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ABSTRACT
While a large number of deep learning networks have been studied
and published that produce outstanding results on natural image
datasets, these datasets only make up a fraction of those to which
deep learning can be applied. These datasets include text data, audio
data, and arrays of sensors that have very different characteristics
than natural images. As these “best” networks for natural images
have been largely discovered through experimentation and cannot
be proven optimal on some theoretical basis, there is no reason
to believe that they are the optimal network for these drastically
different datasets. Hyperparameter search is thus often a very im-
portant process when applying deep learning to a new problem. In
this work we present an evolutionary approach to searching the
possible space of network hyperparameters and construction that
can scale to 18, 000 nodes. This approach is applied to datasets of
varying types and characteristics where we demonstrate the ability
to rapidly find best hyperparameters in order to enable practitioners
to quickly iterate between idea and result.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks → Network reliability;

KEYWORDS
high performance computing, deep learning, evolutionary algo-
rithms, hyperparameter optimization

Notice: This manuscript has been authored by UT-Battelle, LLC under contract DE-
AC05-00OR22725, and Fermi Research Alliance, LLC (FRA) under contract DE-
AC02-07CH11359 with the US Department of Energy, Office of Science, Office of 
High Energy Physics. The US government retains and the publisher, by accepting 
the article for publication, acknowledges that the US government retains a 
nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the 
published form of this manuscript, or allow others to do so, for US government 
purposes. DOE will provide public access to these results of federally sponsored 
research in accordance with the DOE Public Access Plan (http: //energy.gov/
downloads/doe-public-access-plan).
Publication rights licensed to ACM. ACM acknowledges that this contribution was 
authored or co-authored by an employee, contractor or affiliate of the United States 
government. As such, the Government retains a nonexclusive, royalty-free right to 
publish or reproduce this article, or to allow others to do so, for Government purposes 
only.
MLHPC’17, November 12–17, 2017, Denver, CO, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5137-9/17/11. . . $15.00
https://doi.org/10.1145/3146347.3146355

ACM Reference format:
Steven R. Young, Derek C. Rose, Travis Johnston, William T. Heller, Thomas
P. Karnowski, Thomas E. Potok and Robert M. Patton, Gabriel Perdue,
and Jonathan Miller. 2017. Evolving Deep Networks Using HPC. In Proceed-
ings of MLHPC’17: Machine Learning in HPC Environments, Denver, CO, USA,
November 12–17, 2017 (MLHPC’17), 7 pages.
https://doi.org/10.1145/3146347.3146355

1 INTRODUCTION
There are several benchmark networks [12, 14, 25] that produce
outstanding results on large natural image datasets such as Ima-
geNet [21]. However, datasets of other modalities, like text and
speech, as well as those built of images from other sources, such as
microscopy [1, 16, 22] and neutrino detector data [3, 26], present
unique modeling characteristics that can be very different than
ImageNet. These characteristics have often required network hy-
perparameter choices distinct from previous work focused on natu-
ral imagery. Unfortunately, requesting domain scientists guess at
the preferred deep network topology selection for their particular
data can be daunting and inconvenient. A method to automatically
discover the best networks for any problem domain is extremely
valuable for efficiently applying deep learning models.

In this work, we present an evolutionary approach for the auto-
matic discovery of performant networks for unique datasets and
scale this approach to 18, 000 nodes of Oak Ridge National Labora-
tory’s Titan supercomputer. This framework is capable of not only
evolving parameters like kernel size or the number of hidden units,
but also of evolving the order, type, and number of layers within
the network. The evolutionary algorithm used is asynchronous,
allowing each node to always have a network to evaluate and max-
imizing the utilization of the machine. We apply this framework to
a variety of unique datasets in order to demonstrate its ability to
accelerate progress on new datasets.

