)

where
∑i−1

j=0 tD j
represents the summation of the re-execution time from the first partition, T0, to

the (i − 1)-th partition, Ti−1, following the detection of a failure in the control logic during the
execution of task Ti . Note that we add tREi−1 to the recovery time of the controller, since all tasks
that have been executed so far need to be re-executed. It should be noted that reinitializing the
system involves reloading the memory for all tasks. This may appear conservative, but since we
cannot categorically establish the origin of the error, it enhances the likelihood that further control
errors can be avoided.

Table 3 summarizes the recovery time according to the presumed error type. Note that if we
experience an error in the configuration memory, we do not recover the errors even though er-
rors in the configuration memory can result in ongoing execution errors while the task is being
processed. In Alnajjar et al. (2013), to prevent error propagation, configurations are triplicated and
voted upon. The resulting output instruction is also then written back to the configuration memory
on every clock cycle. However, this approach results in considerable area overhead. Our approach
solves this problem in software by only reloading memory contents when a failure is detected.

4.2 Iterative Method to Detect the Presumed Error Type

As shown in Table 3, the only case when we need to classify the origin of an error is when we have
checkpoints and when we have detected the presumed error as a failure. If we have a detection
unit, such as parity in the memory, we can easily classify the presumed error type and determine
which recovery to undertake. However, if there is no detection logic, we identify errors iteratively.
Using an iterative approach, the time to detect a failure for taskTi , denoted as tFi

, can be expressed
as

tFi
= hP E × tR_P Ei

+ hMEM × tR_MEMi
, (9)

where hP E and hMEM represent threshold values for observing repeated failures in the PE and the
memory, respectively. In the iterative approach, tFi

is added to the total recovery time as shown
in Table 4, which lists tFi

according to the various protection schemes. For example, in the TMR
case, when hP E = 2 and hMEM = 1, the system allows two consecutive recovery processes corre-
sponding to the PE failures followed by one recovery process corresponding to a memory failure.
If a failure is detected in taskTi , initially we determine it to be a PE failure, which has the smallest
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Table 4. Time to Detect a Failure Using an Iterative Approach

Protection Scheme Presumed Error Type Time to Detect a Failure, tFi

PE 0
TMR Memory hP E × tR_P Ei

Controller hP E × tR_P Ei
+ hMEM × tR_MEMi

PE 0
TMR+Parity Memory 0

Controller hMEM × tR_MEMi

PE 0
TMR+ECC Memory 0

Controller 0

recovery time. However, if the system experiences a second and a third failure, after two consec-
utive PE recovery processes for task Ti , the third failure is classified as a memory failure. Having
performed a memory recovery process for taskTi , if the system experiences a fourth failure of task
Ti , it is finally classified as a controller failure.

4.3 Considerations for Task Partitioning

The objective of a partitioning algorithm is to find a minimum cut with the following con-
siderations: (1) Finding partitions that bound the maximum recovery time or minimize the
average recovery time. Whether the objective is bounding the maximum time or minimizing
the average time, the resulting recovery time is influenced by the application execution time.
This relationship between the recovery time and the execution time will be discussed in detail in
Section 5. (2) Minimizing the total number of edges between partitioned tasks. At the partition
boundary, voters are inserted according to the number of outgoing edges and each inserted voter
increases the total execution latency. If there is a dependency between the two partitioned tasks,
we have to pay the cost of increasing the number of voter cycles and the cost of storing the values
to the memory. The number of voter cycles increases since only three voters can be executed
concurrently when the height of the array is restricted to eight rows but more than one output
per module may need to be voted upon. The cost of storing the values also increases because
space has to be provided for the interpartition results in local and external memories to store
checkpointed values. (3) Maximizing the reliability of the system. A large number of partitions
improves the reliability of the system, but it increases the total execution time.

Apart from these considerations, there may be many other objectives to be solved. However,
in this article, we focus on the first consideration, which concerns the relationship between the
recovery and execution times.

