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Abstract

We study the problem of maintaining a breadth-�rst spanning tree (BFS tree) in par-
tially dynamic distributed networks modeling a sequence of either failures or additions

of communication links (but not both). We present deterministic (1 + ε)-approximation

algorithms whose amortized time (over some number of link changes) is sublinear in D,

the maximum diameter of the network.

Our technique also leads to a deterministic (1 + ε)-approximate incremental algorithm

for single-source shortest paths (SSSP) in the sequential (usual RAM) model. Prior to our

work, the state of the art was the classic exact algorithm of Even and Shiloach [ES81] that

is optimal under some assumptions [RZ11, Hen
+
15]. Our result is the �rst to show that, in

the incremental setting, this bound can be beaten in certain cases if some approximation is

allowed.
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1 Introduction

Complex networks are among the most ubiquitous models of interconnections between a

multiplicity of individual entities, such as computers in a data center, human beings in society,

and neurons in the human brain. The connections between these entities are constantly

changing; new computers are gradually added to data centers, or humans regularly make

new friends. These changes are usually local as they are known only to the entities involved.

Despite their locality, they could a�ect the network globally; a single link failure could result

in several routing path losses or destroy the network connectivity. To maintain its robustness,

the network has to quickly respond to changes and repair its infrastructure. The study of such

tasks has been the subject of several active areas of research, including dynamic, self-healing,

and self-stabilizing networks.

One important infrastructure in distributed networks is the breadth-�rst spanning (BFS)
tree [Lyn96, Pel00]. It can be used, for instance, to approximate the network diameter and to

provide a communication backbone for broadcast, routing, and control. In this paper, we study

the problem of maintaining a BFS tree from a root node on dynamic distributed networks. Our

main interest is repairing a BFS tree as fast as possible after each topology change.

Model. We model the communication network by the CONGEST model [Pel00], one of the

major models of (locality-sensitive) distributed computation. Consider a synchronous network

of processors modeled by an undirected unweighted graph G = (V ,E), where nodes model the

processors and edges model the bounded-bandwidth links between the processors. We let V
and E denote the set of nodes and edges of G , respectively, and let s be a speci�ed root node. For

any node u and v , we denote by dG(u,v) the distance between u and v in G. The processors

(henceforth, nodes) are assumed to have unique IDs of O(logn) bits and in�nite computational

power. Each node has limited topological knowledge; in particular, it only knows the IDs of

its neighbors and knows no other topological information (such as whether its neighbors are

linked by an edge or not). The communication is synchronous and occurs in discrete pulses,

called rounds. All the nodes wake up simultaneously at the beginning of each round. In each

round each node u is allowed to send an arbitrary message of O(logn) bits through each edge

(u,v) that is adjacent to u, and the message will reach v at the end of the current round. There

are several measures to analyze the performance of such algorithms, a fundamental one being

the running time, de�ned as the worst-case number of rounds of distributed communication.

We model dynamic networks by a sequence of attack and recovery stages following the initial

preprocessing. The dynamic network starts with a preprocessing on the initial network denoted

by G0, where nodes communicate on G0 for some number of rounds. Once the preprocessing

is �nished, we begin the �rst attack stage where we assume that an adversary, who sees the

current network G0 and the states of all nodes, inserts and deletes an arbitrary number of edges

inG0. We denote the resulting network byG1. This is followed by the �rst recovery stage where

we allow nodes to communicate on G1. After the nodes have �nished communicating, the

second attack stage starts, followed by the second recovery stage, and so on. For any algorithm,

we let the total update time be the total number of rounds needed by nodes to communicate

during all recovery stages. Let the amortized update time be the total time divided by q which is

de�ned as the number of edges inserted and deleted. Important parameters in analyzing the
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running time are n, the number of nodes (which remains the same throughout all changes)

and D, the maximum diameter, de�ned to be the maximum diameter among all networks in

{G0,G1, . . .}. If some networkGt is not connected, we de�ne its diameter as the diameter of the

connected component containing the root node. Note that D ≤ n according to this de�nition.