2 RELATED WORK
Many techniques for addressing the problem of hyperparameter
search in machine learning have been developed. Some practical
guidelines that help form an intuition for manually constructing
performant deep networks have been developed [5]. Gradient free
approaches include grid search, random search [6, 8], coordinate
descent [15], Bayesian methods [7, 23], and evolutionary algorithms
[11, 18, 20, 24, 27, 28]. These methods rely on modeling from sam-
ples of hyperparameter configurations. Random and uncorrelated
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search performs well in many cases due to the potential unim-
portance of a large number of hyperparameters and the ease of
implementation for any algorithm.

Given the common design trends in deep learning (ResNet, In-
ception networks, U-Net), it is reasonable to assume that efficient
network design can often be compartmentalized into modules or
memes that appear as common network subgraphs in the topol-
ogy. This motivates an evolutionary approach with strong random
search tendencies where memetic subgraphs that perform well per-
sist through design optimization. Related work in applying evolu-
tionary algorithms to deep neural networks specifically has shown
recent success in configuring topologies [20]. [27] built networks
focusing on learning appropriate connections for convolution lay-
ers. [11] utilizes an evolutionary algorithm to select pathways to
form a deep network from a fixed set of modules for classification
and reinforcement learning tasks. [20] shares many similarities to
the work presented here, where an evolutionary process mutates
network graph configurations. In their work, weight inheritance
is leveraged to speed up evaluation and stalling is avoided with
tournament selection among 250 parallel workers. [18] modified
a neural network topology evolution method, NEAT [24], to build
deep networks by constraining the original genome encoding to
layers. This work further built modularly oriented deep designs
by co-adapting network sub-modules and blueprints for layout
(and common reuse) of discovered modules. Our work and these
related works do not use evolution to learn the underlying network
weight parameters as well, opting instead to leave this to traditional
gradient descent based methods.

“Hypergradient” based methods [4, 17] have been developed
using principles similar to backpropagation for network parameters
to adjust network weights. This style of optimization provides
an interesting opportunity to challenge design intuitions behind
learning rate schedules in optimizers and fundamental architecture
choices like weight sharing. Unfortunately, this technique can be
limited by gradient descent pitfalls, memory for the update trace,
and unclear paths for optimizing discrete and ordinal parameters.

3 METHOD
Our approach to network hyperparameter search is to utilize an
evolutionary algorithm. The goal of our algorithm is to identify
optimal hyperparameter sets in a few hours on a petascale machine,
thus we made design choices intended to leverage these resources.
We needed to utilize an asynchronous evolution strategy in order to
increase utilization on the machine. The computational resources
available on the target machines provide ample opportunity to
search the hyperparameter space beyond a simple optimization
of a subset of hyperparameters within a fixed topology. Our gene
structure of the individuals needed to be able to exploit the search
opportunity.

3.1 Asynchronous Evolution
In related work, [28], a synchronous evolutionary algorithm was
utilized. Although the variety of networks that could be created
was rather limited, vast disparities in fitness evaluation times oc-
curred and resulted in poor resource utilization. In our work, an
asynchronous evolutionary algorithm is utilized such that each
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Figure 1: The evolutionary algorithm uses a master/worker
system where the master hosts the selection, crossover, and
mutation processes, while the workers evaluate the fitness
of the individuals.

node is continuously evaluating network fitness rather than wait-
ing for all of the other nodes to finish evaluation of their respective
individuals. One node is used to host the selection, mutation, and
crossover processes, while the remaining nodes evaluate the fitness
of an individual by training and evaluating the network using Caffe
[13]. This master/worker configuration is shown in Figure 1. The
evolutionary algorithm used in this work is identical to that pre-
sented by [28], except that selection is performed whenever n of the
N members of the population have been evaluated, where n = N /3.
Assuming the evaluation time for any single individual is always
longer than the time to perform selection, mutation, and crossover
for the entire population of evaluated individuals, n = N /2 could
be used, but in order to account for the case where this may not
be true, we do not set the bounds that tight in order to allow for
some individuals that may be evaluated extremely quickly. This
ensures each worker always has a network to evaluate. This is
demonstrated in Figure 2.

Additionally, this asynchronous nature provides an opportunity
to exploit and discover networks that train faster since faster train-
ing networks may evolve unimpeded by the slowest networks. A
faster iteration allows quick training networks to constitute a larger
portion of the evolutionary process, thus biasing the solution to-
wards networks which reach high accuracies earlier. Otherwise, the
evolution process is the same as is used in [28], where above aver-
age selection is used and the best network persists in the population
for selection.

3.2 Genetic Encoding
Defining a robust gene configuration for network topologies is
challenging when attempting to efficiently utilize shared compute
resources. It is preferable that the number of network topologies
that fail to compute be minimized while retaining a high variability
of generated networks. Failures are caused by improper network
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Figure 2: This figure demonstrates the asynchronous evolu-
tionary algorithm used in this work. This approach ensures
there are always individuals available in the queue to be
evaluated.

connections or inputs sizes, such as choosing a convolution layer
with a filter size of 7×7 on input patches of 5×5. Another such failure
would occur if a fully connected layer was fed into a 2D convolution
layer. To prevent the latter and reduce the hyperparameter search
space, we have explicitly structured the network gene into two
parts for the task of image or pixel-wise classification.

Figure 3 shows the layout of the genetic map for the EA utilized.
The first part of the gene describes what we deem as "feature" layers.
These include convolution, pooling, normalization, etc. layers which
work on 2D maps derived from the original input images. Fully
connected layers explicitly compose the second part of the gene and
lead to eventual classification targets. For other data modalities or
fully convolutional networks, the genetic encoding can be logically
extended.

During implementation we avoided creating multiple random
generators with restrictions that would need to be individually
mapped to gene positions. We instead employed one "DNA" genera-
tor which sampled from signed four byte integers extending to the
maximum integer value. During mapping, a small set of encoding
functions converted the gene from integers given the requirements
of each layer hyperparameter. Encoding functions converted inte-
gers to floating point ranges, x ∈ [a,b] ∈ R for hyperparameter x .
If integers are required, x = ⌊x⌋. For ordinal hyperparameters (e.g.
pooling type and weight initialization), integers were mapped to
the range of enumerated types.

3.2.1 Network Gene Layout. For each layer, a type enumeration
and layer on/off bit begins the gene. Each layer also has a marker
for an activation function which is chained to the layer. The en-
coded hyperparameters which follow have a fixed count at a ceiling
which allows the layer type with the most hyperparameters (in
our experiments, 11 for convolutional layers) to be expressed. Each
layer type uses the encoding in these variables in a distinct way.
The unbound encodings are inactive and ignored when the gene is
converted to a final network description. This results in two “meta”
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Figure 3:Hyperparameter organization for population. Each
layer has 3 genes which encode layer on/off, layer type, and
chained activation type.

hyperparameters for our gene layout: 1) a fixed number of possible
layers, and 2) the probability of turning any single layer on.

3.2.2 Connection Concerns. While a two part mapping avoids
configuration failures from interlacing convolutional and dense
layers, layers of incompatible output and expected input dimen-
sions would still be built through a completely random selection. To
avoid this, during network construction we keep track of the cur-
rent layer’s input dimensions and appropriately limit the selected
hyperparameters (e.g. pool kernel size) to fall within the usable
range. The next layer’s input dimensions are computed after the
selection of hyperparameters that modify the shape of the data
flowing through the network. With this technique a progressive
build occurs such that a change in an early layer gene could cascade
to force a different kernel size configuration in later layer genes.
Under this design, crossover effectively causes an inheritance of
layer types and parameters other than kernel sizes. The range en-
coding with dimensionality constraints smoothly limits inherited
kernel size traits to those which fit within a new topology.

4 DATASETS
We evaluate our method on a variety of datasets described in the
following subsections. Each dataset varies in the task being per-
formed, the characteristics of the images, the number of examples
available for training, and the dimensionality of the images. They
were chosen such that our method could be evaluated across a wide
range within each of these dataset properties.

4.1 Neutrino Detector Vertex Reconstruction
MINERvA (Main Injector Experiment for v-A) [19] is a neutrino
scattering experiment at Fermi National Accelerator Laboratory.
The detector is exposed to the NuMI (Neutrinos at theMain Injector)
neutrino beam. Energy values collected from the detector may be
mapped to pixel values in three images, with each image collected at
a different angle relative to the detector and subsequently analyzed.
The location of the event vertex is an important to identify for
analysis. Deep learning has been shown to be a viable alternative
to traditional methods for this problem[26]. For this work, we look
only at simulation images generated for a single view out of the
three available and the task is to correctly identify which of 11
regions the vertex of the event is located in. There are 800, 000
images available for training with each image of size 127 × 50.
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Figure 4: Three examples of single view data from the MIN-
ERvA detector. The examples demonstrate the range of com-
plexity in the events that occur in the detector.

Figure 5: Mitochondria segmentation data. The green areas
are the regions classified asmitochondria by a deep learning
network.

Figure 4 shows three example images from this dataset that capture
the various characteristics of events that occur within the detector.

4.2 Pixel-wise Segmentation of Mitochondria
We tested our proposed method on a network designed to segment
mitochondria in electron microscopy images. Labeled data consists
of 3D image stacks (1024× 768× 165) and is publicly available from
EPFL [2]. We split the training stack of images vertically into a
training and validation set, sampling 300, 000 62 × 62 2D patches
from each section. We performed hyperparameter selection and
evaluation on the validation patches. Figure 5 shows an example
image from the testing set. 3D EM data presents challenges in its
scale, resolution, and unbalanced nature, where most of the pixels
composing the image belong to background.

Figure 6: Examples plots of small angle scattering plots cor-
responding to different physical models: (top left) a cylinder
having a core and shell with different densities, (bottom left)
spherical sld, (top right) a Gaussian polymer chain having a
distribution of lengths, (bottom right) correlation length

4.3 Neutron Scattering Model Selection
The final test of our proposed method was on a network designed to
categorize the type of physical model that gives rise to small angle
neutron scattering data. Classifying such data can be challenging
for novice users of the technique due to the similarity in appear-
ance. Novices generally consult with an expert by first showing
them a plot of the data. Simulated data was generated using an
extensive set of functions for modeling small angle scattering data
and SasModels, which is a part of the SasView software[9], and
corresponds to 9 different classes of models with 1, 000 examples of
each class available for training. Each class of model corresponds
to a different type of shape such as a cylinder, a sphere, or a poly-
mer chain displaying Gaussian statistics. The data takes the form
of scattering intensities measured as a function of the scattering
vector magnitude. Inspired by work in speech recognition where
sound recordings are plotted as spectrograms [10], this data can
then be plotted as a line plot (200 × 600pixels) and supplied as in-
put to a convolutional neural network. Some example data for this
problem are shown in Figure 6 and it can be seen that very different
structures can give rise to data that look very similar. Classifying
these plots is particularly difficult for anyone who is not a subject
matter expert.

5 RESULTS
The evolutionary algorithm improved results over our baseline on
each of the target datasets. We were able to achieve this improve-
ment in a matter of hours, which will allow researchers to focus
on how best to frame their problem for deep networks, rather than
focusing on what hyperparameters work best.

5.1 Neutrino Detector Vertex Reconstruction
A simple network configuration was used to seed our method and
originally achieved a vertex classification accuracy of 77.88%, which
we were able to evolve to an 82.11% accuracy. In 26 generations
of evolution, we evaluated approximately 500, 000 convolutional
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Figure 7: Best accuracy (fitness) versus iteration for the neu-
trino vertex classification dataset. Generation 0 is the seed
network. Generations 1-3 are the initial randomly mutated
population. The remaining generations are the products of
selection, mutation, and crossover.

