skip to main content
10.1145/3144826.3145350acmotherconferencesArticle/Chapter ViewAbstractPublication PagesteemConference Proceedingsconference-collections
research-article

A first proposal of Pedagogic Conversational Agents to develop Computational Thinking in children

Published:18 October 2017Publication History

ABSTRACT

Pedagogic Conversational Agents are interactive systems that teach by talking to the students. They have been used in several domains to develop competences such as storytelling or negotiation from University to Pre-Primary Education. However, in the literature, no cases of using agents for teaching programming to develop computational thinking in children have been found. In the last decades, there is a growing interest in developing computational thinking in children. According to some authors, if children develop computational thinking, they will be able to solve not only computer problems but their daily life problems in a better way. It is under research which educational technologies and methodologies can be more adequate depending on the context to achieve this goal. In this paper, it is proposed, for the first time, the use of Pedagogic Conversational Agents to develop computational thinking in children. Given the complexity of designing this new type of agent, and as it has been done in previous occasions when trying to design a new agent, the MEDIE methodology will be followed to eventually integrate the agent into the classrooms.

References

  1. Zapata-Ros, M. 2015. Pensamiento computacional: Una nueva alfabetización digital. Revista de Educación a Distancia. 46.Google ScholarGoogle Scholar
  2. Wing, J. 2006. Computational thinking, Communications of the ACM. 49, 3, 33--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Valverde, J, Fernández, M, and Garrido, M., 2015. El pensamiento computacional y las nuevas ecologías del aprendizaje. Revista de Educación a Distancia, vol. 46.Google ScholarGoogle Scholar
  4. Papert, S. 1980 Mindstorms: Children, computers, and powerful ideas, New York, NY: Basic Books. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Brennan, K. and Resnick, M. 2012. Nuevos marcos de referencia para estudiar y evaluar el desarrollo del pensamiento computacional. American Educational Research Association (AERA).Google ScholarGoogle Scholar
  6. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., and Kafai, Y. 2009. Scratch: Programming for all. Communications of the ACM, 52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Johnson, W. L., Rickel, J. W., & Lester, J. C. Animated Pedagogical Agents: Face-to-Face Interaction in Interactive Learning Environments, Journal of Artificial Intelligence in Education, n° 11, pp. 47--78, 2000.Google ScholarGoogle Scholar
  8. Schroeder, N. L., Adesope, O. O., and Gilbert, R. B., 2013. How effective are pedagogical agents for learning?. A meta-analytic review. Journal of Educational Computing Research. 49, 1. 1- 39.Google ScholarGoogle ScholarCross RefCross Ref
  9. Lester, J., Converse, S., Kahler, S., Barlow, S., Stone, B. and Bhogal, R, 1997. The persona effect: affective impact of animated pedagogical agents, SIGCHI conference on Human factors in computing systems. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Yee, N., and Bailenson, J. 2007. The Proteus effect: The effect of transformed self-representation on behavior, Human Communication Research. 33,3.Google ScholarGoogle ScholarCross RefCross Ref
  11. Chase, C., Chin, D., Oppezzo, M., and Schwartz, D., 2009. Teachable agents and the protégé effect: Increasing the effort towards learning. Journal of Science Education and Technology. 18, 18. 334--337.Google ScholarGoogle ScholarCross RefCross Ref
  12. Tamayo-Moreno, S. 2017. Propuesta de Metodología para el Diseño e Integración en el Aula de un Agente Conversacional Pedagógico desde Educación Secundaria hasta Educación Infantil. Tesis Doctoral. Universidad Rey Juan Carlos, Móstoles, Madrid, España.Google ScholarGoogle Scholar
  13. Pérez-Marín, D., Hijón-Neira, R., Martín-Lope, M. 2017. Propuesta de Metodología basada en Metáforas para la enseñanza de la Programación a Niños. In Press to appear in IEEE Revista Iberoamericana de Tecnologias del Aprendizaje.Google ScholarGoogle Scholar
  14. Papert. S, Mindstorms: Children, Computers, and Powerful Ideas,Basic Books, 2nd ed., NY:, 1993.Google ScholarGoogle Scholar
  15. Wing, J. 2011. Research notebook: Computational thinking---What and why, {On line}. Available: The Link Magazine, Spring. Carnegie Mellon University, Pittsburgh. Retrieved from http://link.cs.cmu.edu/article.php?a=600.Google ScholarGoogle Scholar
  16. ISTE, C. 2011. Computational Thinking in K--12 Education leadership toolkit.Google ScholarGoogle Scholar