Following the convention from the area of (sequential) dynamic graph algorithms, we say that

a dynamic network is fully dynamic if both insertions and deletions can occur in the attack

stages. Otherwise, it is partially dynamic. Speci�cally, if only edge insertions can occur, it is an

incremental dynamic network. If only edge deletions can occur, it is decremental.
Our model highlights two aspects of dynamic networks: (1) How quickly a network can

recover its infrastructure after changes and (2) how edge failures and additions a�ect the

network. These aspects have been studied earlier but we are not aware of any previous model

identical to ours. To highlight these aspects, a few assumptions are inherent in our model. First,

it is assumed that the network remains static in each recovery stage. This assumption is often

used (e.g., [Kor08, HST12, KLR04, MWV00]) and helps to emphasize the running time aspect

of dynamic networks. Also note that we assume that the network is synchronous, but our

algorithms will also work in an asynchronous model under the same asymptotic time bounds,

using a synchronizer [Pel00, Awe85]. Furthermore, we consider amortized update time which

is similar in spirit to the amortized communication complexity heavily studied earlier (e.g.,

[ACK08]). Finally, the results in this paper are on partially dynamic networks. While fully

dynamic algorithms are more desirable, we believe that the partially dynamic setting is worth

studying, for two reasons. The �rst reason, which is our main motivation, comes from an

experience in the study of sequential dynamic algorithms, where insights from the partially

dynamic setting often lead to improved fully dynamic algorithms. Moreover, partially dynamic

algorithms can be useful in cases where one type of changes occurs much more frequently

than the other type. For example, links constantly fail in physical networks, and it might not

be necessary that the network has to be �xed (by adding a link) immediately. Instead, the

network can try to maintain its infrastructures under a sequence of failures until the quality of

service cannot be guaranteed anymore, e.g., the network diameter becomes too large. Partially

dynamic algorithms for maintaining a BFS tree, which in turn maintains the approximate

network diameter, are quite suitable for this type of applications.

Problem. We are interested in maintaining an approximate BFS tree. Our de�nition of

approximate BFS trees below is a modi�cation of the de�nition of BFS trees in [Pel00, De�nition

3.2.2].

De�nition 1.1 (Approximate BFS tree). For any α ≥ 1, an α-approximate BFS tree of an
unweighted undirected graph G with respect to a given root s is a spanning tree T of the connected
component containing s such that for every node v connected to s , dT (v, s) ≤ αdG(v, s). If α = 1,
then T is an (exact) BFS tree.

Note that, for any spanning tree T of G, dT (v, s) ≥ dG(v, s). Our goal is to maintain an

approximate BFS tree Tt at the end of each recovery stage t in the sense that every node v
knows its approximate distance to the precon�gured root s in Gt and, for each neighbor u of

v , v knows if u is its parent or child in Tt . Note that for convenience we will usually consider
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dG(v, s), the distance of v to the root, instead of dG(s,v), the distance of v from the root. In an

undirected graph both values are the same.

Naive Algorithm. As a toy example, observe that we can maintain a BFS tree simply by

recomputing a BFS tree from scratch in each recovery stage. By using the standard algorithm

(see, e.g., [Pel00, Lyn96]), we can do this in timeO(Dt ), where Dt is the diameter of the graphGt .

Thus, the update time is O(D).

Results. Our main results are partially dynamic algorithms that break the naive update time

of O(D) in the long term. They can maintain, for any constant 0 < ε ≤ 1, a (1 + ε)-approximate

BFS tree in time that is sublinear in D when amortized over ω(n/D) edge changes. To be precise,

the amortized update time over q edge changes is

O (n
1/3D2/3

ε2/3q1/3
) and O (n

1/5D4/5

εq1/5
)

in the incremental and decremental setting, respectively. For the particular case of q = Ω(n), we

get amortized update times ofO(D2/3/ε2/3) andO(D4/5/ε) for the incremental and decremental

cases, respectively. Our algorithms do not require any prior knowledge about the dynamic

network, e.g., D and q. We have formulated the algorithms for a setting that allows insertions

or deletions of edges. The guarantees of our algorithms also hold when we allow insertions

or deletions of nodes, where the insertion of a node also inserts all its incident edges and the

deletion of a node also deletes all its incident edges. In the running time, the parameter q then

counts the number of node insertions or node deletions, respectively.

We note that, while there is no previous literature on this problem, one can parallelize

the algorithm of Even and Shiloach [ES81] (see also [Kin99, RZ11]) to obtain an amortized

update time ofO(nD/q + 1) over q changes in both the incremental and the decremental setting.

This bound is sublinear in D when q = ω(n). Our algorithms give a sublinear time guarantee

for a smaller number of changes, especially in applications where D is large. They are faster

than the Even-Shiloach algorithm when q = ω(εn
√
D) (incremental) and q = ω(ε7/12nD1/6)

(decremental).

In the sequential (usual RAM) model, our technique also gives an (1 + ε)-approximation

algorithm for the incremental single-source shortest paths (SSSP) problem with an amortized

update time of O(mn1/4 logn/√εq) per insertion and O(1) query time, where m is the number

of edges in the �nal graph, and q is the number of edge insertions. Prior to this result, only

the classic exact algorithm of Even and Shiloach [ES81] from the 80s, with O(mn/q) amortized

update time, was known. No further progress has been made in the last three decades. Roditty

and Zwick [RZ11] provided an explanation for this by showing that the algorithm of Even and

Shiloach [ES81] is likely to be the fastest combinatorial exact algorithm, assuming that there is

no faster combinatorial algorithm for Boolean matrix multiplication. More recently Henzinger

et al. [Hen
+
15] showed that by assuming a di�erent conjecture, called Online Matrix-Vector

Multiplication Conjecture, this statement can be extended to any algorithm (including non-

combinatorial ones). Bernstein and Roditty [BR11] showed that, in the decremental setting, this

bound can be broken if some approximation is allowed. Our result is the �rst one of the same
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spirit in the incremental setting for deterministic algorithms; i.e., we break the bound of Even and

Shiloach for the case q = o(n3/2), which in particular applies when m = o(n3/2). The techniques

introduced in this paper (�rst presented in the preliminary version [HKN13]) together with

techniques from [HKN16] also led to a decremental algorithm [HKN14a] that improves the

result of Bernstein and Roditty [BR11]. We �nally obtained a near-optimal algorithm in the

decremental setting [HKN14b], which is a signi�cant improvement over [BR11]. In terms of

deterministic algorithms, Bernstein and Chechik have recently presented improved incremental

and decremental algorithms for dense [BC16] and sparse graphs [BC17]. For very sparse graphs

withm = Θ(n), the incremental algorithm in this paper still remains the fastest.

Related Work. The problem of computing on dynamic networks is a classic problem in the

area of distributed computing, studied from as early as the 70s; see, e.g., [ACK08] and references

therein. The main motivation is that dynamic networks better capture real networks, which

experience failures and additions of new links. There is a large number of models of dynamic

networks in the literature, each emphasizing di�erent aspects of the problem. Our model closely

follows the model of the sequential setting and, as discussed earlier, highlights the amortized

update time aspect. It is closely related to the model in [KP08] where the main goal is to optimize

the amortized update time using static algorithms in the recovery stages. The model in [KP08] is

still slightly di�erent from ours in terms of allowed changes. For example, the model in [KP08]

considers weighted networks and allows small weight changes but no topological changes;

moreover, the message size can be unbounded (i.e., the static algorithm in the recovery stage

operates under the so-called LOCAL model). Another related model the controlled dynamic
model (e.g., [KK13, Afe

+
96]) where the topological changes do not happen instantaneously

but are delayed until getting a permit to do so from the resource controller. Our algorithms

can be used in this model as well since we can delay the changes until each recovery stage

is �nished. Our model is similar to, and can be thought of as a combination of, two types of

models: those in, e.g., [Kor08, HST12, KLR04, MWV00] whose main interest is to determine

how fast a network can recover from changes using static algorithms in the recovery stages,

and those in, e.g., [ACK08, AAG87, Elk07], which focus on the amortized cost per edge change.

Variations of partially dynamic distributed networks have also been considered (e.g., [Ita91,

RV92, Cic
+
07, Cic

+
10]).

The problem of constructing a BFS tree has been studied intensively in various distributed

settings for decades (see [Pel00, Chapter 5], [Lyn96, Chapter 4] and references therein). The

studies were also extended to more sophisticated structures such as minimum spanning trees

(e.g., [GKP98, KP98, PR00, Elk06, LPP06, Lot
+
05, KKP13, Das

+
12, Elk

+
14]) and Steiner trees

[Kha
+
12]. These studies usually focus on static networks, i.e., they assume that the network

never changes and want to construct a BFS tree once, from scratch. While we are not aware

of any results on maintaining a BFS tree on dynamic networks, there are a few related results.