Figure 8: Best accuracy (fitness) versus iteration for the mi-
tochondria dataset. Generation 0 is the seed network. Gener-
ations 1-3 are the initial randomly mutated population. The
remaining generations are the products of selection, muta-
tion, and crossover.

networks on 18, 000 of Titan’s nodes in 24 hours, with the best
network being found in 19 hours. Figure 7 shows the accuracy of
the best network vs the generation count. This dataset demonstrates
that our method is capable of utilizing a human defined seed and
evolving that seed into a better performing network.

5.2 Pixel-wise Segmentation of Mitochondria
A human designed network configuration was used to seed our
method and originally achieved a pixel-wise binary accuracy of
91.10%. Through evolution our method discovered a network capa-
ble of 93.77% accuracy, representing a 30% reduction in error vs. a
human expert defined network. Our evolutionary algorithm ran for
36 generations and evaluated over 900, 000 convolutional networks
on 18, 000 of Titan’s nodes for 24 consecutive hours, with the best
network being found in 11 hours. Figure 8 shows the accuracy of
the best network vs the generation count. This figure demonstrates
that the evolutionary algorithm provides an improvement over

random search on this problem as generation 0 represents the seed
network, generations 1-3 represent the initially randomly mutated
seeds, and the remaining generations are the product of selection,
crossover, and mutation. The randomly generated networks only
provide a small increase in performance in generations 2 and 3,
and the jump in performance from generation 3 to generation 4
demonstrates the impact of evolution.

5.3 Neutron Scattering Model Selection
Our evolutionary algorithm evaluated nearly 700, 000 networks
on 18, 000 nodes of Titan in 24 hours for the neutron scattering
data, and found a best network that achieved 76.07% accuracy,
which is an improvement over the initial seed’s 68.71% accuracy.
Unlike the other two systems studied, this best network was found
simply through mutations of the initial seed without performing
any crossover. This rapid optimization likely resulted from the
extremely small training set that consisted of only 9, 000 training
examples, which demonstrates that the quality of the dataset can
limit the ability of the evolutionary process to improve accuracy.
Another interesting result observed on our testing on this dataset
also arises from the small number of training examples. The best
network has a dropout layer very close to the data layer in the
network as shown in Figure 9, which essentially functions a form
of data augmentation, because activations located very close to
the data are dropped. Such behavior is atypical of most networks
published using larger datasets where dropout is typically only
used in later, fully connected layers.

6 CONCLUSION AND FUTUREWORK
We have presented a framework for evolving deep learning net-
works at an extreme scale that is well suited for rapidly discovering
performant networks for new, unique datasets. We demonstrated
this framework on a sampling of datasets that are unique from the
natural image datasets typically seen in literature.

Future work will seek to further unconstrain the network topol-
ogy such that more complicated graph structures can be evolved.
The current framework assumes that each layer is stacked upon
the previous layer. However, there are several benchmark networks
that use more complex branching structures [25]. By incorporating
related work that is able to evolve graph structures, in our case
with a layer being a node in the graph, we hope to evolve com-
plex multi-path networks and identify other useful subgraphs. As
an intermediate step toward more complex networks, we plan to
extend the genetic encoding to add a bridging layer type that al-
lows skip connections, as these have proven especially useful for
Fully Convolutional Networks and ResNet. We additionally look
to expand our gene for each network to include hyperparameters
related to the network optimizer, such as learning rate and policy,
momentum, backpropagation type, etc. These hyperparameters do
increase the search space significantly but could lead to networks
which are otherwise missed given the bias inherent in fixed choices
for training parameters.

These experiments have resulted in a rich meta-dataset consist-
ing of a variety of network topologies and their corresponding per-
formance on a variety of problems. Analysis of this unique dataset
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Figure 9: Best network for the neutron scattering dataset. Note the dropout layer early in the network that is essentially acting
as a data augmentation unit due to the small size of the training set.

Figure 10: Best accuracy (fitness) versus iteration for the neu-
tron scattering dataset. Generation 0 is the seed network.
Generations 1-3 are the initial randomly mutated popula-
tion. The remaining generations are the products of selec-
tion, mutation, and crossover.

gives the opportunity to begin to explore the complex relationship
between hyperparameters, datasets, and performance.
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