  17. Espino, E., Soledad, C., and González, C. 2015. Estudio sobre diferencias de género en las competencias y las estrategias educativas para el desarrollo del pensamiento computacional. Revista de Educación a Distancia. 46.Google ScholarGoogle Scholar
  18. Furber, S. 2012. Shut down or restart: The way forward for computing in UK schools. {On line}. Available: Retrieved from http://royalsociety.org/ education/policy/computing-in-schools/report/.Google ScholarGoogle Scholar
  19. Cuny, J., Snyder, L., and Wing, J. M. 2010. Demystifying computational thinking for non-computer scientists. Unpublished manuscript in progress, {On line}. Available: referenced in http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf.Google ScholarGoogle Scholar
  20. García, F. J. 2016, A brief introduction to TACCLE 3---Coding European Project. In Computers in Education (SIIE), International Symposium on IEEE, pp. 1--4.Google ScholarGoogle Scholar
  21. García-Peñalvo, F. J., Reimann, D., Tuul, M., Rees, A., & Jormanainen, I. 2016. An overview of the most relevant literature on coding and computational thinking with emphasis on the relevant issues for teachers. Belgium: TACCLE 3 Consortium.Google ScholarGoogle Scholar
  22. García-Peñalvo, F. J., Rees, A. M., Hughes, J., Jormanainen, I., Toivonen, T., & Vermeersch, J. 2016. A survey of resources for introducing coding into schools. In F. J. García-Peñalvo (Ed.), Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM'16) (Salamanca, Spain, November 2-4, 2016) (pp. 19--26). New York, NY, USA: ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Balanskat A. and Engelhardt, K. 2015 "Computing our future. Computer programming and coding Priorities, school curricula and initiatives across Europe," European Schoolnet, Brussels, Belgium2015.Google ScholarGoogle Scholar
  24. Wing, J. 2008. "Computational thinking and thinking about computing," Philosophical Transactions of the Royal Society aMathematical Physical and Engineering Sciences, vol. 366, pp. 3717--3725.Google ScholarGoogle ScholarCross RefCross Ref
  25. Resnick, M, 1996. New paradigms for computing, new paradigms for thinking. In Yasmin B. Kafai & Mitchel Resnick (Eds.), Constructionism in practice: Designing, thinking, and learning in a digital world. Mahwah, NJ: Erlbaum.Google ScholarGoogle Scholar
  26. Bers, M. U., Ponte, I., Juelich, C., Viera, A., & Schenker, J, 2002 «Teachers as designers: Integrating robotics in early childhood education.,» Information technology in childhood education annual, vol. 1, n° 1, pp. 123--145.Google ScholarGoogle Scholar
  27. Bers, M., Rogers, C., Beals, L., Portsmore, M., Staszowski, K., Cejka, E., & Barnett, M., 2006. Innovative session: early childhood robotics for learning. En Proceedings of the 7th international conference on Learning sciences., International Society of the Learning Sciences, pp. p. 1036--1042. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Troncoso-Pantoja, B. 2005. Aplicaciones de agentes pedagógicos en entornos virtuales para la enseñanza. In V Congreso Internacional Virtual de Educación.Google ScholarGoogle Scholar
  29. Franklin, S., Graesser, A., Olde, B., Song, H., and Negatu, A. 1996. Virtual Mattie--an Intelligent Clerical Agent. In AAAI Symposium on Embodied Cognition and Action. Cambridge MA, August.Google ScholarGoogle Scholar
  30. Kopp, S. 2010. Social Resonance and Embodied Coordination in Face-to-Face. Speech Communication 52, 587--597 Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Pérez, M. S. 2014. Análisis y Optimización de Agentes Conversacionales 3D para Sistemas Empotrados (Doctoral dissertation, Universidad de Málaga). Málaga.Google ScholarGoogle Scholar
  32. H. Gardner, H. 1998. Inteligencias múltiples. Barcelona: Paidós.Google ScholarGoogle Scholar
  33. Tarkan, S., Sazawal, V., Druin, A., Golub, E., Bonsignore, E. M., Walsh, G., & Atrash, Z. 2010. Toque: designing a cooking-based programming language for and with children. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM. pp. 2417--2426. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A first proposal of Pedagogic Conversational Agents to develop Computational Thinking in children

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        TEEM 2017: Proceedings of the 5th International Conference on Technological Ecosystems for Enhancing Multiculturality
        October 2017
        723 pages
        ISBN:9781450353861
        DOI:10.1145/3144826

        Copyright © 2017 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 18 October 2017

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        TEEM 2017 Paper Acceptance Rate84of109submissions,77%Overall Acceptance Rate496of705submissions,70%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader