
1

A Survey on Online Judge Systems and Their Applications

SZYMON WASIK∗†, Poznan University of Technology and Polish Academy of Sciences
MACIEJ ANTCZAK, Poznan University of Technology
JAN BADURA, Poznan University of Technology
ARTUR LASKOWSKI, Poznan University of Technology
TOMASZ STERNAL, Poznan University of Technology

Online judges are systems designed for the reliable evaluation of algorithm source code submitted by users,
which is next compiled and tested in a homogeneous environment. Online judges are becoming popular in
various applications. Thus, we would like to review the state of the art for these systems. We classify them
according to their principal objectives into systems supporting organization of competitive programming
contests, enhancing education and recruitment processes, facilitating the solving of data mining challenges,
online compilers and development platforms integrated as components of other custom systems. Moreover, we
introduce a formal definition of an online judge system and summarize the common evaluation methodology
supported by such systems. Finally, we briefly discuss an Optil.io platform as an example of an online
judge system, which has been proposed for the solving of complex optimization problems. We also analyze
the competition results conducted using this platform. The competition proved that online judge systems,
strengthened by crowdsourcing concepts, can be successfully applied to accurately and efficiently solve
complex industrial- and science-driven challenges.

CCS Concepts: •General and reference→ Evaluation; •Mathematics of computing→Combinatorics;
Discrete optimization; •Theory of computation→ Design and analysis of algorithms; •Networks→
Cloud computing;

Additional Key Words and Phrases: online judge, crowdsourcing, evaluation as a service, challenge, contest

ACM Reference format:
Szymon Wasik, Maciej Antczak, Jan Badura, Artur Laskowski, and Tomasz Sternal. 2016. A Survey on Online
Judge Systems and Their Applications. ACM Comput. Surv. 1, 1, Article 1 (January 2016), 35 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In 1970, when Texas A&M University organized the first edition of the ACM International Collegiate
Programming Contest (ICPC), no one could have guessed that, in a few dozen years, it would be the
largest and most prestigious programming contest in the world. In 2015, over 40,000 students from
almost 3,000 universities and 102 countries participated in a regional phase of this contest (40th
∗This is the corresponding author
†SW and MA contributed equally to the paper

All authors were supported by the National Center for Research and Development, Poland [grant no. LIDER/004/103/L-
5/13/NCBR/2014]. Moreover, development tools JIRA and Bitbucket were shared by PLGrid infrastrucutre. The authors
would like to thank Szymon Acedanski from Warsaw University for his advice on the implementation of execution time
measurements methods.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2016 ACM. 0360-0300/2016/1-ART1 $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

ar
X

iv
:1

71
0.

05
91

3v
1

 [
cs

.C
Y

]
 1

4
O

ct
 2

01
7

1:2 S. Wasik et al.

Annual World Finals of the ACM ICPC 2016). During the contest, lasting 5 hours, participants solve
from 8 to 13 algorithmic problems. The winner is the team that first solves the highest number of
problems. The key component of this contest environment is a system that automatically verifies
the correctness of solutions submitted by participants. It assesses the correctness of the submitted
solutions based on the results obtained from their execution on predefined test sets. It also verifies
that the solution does not exceed resource utilization limits (such as time and memory). Based
on the conducted evaluation, the online ranking of all participants is computed and presented in
real-time during the ongoing contest.

Since the first finals of the ICPC, many other algorithmic competitions requiring similar automatic
evaluation systems have been started. Most likely, the most important of them is the International
Olympiad in Informatics (IOI), first organized in 1989. It is comparable to the ICPC but dedicated
to secondary school pupils. The biggest differences between the aforementioned competitions are
the following: the participants solve problems individually instead of collaboratively in teams;
the number of problems considered by the IOI is lower than that by the ICPC; and in the IOI, the
participants receive partial scores for each submitted solution instead of the binary scoring applied
in the ICPC (every solution is treated as only correct or incorrect). Detailed information regarding
the basic rules and scoring functions used by the most popular programming competitions was
published by Cormack et al. (Cormack et al. 2006).

The important supplemental role of the IOI is as a place for building an international community
of people committed to the organization of programming contests. One of its important activities
was foundation of the Olympiads in Informatics journal, which publishes papers submitted annually
for presentation in the conference organized in parallel to the IOI (Dagiene et al. 2007). It provides
an international forum for discussion regarding the experiences gained during national and
international Olympiads in Informatics, including preparation of interesting problems and software
supporting their organization. As mentioned before, the most important entries among such
software are systems that automatically evaluate solutions submitted by participants; such systems
are called online judges. The term online judge was introduced for the first time by Kurnia, Lim,
and Cheang in 2001 as an online platform that supports fully-automated, real-time evaluation of
source code, binaries, or even textual output submitted by participants competing in a particular
challenge (Kurnia et al. 2001). However, the development of online judge systems boasts a much
longer history, dating back to 1961 when they emerged at Stanford University (Forsythe and Wirth
1965; Leal and Moreira 1998).

During the design and implementation of online judge systems, many important factors should
be taken into consideration. The key issue is the security of such a system. The concept of an
online judge assumes that the user submits the solution as the source code, or sometimes even the
executable file, which will be evaluated in the next step, often in a cloud-based infrastructure. The
designers of the online judge should ensure that the system is resistant to a broad range of attacks,
such as forcing a high compilation time, modifying the testing environment or accessing restricted
resources during the solution evaluation process. A detailed description of possible attack types and
the methods of protection used against them in 2006 during Slovakian programming competitions
can be found in (Forišek 2006b). Unfortunately, the solutions of security threats presented in the
aforementioned paper are mostly outdated, although their causes are still unchanged. Currently,
the most popular methods of avoidance of such issues rely on the execution of submitted solutions
in dedicated sandboxes managed by the online judge system (Yi et al. 2014), such as virtualization,
LXC containers (Felter et al. 2015), and the Docker framework (Merkel 2014). Such approaches
could significantly increase the safety and reliability of the system.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

A Survey on Online Judge Systems 1:3

Another important aspect that should be taken into consideration during the development of
such systems is the measurement precision of execution time. The time limit for a single test
case execution is often measured in milliseconds, and thus the performance analysis method used
during evaluation should be sufficiently sensitive and deterministic to precisely distinguish such
small fractions of time and ensure reproducible measurements of consecutive executions of the
same code for the particular test case. There are various methods that can be used to measure
the processing time, such as the utilization of simple command line utilities, analysis of hardware
performance counters, code instrumentation or even code sampling. Applications of each entail
various advantages, as well as disadvantages, that one should be aware of related to measurement
precision, time overhead and available integration methods (Ilsche et al. 2015).

In all online judge systems, one of the requirements is that the solution code submitted by a
user should be evaluated in a coherent and reliable server infrastructure. Hence, these systems are
developed as platform-as-a-service (PaaS) cloud computing services because the scalability of such
a highly interactive system is crucial, especially as the competition deadline approaches and the
number of submissions increases rapidly. For this reason, the efficiency of such systems is often
guaranteed by an architecture utilizing concurrency and parallel processing. A detailed analysis of
the utilization of symmetric multiprocessing (SMP) environments by online judges is presented by
Drung et al. (Drung et al. 2011).

Finally, not only is the software itself important, but so are the description of the problem
and the quality of the prepared test cases stored in the system. Forišek noted that authors of
problems, which are evaluated automatically during competitions such as the ACM ICPC and
the IOI, should give special attention to both the type of the problem and the preparation of test
cases. He demonstrated that some types of problems, such as substring search, can be easily solved
using heuristic algorithms. Additionally, he presented several problems from the ICPC and IOI
competitions that can be solved using generally incorrect algorithms and still receive very good
evaluation score (Forišek 2006a). Moreover, Mani et al. (Mani et al. 2014) noticed that the manner
of presentation of the online judge output is also very important. In particular, the evaluation
summary presented in online judge systems which educational institutions use during courses,
should be easy to read and understand.

The problems that are usually published in online judge systems are generally classified as
combinatorial problems. A combinatorial problem relies on discovering values of discrete variables
that satisfy specific constraints. They are divided into decision problems, for which it must be
verified that a provided solution exists, and search problems, for which the solution has to be
found. A special case of the search problem is the optimization problem, for which we have to
find the optimal solution subject to some objective function. Combinatorial problems are very
interesting because they are intuitively understandable, but solving them is often challenging. The
aforementioned observation was confirmed for various combinatorial problems and became a
cause of the rise of computational complexity theory (Edmonds 1965; Garey and Johnson 1979).
This research field focuses on the classification of such problems, taking into account how complex
the process of searching for a solution is. Problems published in online judge systems are usually
solvable in polynomial time, and the maximal limit for processing time needed to find a solution is
adjusted in such a way as to ensure that the optimal solution can be found for each considered test
case. Although these systems can also be used to evaluate more complex problems for which only
local optimums can be found during the processing time limit, none of the currently available online
judges can simply manage such problems. The most well-known competition with the longest
tradition is the ROADEF Challenge (Artigues et al. 2012) organized by the French Operational
Research Society. The challenge is conducted every two years. Its primary objective relies on

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:4 S. Wasik et al.

solving some industrial-driven problem proposed in collaboration with a business partner and
supplemented with realistic test cases. There are also other specialized contests, usually focused
on more specific topics, e.g., the International Planning Competition (Coles et al. 2012) organized
during the International Conference on Automated Planning and Scheduling (ICAPS) focuses on
the implementation of planners that solve instances of planning problems defined in the Planning
Domain Definition Language (PDDL) format (Mcdermott et al. 1998). Another example is the JILP
Workshop on Computer Architecture Competitions, where participants solve problems related to
optimizing parameters of algorithms used by computer hardware or infrastructure.

The aforementioned contests apply a very efficient technique called crowdsourcing to solve
practical optimization problems. Crowdsourcing outsources work to a large network of people in
the form of an open call (Wasik et al. 2015). In the case of optimization challenges, the topic of
the call is related to the optimization problem, and the network of potential participants includes
interested programmers and scientists grouped together through the Internet. Although the concept
of crowdsourcing has been intuitively applied since at least the eighteenth century (Dawson and
Bynghall 2012) it has been formally defined relatively recently in 2006 by Jeff Howe (Howe 2006).
The first fifteen years of the twenty-first century have been a time of rapid development in
crowdsourcing, thanks to the popularization of Internet access. The best example of success in
solving industrial challenges using crowdsourcing is the Kaggle platform. It is a web portal where
data mining problems are published and subsequently solved by external experts participating in
the competition. In 2016, Kaggle completed 34 competitions with total awards valued at 1,160
thousand dollars. The number of teams participating in the considered competitions varied between
50 and 3,500. Assuming that the average number of teams participating in a single contest is equal
to 500, the average size of a team is 3, and average time spent solving the problem is up to 3 days
per person, thus yielding 135,000 days or 370 person-years spent solving industrial problems.

The Kaggle platform focuses mainly on data-mining problems related to the concept of data
science, which has recently gained popularity (Dhar 2013). However, solutions of various
optimization problems can also be practically applied, e.g., in problems originating from the
operational research field. Thus, there is a great need to develop efficient algorithms to solve
them in safe and reliable environments by a resilient community. In this article, we would like
to review the state of the art in the field of online judge systems and briefly discuss the Optil.io
platform as an example of such systems, designed with the application of crowdsourcing in mind
to solve complex optimization problems. This implements the online judge concept that utilizes an
objective function instead of a binary evaluation to rank submitted solutions.

The scope of the article is as follows: As there is no formal definition of online judge systems in
literature, we, therefore, decided to fill this gap to clarify further analysis. Next, we present a survey
of existing online judge systems, prepared with a focus on potential applications, and provide a
short presentation of each of them. The diversity of these types of systems is so tremendous that the
application-based classification is of great importance for interested practitioners. We focus mainly
on systems that support an evaluation of algorithms for solving combinatorial problems. This is
because, firstly, they are elementary type of problems from the theoretical point of view (Garey
and Johnson 1979), secondly, they include many data mining problems (Saedi and Kundakcioglu
2013) and, thirdly, they are most commonly addressed by this kind of systems. Additionally, we
summarize the common evaluation methodology supported by these systems. Finally, we briefly
demonstrate potential applications of the online judge systems based on the discussion of the
contest conducted using the Optil.io platform. A brief discussion of the results of the application of
this system allows for a broader understanding not only of the concepts described in this article,
but also of their practical implications to the design and development of online judge systems. We

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

A Survey on Online Judge Systems 1:5

believe that such a review, supplemented with an example application of an online judge system,
can be interesting for many scientists who want to use online judge systems in their own research,
or teachers who would like to use them for educational purposes.

2 ONLINE JUDGE SYSTEMS
In general, the aim of online judge systems is a safe, reliable, and continuous, cloud-based
evaluation of algorithms that are submitted by users distributed around the world. Toward a better
understanding of the scope of this article, we will first define an evaluation procedure, which is
crucial and should be implemented, at least partially, by any online judge.

Definition 2.1 (Evaluation procedure). An evaluation procedure consists of three steps: (1)
submission, (2) assessment, (3) scoring.

During the submission phase, the submitted code is compiled, if needed, and verified if it can be
successfully executed in the homogeneous evaluation environment. After a successful verification,
each submission is reliably assessed on coherent infrastructure based on the problem-specific set of
test cases. For each test case execution of the particular submission it is verified whether:

(1) the execution process proceeded without errors,
(2) any problem-specific resource limitations have not been exceeded,
(3) the obtained output complies to the rules described in the problem definition.

Finally, the aggregated score for the submission is computed based on the results of all considered
test cases. The detailed definition of the commonly used evaluation procedure is presented in
Section 3. We treat various online platforms as an online judge in a broad sense, including all
systems that support any subset of evaluation procedure phases often in a cloud-based environment.
A formal definition of online judge is provided in section 3 in definition 3.6.

2.1 Methods
In the literature, one can find various attempts at classification of contests organized using online
judge systems and problems solved in such environments. In 2006, Pohl proposed a first simple
classification (Pohl 2006) taking into account criteria related to a contest’s style, duration, grading,
submission procedure, and entrance criteria. In 2014, Combéfis and Wautelet proposed another
classification (Combéfis and Wautelet 2014) according to criteria focusing on the programming
contests and the problems solved during these matches. In 2015, Németh et al. refined this
classification with several new criteria, characterizing contests more deeply and describing types of
programming exercises and features of online judge systems crucial to the educational perspective
(Németh and László 2015). However, all these reviews had scope limited to a single application,
either in education, or in the organization of programming contests. Until now, no one has classified
online judge systems according to their potential applications, taking into account a much broader
range of interests of potential users. Such classification should present the primary objective of
the system and can be extremely useful for users looking for an online judge system that meets
their needs. That is why we decided to treat this criterion as crucial to the differentiation of online
judge systems.

According to this criterion, we distinguished six classes of systems that integrate online judge
systems. The largest class represents online platforms dedicated to the sharing of challenges
solved during programming contests (ACM ICPC-like) and Olympiads in Informatics. The other
categories of systems are helpful for educational purposes, recruitment of employees, evaluation of
specialized algorithms that solve data mining problems and integration as a crucial component of
online compilers that allow users to compile arbitrary code online. Finally, we present the class of

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:6 S. Wasik et al.

development platforms that provide an online judge component that can be simply used in custom
applications. In some cases, it was difficult to apply such a classification because there are several
systems that can be considered as members of more than one group. In such cases, we identified
the principal objective of the service to classify it.

The objective of the article is to provide a tutorial demonstrating a broad range of online judge
systems prepared based on an extensive review of literature conducted using the Web of Science,
Google Scholar, and Scopus Indexes. Moreover, we reviewed in detail the vast majority of articles
published in Olympiads in Informatics journal and queried the Internet to find such systems that
are available even if they have not yet been published. For all queries, we used the following
set of keywords: online judge, online judge systems, automated programs grading, and automated
grading programming. The area of students’ assignments assessment has been quite extensively
explored in many well-known review papers where such systems are described in the light of
potential applications, e.g., teaching use cases (Caiza and del Álamo Ramiro 2013; Ihantola et al.
2010, 2015; Romli et al. 2010; Staubitz et al. 2015; Wilcox 2016). To ensure completeness of the
possible applications of online judges in the proposed review, we selected systems that are the most
comprehensive, from the applications-oriented perspective, as representatives in this category.

Following the guidelines for preparing systematic literature reviews (Keele 2007; Kitchenham
et al. 2009), we defined the following acceptance criteria, all of which should be satisfied by the
system considered in the review; i.e., the system:

(1) supports any subset of evaluation procedure phases,
(2) is able to evaluate algorithms that are used to solve combinatorial problems,
(3) is available in English, or is described in an article published in English in some journal or

conference proceedings,
(4) is publicly available (for free or on commercial basis),
(5) operates properly, i.e., it should have provided a possibility to register and submit solutions

for at least one problem provided through it in June 2017.

A classification of online judge systems presented in this article has been prepared with the
main focus on the summary of their possible applications from the user’s perspective. For each
online judge system that we found in the literature, we selected two to five of the most intuitive
usage scenarios. Afterwards, for each usage scenario identified earlier, we computed a simple
coverage coefficient as the number of online judge systems that implement such a scenario. Thus,
we obtained a list of usage scenarios ordered in a decreasing manner according to the coverage
coefficient. During the team brainstorming session, we discussed the significance and usability of
the considered usage scenarios. Eventually, we defined the following categories of online judge
systems that differ in supported functionalities:

(1) Online compilers: systems that support only a compilation of source codes performed
during a submission phase of the evaluation procedure.

(2) Data mining, education and competitive programming: systems that, by inferring from
our functionality-oriented analysis, focus on (a) evaluation of solutions submitted for
data mining problems are classified in a data mining category; (b) educational processes
are considered as educational software; (c) implementation of ICPC or IOI scoring rules
and archiving problems from past challenges are classified as competitive programming
software.

(3) Recruitment platforms: online platforms targeted to employers to facilitate the recruitment
of software developers for various IT projects, and which allow the evaluation and ranking
of submitted solutions according to specific objective functions.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

A Survey on Online Judge Systems 1:7

(4) Development platforms: systems that are often provided as open source projects or binary
archives, allowing users to customize deployments and configurations of these systems in
their infrastructure.

For each online judge system, we provide the most crucial information, namely if it is open
source, what natural language it uses in its user interface, the number of supported compilers,
number of published challenges, number of registered users, year of establishment, and if it is
actively maintained. We included only systems that are available online and working correctly.
We classified systems that had no new problems or news published on their websites over 2016 as
inactive. Otherwise, a system is classified as active. When we could not locate information on
the web page, we tried to contact administrators. The number of compilers supported by many
platforms is changing very quickly because it is rather easy to extend the range of supported
compilers. Thus, we assigned the considered systems into four classes, i.e., systems that do not
support any compilers because they only assess the results obtained by algorithms executed by the
user using his infrastructure (Class 0); systems that support a single specific programming language
(Class 1); systems that support several of the most popular programming languages, such as C++,
Java, Python, and C# (Class 2); and systems that support a broad range of compilers (Class 3). For
development platforms and online compilers, the assessment of the number of challenges published
is not applicable because their business goal is to be integrated as part of more complex systems
and to compile code that can be executed on arbitrary data. A summary of all this information is
presented in Tables 1 to 6.

2.2 Competitive programming
Online platforms that collect and share challenges similar to those used during competitive
programming contests (Khera et al. 1993) constitute the largest group of services that integrate
online judge systems because many universities provide this type of system to help their students
prepare for competitive programming championships. Moreover, organizations that conduct such
competitions are interested in the popularization of challenges solved during the past editions of
these contests. The list of online judge systems presented in this subsection can be found in Table 1.
Table 1. Online judge systems applied for competitive programming contests. Successive columns
include: (1) the name and URL address available in electronic version when hovering the computer
mouse over its name, for printing URL addresses please download the electronic supplement, (2) if
this system is open source software (OSS), (3) the ISO 639-2/B code (LLC Books 2010) of languages
supported by the user interface of the system, (4) the class regarding the number of supported
compilers, (5) the number of published problems, (6) the number of registered users, (7) the year of
the establishment, and (8) the date of the last update of the system. All data were collected in
June 2017.

Name and URL address OSS GUI language Compilers class id #Problems #Users Established Active
A2 Online Judge No Eng 3 300 55000 2011 Yes

AC 2333 No Chi 2 670 3300 2011 Yes
AcDream No Eng,Chi 2 300 5200 2013 Yes

ACM-ICPC live archive No Eng 3 1000 52000 2003 Yes
ACM-Kyrgyzstan Subregion No Eng 3 422 3600 2005 Yes

Adjule Online Judge No Pol 2 120 3000 2011 Yes
Aizu Online Judge No Eng,Jpn 3 1000 36000 2004 Yes

Al Zimmermann’s Programming Contests No Eng 0 26 2000 2009 Yes
BNU OJ Yes Eng,Chi 3 51000 31000 2013 Yes

Carribean Online Judge No Eng,Spa 3 2700 28000 2010 Yes
CDOJ Yes Eng,Chi 2 1300 9600 2014 Yes

Codeforces No Eng,Rus 3 3000 32500 2010 Yes
Don Mills Online Judge Yes Eng 3 700 7700 2014 Yes

e-olymp No Eng 3 7500 47000 2006 Yes
EI Judge No Eng,Rus 3 400 20000 2003 Yes

Facebook Hacker Cup No Eng 0 N/A 80000 2011 Yes
Fuzhou University Online Judge No Eng,Chi 2 1300 34000 2008 Yes

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

https://a2oj.com/
https://ac.2333.moe/
http://acdream.info/
https://icpcarchive.ecs.baylor.edu
http://www.olymp.krsu.edu.kg/GeneralProblemset.aspx
https://adjule.pl/
http://judge.u-aizu.ac.jp/onlinejudge/
http://www.azspcs.net/
http://www.bnuoj.com/v3/index.php
http://coj.uci.cu/index.xhtml
http://acm.uestc.edu.cn
http://codeforces.com/
https://dmoj.ca/problems/
http://e-olymp.com
http://acm.mipt.ru/judge
https://www.facebook.com/hackercup
http://acm.fzu.edu.cn/

1:8 S. Wasik et al.

Google Code Jam No Eng 0 450 200000 2008 Yes
Herbert Online Judge No Eng,Chi 1 1761 1200 2010 2011

HIT ACM/ICPC No Eng 2 1300 54000 1998 Yes
HUSTOJ Yes Eng,Chi 2 650 26000 2014 Yes

Indian Computing Olympiad Problems Archive No Eng 2 45 1250 2003 Yes
Internet Problem Solving Contest No Eng 0 240 5000 1999 Yes

Light OJ No Eng 2 430 14000 2012 Yes
LYDSY No Chi 2 1000 30000 2008 Yes
Main No Eng,Pol 1 1000 33000 2005 Yes

National Taiwan University Online Judge No Chi 2 2600 600 2016 Yes
National Tsing Hua University Online Judge No Eng 1 10000 - 2015 Yes

North University of China Online Judge No Eng 1 2000 4000 2006 Yes
P3G No Eng 3 1100 500 2008 Yes

Peking University Judge Online No Eng 2 3000 250000 2003 Yes
Petrozavodsk State University No Eng,Rus 2 450 140 2010 Yes

Project Euler No Eng 0 550 650000 2001 Yes
SPOJ No Eng 3 6000 60000 2004 Yes

SPOJ PL No Pol 3 800 36000 2004 Yes
Szkopu l Yes Pol 1 1000 - 2012 Yes

Teddy Online Judge Yes Spa 3 250 1900 2009 Yes
Timus Online Judge No Eng 3 1000 110000 2000 Yes

TJU ACM-ICPC Online Judge No Eng,Chi 2 3000 52000 2005 Yes
TopCoder Competitive Programming No Eng 2 5200 4000 2001 Yes

USA Computing Olympiad No Eng 2 150 12000 2013 Yes
UVa Online Judge No Eng 2 5000 250000 1995 Yes

The first online judge system that gained high popularity worldwide is the UVa Online Judge
(Revilla et al. 2008). It was founded in 1995 by Miguel Ángel Revilla, a mathematician who
lectures on algorithms at the University of Valladolid in Spain. It provides an enormous archive
of programming challenges originating from the ACM contests. Inspired by the massive data set
collected by UVa, Skiena and Revilla wrote their first book, the objective of which was primarily
to help students prepare for team programming competitions (Skiena and Revilla 2008). In this
volume, they presented a large subset of challenges, followed by their most compelling solutions
and hints that can be used by readers to solve them themselves.

Currently, the most extensive online judge, where over 10,000 challenges have been published, is
the National TsingHuaUniversity Online Judge. It is an ACM ICPC-like online judge designed
for training purposes as well as the online platform often used for organization of programming
contests. It supports only the C and C++ programming languages. In turn, one of the most popular
online judges is Codeforces. It organizes contests on a regular basis. Moreover, it provides
independent instances prepared for Russians only. It divides participants into two divisions
according to their adaptation of Elo rating (Elo 1978) which is updated for every competition
conducted. During the contest, they randomly split contestants into rooms of approximately
40 people. A single round takes 2 hours and considers five programming challenges. After
final submission of the solution for a given challenge, it allows each contestant to inspect other
participants’ solutions to hack them. By hack, we mean that Codeforces allows the participants
to verify the code submitted by rivals on an instance of their choice. When the verification fails,
the system automatically rewards the contestant who demonstrated the failure of the submitted
solution with additional points, and the author of the hacked one receives a penalty.

Three other large online platforms with over 5,000 published problems are Sphere Online
Judge (SPOJ), E-Olymp and TopCoder Competitive Programming. The first (Kosowski et al.
[n. d.]) is a very popular system that offers various types of challenges, ranging from classical
to optimization, code-golf, and riddles. It also provides two independent instances of the system
dedicated for Polish and Brazilian users. Each of these instances includes separate challenges.
In turn, E-Olymp is a Ukrainian portal supporting national institutions responsible for teaching
gifted young people who participate in programming competitions worldwide. Finally, TopCoder
provides a very innovative way of conducting algorithmic contests. They organize short rounds,
with three challenges and a 75-minute time limit per round. For each submitted solution that

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

https://code.google.com/codejam/
http://herbert.tealang.info/problems.php
http://acm.hit.edu.cn/hoj
http://acm.hust.edu.cn/
http://opc.iarcs.org.in/index.php/problems/
http://ipsc.ksp.sk
http://lightoj.com
http://www.lydsy.com/JudgeOnline/
http://main.edu.pl
http://acm.csie.ntu.edu.tw/ntujudge/index.php
http://acm.cs.nthu.edu.tw/
https://noj.io/
http://wcipeg.com/
http://poj.org/
http://acm.petrsu.ru
https://projecteuler.net/
http://www.spoj.com/
http://pl.spoj.com/
http://szkopul.edu.pl/
https://www.teddyonlinejudge.net/
http://acm.timus.ru/
http://acm.tju.edu.cn/toj/
https://www.topcoder.com/community/competitive%20programming/
http://usaco.org
http://uva.onlinejudge.org/

A Survey on Online Judge Systems 1:9

proves to be correct, the authors receive a reward inversely proportional to the time that they
needed to solve it and an additional bonus when they identify an issue in an opponent’s code,
similarly to Codeforces. TopCoder is a service with a very long tradition and has already organized
over a thousand algorithmic matches.

There are also plenty of less-popular online judges maintained by various universities. For
example, Tianjin University’s Online Judge (TJU) provides an extensive database of challenges,
which can be used to conduct contests that are custom, open or addressed to a limited set of
participants free of charge. These are so-called virtual contests. The organizer of such a contest is
responsible for choosing its start and end date and selecting the set of challenges from the provided
database that should be solved during this contest. Next, the system hosts the contest, following
the rules defined for the ACM ICPC contests. In this context, it is also worth mentioning Peking
University (PKU) Judge Online (POJ) and Timus Online Judge, which are the largest online
judge systems located in China (Wen-xin and Wei 2005) and Russia, respectively. EI Judge is
a relatively small system of that type in comparison with predecessors hosted by the Moscow
Institute of Physics and Technology. In turn, AC 2333 is the Ningbo University of Technology’s
online judge system, which only operates in China. The first Polish online judge in this grid
is the Adjule system hosted by Adam Mickiewicz University, which mainly shares challenges
proposed for the annual contest called the Poznan Open Championships. The following systems,
namely those of Petrozavodsk State University (which hosts the PetrSU Programming Club)
and National Taiwan University, are used to organize programming contests for their students.
In contrast to the systems mentioned above, P3G is a resource for competitive programmers
worldwide and was created by members of Woburn Collegiate Institute’s Programming Enrichment
Group. Creators of this platform also run PEGWiki, which is a site prepared for algorithm
enthusiasts. Other universities that boast their own online judges include Fuzhou University
(China), Harbin University of Technology (China), University of Electronic Science and
Technology of China, North University of China, University of Information Science in Cuba
(hosting Caribbean Online Judge), and Huazhong University of Science and Technology in China
(hosting HUSTOJ).

Moreover, many organizations that host programming competitions are also interested in
managing online judge systems to popularize challenges solved in the past events and help
users prepare for upcoming ones. One such system is the USA Computing Olympiad (USACO)
platform, where a vast number of programming challenges and well-written tutorials covering
various examples are published (Kolstad and Piele 2007). It introduces the world of competitive
programming step by step. Moreover, it organizes five or six online contests each year. The
ACM-ICPC Live Archive is an ACM programming challenges database originating from regional
contests, as well as finals held worldwide since 1988. Any interested participant can solve those
problems in numerous programming languages. In turn, the users of the Aizu Online Judge solve
challenges originating from both the Japanese Olympiad in Informatics and Japanese high school
contests. The MAIN website provides an archive of various challenges originating from Polish and
international contests co-organized by the Polish Olympiad in Informatics. Moreover, it also offers
interactive courses on programming and algorithms. A platform supplementing MAIN is Szkopul,
which allows users to create virtual contests using challenge sets hosted on MAIN. There are also
other, smaller, systems, such as the ACM Kyrgyzstan Subregion Challenges Archive, Indian
Programming Olympiad Archive, A2 Online Judge, AcDream, and Light OJ.

Unfortunately, most of the systems mentioned above are closed source, except HUSTOJ. There
are also three other platforms that are open source: CDOJ, Teddy Online Judge, and Don Mills
Online Judge (DMOJ). The last one especially is worth mentioning in this category because it

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:10 S. Wasik et al.

is a fully open-source and well-documented system available on GitHub. It publishes challenges
originating from Canadian Computing Competition, Canadian Computing Olympiad, Croatian
Open Competition in Informatics, International Olympiad in Informatics, and many others. It also
runs a contest once every month. Thanks to the extensive documentation, it is also very easy for
potential newcomers to submit novel challenges to DMOJ.

There are also several websites that present less classical applications of online judge systems,
e.g., Project Euler, which hosts more specific mathematical challenges in comparison with regular
ACM counterparts. Every week, a new challenge is posted. Users are ranked according to their
quality scores obtained for submitted solutions. The quality score depends on the number of users
who have submitted the correct solution earlier. Global ranking is constructed by taking into
account the quality scores obtained for the ten most recent challenges. Users usually develop
a dedicated program. However, in general, they can even try to solve the current challenge
analytically because only the textual representation of the solution obtained for the particular test
instance can be submitted and automatically judged. In turn, Al Zimmermann’s Programming
Contests is another online platform where contestants are supposed to send only the textual
representation of the solution for computationally intensive problems. It runs new contests once
or twice a year. Another event worth mentioning is the Internet Problem Solving Contest
(IPSC), which is an annual programming competition considering fancy challenges of various
types, e.g., the ACM, Capture the Flag, optimization problems, etc. Contestants are grouped
together in teams of three. Those who sent a postcard to coordinators are granted an additional
time bonus. At the end of a particular contest, all challenges are moved to the archive where they
are available for practicing as part of a virtual contest system. Another interesting system is the
Herbert Online Judge, which provides over a thousand challenges that are solved by users in the
H language. The H language is a very simple programming language proposed for controlling
a robot called Herbert that was developed for the purpose of the challenge called the Algorithm
Competition conducted during the Imagine Cup tournament in 2008. It allows the participant to
strengthen his/her algorithmic skills, especially regarding the finding of patterns and implementing
of recursion. Finally, two of the most prominent IT companies, Facebook and Google, also organize
their own programming competitions. Facebook Hacker Cup is an annual competition that uses
an online judge system to evaluate the quality of contestants’ submissions. Unfortunately, the
challenge archive is not available publicly when the particular contest ends. Google Code Jam is
an event that is also organized annually. Sometimes there are also regional or even special editions.
During the competition, participants send the textual representation of the solution computed for
the particular test instance and the program sources that were used to obtain it. However, the latter
are used only for verification if participants do not share solutions among each other, and only the
former is evaluated.

Because there are thousands of challenges collected in numerous online judge systems provided
on the Internet, there have also been some attempts to index and classify them. Zhu and Fu (Zhu
and Fu 2012) introduced a system for automatic classification of challenges based on hierarchical
knowledge representation (Yoon et al. 2006). Unfortunately, their system has not been put
into practice. There are also other online resources maintained manually that could be helpful
in choosing interesting challenges from among the many provided examples, such as uHunt
dedicated for the UVA online judge. The very useful initiative emerged in the Beijing Normal
University Online Judge (BNUOJ). It provides a single local judge equipped with slightly over
1000 challenges and a virtual one that allows the user to apply 24 other online judges. In this
manner, the system integrates over 50,000 challenges published on various websites. When the user
submits a solution to one of these remotely available challenges, the BNUOJ automatically forwards

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

A Survey on Online Judge Systems 1:11

it to the appropriate online judge and acquires from the remote system the evaluation result.
It also supports the inclusion of the challenge phase similarly to the Codeforces and TopCoder
Competitive Programming contests. Moreover, it allows users to organize virtual competitions
using challenges originating from local as well as remote archives. This system can replay contests
and merge the final standings. Last but not least, the BNUOJ is an open-source project available on
GitHub.

2.3 Education
The application of online judge systems in education has a very long history, as they have been
used at least since 1961 when they were introduced at Stanford University (Forsythe and Wirth
1965; Leal and Moreira 1998) to support the evaluation of students’ programs coded in ALGOL.
This concept was followed by many more systems, no existing currently, such as Ceilidh (Benford
et al. 1993), Kassandra (von Matt 1994), CoBalT (Joy and Luck 1995) or RoboProf (Daly 1999) and
finally resulted in the implementation of online judges in the form of a massive open online course
(MOOC). In general, a MOOC is addressed to an unlimited number of participants that can learn
independently worldwide without the requirement of respecting a fixed course schedule (Pieterse
2013). We can distinguish two main types of MOOCs, namely traditional online courses and
those requiring collaboration between participants and teaching staff, i.e., xMOOC (Prpić et al.
2015) and cMOOC (Kop 2011), respectively. The former usually provides a fixed set of recorded
lectures and self-test exercises. In the case of online judge systems, these exercises are presented
in the form of automatically judged programming tasks. The latter is much more successful in
knowledge building as a consequence of a collaborative dialogue (Bell 2011). In the case of online
judge systems, such dialogue is usually implemented by the possibility of adding annotations to
the students’ source code. In 2012, several of the most well-known organizations in this field
emerged, i.e., edX (a non-profit organization formed by MIT and Harvard), Coursera and Udacity
(originating from Stanford). In the middle of 2013, edX and Google started a partnership to establish
a commonly used resource (i.e., mooc.org) dedicated to building and hosting various e-learning
courses. Currently, the numbers of courses provided by the organizations mentioned above are on
the order of hundreds or even thousands. Development of MOOC is not cheap for organizations but,
in the long term, yields savings. Moreover, it allows them to differentiate from other educational
organizations, even without an appropriate level of expertise. However, it is worth noticing that
MOOC requires a high degree of motivation and self-discipline from the participants. Thus, it
is usually a way to strengthen professional skills, and it is rarely used to learn a new field from
scratch (Kaplan and Haenlein 2016).

Utilization of online judges allows an educational organization’s staff to assess students’
assignments automatically. Application of these systems results in several advantages. First, the
teacher can verify the correctness of solutions submitted by students with higher accuracy. When
the teacher prepares the complete set of test instances covering all corner cases resulting from
the problem definition, the possibility of acceptance of an incorrect solution is almost negligible.
Second, the time needed for evaluation is much shorter; therefore, the teacher can prepare and
assign to students many more exercises. Finally, students receive an almost instant answer as
to whether their solution is correct. An inspiring description of the successful application of an
online judge in the teaching of Algorithms and Data Structures and Competitive Programming
courses at the National University of Singapore is presented in (Cheang et al. 2003). Ala-Mutka
presented an in-depth review of applications of online judges in education based on the analysis
of several systems (Ala-Mutka 2005). In 2010, Ihantola et al. prepared a more recent review of
available software dedicated to automatic assignment of programming exercises, focusing on

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:12 S. Wasik et al.

detailed descriptions of their features and various usage scenarios, which is interesting from a
pedagogical or educational point of view (Ihantola et al. 2010). In turn, Cruz et al. presented
how to extend the typical online judge architecture to develop a system that goes a step further
by providing valuable feedback to users at a semantic level in the form of meaningful advice
to understand where the problem is and how to improve the code (Fonte et al. 2013). Such an
approach can significantly impact the student learning process (Wang et al. 2016). Finally, there is
an interesting idea of building computer games that integrate or wrap online judge systems to be
more attractive to users (Ivanova 2016). The list of existing online judge systems presented in this
subsection can be found in Table 2.
Table 2. Online judge systems applied for educational purposes. For column descriptions, see Table
1.

Name and URL address OSS GUI language Compilers class id #Problems #Users Established Active
CheckiO No Eng 1 100 110000 2013 Yes

Code Fights No Eng 3 1250 500000 2015 Yes
Codeboard Yes Eng 3 24000 60000 2015 Yes

Codecademy No Eng 3 N/A 25000000 2011 Yes
CodeChef No Eng 3 1500 300000 2009 Yes
CodeHunt No Eng 1 134 350000 2014 Yes
Codewars No Eng 3 1200 400000 2012 Yes

CodinGame No Eng 3 55 500000 2012 Yes
CodingBat No Eng 2 300 - 2009 Yes

Embedded Security CTF No Eng 1 19 35000 2014 Yes
Exercism Yes Eng 3 1450 30000 2013 Yes
Jutge.org No Eng,Spa,Cat,Ger,Fre 3 2000 14000 2006 Yes

Leek Wars No Eng,Fre 1 1 54000 2013 Yes
Programming Grid No Chi 2 640 - 2008 Yes
Python Challenge No Eng 0 33 N/A 2005 Yes

RACSO No Eng,Spa,Cat 0 330 - 2012 2015
The AI Games No Eng 3 8 2700 2013 Yes

URI Online Judge No Eng,Spa,Por 2 1170 4100 2011 Yes

Because online judges that publish challenges collected from competitive programming contests
have become very popular these days, there also exist sophisticated adaptations of such systems for
educational purposes. For example, the URI Online Judge is a system where provided challenges
are distinguished into eight categories, allowing users to easily find exercises from a given topic.
It also provides a panel addressed for teaching staff that supports tracing of the student learning
process. Another adaptation worth mentioning is CodeChef. It is a system that provides an
online code editor and compilers that support over 40 programming languages. It classifies all
provided challenges into categories according to their difficulty levels. However, even the easiest
ones are relatively difficult. Much easier tasks can be found at Jutge.org (Petit et al. 2012), which
is an online judge (free for educational purposes) where students can solve thousands of challenges
using approximately 20 different programming languages, including even less popular ones, such
as Verilog. It provides sophisticated panels for students and instructors. Finally, Programming
Grid is an interesting online platform that allows users to organize educational courses based on
a challenges archive provided by the Peking University Judge Online. It follows a course-based
concept instead of a challenge-based concept (Luo et al. 2008). Unfortunately, this service is only
available in Chinese.

Some of the online judges introduce additional gamification elements (Deterding et al. 2011) to
strengthen the commitment and excitation of the students. For example, CheckiO is a platform
that provides a large number of relatively easy tasks prepared to support the learning process of
the Python and JavaScript programming languages. It provides a few elements of gamification
and social networking. Moreover, it allows the users to define “classrooms” and assign particular
students to them to support the process of monitoring their learning progress. The platform was
designed in a very attractive way and is still actively extended with new features. CheckiO is also

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

http://www.checkio.org
https://codefights.com/
https://codeboard.io/
https://www.codecademy.com/
http://www.codechef.com/
http://www.codehunt.com
http://www.codewars.com
http://www.codingame.com/start
http://codingbat.com/
https://microcorruption.com
http://exercism.io
https://jutge.org/
https://leekwars.com/
http://programming.grids.cn/programming/
http://www.pythonchallenge.com/
https://racso.lsi.upc.edu/juez/
http://theaigames.com/
https://www.urionlinejudge.com.br/judge/login

A Survey on Online Judge Systems 1:13

supplemented with a massively multiplayer online strategy game called Empire of Code where
players can solve various types of problems collected by the CheckiO platform to gain various
in-game bonuses. To be successful, they also have to develop artificial bots that are responsible
for the protection of their units, as well as attacking their potential enemies. Another platform
in this category that is worth mentioning is Codewars. It collects a large number of exercises
ordered by both difficulty level and topic-oriented categories. Codewars always provides several
basic test cases, which are used for preliminary verification of the solution. A unique feature of
this platform is that its user interface is inspired by Japanese culture (e.g., kata, kyu, and Kumite).
Finally, CodeHunt is a game developed by Microsoft to strengthen the algorithmic skills of players.
It provides a snippet of code together with corresponding test cases. The goal of the player is to
implement, in C# or Java, an algorithm that will generate the expected output for all provided test
cases.

There are also two additional educational games worthy of consideration in this category. In
Leek Wars, the player is responsible for implementation of an artificial intelligence script in
LeekScript, a specialized programming language designed especially for Leek Wars, to win in a
turn-based game. By defeating the opponents in the game, the user can upgrade his personal
features, which allow him to be significantly better armed. It is also possible to improve the AI
script based on the experience gained from skirmishes against provided bots, as well as AI scripts
implemented by other users. In turn, PythonChallenge is another in-browser game where the
user develops the solution to simple riddles following hints provided in real-time by the system.

There are also other online platforms supporting less classical attitudes for the evaluation of
submitted solutions to programming exercises. Codecademy is one of them, focusing mainly on
providing programming courses. Instead of exercises, the platform provides many professional
tutorials. To progress in the given course, the user has to finish all the steps considered by the
particular tutorial. The platform provides a code editor, a terminal, and other practical tools required
to practice newly learned skills. In turn, CodinGame is an online platform providing a variety of
programming challenges. It supports programming puzzles, optimization and code-golf problems,
and multiplayer games where the user implements an artificial intelligence script to control the bot.
The significant advantage of this website over the counterparts is the vast number of supported
programming languages and the visually attractive and exciting challenges, guaranteeing much fun
and satisfaction during the solving of them. It also continuously gives the opportunity to participate
in so-called code clashes, which represent very short competitions organized for several users that
are started automatically by the system many times a day. Another platform, CodingBat is a very
simple page for people who have just started programming. This site supports only the Python
and Java programming languages. It is not even necessary to be registered to submit solutions.
Another tool called Exercism.io provides a very original approach for the solving of programming
assignments. It provides a command line tool and an API that is used to fetch task descriptions and
submit solutions. The problem definitions are prepared in such a way as to follow the Test Driven
Development (TDD) methodology. Authors of this platform provide only a general description of
the problem and the automated test suite. The task of the user is to deduce all relevant details from
the inspected test suite. Finally, Codeboard is a user-friendly system that supports, not only the
teaching of various programming languages by creating and sharing exercises with students, but
also a test case based automated evaluation that can be easily customized by a teacher. Moreover,
the teacher can easily follow the students’ progress (Antonucci et al. 2015).

One of the unique features of the CodinGame platform described above is the opportunity to
compete in multiplayer games. In such games, the users develop artificial intelligence scripts that
control bots competing with other bots in the virtual arena generated by the system. There are

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:14 S. Wasik et al.

also two additional portals that follow such a concept, namely Code Fights and AI Games. The
former is a platform where users develop their AI scripts in one of nine modern programming
languages. Users receive experience points for every victory of their bots in duels. Based on gained
points, users rise in level and earn badges. The idea behind the latter platform is to create AI scripts
for playing most popular games, such as Tic-Tac-Toe or Go. This platform provides eight popular
game engines and judges. Users can submit an AI script representing the particular bot that will
compete in the given game with AI scripts provided by other users. Users are highly motivated to
continuously improve their AI scripts to climb in the rankings. In fact, the system is closed source.
However, the source code of engines is shared on GitHub.

Finally, two systems support the strengthening of professional skills in highly sophisticated
programming concepts. The objective of the Embedded Security CTF system represents support
for learning the assembly language during a password cracking game. The user has to discover the
password by analyzing the assembly program using the provided debugger to inspect the details
of the password verification process. Based on the performed analysis, the user has to guess the
password that will be accepted by the system. The tools provided by the platform are advanced,
e.g., the user can analyze the entire code during its execution, set breakpoints and inspect values
stored in processor registries and memory dumps. In turn, RACSO is a platform where exercises
related to automata and formal languages are provided (Creus and Godoy 2014). In this system, the
judge accepts the description of the automaton, as well as grammar.

2.4 Online compilers
Another category of online judges defined in a broad sense according to definition 3.6, represents
online platforms where user source code, developed in various programming languages, can be
remotely compiled and executed via browser. In fact, they do not allow the publishing of any
challenges because they usually support only the first step of the evaluation procedure provided in
the definition 2.1. Sometimes, partial support is also included for the assessment phase by allowing
the user to submit his own test instances, which are used during evaluation. The list of online
compilers discussed in this subsection is presented in Table 3.
Table 3. Online compilers. For column descriptions, see Table 1. Online compilers do not provide a
problem database and usually do not require registration, thus, the columns related to the number
of problems and users have been removed.

Name and URL address OSS GUI language Compilers class id Established Active
C++ Shell No Eng 1 2014 Yes

Codeanywhere No Eng 3 2013 Yes
Codepad No Eng 3 2008 Yes

CodeSkulptor Yes Eng 1 2012 Yes
Coding Ground No Eng 3 2006 Yes

Codio No Eng 3 2013 Yes
Ideone No Eng 3 2009 Yes

Online Compiler No Eng 2 2009 2013
Web Compiler No Eng 1 2014 Yes

One of the most feature-rich online compilers is Codeanywhere, which is a cloud-based IDE
that allows users to share a dedicated virtual development environment and collaborate in real-time.
It provides the ability to connect automatically to GitHub, Bitbucket, FTP server and Amazon
cloud. A user can also set up a single, specialized, virtual container where a custom development
environment will be created out of the box for free. This environment is very stable, even when
many developers collaborate within the same project in real-time. Another online platform offering
a fully featured IDE is Coding Ground. It allows users to edit, compile, execute and share
their projects in a cloud-based environment. It provides free terminals and IDEs that support

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

http://cpp.sh/
https://codeanywhere.com
http://codepad.org/
http://www.codeskulptor.org/
http://www.tutorialspoint.com/codingground.htm
http://codio.com
https://ideone.com/
http://www.onlinecompiler.net/
http://webcompiler.cloudapp.net/

A Survey on Online Judge Systems 1:15

development in plenty of different programming languages. Every program is executed in a
dedicated Docker-based container created on demand. Finally, Codio is a cloud-based online IDE
supporting a large number of programming languages. It provides many useful features, such as
remote Ubuntu-based development machine, integration with e-learning platforms, and plagiarism
detection.

There are also several simpler online compilers, for which the objective is to provide the
opportunity to compile and verify user code quickly without the need to construct separate
virtual containers for specialized purposes. For example, Ideone is a freely accessible online
compiler that supports plenty of programming languages and is maintained by the authors of the
SPOJ online judge. In turn, CodeSkulptor is an online interpreter of the Python programming
language that has a very aesthetic user interface and supports the learning process, especially
for beginners. Moreover, it visualizes the execution of the particular program and provides an
unofficial open-source offline server that can be used to run CodeSkulptor locally. Another system
in this category called C++ Shell provides an online interface for the GCC compiler. This system
allows the user to compile the submitted source code and run it in a virtual sandbox environment
created on demand. Codepad, in comparison to the other counterparts, allows users to share
code among collaborators using custom URLs. Another system worth mentioning is called Online
Compiler, which is a platform that allows users to remotely compile submitted source code
developed in C/C++, Fortran, Java, Pascal or Basic programming languages and download the
executable file built for Windows or Linux. Finally, Web Compiler is an online compiler for
Visual C++ that provides a minimalistic user interface.

2.5 Recruitment
There are also several, mainly commercial, platforms that use online judge systems primarily to
support the recruitment process. The list of systems discussed in this subsection is presented in
Table 4.
Table 4. Online judge systems applied for recruitment purposes. For column descriptions, see Table
1.