5 EVALUATION

In order to evaluate the proposed recovery model, we have modeled a reliable CGRA that em-
ploys TMR in software and examined adding both parity and ECC logic for error detection and
correction of the memory. The proposed analytical model supports arbitrary partition sizes. It is
envisaged that task partitioning could be applied in a spatial manner, in which case voters are
inserted between the subtasks of an application, or in a temporal manner, in which case voters are
inserted between repeated tasks. While CGRAs with their limited configuration memory are usu-
ally designed to accelerate repeated kernels, partitioning is often implemented temporally. In this
section, we evaluate the temporal partitioning of a repeated kernel using the ACS operations of a

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 42. Publication date: November 2017.



42:12 G. Lee et al.

Fig. 4. Block diagram of the ACS operation.

Fig. 5. An example of ACS implementation with TMR on an 8x8 PE CGRA with partitions, k = 2.

Viterbi decoder as an example. Following this, the effectiveness of our recovery model is further
evaluated with practical space kernel examples.

5.1 Mapping ACS Operations onto the CGRA

Since the ACS function is one of the most time-consuming operations of a Viterbi decoder, it is
commonly accelerated with special hardware like that afforded by CGRAs. Figure 4 shows an
example block diagram of an ACS operation with constraint length K = 3. The total number of
ACS operations is determined by the constraint length, K , and the frame length, F . Table 5 lists the
application and architecture parameters that we used to map ACS operations onto the CGRA. With
the constraint length K = 7, as has been used in the Voyager space probe program (Deutsch and
Miller 1982), the application requires y = 2K−1 = 64 ACS operations in parallel for one frame, and
the frame is repeated L = F + K + 1 = 128 times. However, due to the resource constraints of the
proposed 8x8 PE array, only one ACS operation per replica can be executed at a time, as shown in
Figure 2(b). Thus, we implement the application with temporal mapping (Lee et al. 2011), whereby
configurations can be changed on each clock cycle. In temporal mapping, the CGRA schedules
operations only with the first column (8x1 PEs), and the other seven columns execute the same
operations as the first column, but in successive clock cycles, as instructions flow from the left side
of the PE array to the right.

Figure 5 shows the result of scheduling 128 frames onto 8x1 PEs with TMR usingk = 2 partitions.
In the first frame, the execution controller in the CGRA fetches the ACS operation 64 times from
the configuration memory. Each ACS operation reads input data (old path-metric and branch-
metric) from the data memory, executes, and stores results (new path-metric and decision) to the
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Table 5. Application and Architecture Parameters for the ACS Application

Symbol Description Value

K Constraint length 7
F Frame length 122
y Number of ACS operations within 1 frame, y = 2K−1 64
L Loop count, L = F + K + 1 128
MxN PE array size 8× 8
k Number of partitioned tasks -
I I Initiation interval (given the resource constraints of 2 read 2

and 1 write memory ports)
x Number of execution cycles for 1 ACS operation 6
CF Clock frequency 1GHz
tf Application execution time for 1 frame, tf = (x + I I × (N − 1)) × (y/N )/CF 160ns
v Voter cycles 4
a Number of output data for 1 ACS operation 2
xv Number of execution cycles for 1 ACS operation with voter, xv = x + a ×v 14
tf v Application execution time with voter for 1 frame, 224ns

tf v = (xv + I I × (N − 1)) × (y/N )/CF
WCM Configuration memory bit width 128
WB Data bus bit width 32
tCW Transfer time for 1 configuration word, tCW = (WCM/WB )/CF 4ns
b Number of input data for 1 frame 64
WDM Data memory bit width 16
tDW Transfer time for 1 data word, tDW = (WDM/WB )/CF 0.5ns
eC Number of words that are detected as having parity error in the -

configuration memory
eD Number of words that are detected as having parity error in the data -

memory
tDMA DMA setup time 36ns
tEC Execution controller setup time 47ns
tOS OS booting time 800ns
hP E Threshold value to detect memory failure 1
hMEM Threshold value to detect controller failure 1

data memory. The other frames are the same as the first frame except for the 64th and the 128th
frames, which are located on the partition boundaries, and therefore include two voting operations
(one for the path-metric and one for the decision results) along with the ACS operation. Since the
size of the proposed PE array is 8x8, we have eight columns and they can therefore execute eight
ACS operations in parallel. However, since the number of memory ports is restricted (we have two
read and one write port per row of the PE array), we cannot have all eight columns executing the
same instructions. The second column thus cannot start its read operations until the first column
finishes its read operations. The difference between the start time of the current column and the
start time of the next column is referred to as the Initiation Interval (I I ), which is two in this
example. The total execution time of the application for one frame, denoted as tf , can be calculated
as

tf = (x + I I × (N − 1)) × (y/N )/CF ,
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where x is the number of execution cycles for one ACS operation, N is the number of PEs in a
row in the PE array, y is the number of total ACS operations within one frame, andCF is the clock
frequency. In this example, the execution time for one frame, tf , is (6 + 2 × (8 − 1)) × (64/8)/109 =
160ns . When we partition an application into several subtasks, voters are inserted at partition
boundaries, as can be seen at the 64th and the 128th frames in Figure 5. The execution cycles
including voter operations, denoted as xv , can be calculated as xv = x + a ×v = 14, where a is the
number of output data for one ACS operation and v is the number of execution cycles for a voter.
Then, the number of execution cycles per frame with voters, denoted as tf v , is (14 + 2 × (8 − 1)) ×
(64/8)/109 = 224ns .

If we assume the memory detection time for task Ti , tMi
is smaller than the execution time for

task Ti , tEi
, we can derive the detection time of task Ti , tDi

, as

tDi
= MAX (tMi

, tEi
) = tEi

= (L/k − 1) × tf + tf v .

The exact number of execution cycles for an application varies according to the characteristics of
the CGRA. However, most advanced CGRAs use loop-level optimizations such as loop pipelining,
which is also used in our analysis.

As shown in Figure 5, an identical ACS operation is used for all iterations. Thus, the overwrite
time of the configuration memory for task Ti , tCMi

, is fixed by the instruction count for one ACS
operation, which is calculated as

tCMi
= x × (WCM/WB )/CF = x × tCW ,

where tCW = (WCM/WB )/CF is the transfer time of one configuration word from the external
memory to the configuration memory. Note that the transfer time is bounded by the bandwidth
of the system bus.

In contrast to the fixed overwrite time of the configuration memory, the overwrite time of the
data memory for task Ti , tDMi

, is directly related to the number of partitions, which is calculated
as

tDMi
= (b × L/k ) × (WDM/WB )/CF = (b × L/k ) × tDW ,

where b is the number of input data to copy from the external memory to the data memory for one
frame, and tDW = (WDM/WB )/CF is the transfer time of one data word from the external memory
to the data memory. Note that tCMi

and tDMi
are the time to overwrite all the data for task Ti .

If we have parity, we do not need to overwrite all the data. Only the words that are detected as
having parity errors will be overwritten. Therefore, tOi

should be calculated as follows for the
three different protection schemes:

tOi
(TMR) = tDMA + tCMi

+ tDMi

tOi
(TMR + Parity) = tDMA + eC × tCW + eD × tDW

tOi
(TMR + ECC ) = tDMA + eC × tCW + eD × tDW ,

where eC is the number of words that are detected as having parity errors in the configuration
memory and eD is the number of words that are detected as having parity errors in the data
memory.

5.2 Recovery Time Analysis for ACS

Based on Table 5, we have calculated the time for each of the state transitions in Figure 3. Table 6
reports the maximum recovery times of the ACS operation when checkpoints are available. As
described in Table 3, when checkpoints are not available in the system, the recovery time for task
Ti is simply given by the tR_CT RLi

columns of Table 6 since re-executing a task is not possible.
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Table 6. Maximum Recovery Time for ACS with Checkpointing

Number of

Partitions, k

Application
Execution
Time (us)

Recovery from
PE Failure, tR_P Ei

(us)

Recovery from Recovery from

Memory Failure, Controller Failure

tR_MEMi
(us) tR_CT RLi

(us)