Much attention (e.g., [ACK08]) has previously been given to the problem of maintaining a
spanning tree. In a seminal paper by Awerbuch [ACK08], it was shown that the amortized

message complexity of maintaining a spanning tree can be signi�cantly smaller than the cost of

the previous approach of recomputing from scratch [AAG87].
1

Our result is in the same spirit

1
A variant of their algorithm was later implemented as a part of the PARIS networking project at IBM [Cid

+
95]
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as [ACK08] in breaking the cost of recomputing from scratch. An attempt to maintain spanning

trees of small diameter has also motivated a problem called best swap. The goal is to replace a

failed edge in the spanning tree by a new edge in such a way that the diameter is minimized.

This problem has recently gained considerable attention in both sequential (e.g., [Als
+
05, IR98,

NPW01, NPW03, SP07, Ito
+
05, DGW10, Gfe12]) and distributed (e.g., [GSW11, Flo

+
06]) settings.

In the sequential dynamic graph algorithms literature, a problem similar to ours is the

single-source shortest paths (SSSP) problem on undirected graphs. This problem has been

studied in partially dynamic settings and has applications to other problems, such as all-pairs

shortest paths and reachability. As we have mentioned earlier, the classic bound of [ES81], which

might be optimal [RZ11, Hen
+
15], has recently been improved by randomized decremental

approximation algorithms [BR11, HKN14a, HKN14b], and we achieve a similar result in the

incremental setting with a deterministic algorithm. Since our algorithms use the algorithm of

[ES81] as a subroutine, we formally state its guarantees in the following. As mentioned above,

this algorithm has not been considered in the distributed model before, but its analysis from the

sequential model immediately carries over to the distributed model.
2

Since we will need this

result later in this paper, we state it here.

Theorem 1.2 ([ES81]). There is a partially dynamic algorithm for maintaining a shortest paths
tree from a given root node up to depth X ≤ n under edge insertions (deletions) in an unweighted,
undirected graph. Its total running time over q insertions (deletions) is O(mX) in the sequential
model and O(nmin(X ,D) + q) in the distributed model.

2 Main Technical Idea

All our algorithms are based on a simple idea of modifying Even-Shiloach algorithm [ES81] with

lazy updates, which we call lazy Even-Shiloach tree. Implementing this idea on di�erent models

requires modi�cations to cope with di�culties and to maximize e�ciency. In this section, we

explain the main idea by sketching a simple algorithm and its analysis for the incremental

setting in the sequential and the distributed model. We start with an algorithm that has additive
error: Let κ and δ be parameters. For every recovery stage t , we maintain a tree Tt such that

dGt (v, s) ≤ dTt (v, s) ≤ dGt (v, s) + κδ for every node v . We will do this by recomputing a BFS

tree from scratch repeatedly, speci�cally O(q/κ + nD/δ 2) times during q updates.

During the preprocessing, our algorithm constructs a BFS tree of G0, denoted by T0. This

means that every node u knows its parent and children inT0 and the value of dT0(u, s). Suppose

that, in the �rst attack stage, an edge is inserted, say (u,v) where dG0
(u, s) > dG0

(v, s). As

a result, the distance from u to s might decrease, i.e. dG1
(u, s) < dG0

(u, s). In this case, the

distances from s to some other nodes (e.g., the children of u inT0) could decrease as well, and we

and slightly improved [KP99].

2
In the sequential model, the algorithm has to perform work proportional to the degree of each node whose

distance to the root decreases (increases). Assume we are interested in a shortest paths tree up to depth X . As

each node’s distance to the root can increase (decrease) at most X times, the total running time is O(mX). In the

distributed model, sending a message to all neighbors takes one round and thus we only charge constant time to

each level increase (decrease) of a node, resulting in a total time ofO(nmin(X ,D)+q). The additional q comes from

the fact that we have to spend constant time per insertion (deletion), which in the sequential model is dominated by

other running time aspects.
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may wish to recompute the BFS tree. Our approach is to do this lazily: We recompute the BFS

tree only when the distance fromu to s decreases by at least δ ; otherwise, we simply do nothing!

In the latter case, we say that u is lazy. Additionally, we regularly “clean up” by recomputing

the BFS tree after each κ insertions.

To prove an additive error of κδ , observe that errors occur for this single insertion only

when v is lazy. Intuitively, this causes an additive error of δ since we could have decreased the

distance of v and other nodes by at most δ , but we did not. This argument can be extended to

show that if we have i lazy nodes, then the additive error will be at most iδ . Since we do the

cleanup each κ insertions, the additive error will be at most κδ as claimed.

To bound the number of BFS tree recomputations, �rst observe that the cleanup clearly

contributesO(q/κ) recomputations in total, over q insertions. Moreover, a recomputation could

also be caused by some node v , whose distance to s decreases by at least δ . Since every time a

node v causes a recomputation, its distance decreases by at least δ , and since dG0
(v, s) ≤ D, v

will cause the recomputation at most D/δ times. This naive argument shows that there are nD/δ
recomputations (caused by n di�erent nodes) in total. This analysis is, however, not enough for

our purpose. A tighter analysis, which is crucial to all our algorithms relies on the observation

that when v causes a recomputation, the distance from any neighbor of v , say v′, to s also

decreases by at least δ − 1. Similarly, the distance of any neighbor of v′ to s decreases by at

least δ − 2, and so on. This leads to the conclusion that one recomputation corresponds to

(δ + (δ − 1)+ (δ − 2)+ . . .) = Ω(δ 2) distance decreases. Thus, the number of recomputations is

at most nD/δ 2. Combining the two bounds, we get that the number of BFS tree computations

is O(q/κ + nD/δ 2) as claimed above. We get a bound on the total time when we multiply this

number by the time needed for a single BFS tree computation. In the sequential model this

takes time O(m), wherem is the �nal number of edges, and in the distributed model this takes

time O(D), where D is the dynamic diameter of the network.

To convert the additive error into a multiplicative error of (1 + ε), we execute the above

algorithm only for nodes whose distances to s are greater than κδ/ε . For other nodes, we can use

the algorithm of Even and Shiloach [ES81] to maintain a BFS tree of depth κδ/ε . This requires

an additional time of O(mκδ/ε) in the sequential model and O(nκδ/ε) in the distributed model.

By setting κ and δ appropriately, the above incremental algorithm immediately gives total

update times of O(mn2/5q2/5/ε2/5) and O(q2/5n3/5D4/5/ε2/5) in the sequential and distributed

model, respectively. To obtain the running time bounds claimed in the introduction of this paper,

we need one more idea called layering, where we use di�erent values of δ and κ depending on

the distance of each node to s . In the decremental setting, the situation is much more di�cult,

mainly because it is expensive for a nodev to determine how much its distance to s has increased

after a deletion. Moreover, unlike the incremental case, nodes cannot simply “do nothing” when

an edge is deleted. We have to cope with this using several other ideas, e.g., constructing an

virtual tree (in which edges sometimes represent paths).

3 Incremental Algorithm

In this section we present a framework for an incremental algorithm that allows up to q edge

insertions and provides an additive approximation of the distances to a distinguished node s .
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Subsequently we will explain how to use this algorithm to get (1 + ε)-approximations in the

sequential model and the distributed model, respectively. For simplicity we assume that the

initial graph is connected. In Section 3.4 we explain how to remove this assumption.

3.1 General Framework

The algorithm (see Algorithm 1) works in phases. At the beginning of every phase we compute

a BFS treeT0 of the current graph, sayG0. Every time an edge (u,v) is inserted, the distances of

some nodes to s in G might decrease. Our algorithm tries to be as lazy as possible. That is, when

the decrease does not exceed some parameter δ , our algorithm keeps its tree T0 and accepts an

additive error of δ for every node. When the decrease exceeds δ , our algorithm starts a new

phase and recomputes the BFS tree. It also starts a new phase after each κ edge insertions to

keep the additive error limited to κδ . The algorithm will answer a query for the distance from

a node x to s by returning dG0
(x , s), the distance from x to s at the beginning of the current

phase. It can also return the path from x to s in T0 of length dG0
(x , s). Besides δ and κ, the

algorithm has a third parameter X which indicates up to which distance from s the BFS tree

will be computed. In the following we denote by G0 the state of the graph at the beginning of

the current phase and by G we denote the current state of the graph after all insertions so far.

Algorithm 1: Incremental algorithm

1 Procedure Insert(u, v)
2 k ← k + 1
3 if k = κ then Initialize()

4 if dG0
(u, s) > dG0

(v, s) + δ then Initialize()

5 Procedure Initialize() // Start new phase

6 k ← 0

7 Compute BFS tree T of depth X rooted at s and current distances dG0
(⋅, s)

As we show below the algorithm gives the desired additive approximation by considering

the shortest path of a node x to the root s in the current graph G. By the main rule in Line 4

of the algorithm, the inequality dG0
(u, s) ≤ dG0

(v, s) + δ holds for every edge (u,v) that was

inserted since the beginning of the current phase (otherwise a new phase would have been

started). Since at most κ edges have been inserted, the additive error is at most κδ .

Lemma 3.1 (Additive Approximation). For every κ ≥ 1 and δ ≥ 1, Algorithm 1 provides the
following approximation guarantee for every node x such that dG0

(x , s) ≤ X :

dG(x , s) ≤ dG0
(x , s) ≤ dG(x , s) + κδ .

Proof. The algorithm can only provide the approximation guarantee for every node x such that

dG0
(x , s) ≤ X because other nodes are not contained in the BFS tree of the current phase. It is

clear that dG(x , s) ≤ dG0
(x , s) becauseG is the result of inserting edges intoG0. In the following

we argue about the second inequality.
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Consider the shortest path π = xl ,xl−1, . . .x0 of length l from x to s in G (where xl = x and

x0 = s). Let S j (with 0 ≤ j ≤ l) denote the number of edges in the subpath x j ,x j−1, . . . ,x0 that

were inserted since the beginning of the current phase.

Claim 3.2. For every integer j with 0 ≤ j ≤ l we have dG0
(x j , s) ≤ dG(x j , s) + S jδ .

Clearly the claim already implies the inequality we want to prove since there are at most κ
edges that have been inserted since the beginning of the current phase which gives the following

chain of inequalities:

dG0
(x , s) = dG0

(xl , s) ≤ dG(xl , s) + Slδ ≤ dG(x , s) + κδ .

Now we proceed with the inductive proof of the claim The induction base j = 0 is trivially

true because x j = s . Now consider the induction step where we assume that the inequality holds

for j and we have to show that it also holds for j + 1.

Consider �rst the case that the edge (x j+1,x j) is one of the edges that have been inserted

since the beginning of the current phase. By the rule of the algorithm we know thatdG0
(x j+1, s) ≤

dG0
(x j , s)+δ and by the induction hypothesis we havedG0

(x j , s) ≤ dG(x j , s)+S jδ . By combining

these two inequalities we get dG0
(x j+1, s) ≤ dG(x j , s) + (S j + 1)δ . The desired inequality now

follows because S j+1 = S j + 1 and because dG(x j , s) ≤ dG(x j+1, s) (on the shortest path π , x j is

closer to s than x j+1).
Now consider the case that the edge (x j+1,x j) is not one of the edges that have been inserted

since the beginning of the current phase. In that case the edge (x j+1,x j) in contained in the

graphG0 and thus dG0
(x j+1, s) ≤ dG0

(x j , s)+1. By the induction hypothesis we have dG0
(x j , s) ≤

dG(x j , s) + S jδ . By combining these two inequalities we get dG0
(x j+1, s) ≤ dG(x j , s) + 1 + S jδ .

Since x j+1 and x j are neighbours on the shortest path π in G, we have dG(x j+1, s) = dG(x j , s) +
1. Therefore we get dG0

(x j+1, s) ≤ dG(x j+1, s) + S jδ . Since S j+1 = S j , the desired inequality

follows. �

Remark 3.3. In the proof of Lemma 3.1 we need the property that at most κ edges on the shortest

path to the root have been inserted since the beginning of the current phase. If we allow

inserting κ/2 nodes (together with their set of incident edges) we will see at most κ inserted

edges on the shortest path to the root as each node appears at most once on this path and

contributes at most 2 incident edges. Thus, we can easily modify our algorithms to deal with

node insertions with the same approximation guarantee and asymptotic running time.

If an edge (u,v) is inserted into the graph such that the inequality dG0
(u, s) ≤ dG0

(v, s) + δ
does not hold (and subsequently the algorithm calls the procedure Initialize), we cannot

guarantee our bound on the additive error anymore. Nevertheless the algorithm makes progress

in some sense: After the insertion,u has an edge tov whose initial distance to s was signi�cantly

smaller than the one from u to s . This implies that the distance from u to s has decreased by at

least δ since the beginning of the current phase. Thus testing whether dG0
(u, s) > dG0

(v, s) + δ
is a fast way of testing whether dG0

(u, s) ≥ dG(u, s) + δ , i.e., whether the distance between u
and s has decreased so much that a rebuild is necessary.