Name and URL address OSS GUI language Compilers class id #Problems #Users Established Active
CodeEval No Eng 3 240 85000 2009 Yes
Codility No Eng 3 3000 - 2009 Yes

HackerEarth No Eng 3 3700 1000 2012 Yes
Hackerrank No Eng 3 1000 84000 2009 Yes

LeetCode Online Judge No Eng 3 190 - 2010 Yes
Qualified No Eng 3 4500 - 2015 Yes

First, CodeEval is a platform used by developers to showcase their skills in application-building
competitions and programming challenges. CodeEval represents an exclusive community of
developers who can compete and, as a result, build out their profiles to showcase their coding
skills in the software development community. It uses Docker-based containers constructed on
demand. Another platform worth mentioning is Codility, which supports recruiters in reaching
out to a large number of promising candidates in a relatively short amount of time. Moreover,
developers can strengthen their coding skills by competing in programming challenges to build
their professional reputation within the community. In turn, HackerEarth is an online platform
for which the main objective is hiring talented developers, organizing hackathons, and hosting
crowdsourcing-based ideas. Developers can win various types of rewards. From companies’ point
of view, it is an excellent way to gather innovative ideas from a diverse community, including
developers as well as computer scientists. HackerRank is an online tool similar to the former
one and was designed with supporting the hiring of developers in mind. It focuses mainly on

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

https://www.codeeval.com/
https://codility.com
https://www.hackerearth.com/
https://www.hackerrank.com
http://leetcode.com/
https://qualified.io/

1:16 S. Wasik et al.

supporting recruiters with the delivery of fully customized coding challenges addressed directly to
the potential candidates and the seamless integration of real-time assessments into the recruiting
process. From developers’ point of view, it is a place where people from all over the world can
solve rather tricky programming challenges classified into several categories, namely algorithms,
machine learning and artificial intelligence. Finally, Qualified is a platform provided by the
authors of Codewars. Here, the developer implements the solution in real-time, and then the
system automatically executes and qualifies it based on a predefined unit test cases set. It provides
an interactive IDE, which supports an incremental development. During real-time interviews,
the recruiter can benefit from the application of whiteboard tests. On the other side, there is
another very useful platform called LeetCode, which is a web service that supports preparation for
technical job interviews. Users can solve exercises that may occur during such interviews divided
into the following categories: algorithms, databases, and Linux shell.

2.6 Data-mining services
There are also various websites that uses online judge systems to evaluate data-mining algorithms.
Their list is presented in Table 5.
Table 5. Online judge systems applied for data-mining purposes. For column descriptions, see Table
1.

Name and URL address OSS GUI language Compilers class id #Problems #Users Established Active
CrowdANALYTIX No Eng 0 105 16000 2012 Yes

DREAM Challenges No Eng 0 45 5000 2006 Yes
Kaggle No Eng 0 220 550000 2010 Yes

MLcomp No Eng 1 12400 7000 2010 2017
OpenML Yes Eng 3 19600 2500 2016 Yes
Optil.io No Eng 3 11 300 2016 Yes

TopCoder Data Science No Eng 2 400 - 2001 Yes
TunedIT No Eng,Pol 3 36 10000 2008 2015

Most likely, the best known is the Kaggle platform (Goldbloom 2010), for which the primary
objective is the organization of data-mining challenges with monetary prizes. However, Kaggle does
not incorporate a regular online judge. Users of this service have to execute their code locally using
test data provided by Kaggle and submit only the results generated by the algorithm. Providing
the source code is not required. CrowdANALYTIX implements an idea similar to Kaggle. The
system hosts contests, and users submit outputs for a given problem before the deadline. The
winner is chosen based on these solutions. DREAM Challenges is another platform similar to
Kaggle, but it focuses on problems related to systems biology and translational medicine (Costello
and Stolovitzky 2013; Saez-Rodriguez et al. 2016). As opposed to Kaggle, its primary objective is to
solve scientific challenges; therefore, it is targeted specifically at researchers. It provides expertise
and institutional support with the help of Sage Bionetworks, along with the infrastructure to
host challenges via their Synapse platform (Derry et al. 2012), creating a system with outstanding
scientific value.

MLcomp is another online platform that was designed with a slightly different idea in mind. It
provides a cloud-based platform dedicated to data-mining research. Instead of challenges, it stores
datasets. Any user can upload their own datasets and algorithms. All algorithms submitted by users
are stored in the system and can be executed later on by any other user processing any uploaded
dataset using the computing infrastructure provided by MLcomp. Such an approach creates a very
versatile data analysis platform. Unfortunately, this platform is no longer maintained because its
authors are currently developing a new online platform dedicated to planning and conducting
research experiments called CodaLab. However, there is another platform called OpenML that
offers a similar approach (van Rijn et al. 2013), providing at the same time a much more modern

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

https://www.crowdanalytix.com/
http://dreamchallenges.org/
http://www.kaggle.com
http://mlcomp.org/
http://www.openml.org/
http://www.optil.io/
https://www.topcoder.com/community/data-science/
http://tunedit.org/

A Survey on Online Judge Systems 1:17

user interface design, as well as interfaces for the most popular scientific languages, namely R,
Python, Java and supplemental REST API. Currently, it stores over 19,000 datasets.

It is also worth mentioning two other online platforms dedicated to publishing data-mining
problems in the form of programming contests: TopCoder Data Science (TopCoder DS) and
TunedIT. The former, previously called TopCoder Marathon Matches, has already organized
several hundred competitions, including many sessions devoted to solving industrial-inspired
challenges. Unfortunately, the set of supported programming languages is limited to only C++,
C#, and Java. The latter (Wojnarski et al. 2010), as opposed to the TopCoder DS, obligates the
users to submit reports describing their solutions. After the end of a particular challenge, all
reports submitted by participants are verified by the organizers. Unfortunately, the website is not
maintained as of late. Thus, new contests are not being added.

Finally, Optil.io is a platform used to publish optimization problems that require the design of
algorithms for optimizing objective functions on a provided data set (Wasik et al. 2016). Users
can submit solutions in several supported programming languages, as well as statically compiled
Linux binaries. It is also possible to spread the code of the solution across several source files if a
CMake file is also submitted by the user. Moreover, submissions can also use other libraries and
specialized solvers that are supported by the proposed platform. The range of external software
can be expanded on user demand.

2.7 Development platforms
Anyone who would like to host a programming competition or a course using his/her own
infrastructure can apply one of the several available online judge development platforms. These
systems can be downloaded and installed locally, providing full administrative privileges to the
user. Moreover, most of them can be adapted to user needs and integrated with external services.
The list of services discussed in this subsection is presented in Table 6.
Table 6. Online judge systems that can be used as development platforms. For column descriptions,
see Table 1. Such systems usually do not provide problems database and do not require registration
so the columns related to the number of problems and users have been removed.

Name and URL address OSS GUI language Compilers class id Established Active
A+ Yes Eng 1 2017 Yes

BOSS Yes Eng 3 2012 2009
CloudCoder Yes Eng 2 2012 Yes

Code Runner for Moodle Yes Eng 3 2016 Yes
DOMjudge Yes Eng 3 2004 Yes
Mooshak Yes Eng 2 2005 2015

Online Judge Plugin for Moodle Yes Eng,Chi,Por,Pol 3 2012 2015
SIO2 Yes Eng,Pol 2 2012 Yes

TestMyCode Yes Eng 1 2013 Yes
Tsinghua Online Judge No Eng,Chi 2 2012 Yes

Virtual programming lab Yes Eng 3 2012 2015
Web-CAT Yes Eng 3 2003 Yes

xLx No Eng 1 2001 2008

Currently, the platform that is the worthiest of recommendation is DOMjudge. It is a fully
automated judge system that allows users to prepare and perform programming contests following
the rules defined for the ACM ICPC. It is an actively developed and feature-rich system. Its quality
has been proven through its application in the ACM ICPC finals since 2012. Mooshak (Leal and
Silva 2003) is another online platform designed for managing programming contests following rules
similar to those designed for the IOI, as well as the ICPC. It offers a classic GUI, which has attained
a very mature stage and is extensively used at many universities, for example, in Portugal. Finally,
SIO2 is a stable online judge platform used and developed by the Polish Olympiad in Informatics.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

https://github.com/Aalto-LeTech/a-plus/
https://sourceforge.net/projects/cobalt/
https://cloudcoder.org/
https://github.com/trampgeek/CodeRunner
http://www.domjudge.org
https://mooshak.dcc.fc.up.pt/
https://github.com/hit-moodle/moodle-local_onlinejudge
https://github.com/sio2project
http://testmycode.github.io
http://dsa.cs.tsinghua.edu.cn/oj/
https://moodle.org/plugins/mod_vpl
http://web-cat.org/home
http://dbis-group.uni-muenster.de/projects/xlx/

1:18 S. Wasik et al.

There are also other development platforms that are dedicated to support of the educational
process. For example, CloudCoder (Spacco et al. 2015) is an open-source web-based system
inspired by CodingBat that was designed to simplify the lives of instructors of programming courses
by allowing them to assign exercises to students to assess their skills. Tsinghua University
Online Judger is a course-oriented online judge designed for universities. The system allows
for the organization of programming classes using automatically evaluated challenges (Zheng
et al. 2015). It is hosted on the Tsinghua University server and allows users to add new problems.
However, the source code of the system is not open source. BOSS is a system that was designed to
support the performance of programming courses using automatically judged assignments (Joy et al.
2005). Over several years, it has evolved into a platform that supports the teaching of any topic,
including the online verification of programming exercises. Unfortunately, the system was updated
for the last time in 2009. Finally, Web-CAT is an automated grading system implemented in Java to
provide an approach to the evaluation of students’ assignments. This is done by collecting test cases
submitted by students for assessment using test coverage measures (Edwards and Perez-Quinones
2008).

In the literature, one can also find online judge development platforms integrated with e-learning
systems. One of the oldest such approaches is xLx. It has existed since 2001, when the first prototype
was developed to support the educational process conducted at WWU Münster (Husemann et al. [n.
d.]). It first published courses related to SQL and XML languages. In 2008, the second version of this
platform was released; however, since that time, it has not been updated. Moreover, the source code
of the system is not currently available. In 2011, Xavier and Coelho presented the review of several
online judge platforms, as well as a description of the platform developed at the University of
Porto inspired by the Moodle and DOMjudge systems (Xavier and Coelho 2011). Kaya and Özel in
(Kaya and Özel 2012, 2014) presented a similar approach, but enriched with a plagiarism detection
package called Moss (Schleimer et al. 2003). Code Runner is a question type plug-in for Moodle
that allows one to execute code submitted by a particular student as an answer for a broad range
of programming puzzles, and it supports various programming languages simultaneously. It is
intended primarily for use in computer programming courses, although it can be used to grade any
question for which the answer is represented in textual form. Currently, the most comprehensive
and mature plug-in for Moodle is Virtual Programming Lab (Rodrı́guez-del Pino et al. 2012)
which allows users to edit their source code interactively in a browser, develop custom grading
scripts, and detect plagiarism automatically. Unfortunately, it has not been updated for over a
year. Thus, it is not compatible with the newest version of Moodle. Finally, the Online Judge
plug-in for Moodle (Zhigang et al. 2012) is a component that allows users to submit solutions to
programming exercises and supports approximately 40 programming languages. However, it uses
only the deprecated activities API supported by Moodle up to version 2.2 and can currently only be
used in legacy mode. Because Moodle is a very popular online system supporting the educational
process, there have been additional attempts to integrate it with online judge systems. However,
all of them are either currently inactive, not compatible with the current stable version of Moodle
or exist as proof-of-concept projects only, e.g., (Carral 2013; Danutama and Liem 2013; Davuluri
and Madadi 2016). A similar plug-in-based concept is provided by TestMyCode, which allows for
an automated transfer of programming assignments directly from within the most widely known
IDEs (Pärtel et al. 2013). It is worth noting that the submission phase is much simpler in this case;
nevertheless, the evaluation is provided based on predefined unit tests. Moreover, a new e-learning
platform called A+ has been recently published by Aalto University based on previous work by
(Karavirta et al. 2013). The main advantage lies in its flexible utilization of external services.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

A Survey on Online Judge Systems 1:19

Additionally, it provides a REST API, allowing for the automatic acquisition of various information
stored in the system.

3 EVALUATION METHODOLOGY
The most important component of each online judge system is an evaluation engine that assesses
submissions uploaded by users. The evaluation procedure of such systems usually consists of
three steps described in the definition 2.1. The first step is relatively simple and technical. First, it
usually relies on the execution of an appropriate compiler. Second, it verifies that the compiler
does not return any compilation errors, and compilation time and output binary size do not exceed
the specified threshold. Using recursive macro-definitions, it is relatively easy to abuse the system
this way.

Usually, when the solution compiles successfully, there are no obstacles preventing it from
execution. However, sometimes online judge systems allow for submitting static binaries compiled
by the author on the client side. In such a case, the system must verify that all required, dynamically
linked libraries are available, and that the binary is compatible with the evaluation environment’s
architecture.

The remaining steps of the evaluation procedure are more complex and diversified. We review
them in detail in Sections 3.2 and 3.3. However, before presenting our explanation, we shall
introduce basic concepts related to the theory of combinatorial problems (see section 3.1). As
most problems published on online judge systems are some type of combinatorial problem, such
explanation is crucial to better understand the evaluation process.

3.1 Combinatorial problems
Any combinatorial problem Π is defined in the form of a set of parameters associated with it and a
set of required constraints that must be satisfied by its solution. An instance I of the problem Π is
obtained by setting particular values for all parameters considered in the problem definition. One
of the most well-known combinatorial problems is the 0-1 knapsack problem, which is defined by a
given set of n items, each described by a weight wi and a value vi , along with a maximum weight
capacityW . The solution of this problem is a combination of items (assuming that every item can
be introduced into the knapsack at most once) that fit in the knapsack for which the total value is
maximal. The set of all instances of the problem Π is called the domain of the problem DΠ .

In fact, two main classes of combinatorial problems can be distinguished, i.e., decision problems
and search problems.

Definition 3.1 (Decision problem). A decision problem Π is a problem for which a solution is an
answer either yes or no for a question associated with the set of its parameters.

An example of this problem can be a particular instance of the knapsack problem and the
following question associated with it: is it possible to pack the knapsack according to a given set of
items reaching a total value not lower than a particular constant Vmax and, at the same time, not
exceeding the maximum weight capacity of knapsackW .

Definition 3.2 (Search problem). A search problem is a problem for which a solution is either a
particular object (or value) satisfying given constraints or the answer no when such a solution does
not exist.

In this case, the problem relies on finding any feasible solution of the knapsack problem based
on a given set of items, i.e., such a combination of items that fit in the knapsack for which total
value will not be lower than the particular constant Vmax .

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:20 S. Wasik et al.

An optimization problem is a special case of the search problem where the solution is represented
by the optimal object (or value) according to a given objective function. An example is another
version of the knapsack problem formulated in the following manner: find such a combination of
items that fit in the knapsack for which the total value is maximal. In contrast to the aforementioned
search problem, here the solution is the best one among a set of all feasible solutions for this
problem.

For more information regarding optimization problems and their complexity, see the excellent
book by Garey and Johnson (Garey and Johnson 1979).

3.2 Assessment
The assessment phase is usually the most computationally expensive. It requires execution of the
compiled solution in each considered test instance. Each of these executions can take even several
dozen minutes for complex industry-inspired problems. Below, we provide the formal definition of
a test instance:

Definition 3.3 (Test instance). Let Σ denote an alphabet used to encode both input and output data.
Test instance ti ∈ T , where T is a set of all considered for the particular problem test instances, is
defined as a triple ti = (di ,oi ,pi), where di = Σ∗ is an input data, oi = Σ∗ is a reference output data,
and pi is a set of parameters passed to the evaluation engine.

In the vast majority of problems, the alphabet Σ, that is used to encode both input and output
data, consists of digits, spaces, and new line characters Σ = {0, 1, . . . , 9, ␣, \n}. Sometimes, it is
extended with lower and upper case letters and up to several special characters. Nevertheless, the
format used to encode both types of data is usually as simple as possible for parsing purposes.
Usually, it is represented by a list of integer numbers of which structure is defined in the problem
description or a simple comma-separated values (CSV) file often used in data-mining applications.
Commonly, each input and output data are represented by a single file redirected to the standard
input and from the standard output of the solution program, respectively. However, in case of
specific problems, it could happen that several files stored in the single archive are provided.

When, according to the problem definition, for each input instance di there is exactly one correct
solution, this solution can be precomputed and stored in the reference output data file oi . This
way, the evaluation engine computes the reference solution immediately, and next uses it during
verification of each user submission. Whenever there are many feasible solutions for a single
input instance, the reference output data file can store certain precomputed values that allow the
computational complexity of the evaluation process to be reduced. When no additional data can
simplify the evaluation process, the reference output data oi can be empty (i.e., oi = ∅).

The set of parameters, pi , represents the specific resource limitations (e.g., CPU time, maximum
utilization of RAM) that cannot be exceeded during the evaluation based on this particular instance.
However, additional parameters can also be passed if necessary, such as random number generator
seed when the engine allows randomized solutions, or a maximum size limit for output data
generated as a result of the solution execution for this particular instance. When the evaluation
engine is configured to use the default resource limits and no other parameters are needed, the set
pi can be empty (i.e., pi = ∅).

During the assessment phase, the solution compiled as the output of the submission phase is
used. Below, we provide the formal definition of the solution:

Definition 3.4 (Solution). A solution is a function, b(di ,p ′i) → o′i , representing the binary form of
the submission that, based on the input data di , computes output data o′i , taking into consideration
execution parameters p ′i provided by the evaluation engine.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

A Survey on Online Judge Systems 1:21

The set of execution parameters provided by the evaluation engine p ′i can be equal to the set of
parameters defined as part of the particular test instance (i.e., p ′i = pi). However, in particular, p ′i can
be the subset ofpi (i.e., p ′i ⊂ pi), p ′i can be a completely different set of parameters orp ′i can be empty
(i.e., p ′i = ∅). As opposed to pi , the set p ′i is usually empty, because parameters influencing the
evaluation process are hidden from the solution. The most commonly used execution parameters
often passed to the user’s solution are the seed for the random number generator and maximal time
limit that cannot be exceeded by the solution during its execution for the particular test instance.

Definition 3.5 (Evaluation engine). An evaluation engine is a function, E(b, ti) → (si ,vi , ei), that
executes the binary file b, giving it, as an input, the test instance ti , and returns the execution
status si , an evaluation score calculated for the solution output, vi ∈ R, and the list of statistics
collected for the execution process ei .

The status si of the submission execution can take one of the following values:
• Accepted (ACC) when the submission execution terminates successfully without any

runtime error, without exceeding resources limits, and returns feasible output data coherent
with the format described in the problem description;
• Time Limit Exceeded (TLE), means incorrect execution of the submission due to exceeding

the maximal processing time limit;
• Memory Limit Exceeded (MLE), means incorrect execution of the submission due to

exceeding the maximal RAM utilization limit (covering both the stack and heap);
• Wrong Answer (WA), means that the program generated an output of unknown format (i.e.,

the existing format is not coherent with the format requested in the problem description)
or some additional constraints formulated in the problem description were not satisfied;
• Runtime Error (RE), means that a runtime error occurred during the particular submission’s

execution;
• Output Limit Exceeded (OLE), means that the submission exceeded the maximal limit for

the size of output data.
In the case of a WA status code, the user can also receive additional information regarding the
reason the answer is incorrect. However, it is not a common practice. Various online judges
can introduce other statuses. However, the aforementioned are the most commonly used. Most
commonly, users can instantly see the status of the submission, at least, for some example instances,
as soon as it is assessed.

Many online judge systems follow the ICPC rules and evaluate the submissions on each test
instance in a binary way—as a correct or incorrect solution only. In such a case, the evaluation
score is always equal to 0 (i.e., vi = 0). There are two major cases when this value is used. First, in
optimization problems, when it stores the value of an objective function computed for the output
data, obtained as a result of a particular submission execution on a particular test instance. It can
be both, a classical optimization problem (Garey and Johnson 1979) or a code-golf problem, when
the objective is to optimize the size of the source code solving some task. Second, in competitions
following IOI rules, vi characterizes the score that the user gains for receiving the Accepted status
for this particular instance (i.e., si = ACC). In general, different test instances can be characterized
by various score values or even more complex scoring procedures can be also applied. For example,
Polish Olympiad in Informatics penalizes solutions that use more than the half of the time limit by
decreasing the score proportionally, according to the following formula:

vi = Vi ·min
(
1.0, 2.0 · Ti − τiTi

)
(1)

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:22 S. Wasik et al.

Here, Vi denotes the maximal number of points that can be awarded for some test instance, Ti
denotes the maximal time limit for the solution, and τi denotes the processing time used by the
solution to generate the output for the particular instance.

Finally, statistics ei , collected for the execution process of the solution, usually include information
about maximum values of resource utilization observed during the particular submission execution
(e.g., time and memory consumption). In particular, when the online judge does not share such
information with the user, the list of execution statistics can be empty (i.e., ei = ∅).

3.3 Scoring
The objective of the scoring phase is to compute an aggregated status s and aggregated evaluation
score v of each user submission. These values are then used to display results of evaluation
procedure to the user and rank solutions of the problem.

If and only if, for all test instances, the solution received ACC status, then the aggregated status
is also ACC. Otherwise, the most common procedure is to select the first status different than ACC:

s = ACC ⇔ ∀isi = ACC (2)
s = sj ⇔ (∀i<jsi = ACC) ∧ (sj , ACC) (3)

However, some variations are sometimes utilized, for example, returning an RE status when any
Runtime Error occurs before any other statuses.

Computing the aggregated evaluation score v is relatively simple when the system does not deal
with optimization problems. In such a case, for systems evaluating submissions in a binary way,
following ICPC rules, this score is always equal to 0 (i.e., v = 0). Otherwise, it is usually the total
evaluation score computed for all correctly solved instances:

v =

|T |∑
i=1

{
vi , if si = ACC

0, otherwise
(4)

In the case of optimization problems, the system has to consider the score computed based on
the best solution among all submissions or a reference solution computed by the problem author.
In most cases, the following formula is used to rank the submitted solutions for problems where
the objective function is maximized:

v =
100
|T |

|T |∑
i=1

{
vi
bi
, if si = ACC

0, otherwise
(5)

wherebi denotes the best solution score for the i-th instance (i.e., the solution among all submissions
for which the objective function score computed for this particular instance has the optimal value).
Similar types of formulas can be easily proposed for minimization problems as well, taking into
account an extended scoring procedure and execution times or, even, the utilization of other
computing environment resources.

3.4 Online judge
Based on the definitions presented in this section we can define an online judge system as follows:

Definition 3.6 (Online judge system). An online judge system is an online service that performs
any of the steps of the evaluation procedure in a cloud, i.e.:

(1) collects, compiles sources if needed, and verifies executability of resultant binaries,
(2) assesses solutions b(di ,p ′i) based on a set of test instances, T , defined for a particular

combinatorial problem Π in a reliable, homogeneous, evaluation environment,

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

A Survey on Online Judge Systems 1:23

(3) computes the aggregated status s and evaluation score v based on the statuses and scores
for particular instances (i.e., si and vi , where 1 ≤ i ≤ |T |).

4 EXAMPLE APPLICATION BASED ON OPTIL.IO PLATFORM
To demonstrate the process of an online judge system, in this section, we would like to present the
results of an example contest that we conducted using the Optil.io online judge system (Wasik
et al. 2016) described in section 2.6. We selected this platform because, as its authors, we had the
biggest control over the system. Based on this platform, we organized a contest where the example,
an optimization-based challenge, was solved. It was a variation of the multiple facilities location
problem, for which the computational complexity was proven to be NP-hard (Megiddo and Tamir
1982). Contestants were responsible for placing several factories on the Euclidian plane, ensuring
minimization of the total discontent of people living next to them. Each factory was described by a
single parameter, i.e., influence range. In turn, each position on the plane was characterized by the
dissatisfaction coefficient computed for this position when it was affected by any factory. The
visualization prepared for an example input instance of the conducted challenge and its solution is
presented in Figure 1. Participants had to solve the problem for ten randomly generated instances
by placing from 3 to 50 factories on a grid of up to 1000-by-1000 points. For each considered
instance, the processing time limit could not exceed 10 seconds, and memory used could not exceed
1 GB. For each submission executed on a particular test instance, the system generates one of the
execution status codes described in Section 3.2 and computes a score using Equation 5.

Fig. 1. Visualization prepared for an example input instance of the first challenge conducted on
the Optil.io platform. The objective was to find locations (xi ,yi) for three factories with various
radii ri . Example positions of factories and locations that they affect are marked with black circles.
The close-to-red color displayed on the map represents the areas where the values of the discontent
coefficient are higher. The better locations for factories are represented by circles surrounding
lighter areas.

We recruited the participants of this challenge primarily among a large group of second-year
students of a Computer Science course at the Poznan University of Technology. Before participation

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:24 S. Wasik et al.

in the competition, all of them accepted the terms of use of the tested service and the cookies
policy according to European law. Before conducting statistical analysis of this study’s results, we
anonymized all data in accordance with the previously accepted terms of use.

The contest held lasted 18 days, from January 23rd to February 9th, 2016. However, after that time,
the problem was still available on the website. During the period of the contest, 85 users submitted
1191 solutions to the problem, and since its end, another 400 answers have been submitted. It is
worthy to underline that the main aim of the contest was to identify the best solution. It is typical
for industry-inspired challenges that the solution is extremely important; however, the winning
person is not that important. Therefore, the participants could refine their solutions during the
lasting competition motivated by the online rank list presenting the best solution of each contestant
evaluated on each instance. Such an approach allows utilization of crowdsourcing to generate
much better solutions than during challenges when participants submit a single solution at the
end of the contest. The objective function ratio of the best solution in the current time to the best
counterpart provided in the entire competition and the number of users participating in the contest
over the days is presented in Figure 2. At the beginning of the competition, the solutions submitted
by users were over six times worse than the one that won it. However, in a relatively short amount
of time, (i.e., four days), the best solution was significantly improved, i.e., the best score in that
time was two times better than the previous one. This is an expected behavior, because at the
beginning of the optimization, the best of submitted solutions is usually relatively far away from
the global optimum, such that it can be easily improved by the contestants. In the middle of this
contest, (i.e., a week since the beginning of the contest), the best solution score was close to the
contest winner. It is worth mentioning that the breakthrough in the solution space was obtained
by a small number of users, and then the final tuning of this solution occurred when the number of
active users remarkably increased. The winning solution was submitted 52 minutes before the
end of this contest. Despite that, the winning solution was significantly better than the initially
submitted solution from January 23rd, and the improvement during the second half of the contest,
between February 2nd and 13th, was not so significant. Nevertheless, it was still equal to almost
13%. It is worth underlining that, while optimizing industrial processes, e.g., in logistics, such a
decrease of costs can potentially generate savings on the order of millions of dollars.

In turn, Figure 3 presents the number of correct and incorrect solutions submitted by users. The
solution was classified as incorrect when it generated the wrong answer or raised execution errors
(i.e., TLE, MLE, RE, or WA; see section 3.2). At the beginning of the competition, the number of
submitted solutions classified as potentially incorrect significantly overwhelmed the number of
correct ones. However, the contestants quickly learned how to successfully submit their solutions,
and thus at the end of the competition, the number of submitted solutions classified as potentially
correct oscillated approximately 50%. Such an observation related to the ratio of correct and
incorrect solutions confirmed the results characterizing other online judge systems reported by
Manzoor (Manzoor 2006). This proves that the proposed GUI is ergonomic as well as user-friendly.
The ca. 60% of invalid submissions presented in Figure 3 is primarily the consequence of two
reasons. First, usually, users do not test their code sufficiently before submission. They assume
that this is a role of the online judge system to verify their code and submit an algorithm that
generates incorrect answers for some instances or even does not compile. Second, the users do not
comply with the execution limitations described in the challenge definition. Such solutions are
terminated by the online judge system, receiving TLE status at the same time.

After five days of the competition, the observed improvement slowed down significantly
unless the significantly larger number of participants joined the competition. This observation
demonstrates perfectly the advantage of crowdsourcing. A crowd of highly skilled participants can

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

A Survey on Online Judge Systems 1:25

achieve much better results quality than a single developer or even a small team. The results of
the contest organized using Optil.io platform proved that it could be successfully applied to solve
optimization problems interactively by a large number of programming enthusiasts.

Fig. 2. Upper plot: Objective function ratio computed between the best solution currently and
the winner of the entire competition. The objective function score is averaged over all successfully
processed test instances. Lower plot: The number of users who submitted their solutions during
that particular day. The orange bars denote the total numbers of users; the green bars denote only
new users who submitted their solutions on that particular day for the first time.

Fig. 3. The numbers of correct and incorrect solutions submitted during the consecutive days of
the contest.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:26 S. Wasik et al.

5 CONCLUSION
Online judge systems have a very long history, lasting over half of a century. However, their
popularization and widespread use have been empowered over the first decade of the twenty first
century. These systems have emerged as simple web applications provided by universities to support
lecturers in teaching, and students in preparation and participation in competitive programming
championships. Meanwhile, the organizations hosting such programming competitions became
interested in the application of online judge systems to share challenges formulated in the past
to help users in preparation for upcoming events. It caused that many online platforms emerged
publishing challenges originated from competitive programming contests. The primary reason
was the rapid spread of Internet access, which gave many contestants worldwide an opportunity to
easily submit and verify their solutions.

A majority of these systems are open for users worldwide, who want to improve their algorithmic
and programming skills. Moreover, there are few that support the organization of customized
contests addressed to the public or a limited group of participants, solving challenges originating
from local, as well as remote archives. To strengthen the popularity, several systems provide
independent, localized instances for particular nationalities. The contest organization procedure
often varies among the systems in a sense of time duration and number of challenges considered in
a single round, number of provided programming languages, and even participant groups. However,
in many of them, the inspiration with ICPC or IOI contest is noticeable. The contests are usually
organized annually, a few times a year, or on demand of the challenge organizer. For example,
Facebook and Google, organize their own competitions annually. Sometimes, the participants
are scored, not only for the quality of their solutions, but also for successful identification of
issues in other participant submissions. Usually, to distinguish submissions that are characterized
by the same quality, the final score considers also the submission time or even the number of
participants or groups that have submitted that solution previously. There are also other websites
that present less classical applications of online judges designed to host domain-specific challenges
or support only a textual representation of the output for computationally intensive problems. It is
worthy to note that there exist systems that support the selection of appropriate problems within
a tremendous set of published challenges, or even meta systems that are integrated with many
online judges allowing the user to submit his/her solution from a single place. A distinguishable
feature of competitive programming systems is usually a simple GUI that only supports the most
popular, low-level programming languages such as C/C++ and Pascal.

Online judges are also used in rather more sophisticated applications, such as education,
employee recruitment and even data mining. Online judge systems are of interest for educational
organizations because they support fully-automatic and accurate evaluation of student assignments.
Therefore, the teacher can focus on exercise quality and the teaching process. We previously
mentioned certain successful applications of these systems in the teaching of IT courses at various
universities. Currently, the systems that allow users to strengthen their commitment and excitation,
by incorporation of additional elements of gamification and social networking, are significantly
gaining popularity. For example, students are strengthening their coding skills, not by solving
typical exercises, but by developing specialized codes to protect their own units or attack enemies in
a multiplayer strategy game. On the other side, there are also tools providing programming courses
and professional tutorials for computer science enthusiasts, for example, cracking passwords
using the assembly language. It is worth remarking that educational online judge systems usually
provide a rich, ergonomic GUI and gamification elements to engage students in the problem-solving
process. The number of programming languages supported by such systems is also much higher, in

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

A Survey on Online Judge Systems 1:27

comparison to competitive programming systems, so as to focus mainly on the educational process,
independently of the programming language that is taught.

To ensure completeness of presented classifications, we also considered online compilers because
they share common mechanisms used to compile and execute source code submitted by the
user with online judge systems. Moreover, they are often used as a crucial component in the
development of online judge systems. In this group, we can find a wide range of tools, from
simple online services supporting compilation and execution of user-submitted codes, to systems
providing cloud-based IDEs that support collaboration in real-time by sharing a dedicated virtual
development environment; however, a common feature is the ability to support users in solving
programming assignments using only a web browser, without access to the standalone software.
Such systems are especially useful for users who usually work with various workstations without
administrative privileges.

The platforms proposed to support recruitment process usually integrate and extend basic
mechanisms provided by online judge systems. These systems allow developers to strengthen
their skills by competing in various programming competitions, thus, building their professional
reputation within the community. They are also very useful for recruiters who can easily find
many reliable employment candidates. A few of them allow even for delivery of fully-customized
challenges for specific candidates and their assessment in real-time. All these systems are
characterized by a professional GUI and enhanced functionality that allow for an analysis of
programming skills based on traced interactions of the person being recruited using the system.
Supported programming languages are usually limited to the most popular in the industry, such as
C/C++, C#, Java, JavaScript, Python, PHP.

There are also successful applications of online judge systems in platforms supporting the
organization of data mining challenges. They are dedicated to solving complex industry- as well as
science-inspired problems. The common usage scenario for these systems is that users submit the
output of their programs obtained for specific test instances that are then assessed by the particular
challenge organizers, and a final score is computed. However, it is worthy to note that the user
solutions can be rarely submitted in other forms, for example, by providing the algorithm’s source
code, or even specialized reports summarizing the result. The number of challenges provided by
these systems is growing extremely fast.

The approach offered by online judge platforms has such a large impact that the concept they
utilize has already been named cloud-based evaluation, or, strictly following the cloud computing
naming scheme, Evaluation-as-a-Service (EaaS). At least two international workshops devoted
to this topic were organized in 2015: Workshop on cloud-based evaluation approaches in the
United States (Müller et al. 2016) and Evaluation-as-a-Service Expert Workshop in Switzerland
(Hopfgartner et al. 2015). There is also the Metaheuristics in the Large initiative that integrates
around this topic many prominent researchers from the field of operational research (Swan et al.
2015). The objective is to provide computing infrastructure that allows enthusiasts or researchers
to incorporate state-of-the-art metaheuristics and solvers into an optimization workflow.

Unfortunately, most of the aforementioned systems are closed source. Thus, it is hard to apply
them successfully, considering various user expectations. That is why, at last, but not least, we
mentioned the systems that can be downloaded and installed on the user’s own infrastructure by
practitioners to provide an instance of a highly-configurable online judge system. This can be
easily applied to the organization of their own programming competition, as well as support the
educational process by the automated evaluation of student programs. Thus, such systems are of
great interest for universities and organizations providing e-learning courses.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:28 S. Wasik et al.

Currently, the systems providing problem archives for participants of competitive programming
contests constitute the majority of all online judge systems because the development of these
systems started approximately 10 years earlier than the remaining ones. However, in the near
future, this proportion will certainly invert as a result of the intensive development of cloud-based
computing (Puthal et al. 2015), which forms the basis for systems designed with EaaS architecture
in mind.

The classification proposed in this article is addressed to all interested practitioners to support
in finding the appropriate online judge platform regardless of their needs. A classification is the
most important contribution distinguishing this survey from earlier reviews. For example, Ihantola
et al. described principles that are crucial in the design of online judge systems just for assessment
of programming assignment (Ihantola et al. 2010). Another example is the article by Németh
and László, which focused on the classification of online judge systems that only supports the
organization of programming contests (Németh and László 2015).

Moreover, we formally defined what an online judge system is, and described an evaluation
procedure commonly used by such systems. While the intuitive perception of an online judge
system was first introduced by Kurnia et. al in 2001 (Kurnia et al. 2001), a formal definition of
such a system remained undefined until hitherto. Similarly, the evaluation procedure mentioned
several times, especially in relation to ACM ICPC and IOI contests (Cormack et al. 2006), was only
described informally, with an emphasis on the context of the particular programming contest.

Additionally, we presented an example use case based on the Optil.io platform, which is the first
system, worldwide, providing a continuous evaluation of algorithms solving complex optimization
challenges in a safe and homogenous cloud-based infrastructure. Optimization problems are
problems significant from the point of view of possible applications as well as often difficult
to solve problems that are formulated in a very broad range of fields from logistics (Silva et al.
2008) and decision making (Blazewicz et al. 2014; Blazewicz and Musial 2011; Marler and Arora
2004), through software design (Marszalkowski et al. 2015), to even biology (Antczak et al. 2016;
Lukasiak et al. 2015; Prejzendanc et al. 2016; Szostak et al. 2016; Wang et al. 2010; Wasik et al.
2013). Despite the huge development of mathematical programming solvers and meta-heuristics
that have occurred in recent years, many of these problems are still difficult to solve. These are
NP-hard problems that can be solved by currently known methods for small instances or some
special cases only. According to the “no free lunch” theorem applied for optimization purposes
(Wolpert and Macready 1997), designing well-performing algorithms for such problems requires
the application of sophisticated approaches for each of them. The experiment conducted using the
Optil.io platform demonstrated that online judge systems can significantly enhance this process by
providing a reliable platform that can be applied to effectively discovery the solutions of science-
and industry-inspired optimization problems using a crowdsourcing approach. We are sure that
Optil.io and other online judge systems can assist users in utilizing the power of crowdsourcing to
solve the most difficult problems known in science and industry.

REFERENCES
The 40th Annual World Finals of the ACM ICPC. 2016. ICPC Fact Sheet. (Feb 2016). https://icpc.baylor.edu/worldfinals/pdf/

Factsheet.pdf
Kirsti M. Ala-Mutka. 2005. A Survey of Automated Assessment Approaches for Programming Assignments. Computer

Science Education 15, 2 (jun 2005), 83–102. https://doi.org/10.1080/08993400500150747
Maciej Antczak, Marta Kasprzak, Piotr Lukasiak, and Jacek Blazewicz. 2016. Structural alignment of protein descriptors – a

combinatorial model. BMC Bioinformatics 17, 1 (sep 2016), 383. https://doi.org/10.1186/s12859-016-1237-9
Paolo Antonucci, Christian Estler, Durica Nikolić, Marco Piccioni, and Bertrand Meyer. 2015. An Incremental Hint System

For Automated Programming Assignments. In Proceedings of the 2015 ACM Conference on Innovation and Technology in
Computer Science Education. ACM, 320–325. https://doi.org/10.1145/2729094.2742607

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

https://icpc.baylor.edu/worldfinals/pdf/Factsheet.pdf
https://icpc.baylor.edu/worldfinals/pdf/Factsheet.pdf
https://doi.org/10.1080/08993400500150747
https://doi.org/10.1186/s12859-016-1237-9
https://doi.org/10.1145/2729094.2742607

A Survey on Online Judge Systems 1:29

Christian Artigues, Eric Bourreau, H. Murat Afsar, Olivier Briant, and Mourad Boudia. 2012. Disruption management for
commercial airlines: methods and results for the ROADEF 2009 Challenge. European J. of Industrial Engineering 6, 6
(2012), 669. https://doi.org/10.1504/ejie.2012.051072

Frances Bell. 2011. Connectivism: Its Place in Theory-Informed Research and Innovation in Technology-Enabled Learning.
International Review of Research in Open and Distributed Learning 12, 3 (mar 2011). https://doi.org/10.19173/irrodl.v12i3.902

Steve Benford, Edmund Burke, and Eric Foxley. 1993. Learning to construct quality software with the Ceilidh system.
Software Quality Journal 2, 3 (sep 1993), 177–197. https://doi.org/10.1007/bf00402268

Jacek Blazewicz, Nathanael Cheriere, Pierre-Francois Dutot, Jedrzej Musial, and Denis Trystram. 2014. Novel dual
discounting functions for the Internet shopping optimization problem: new algorithms. Journal of Scheduling 19, 3 (aug
2014), 245–255. https://doi.org/10.1007/s10951-014-0390-0

Jacek Blazewicz and Jedrzej Musial. 2011. E-Commerce Evaluation – Multi-Item Internet Shopping. Optimization and
Heuristic Algorithms. In Operations Research Proceedings. Springer Berlin Heidelberg, 149–154. https://doi.org/10.1007/
978-3-642-20009-0_24

Julio C. Caiza and José María del Álamo Ramiro. 2013. Programming assignments automatic grading: review of tools
and implementations. In 7th International Technology, Education and Development Conference (INTED2013). 5691–5700.
http://oa.upm.es/25765/

Manuel M. Carral. 2013. Moodle autograder plugin. Master’s thesis. Universidad de Cantabria. http://hdl.handle.net/10902/3790
Brenda Cheang, Andy Kurnia, Andrew Lim, and Wee-Chong Oon. 2003. On automated grading of programming assignments

in an academic institution. Computers & Education 41, 2 (sep 2003), 121–131. https://doi.org/10.1016/s0360-1315(03)00030-7
Amanda Coles, Andrew Coles, Angel G. Olaya, Sergio Jiménez, Carlos L. López, Scott Sanner, and Sungwook Yoon. 2012. A

survey of the seventh international planning competition. AI Magazine 33, 1 (2012), 83–88. https://vvvvw.aaai.org/ojs/
index.php/aimagazine/article/view/2392

Sébastien Combéfis and Jérémy Wautelet. 2014. Programming Trainings and Informatics Teaching Through Online Contests.
Olympiads in Informatics 8 (2014), 21–34. http://www.mclibre.org/descargar/docs/revista-oii/oii-08_201407.pdf

Gordon V. Cormack, J. Ian Munro, Troy Vasiga, and Graeme Kemkes. 2006. Structure, Scoring and Purpose of Computing
Competitions. Informatics in education 5, 1 (2006), 15–36. https://www.ceeol.com/search/article-detail?id=151841

J. C. Costello and G. Stolovitzky. 2013. Seeking the Wisdom of Crowds Through Challenge-Based Competitions in Biomedical
Research. Clinical Pharmacology & Therapeutics 93, 5 (feb 2013), 396–398. https://doi.org/10.1038/clpt.2013.36

Carles Creus and Guillem Godoy. 2014. Automatic Evaluation of Context-Free Grammars (System Description). In Lecture
Notes in Computer Science. Springer International Publishing, 139–148. https://doi.org/10.1007/978-3-319-08918-8_10

Valentina Dagiene, Arturo Cepeda, Richard Forster, and Krassimir Manev. 2007. Editorial. Olympiads in Informatics 1 (2007),
3–4. https://www.mii.lt/olympiads_in_informatics/files/volume1.pdf

Charlie Daly. 1999. RoboProf and an introductory computer programming course. In Proceedings of the 4th annual
SIGCSE/SIGCUE ITiCSE conference on Innovation and technology in computer science education - ITiCSE '99. ACM Press.
https://doi.org/10.1145/305786.305904

Karol Danutama and Inggriani Liem. 2013. Scalable Autograder and LMS Integration. Procedia Technology 11 (2013), 388–395.
https://doi.org/10.1016/j.protcy.2013.12.207

Prathibha Davuluri and Pranavi R. Madadi. 2016. Moodle Java Autograder. Technical Report. Governors State University.
http://opus.govst.edu/cgi/viewcontent.cgi?article=1200&context=capstones

Ross Dawson and Steve Bynghall. 2012. Getting results from crowds. Advanced Human Technologies San Francisco, CA.
Jonathan M. J. Derry, Lara M. Mangravite, Christine Suver, Matthew D. Furia, David Henderson, Xavier Schildwachter,

Brian Bot, Jonathan Izant, Solveig K. Sieberts, Michael R. Kellen, and Stephen H. Friend. 2012. Developing predictive
molecular maps of human disease through community-based modeling. Nature Genetics 44, 2 (jan 2012), 127–130.
https://doi.org/10.1038/ng.1089

Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart Nacke. 2011. From game design elements to gamefulness. In
Proceedings of the 15th International Academic MindTrek Conference on Envisioning Future Media Environments - MindTrek
'11. ACM Press. https://doi.org/10.1145/2181037.2181040

Vasant Dhar. 2013. Data science and prediction. Commun. ACM 56, 12 (dec 2013), 64–73. https://doi.org/10.1145/2500499
Cheedoong Drung, Jianwen Wang, and Ning Guo. 2011. Enhance performance of program automatic online judging systems

using affinity algorithm and queuing theory in SMP environment. In Proceedings of 2011 International Conference on
Electronic & Mechanical Engineering and Information Technology. IEEE. https://doi.org/10.1109/emeit.2011.6024016

Jack Edmonds. 1965. Paths, trees and flowers. Canadian Journal of Mathematics 17 (1965), 449–467.
Stephen H. Edwards and Manuel A. Perez-Quinones. 2008. Web-CAT: automatically grading programming assignments. In

ACM SIGCSE Bulletin, Vol. 40. ACM, 328. https://doi.org/10.1145/1597849.1384371
Arpad E. Elo. 1978. The rating of chessplayers, past and present. Arco Pub.
Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. 2015. An updated performance comparison of virtual

machines and Linux containers. In 2015 IEEE International Symposium on Performance Analysis of Systems and Software

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

https://doi.org/10.1504/ejie.2012.051072
https://doi.org/10.19173/irrodl.v12i3.902
https://doi.org/10.1007/bf00402268
https://doi.org/10.1007/s10951-014-0390-0
https://doi.org/10.1007/978-3-642-20009-0_24
https://doi.org/10.1007/978-3-642-20009-0_24
http://oa.upm.es/25765/
http://hdl.handle.net/10902/3790
https://doi.org/10.1016/s0360-1315(03)00030-7
https://vvvvw.aaai.org/ojs/index.php/aimagazine/article/view/2392
https://vvvvw.aaai.org/ojs/index.php/aimagazine/article/view/2392
http://www.mclibre.org/descargar/docs/revista-oii/oii-08_201407.pdf
https://www.ceeol.com/search/article-detail?id=151841
https://doi.org/10.1038/clpt.2013.36
https://doi.org/10.1007/978-3-319-08918-8_10
https://www.mii.lt/olympiads_in_informatics/files/volume1.pdf
https://doi.org/10.1145/305786.305904
https://doi.org/10.1016/j.protcy.2013.12.207
http://opus.govst.edu/cgi/viewcontent.cgi?article=1200&context=capstones
https://doi.org/10.1038/ng.1089
https://doi.org/10.1145/2181037.2181040
https://doi.org/10.1145/2500499
https://doi.org/10.1109/emeit.2011.6024016
https://doi.org/10.1145/1597849.1384371

1:30 S. Wasik et al.

(ISPASS). IEEE. https://doi.org/10.1109/ispass.2015.7095802
Daniela Fonte, Daniela da Cruz, Alda L. Gançarski, and Pedro R. Henriques. 2013. A Flexible Dynamic System for Automatic

Grading of Programming Exercises. In 2nd Symposium on Languages, Applications and Technologies (OpenAccess Series
in Informatics (OASIcs)), José Paulo Leal, Ricardo Rocha, and Alberto Simões (Eds.), Vol. 29. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 129–144. https://doi.org/10.4230/OASIcs.SLATE.2013.129

Michal Forišek. 2006a. On the suitability of programming tasks for automated evaluation. Informatics in education 5, 1
(2006), 63–76. https://www.ceeol.com/search/article-detail?id=151850

Michal Forišek. 2006b. Security of programming contest systems. Information Technologies at School (2006), 553–563.
https://people.ksp.sk/~misof/publications/copy/2006attacks.pdf

George E. Forsythe and Niklaus Wirth. 1965. Automatic grading programs. Commun. ACM 8, 5 (may 1965), 275–278.
https://doi.org/10.1145/364914.364937

Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A guide to the theory of NP-completeness. W. H.
Freeman and Company, New York.