TMR+ TMR+ TMR+ TMR+

TMR Parity ECC TMR Parity ECC

1 20.5 20.6 66.0 20.7 0 92.5 47.1 26.4

2 20.6 10.4 33.3 10.4 0 59.8 36.9 26.5

4 20.7 5.2 16.9 5.3 0 43.5 31.9 26.6

8 21.0 2.7 8.7 2.8 0 35.6 29.6 26.8

16 21.5 1.4 4.6 1.5 0 32.0 28.9 27.3

32 22.5 0.8 2.6 0.8 0 31.0 29.2 28.4

64 24.6 0.4 1.5 0.5 0 32.0 31.0 30.4

128 28.7 0.3 1.0 0.4 0 35.6 34.9 34.5

We assume that two SEUs are detected during the execution, and that these cause a failure of the
CGRA, as shown in Table 2.

For example, in Table 6, when the number of partitions k = 2, recovery from PE failure for task
Ti is given by Equation (4):

tR_P Ei
= tDi

+ tEC = (L/k − 1) × tf + tf v + tEC = 10.4us .

The recovery from a memory failure for taskTi , denoted as tR_MEMi
, is determined by Equation (6)

and Equation (9):

tR_MEMi
(TMR) = tFi

+ tDi
+ tOi

+ tEC = (hP E + 1) × tR_P Ei
+ tOi

(TMR) = 33.3us

tR_MEMi
(TMR + Parity) = tDi

+ tOi
+ tEC = tR_P Ei

+ tOi
(TMR + Parity) = 10.4us

tR_MEMi
(TMR + ECC ) = 0.

In particular for the TMR + ECC case, the recovery time is zero, since the memory is protected
by ECC, and thus the reload and re-execution of the operation is unnecessary. Finally, the recovery
from a controller failure for task Ti is derived from Equation (7) and Equation (9):

tR_CT RLi
(TMR) = tFi

+ tDi
+ tREi−1 + tI N IT

= hP E × tR_P Ei
+ hMEM × tR_MEMi

+ tREi
+ tI N IT = 59.8us

tR_CT RLi
(TMR + Parity) = tFi

+ tDi
+ tREi−1 + tI N IT

= hMEM × tR_MEMi
+ tREi

+ tI N IT = 36.9us

tR_CT RLi
(TMR + ECC ) = tDi

+ tREi−1 + tI N IT = 26.5us .

Since this is the maximum recovery time, when we calculate tR_CT RLi
, we set tDi

+ tREi−1 to be
equal to the total application execution time (tDi

+ tREi−1 = tREi
= tE0 + tE1 = 20.6us ).

In Table 6, the smallest (which is the best) recovery time is highlighted in bold and underlined.
The time to recover from a PE failure or a memory failure decreases dramatically in conjunction
with an increase in the number of partitions, k , because of the impact of tDi

, which decreases as
k increases. However, the minimum recovery time from a controller failure has a distinct trough
due to the effects of both tDi

and tREi
, which increase with the increase in k .
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Table 7. Area and Utilization of Each CGRA Component

by Protection Scheme

CGRA Component Protection Scheme *Area Utilization

Control logic - 1.00 1

PE array TMR 6.32 0.75

Configuration memory

(128 bits wide)

TMR 1.44

0.1TMR+Parity 1.45

TMR+ECC 1.54

Data memory (16 bits

wide)

TMR 15.43

1TMR+Parity 17.43

TMR+ECC 21.28

*Area is normalized to control logic.

Our analysis indicates that, in a CGRA, the degree of task partitioning plays a crucial role in
determining the optimum recovery time. Although this evaluation is based on a specific CGRA,
which has an 8x8 PE array and uses a temporal mapping scheme, the proposed mathematical
models can be used to analyze any case by adapting the parameters given in Table 5 to the specific
characteristics of a given CGRA and application.