Anthony Goldbloom. 2010. Data Prediction Competitions – Far More than Just a Bit of Fun. In 2010 IEEE International
Conference on Data Mining Workshops. IEEE. https://doi.org/10.1109/icdmw.2010.56

Frank Hopfgartner, Jimmy Lin, Krisztian Balog, Ivan Eggel, Allan Hanbury, Henning Müller, Noriko Kando, Simon Mercer,
Jayashree Kalpathy-Cramer, Martin Potthast, Tim Gollub, and Anastasia Krithara. 2015. Report on the Evaluation-as-a-
Service (EaaS) Expert Workshop. ACM SIGIR Forum 49, 1 (jun 2015), 57–65. https://doi.org/10.1145/2795403.2795416

Jeff Howe. 2006. The rise of crowdsourcing. Wired magazine 14, 6 (2006), 1–4.
B. Husemann, J. Lechtenborger, G. Vossen, and P. Westerkamp. [n. d.]. XLX-a platform for graduate-level exercises. In

International Conference on Computers in Education, 2002. Proceedings. IEEE Comput. Soc. https://doi.org/10.1109/cie.2002.
1186207

Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. 2010. Review of recent systems for automatic assessment
of programming assignments. In Proceedings of the 10th Koli Calling International Conference on Computing Education
Research - Koli Calling '10. ACM Press. https://doi.org/10.1145/1930464.1930480

Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen Börstle, Stephen H. Edwards, Essi Isohanni, Ari
Korhonen, Andrew Petersen, Kelly Rivers, Miguel Ángel Rubio, Judy Sheard, Bronius Skupas, Jaime Spacco, Claudia Szabo,
and Daniel Toll. 2015. Educational Data Mining and Learning Analytics in Programming: Literature Review and Case
Studies. In Proceedings of the 2015 ITiCSE on Working Group Reports. ACM, 41–63. https://doi.org/10.1145/2858796.2858798

Thomas Ilsche, Joseph Schuchart, Robert Schöne, and Daniel Hackenberg. 2015. Combining Instrumentation and Sampling
for Trace-Based Application Performance Analysis. In Tools for High Performance Computing 2014. Springer International
Publishing, 123–136. https://doi.org/10.1007/978-3-319-16012-2_6

Slavina Ivanova. 2016. Learning Computer Programming Through Games Development. In The International Scientific
Conference eLearning and Software for Education, Vol. 1. Carol I National Defence University, 492–497. http://search.
proquest.com/docview/1792386473?pq-origsite=gscholar

Mike Joy, Nathan Griffiths, and Russell Boyatt. 2005. The boss online submission and assessment system. Journal on
Educational Resources in Computing 5, 3 (sep 2005), 2–es. https://doi.org/10.1145/1163405.1163407

Mike Joy and Michael M. Luck. 1995. On-line submission and testing of programming assignments. In Innovations in the
Teaching of Computing, J. Hart (Ed.). SEDA Papers, Vol. Volume 1. SEDA, London, 95–103. http://wrap.warwick.ac.uk/
60953/

Andreas M. Kaplan and Michael Haenlein. 2016. Higher education and the digital revolution: About MOOCs, SPOCs, social
media, and the Cookie Monster. Business Horizons 59, 4 (jul 2016), 441–450. https://doi.org/10.1016/j.bushor.2016.03.008

Ville Karavirta, Petri Ihantola, and Teemu Koskinen. 2013. Service-Oriented Approach to Improve Interoperability of
E-Learning Systems. In 2013 IEEE 13th International Conference on Advanced Learning Technologies. IEEE, 341–345.
https://doi.org/10.1109/ICALT.2013.105

Mümine Kaya and Selma A. Özel. 2012. An online compiler module for grading programming assignments on Moodle
distance education system. Global J Technol 1 (2012), 715–720. http://www.world-education-center.org/index.php/
P-ITCS/article/view/908/996

Mümine Kaya and Selma Ayşe Özel. 2014. Integrating an online compiler and a plagiarism detection tool into the Moodle
distance education system for easy assessment of programming assignments. Computer Applications in Engineering
Education 23, 3 (jul 2014), 363–373. https://doi.org/10.1002/cae.21606

Staffs Keele. 2007. Guidelines for performing systematic literature reviews in software engineering. In Technical report, Ver.
2.3 EBSE Technical Report. EBSE. sn. https://pdfs.semanticscholar.org/e62d/bbbbe70cabcde3335765009e94ed2b9883d5.pdf

Vivek Khera, Owen Astrachan, and David Kotz. 1993. The internet programming contest. ACM SIGCSE Bulletin 25, 1 (mar
1993), 48–52. https://doi.org/10.1145/169073.169105

Barbara Kitchenham, O. Pearl Brereton, David Budgen, Mark Turner, John Bailey, and Stephen Linkman. 2009. Systematic
literature reviews in software engineering–a systematic literature review. Information and software technology 51, 1

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

https://doi.org/10.1109/ispass.2015.7095802
https://doi.org/10.4230/OASIcs.SLATE.2013.129
https://www.ceeol.com/search/article-detail?id=151850
https://people.ksp.sk/~misof/publications/copy/2006attacks.pdf
https://doi.org/10.1145/364914.364937
https://doi.org/10.1109/icdmw.2010.56
https://doi.org/10.1145/2795403.2795416
https://doi.org/10.1109/cie.2002.1186207
https://doi.org/10.1109/cie.2002.1186207
https://doi.org/10.1145/1930464.1930480
https://doi.org/10.1145/2858796.2858798
https://doi.org/10.1007/978-3-319-16012-2_6
http://search.proquest.com/docview/1792386473?pq-origsite=gscholar
http://search.proquest.com/docview/1792386473?pq-origsite=gscholar
https://doi.org/10.1145/1163405.1163407
http://wrap.warwick.ac.uk/60953/
http://wrap.warwick.ac.uk/60953/
https://doi.org/10.1016/j.bushor.2016.03.008
https://doi.org/10.1109/ICALT.2013.105
http://www.world-education-center.org/index.php/P-ITCS/article/view/908/996
http://www.world-education-center.org/index.php/P-ITCS/article/view/908/996
https://doi.org/10.1002/cae.21606
https://pdfs.semanticscholar.org/e62d/bbbbe70cabcde3335765009e94ed2b9883d5.pdf
https://doi.org/10.1145/169073.169105

A Survey on Online Judge Systems 1:31

(2009), 7–15. https://doi.org/10.1016/j.infsof.2008.09.009
Rob Kolstad and Don Piele. 2007. USA computing olympiad (USACO). Olympiads in Informatics 1 (2007), 105–111.

https://www.mii.lt/olympiads_in_informatics/files/volume1.pdf#page=105
Rita Kop. 2011. The challenges to connectivist learning on open online networks: Learning experiences during a massive

open online course. The International Review of Research in Open and Distributed Learning 12, 3 (mar 2011), 19.
https://doi.org/10.19173/irrodl.v12i3.882

Adrian Kosowski, Micha l Ma lafiejski, and Tomasz Noiński. [n. d.]. Application of an Online Judge & Contester
System in Academic Tuition. In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 343–354. https:
//doi.org/10.1007/978-3-540-78139-4_31

Andy Kurnia, Andrew Lim, and Brenda Cheang. 2001. Online Judge. Computers & Education 36, 4 (may 2001), 299–315.
https://doi.org/10.1016/s0360-1315(01)00018-5

José P. Leal and Nelma Moreira. 1998. Automatic Grading of Programming Exercises. Technical Report. Universidade do
Porto. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.3506

José P. Leal and Fernando Silva. 2003. Mooshak: a Web-based multi-site programming contest system. Software: Practice
and Experience 33, 6 (2003), 567–581. https://doi.org/10.1002/spe.522

LLC Books. 2010. ISO 639: List of ISO 639-3 Codes, ISO 639 Macrolanguage, ISO 639: K, ISO 639: M, ISO 639: B, ISO 639: A, ISO
639: T, ISO 639-1. General Books LLC. https://books.google.co.uk/books?id=bAWqSQAACAAJ

Piotr Lukasiak, Maciej Antczak, Tomasz Ratajczak, Marta Szachniuk, Mariusz Popenda, Ryszard W. Adamiak, and Jacek
Blazewicz. 2015. RNAssess—a web server for quality assessment of RNA 3D structures. Nucleic Acids Research 43, W1
(jun 2015), W502–W506. https://doi.org/10.1093/nar/gkv557

Yingwei Luo, Xiaolin Wang, and Zhengyi Zhang. 2008. Programming grid. In Proceedings of the 1st ACM Summit
on Computing Education in China on First ACM Summit on Computing Education in China - SCE '08. ACM Press.
https://doi.org/10.1145/1517632.1517643

Anaga Mani, Divya Venkataramani, Jordi Petit, and Salvador Roura. 2014. Better Feedback for Educational Online Judges.
In Proceedings of the 6th International Conference on Computer Supported Education. SCITEPRESS - Science and and
Technology Publications. https://doi.org/10.5220/0004842801760183

Shahriar Manzoor. 2006. Analyzing Programming Contest Statistics. Perspectives on Computer Science Competitions for
(High School) Students (2006), 48. https://www.bwinf.de/competition-workshop/RevisedPapers/13_Manzoor_rev.pdf

R. T. Marler and J. S. Arora. 2004. Survey of multi-objective optimization methods for engineering. Structural and
Multidisciplinary Optimization 26, 6 (apr 2004), 369–395. https://doi.org/10.1007/s00158-003-0368-6

Jakub Marszalkowski, Jan Mizgajski, Dariusz Mokwa, and Maciej Drozdowski. 2015. Analysis and Solution of CSS-Sprite
Packing Problem. ACM Transactions on the Web 10, 1 (dec 2015), 1–34. https://doi.org/10.1145/2818377

Drew Mcdermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela Veloso, Daniel Weld, and David
Wilkins. 1998. PDDL - The Planning Domain Definition Language. Technical Report. CVC TR-98-003/DCS TR-1165, Yale
Center for Computational Vision and Control. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.212

Nimrod Megiddo and Arie Tamir. 1982. On the complexity of locating linear facilities in the plane. Operations Research
Letters 1, 5 (nov 1982), 194–197. https://doi.org/10.1016/0167-6377(82)90039-6

Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Consistent Development and Deployment. Linux J. 2014, 239,
Article 2 (March 2014). http://dl.acm.org/citation.cfm?id=2600239.2600241

Henning Müller, Thea Norman, David Kennedy, Ganapati Srinivasa, Artem Mamonov, Nina Preuss, Jayashree Kalpathy-
Cramer, Allan Hanbury, Keyvan Farahani, Rinat Sergeev, Jin H. Paik, Arno Klein, Antonio Criminisi, and Andrew Trister.
2016. Report on the Cloud-Based Evaluation Approaches Workshop 2015. ACM SIGIR Forum 50, 1 (jun 2016), 38–41.
https://doi.org/10.1145/2964797.2964804

Ágnes E. Németh and Zsakó László. 2015. Online Training and Contests for Informatics Contestants of Secondary School
Age. Edukacja-Technika-Informatyka 6, 1 (2015), 273–280. http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.
desklight-76508e2b-acbf-4ade-85a6-8e77b1150b03

Jordi Petit, Omer Giménez, and Salvador Roura. 2012. Jutge.org. In Proceedings of the 43rd ACM technical symposium on
Computer Science Education - SIGCSE '12. ACM Press. https://doi.org/10.1145/2157136.2157267

Vreda Pieterse. 2013. Automated Assessment of Programming Assignments. In Proceedings of the 3rd Computer Science
Education Research Conference on Computer Science Education Research (CSERC ’13). Open Universiteit, Heerlen, Open
Univ., Heerlen, The Netherlands, The Netherlands, Article 4, 12 pages. http://dl.acm.org/citation.cfm?id=2541917.2541921

Wolfgang Pohl. 2006. Computer Science Contests for Secondary School Students: Approaches to Classification. Informatics
in Education 5, 1 (2006), 125–132. https://www.ceeol.com/search/article-detail?id=151845 Copyright - Copyright Institute
of Mathematics and Informatics 2006; Document feature - ; Last updated - 2011-06-03.

Tomasz Prejzendanc, Szymon Wasik, and Jacek Blazewicz. 2016. Computer representations of bioinformatics models.
Current Bioinformatics 11, 5 (2016), 551–560. https://doi.org/10.2174/1574893610666150928193510

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

https://doi.org/10.1016/j.infsof.2008.09.009
https://www.mii.lt/olympiads_in_informatics/files/volume1.pdf#page=105
https://doi.org/10.19173/irrodl.v12i3.882
https://doi.org/10.1007/978-3-540-78139-4_31
https://doi.org/10.1007/978-3-540-78139-4_31
https://doi.org/10.1016/s0360-1315(01)00018-5
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.3506
https://doi.org/10.1002/spe.522
https://books.google.co.uk/books?id=bAWqSQAACAAJ
https://doi.org/10.1093/nar/gkv557
https://doi.org/10.1145/1517632.1517643
https://doi.org/10.5220/0004842801760183
https://www.bwinf.de/competition-workshop/RevisedPapers/13_Manzoor_rev.pdf
https://doi.org/10.1007/s00158-003-0368-6
https://doi.org/10.1145/2818377
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.212
https://doi.org/10.1016/0167-6377(82)90039-6
http://dl.acm.org/citation.cfm?id=2600239.2600241
https://doi.org/10.1145/2964797.2964804
http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-76508e2b-acbf-4ade-85a6-8e77b1150b03
http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-76508e2b-acbf-4ade-85a6-8e77b1150b03
https://doi.org/10.1145/2157136.2157267
http://dl.acm.org/citation.cfm?id=2541917.2541921
https://www.ceeol.com/search/article-detail?id=151845
https://doi.org/10.2174/1574893610666150928193510

1:32 S. Wasik et al.

John Prpić, James Melton, Araz Taeihagh, and Terry Anderson. 2015. MOOCs and crowdsourcing: Massive courses and
massive resources. First Monday 20, 12 (dec 2015). https://doi.org/10.5210/fm.v20i12.6143

Deepak Puthal, B. P. S. Sahoo, Sambit Mishra, and Satyabrata Swain. 2015. Cloud Computing Features, Issues, and
Challenges: A Big Picture. In 2015 International Conference on Computational Intelligence and Networks. IEEE. https:
//doi.org/10.1109/cine.2015.31

Martin Pärtel, Matti Luukkainen, Arto Vihavainen, and Thomas Vikberg. 2013. Test My Code. International Journal of
Technology Enhanced Learning 5, 3–4 (2013), 271–283. https://doi.org/10.1504/IJTEL.2013.059495

Miguel A. Revilla, Shahriar Manzoor, and Rujia Liu. 2008. Competitive learning in informatics: The UVa online judge
experience. Olympiads in Informatics 2 (2008), 131–148. http://www.mii.lt/olympiads_in_informatics/files/volume2.pdf

Juan C. Rodrı́guez-del Pino, Enrique Rubio Royo, and Zenón Hernández Figueroa. 2012. A Virtual Programming Lab for
Moodle with automatic assessment and anti-plagiarism features. In Proceedings of the 2012 International Conference on
e-Learning, e-Business, Enterprise Information Systems, & e-Government. http://hdl.handle.net/10553/9773

Rohaida Romli, Shahida Sulaiman, and Kamal Z. Zamli. 2010. Automatic programming assessment and test data generation
a review on its approaches. In 2010 International Symposium on Information Technology, Vol. 3. IEEE, 1186–1192.
https://doi.org/10.1109/ITSIM.2010.5561488

Samira Saedi and O. Erhun Kundakcioglu. 2013. Combinatorial Optimization in Data Mining. Springer New York, 595–630.
https://doi.org/10.1007/978-1-4419-7997-1_7

Julio Saez-Rodriguez, James C. Costello, Stephen H. Friend, Michael R. Kellen, Lara Mangravite, Pablo Meyer, Thea Norman,
and Gustavo Stolovitzky. 2016. Crowdsourcing biomedical research: leveraging communities as innovation engines.
Nature Reviews Genetics 17, 8 (jul 2016), 470–486. https://doi.org/10.1038/nrg.2016.69

Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. 2003. Winnowing. In Proceedings of the 2003 ACM SIGMOD international
conference on on Management of data - SIGMOD '03. ACM Press. https://doi.org/10.1145/872757.872770

C. A. Silva, J. M. C. Sousa, and T. A. Runkler. 2008. Rescheduling and optimization of logistic processes using GA and ACO.
Engineering Applications of Artificial Intelligence 21, 3 (apr 2008), 343–352. https://doi.org/10.1016/j.engappai.2007.08.006

Steven S. Skiena and Miguel A. Revilla. 2008. Programming Challenges: The Programming Contest Training Manual (Texts in
Computer Science). Springer. http://www.springer.com/us/book/9780387001630

Jaime Spacco, Paul Denny, Brad Richards, David Babcock, David Hovemeyer, James Moscola, and Robert Duvall. 2015.
Analyzing Student Work Patterns Using Programming Exercise Data. In Proceedings of the 46th ACM Technical Symposium
on Computer Science Education - SIGCSE '15. ACM Press. https://doi.org/10.1145/2676723.2677297

Thomas Staubitz, Hauke Klement, Jan Renz, Ralf Teusner, and Christoph Meinel. 2015. Towards practical programming
exercises and automated assessment in Massive Open Online Courses. In 2015 IEEE International Conference on Teaching,
Assessment, and Learning for Engineering (TALE). IEEE, 23–30. https://doi.org/10.1109/TALE.2015.7386010