5.3 Recovery Time Scaled by the Area Overhead

As shown in Table 6, since recovery from a controller failure usually takes longer than recovery
from a PE or memory failure, we have to pay special attention to controller failure. To verify the
general effect of a controller failure, we have analyzed the average recovery time, which is scaled by
the area overhead. Table 7 compares the area of CGRA components with that of the control logic.
From the baseline architecture in Kim and Mahapatra (2011), we increased the size of the data
memory to store the complete source dataset needed for ACS operations. Since we use a software
approach for the TMR implementation, area overhead only comes from the error detection and
correction logic of the memory block. The area overhead of parity is calculated assuming that 1
bit of parity is added to each word in each replica. The area overhead of ECC, which has Single-
Error-Correction-Double-Error-Detection (SEC-DED) capabilities, has been obtained from Naseer
and Draper (2008) and calculated according to the memory bit width.

When we assume that the error rate is directly and only proportional to the area, we can obtain
the average recovery time by scaling the recovery times by the area of each component in Table 7.
Note that increasing the number of partitions does not affect the area of the computation, but the
time spent checking results in voters does affect the time needed for execution. Figure 6 shows
the average recovery time according to the number of partitions, which is scaled according to the
respective areas of the affected components, denoted as tR_AV ERAGEi

, and calculated as

tR_AV ERAGEi
= α × tR_P Ei

+ β × tR_MEMi
+ γ × tR_CT RLi

, (10)

whereα represents the proportion of the total CGRA area allocated to the PE array, β represents the
proportion of CGRA area allocated to the memory, and γ represents the proportion of CGRA area
allocated to the control logic. Table 7 also lists the resource utilization of the CGRA components.
Since SEUs in unused (nonutilized) resources do not cause an error, we multiply the utilization of
CGRA components by the area weights to account for the susceptibility to error of each CGRA
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Fig. 6. Average recovery time considering the area and susceptibility to error of the various CGRA

components.

component. For example, in the TMR case,

α = (6.32 × 0.75)/(6.32 + 1.44 + 15.43 + 1.00) = 0.20,

β = (1.44 × 0.1 + 15.43 × 1)/(6.32 + 1.44 + 15.43 + 1.00) = 0.67,

γ = (1.00 × 1)/(6.32 + 1.44 + 15.43 + 1.00) = 0.04.

Even though the maximum recovery time of the control logic is high (92.5us at most, when
device area is not considered), we can expect a rather smaller recovery time (50.4us at most) when
the utilization and device area are included in the calculations.

The average recovery time is further reduced if we partition the application into several tasks
or add error detection and correction logic to the memory. In this evaluation, the optimal result is
achieved when ECC is used with TMR and the number of partitions, k , is equal to 32.

5.4 Recovery Time Estimation in Harsh Radiation Environments

In Geostationary Equatorial Orbit (GEO), the system is expected to experience a peak SEU rate of
3.29E-1 per second (Ostler et al. 2009). This result is applicable to a space-grade Xilinx Virtex-4
FPGA (XQR4VSX55), which has a similar gate count (1.3 million) (Xilinx 1997) with the proposed
CGRA. Recent COTS FPGAs that are fabricated with modern sub-100nm process technologies are
more sensitive to low-energy protons than space-grade FPGAs, which can increase the SEU rate
by several orders of magnitude (Glein et al. 2015; Heidel et al. 2008). This fact suggests that the
SEU rate of CGRAs that are not radiation hardened will be much higher than that given in Ostler
et al. (2009). However, CGRAs share some similarities with both processors (subject to an order
of magnitude lower SEU rates than FPGAs) and SRAMs (subject to an order of magnitude higher
SEU rates than FPGAs) (Quinn and Graham 2005). Thus, it is difficult to estimate the SEU rate of
CGRAs without performing radiation testing. We therefore chose the value stated previously and
consider a range of SEU rates below and above this value.

When we increase the number of frames in the ACS operations, the chance of experiencing SEUs
during the execution increases due to the increase in execution time. Table 8 shows the number
of SEUs per application execution, when we assume a harsh radiation environment of 3.29E-1
SEUs per second. If we make the following two assumptions, (1) that the number in Table 8 is
the maximum number of SEUs per execution and (2) that the system may experience the worst-
case scenario, namely, that errors can occur in one partition at the same time, then the average
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Table 8. Estimated SEUs During the Execution

Number of Frames Application Latency (ms) Number of SEUs per Execution

2.00E + 7 3.20E + 3 1
4.00E + 7 6.40E + 3 2
6.00E + 7 9.60E + 3 3
8.00E + 7 1.28E + 4 4
1.00E + 8 1.60E + 4 5

Fig. 7. Average recovery times in harsh radiation environments.

recovery times for one, two, and five SEUs are shown in Figure 7. When the number of SEUs per
execution is one, as shown in Figure 7(a), recovery time is only incurred for control errors since all
other errors are masked by TMR. Thus, the average recovery time is observed to be much smaller
than the application execution time. If we increase the number of SEUs per execution to two, as
shown in Figure 7(b), the recovery time becomes similar to the result of Figure 6. Finally, when
we increase the number of SEUs per execution to five, as shown in Figure 7(c), we observe no
difference between the TMR+Parity case and the TMR+ECC case since ECC is ineffective.

5.5 Total Execution Times for Some Practical Kernels

To confirm the effectiveness of the presented recovery time analysis model, we have evaluated var-
ious practical kernels, including vector convolution, matrix multiplication, and de-quantization,
that are widely used in space applications (Lovelly et al. 2014). Figure 8 shows the total execution
times, which include the application execution times of the CGRA and the expected recovery
times assuming a radiation environment causing between 0.1 SEU/sec and 10 SEUs/sec, which
we expect to be the range in maximum error rates CGRAs may experience in GEO. Note that the
result in Figure 8 is not the complete execution time to generate an output of an application, but it
is the expected application execution time including the recovery process. If errors occur during
the recovery process or the re-execution process, the system may repeat this expected execution
consecutively until at least two out of three voters agree with the majority result. It can be seen
from Figure 8 that the experimental result is classified into three categories: (1) The number
of SEUs per execution is less than two, where there is little difference between the protection
schemes. This category includes (a), (b), (c), (d), (e), and (g) in Figure 8. (2) The number of SEUs per
execution is between two and four, where there is a large difference between protection schemes,
especially when the number of partitions, k , is small. In this category, a memory protection
scheme such as parity helps to reduce the overall execution time, and the best overall execution
time decreases along with an increase in the number of partitions, k . This category includes (f)
and (h) in Figure 8. (3) The number of SEUs per execution is larger than four, where the graph
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Fig. 8. Total execution times for some practical kernels.

shows similar characteristics to the second category, but there is no difference between the
TMR+Parity case and the TMR+ECC case. This category includes (i) in Figure 8. The results of
practical kernel examples also support the observations we made in Figure 7.

6 CONCLUSIONS

We have presented a reliable CGRA and a recovery time model for transient faults in CGRAs. In
the proposed architecture, triplicated modules and voters are implemented in software so as to
avoid incurring a silicon area overhead. Hardware logic is included to enable error detection and
correction for fault-tolerant memory.

In particular, we analyzed the maximum recovery time from errors, which are categorized as PE
errors, memory errors, and control logic errors. We have also analyzed the average recovery time
according to silicon area estimates. Finally, the overall execution time including the application
execution time and the recovery time in harsh radiation environments was analyzed with some
practical space kernel examples.
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The results show that task partitioning is crucial for bounding the recovery time of applications
that have long execution times. However, when an optimal number of partitions is reached, which
yields the shortest average execution time, the benefits of using parity and ECC were negligible
(under 1% on average) in terms of overall average execution time. The use of parity and ECC is only
beneficial in circumstances where the number of partitions cannot be increased due to dependency
issues, or for real-time applications where the worst-case execution time is important rather than
the average execution time. In a very high-radiation environment, there was no advantage to using
ECC rather than parity to protect configuration and data memory.

Future work envisages the implementation of a complete fault-tolerant CGRA architecture and
an evaluation of better protection methods at the additional cost of area. We are also investigating
the development of a software framework for CGRAs, which includes automated partitioning and
roll-back mechanisms.
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