Jerry Swan, Steven Adriaensen, Mohamed Bishr, Edmund K. Burke, John A. Clark, Patrick De Causmaecker, Juanjo Durillo,
Kevin Hammond, Emma Hart, Colin G. Johnson, Zoltan A. Kocsis, Ben Kovitz, Krzysztof Krawiec, Simon Martin, J. J.
Merelo, Leandro L. Minku, Ender Ozcan, Gisele L. Pappa, Erwin Pesch, Pablo Garcıa-Sánchez, Andrea Schaerf, Kevin
Sim, Jim E. Smith, Thomas Stützle, Stefan Voß, Stefan Wagner, and Xin Yao. 2015. A Research Agenda for Metaheuristic
Standardization. In MIC 2015: The XI Metaheuristics International Conference. http://www.cs.nott.ac.uk/~pszeo/docs/
publications/research-agenda-metaheuristic.pdf

Natalia Szostak, Szymon Wasik, and Jacek Blazewicz. 2016. Hypercycle. PLOS Computational Biology 12, 4 (04 2016), 1–13.
https://doi.org/10.1371/journal.pcbi.1004853

Jan N. van Rijn, Bernd Bischl, Luis Torgo, Bo Gao, Venkatesh Umaashankar, Simon Fischer, Patrick Winter, Bernd Wiswedel,
Michael R. Berthold, and Joaquin Vanschoren. 2013. OpenML: A Collaborative Science Platform. In Machine Learning and
Knowledge Discovery in Databases. Springer Berlin Heidelberg, 645–649. https://doi.org/10.1007/978-3-642-40994-3_46

Urs von Matt. 1994. Kassandra. ACM SIGCUE Outlook 22, 1 (jan 1994), 26–40. https://doi.org/10.1145/182107.182101
Yanqing Wang, Xiaolei Wang, Yu Jiang, Yaowen Liang, and Ying Liu. 2016. A code reviewer assignment model incorporating

the competence differences and participant preferences. Foundations of Computing and Decision Sciences 41, 1 (jan 2016).
https://doi.org/10.1515/fcds-2016-0004

Yong Wang, Xiang-Sun Zhang, and Luonan Chen. 2010. Optimization meets systems biology. BMC Systems Biology 4, Suppl
2 (2010), S1. https://doi.org/10.1186/1752-0509-4-s2-s1

Szymon Wasik, Maciej Antczak, Jan Badura, Artur Laskowski, and Tomasz Sternal. 2016. Optil.io: Cloud Based Platform For
Solving Optimization Problems Using Crowdsourcing Approach. In Proceedings of the 19th ACM Conference on Computer
Supported Cooperative Work and Social Computing Companion. ACM, 433–436. https://doi.org/10.1145/2818052.2869098

Szymon Wasik, Filip Fratczak, Jakub Krzyskow, and Jaroslaw Wulnikowski. 2015. Inferring Mathematical Equations Using
Crowdsourcing. PLOS ONE 10, 12 (dec 2015), e0145557. https://doi.org/10.1371/journal.pone.0145557

Szymon Wasik, Tomasz Prejzendanc, and Jacek Blazewicz. 2013. ModeLang - A new approach for experts-friendly viral
infections modeling. Computational and Mathematical Methods in Medicine 2013 (2013), 8. https://doi.org/10.1155/2013/
320715

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

https://doi.org/10.5210/fm.v20i12.6143
https://doi.org/10.1109/cine.2015.31
https://doi.org/10.1109/cine.2015.31
https://doi.org/10.1504/IJTEL.2013.059495
http://www.mii.lt/olympiads_in_informatics/files/volume2.pdf
http://hdl.handle.net/10553/9773
https://doi.org/10.1109/ITSIM.2010.5561488
https://doi.org/10.1007/978-1-4419-7997-1_7
https://doi.org/10.1038/nrg.2016.69
https://doi.org/10.1145/872757.872770
https://doi.org/10.1016/j.engappai.2007.08.006
http://www.springer.com/us/book/9780387001630
https://doi.org/10.1145/2676723.2677297
https://doi.org/10.1109/TALE.2015.7386010
http://www.cs.nott.ac.uk/~pszeo/docs/publications/research-agenda-metaheuristic.pdf
http://www.cs.nott.ac.uk/~pszeo/docs/publications/research-agenda-metaheuristic.pdf
https://doi.org/10.1371/journal.pcbi.1004853
https://doi.org/10.1007/978-3-642-40994-3_46
https://doi.org/10.1145/182107.182101
https://doi.org/10.1515/fcds-2016-0004
https://doi.org/10.1186/1752-0509-4-s2-s1
https://doi.org/10.1145/2818052.2869098
https://doi.org/10.1371/journal.pone.0145557
https://doi.org/10.1155/2013/320715
https://doi.org/10.1155/2013/320715

A Survey on Online Judge Systems 1:33

Li Wen-xin and Guo Wei. 2005. Peking University Online Judge and Its Applications. Journal of Changchun Post and
Telecommunication Institute (2005), S2. http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCYD2005S2046.htm

Chris Wilcox. 2016. Testing Strategies for the Automated Grading of Student Programs. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education. ACM, 437–442. https://doi.org/10.1145/2839509.2844616

Marcin Wojnarski, Sebastian Stawicki, and Piotr Wojnarowski. 2010. TunedIT.org: System for Automated Evaluation of
Algorithms in Repeatable Experiments. In Rough Sets and Current Trends in Computing. Springer Berlin Heidelberg,
20–29. https://doi.org/10.1007/978-3-642-13529-3_4

D. H. Wolpert and W. G. Macready. 1997. No free lunch theorems for optimization. IEEE Transactions on Evolutionary
Computation 1, 1 (apr 1997), 67–82. https://doi.org/10.1109/4235.585893

Joao Xavier and António F. Coelho. 2011. Computer-based assessment system for e-learning applied to programming
education. In ICERI2011 Proceedings. IATED, 3738–3747. https://library.iated.org/view/XAVIER2011COM

Chao Yi, Su Feng, and Zhi Gong. 2014. A Comparison of Sandbox Technologies Used in Online Judge Systems. Applied
Mechanics and Materials 490-491 (apr 2014), 1201–1204. https://doi.org/10.4028/www.scientific.net/amm.490-491.1201

Yongwook Yoon, Changki Lee, and Gary Geunbae Lee. 2006. An effective procedure for constructing a hierarchical text
classification system. Journal of the American Society for Information Science and Technology 57, 3 (2006), 431–442.
https://doi.org/10.1002/asi.20281

Ninghan Zheng, Shuzhen Tian, and Yongqiang Chen. 2015. Online Learning Management System. In 2015 International
Conference on Computational Science and Computational Intelligence (CSCI). IEEE. https://doi.org/10.1109/csci.2015.160

Sun Zhigang, Su Xiaohong, Zhu Ning, and Cheng Yanyu. 2012. Moodle Plugins for Highly Efficient Programming Courses.
In 1st Moodle Research Conference (MRC2012). 157–163. http://research.moodle.net/51/

Guojin Zhu and Lichao Fu. 2012. Automatic Organization of Programming Resources on the Web. In Advances in Intelligent
and Soft Computing. Springer Berlin Heidelberg, 675–681. https://doi.org/10.1007/978-3-642-30126-1_106

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCYD2005S2046.htm
https://doi.org/10.1145/2839509.2844616
https://doi.org/10.1007/978-3-642-13529-3_4
https://doi.org/10.1109/4235.585893
https://library.iated.org/view/XAVIER2011COM
https://doi.org/10.4028/www.scientific.net/amm.490-491.1201
https://doi.org/10.1002/asi.20281
https://doi.org/10.1109/csci.2015.160
http://research.moodle.net/51/
https://doi.org/10.1007/978-3-642-30126-1_106

1:34 S. Wasik et al.

ELECTRONIC SUPPLEMENT
URL addresses of considered systems

Table 7. List of online judge systems presented in the article in Tables 1 to 6 together with URL
addresses published to allow printing of URLs.

Name URL address
A2 Online Judge https://a2oj.com/

AC 2333 https://ac.2333.moe/
AcDream http://acdream.info/

ACM-ICPC live archive https://icpcarchive.ecs.baylor.edu
ACM-Kyrgyzstan Subregion http://www.olymp.krsu.edu.kg/GeneralProblemset.aspx

Adjule Online Judge https://adjule.pl/
Aizu Online Judge http://judge.u-aizu.ac.jp/onlinejudge/

Al Zimmermann’s Programming Contests http://www.azspcs.net/
BNU OJ http://www.bnuoj.com/v3/index.php

Carribean Online Judge http://coj.uci.cu/index.xhtml
CDOJ http://acm.uestc.edu.cn

Codeforces http://codeforces.com/
Don Mills Online Judge https://dmoj.ca/problems/

e-olymp http://e-olymp.com
EI Judge http://acm.mipt.ru/judge

Facebook Hacker Cup https://www.facebook.com/hackercup
Fuzhou University Online Judge http://acm.fzu.edu.cn/

Google Code Jam https://code.google.com/codejam/
Herbert Online Judge http://herbert.tealang.info/problems.php

HIT ACM/ICPC http://acm.hit.edu.cn/hoj
HUSTOJ http://acm.hust.edu.cn/

Indian Computing Olympiad Problems Archive http://opc.iarcs.org.in/index.php/problems/
Internet Problem Solving Contest http://ipsc.ksp.sk

Light OJ http://lightoj.com
LYDSY http://www.lydsy.com/JudgeOnline/
Main http://main.edu.pl

National Taiwan University Online Judge http://acm.csie.ntu.edu.tw/ntujudge/index.php
National Tsing Hua University Online Judge http://acm.cs.nthu.edu.tw/

North University of China Online Judge https://noj.io/
P3G http://wcipeg.com/

Peking University Judge Online http://poj.org/
Petrozavodsk State University http://acm.petrsu.ru

Project Euler https://projecteuler.net/
SPOJ http://www.spoj.com/

SPOJ PL http://pl.spoj.com/
Szkopu l http://szkopul.edu.pl/

Teddy Online Judge https://www.teddyonlinejudge.net/
Timus Online Judge http://acm.timus.ru/

TJU ACM-ICPC Online Judge http://acm.tju.edu.cn/toj/
TopCoder Competitive Programming https://www.topcoder.com/community/competitive%20programming/

USA Computing Olympiad http://usaco.org
UVa Online Judge http://uva.onlinejudge.org/
CrowdANALYTIX https://www.crowdanalytix.com/

DREAM Challenges http://dreamchallenges.org/
Kaggle http://www.kaggle.com

MLcomp http://mlcomp.org/
OpenML http://www.openml.org/
Optil.io http://www.optil.io/

TopCoder Data Science https://www.topcoder.com/community/data-science/
TunedIT http://tunedit.org/
CheckiO http://www.checkio.org

Code Fights https://codefights.com/
Codeboard https://codeboard.io/

Codecademy https://www.codecademy.com/
CodeChef http://www.codechef.com/
CodeHunt http://www.codehunt.com
Codewars http://www.codewars.com

CodinGame http://www.codingame.com/start
CodingBat http://codingbat.com/

Embedded Security CTF https://microcorruption.com
Exercism http://exercism.io
Jutge.org https://jutge.org/

Leek Wars https://leekwars.com/
LeetCode Online Judge http://leetcode.com/

Programming Grid http://programming.grids.cn/programming/
Python Challenge http://www.pythonchallenge.com/

RACSO https://racso.lsi.upc.edu/juez/
The AI Games http://theaigames.com/

URI Online Judge https://www.urionlinejudge.com.br/judge/login
C++ Shell http://cpp.sh/

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

https://a2oj.com/
https://ac.2333.moe/
http://acdream.info/
https://icpcarchive.ecs.baylor.edu
http://www.olymp.krsu.edu.kg/GeneralProblemset.aspx
https://adjule.pl/
http://judge.u-aizu.ac.jp/onlinejudge/
http://www.azspcs.net/
http://www.bnuoj.com/v3/index.php
http://coj.uci.cu/index.xhtml
http://acm.uestc.edu.cn
http://codeforces.com/
https://dmoj.ca/problems/
http://e-olymp.com
http://acm.mipt.ru/judge
https://www.facebook.com/hackercup
http://acm.fzu.edu.cn/
https://code.google.com/codejam/
http://herbert.tealang.info/problems.php
http://acm.hit.edu.cn/hoj
http://acm.hust.edu.cn/
http://opc.iarcs.org.in/index.php/problems/
http://ipsc.ksp.sk
http://lightoj.com
http://www.lydsy.com/JudgeOnline/
http://main.edu.pl
http://acm.csie.ntu.edu.tw/ntujudge/index.php
http://acm.cs.nthu.edu.tw/
https://noj.io/
http://wcipeg.com/
http://poj.org/
http://acm.petrsu.ru
https://projecteuler.net/
http://www.spoj.com/
http://pl.spoj.com/
http://szkopul.edu.pl/
https://www.teddyonlinejudge.net/
http://acm.timus.ru/
http://acm.tju.edu.cn/toj/
https://www.topcoder.com/community/competitive%20programming/
http://usaco.org
http://uva.onlinejudge.org/
https://www.crowdanalytix.com/
http://dreamchallenges.org/
http://www.kaggle.com
http://mlcomp.org/
http://www.openml.org/
http://www.optil.io/
https://www.topcoder.com/community/data-science/
http://tunedit.org/
http://www.checkio.org
https://codefights.com/
https://codeboard.io/
https://www.codecademy.com/
http://www.codechef.com/
http://www.codehunt.com
http://www.codewars.com
http://www.codingame.com/start
http://codingbat.com/
https://microcorruption.com
http://exercism.io
https://jutge.org/
https://leekwars.com/
http://leetcode.com/
http://programming.grids.cn/programming/
http://www.pythonchallenge.com/
https://racso.lsi.upc.edu/juez/
http://theaigames.com/
https://www.urionlinejudge.com.br/judge/login
http://cpp.sh/

A Survey on Online Judge Systems 1:35

Codeanywhere https://codeanywhere.com
Codepad http://codepad.org/

CodeSkulptor http://www.codeskulptor.org/
Coding Ground http://www.tutorialspoint.com/codingground.htm

Codio http://codio.com
Ideone https://ideone.com/

Online Compiler http://www.onlinecompiler.net/
Web Compiler http://webcompiler.cloudapp.net/

A+ https://github.com/Aalto-LeTech/a-plus/
BOSS https://sourceforge.net/projects/cobalt/

CloudCoder https://cloudcoder.org/
Code Runner for Moodle https://github.com/trampgeek/CodeRunner

DOMjudge http://www.domjudge.org
Mooshak https://mooshak.dcc.fc.up.pt/

Online Judge Plugin for Moodle https://github.com/hit-moodle/moodle-local_onlinejudge
SIO2 https://github.com/sio2project

TestMyCode http://testmycode.github.io
Tsinghua Online Judge http://dsa.cs.tsinghua.edu.cn/oj/

Virtual programming lab https://moodle.org/plugins/mod_vpl
Web-CAT http://web-cat.org/home

xLx http://dbis-group.uni-muenster.de/projects/xlx/
CodeEval https://www.codeeval.com/
Codility https://codility.com

HackerEarth https://www.hackerearth.com/
Hackerrank https://www.hackerrank.com

Qualified https://qualified.io/

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2016.

https://codeanywhere.com
http://codepad.org/
http://www.codeskulptor.org/
http://www.tutorialspoint.com/codingground.htm
http://codio.com
https://ideone.com/
http://www.onlinecompiler.net/
http://webcompiler.cloudapp.net/
https://github.com/Aalto-LeTech/a-plus/
https://sourceforge.net/projects/cobalt/
https://cloudcoder.org/
https://github.com/trampgeek/CodeRunner
http://www.domjudge.org
https://mooshak.dcc.fc.up.pt/
https://github.com/hit-moodle/moodle-local_onlinejudge
https://github.com/sio2project
http://testmycode.github.io
http://dsa.cs.tsinghua.edu.cn/oj/
https://moodle.org/plugins/mod_vpl
http://web-cat.org/home
http://dbis-group.uni-muenster.de/projects/xlx/
https://www.codeeval.com/
https://codility.com
https://www.hackerearth.com/
https://www.hackerrank.com
https://qualified.io/

	Abstract
	1 Introduction
	2 Online judge systems
	2.1 Methods
	2.2 Competitive programming
	2.3 Education
	2.4 Online compilers
	2.5 Recruitment
	2.6 Data-mining services
	2.7 Development platforms

	3 Evaluation methodology
	3.1 Combinatorial problems
	3.2 Assessment
	3.3 Scoring
	3.4 Online judge

	4 Example application based on Optil.io platform
	5 Conclusion
	References