Lemma 3.4. If an edge (u,v) is inserted such that dG0
(u, s) > dG0

(v, s) + δ , then dG0
(u, s) ≥

dG(u, s) + δ .

9



Proof. We have inserted an edge (u,v) such that dG0
(u, s) > dG0

(v, s) + δ (which is equivalent

to dG0
(v, s) ≤ dG0

(u, s)−δ − 1). In the current graphG , we already have inserted the edge (u,v)
and therefore dG(u, s) ≤ dG(v, s) + 1. Since G is the result of inserting edges into G0, distances

in G are not longer than in G0, and in particular dG(v, s) ≤ dG0
(v, s). Therefore we arrive at the

following chain of inequalities:

dG(u, s) ≤ dG(v, s) + 1 ≤ dG0
(v, s) + 1 ≤ dG0

(u, s) − δ − 1 + 1 = dG0
(u, s) − δ

Thus, we get dG0
(u, s) ≥ dG(u, s) + δ . �

Since we consider undirected, unweighted graphs, a large decrease in distance for one node

also implies a large decrease in distance for many other nodes.

Lemma 3.5. Let H = (V ,E) and H ′ = (V ,E′) be unweighted, undirected graphs such that
H is connected and E ⊆ E′. If there is a node y ∈ V such that dH (y, s) ≥ dH ′(y, s) + δ , then
∑x∈V dH (x , s) ≥ ∑x∈V ′ dH ′(x , s) + Ω(δ 2).

Proof. Let π denote the shortest path from y to s of length dH (y, s) in H . We �rst bound the

distance change for single nodes.

Claim 3.6. For every node x on π we have dH (x , s) ≥ dH ′(x , s) + δ − dH (x ,y) − dH ′(x ,y).

of Claim. By the triangle inequality we have dH ′(x , s) ≤ dH ′(x ,y) + dH ′(y, s), which is equiv-

alent to dH ′(y, s) ≥ dH ′(x , s) − dH ′(x ,y). By this inequality and the fact that x lies on π , the

shortest path from y to s in H , we have

dH (y,x) + dH (x , s) = dH (y, s) ≥ dH ′(y, s) + δ ≥ dH ′(x , s) − dH ′(x ,y) + δ .

Since dH (y,x) = dH (x ,y) the claimed inequality follows. �

From the claim and the fact that dH ′(x ,y) ≤ dH (x ,y) we conclude that

∑
x∈π ,dH (x,y)<δ /2

dH (x , s) ≥ ∑
x∈π ,dH (x,y)<δ /2

(dH ′(x , s) + δ − 2dH (x ,y))

=
⎛
⎝ ∑
x∈π ,dH (x,y)<δ /2

dH ′(x , s)
⎞
⎠
+
⎛
⎝ ∑
x∈π ,dH (x,y)<δ /2

(δ − 2dH (x ,y))
⎞
⎠

≥
⎛
⎝ ∑
x∈π ,dH (x,y)<δ /2

dH ′(x , s)
⎞
⎠
+
⎛
⎝

⌊δ /2⌋

∑
j=1

(δ − 2j)
⎞
⎠

=
⎛
⎝ ∑
x∈π ,dH (x,y)<δ /2

dH ′(x , s)
⎞
⎠
+ δ(⌊δ/2⌋) − ⌊δ/2⌋(⌊δ/2⌋ + 1)

=
⎛
⎝ ∑
x∈π ,dH (x,y)<δ /2

dH ′(x , s)
⎞
⎠
+ Ω(δ 2) .
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Finally, we get:

∑
x∈V

dH (x , s) =
⎛
⎝ ∑
x∈π ,dH (x,y)<δ /2

dH (x , s)
⎞
⎠
+ ∑
x∉π or dH (x,y)≥δ /2

dH (x , s)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
≥dH ′(x,s)

≥
⎛
⎝ ∑
x∈π ,dH (x,y)<δ /2

dH ′(x , s)
⎞
⎠
+ Ω(δ 2) + ∑

x∉π or dH (x,y)≥δ /2
dH ′(x , s)

= (∑
x∈V

dH ′(x , s)) + Ω(δ 2) . �

The quadratic distance decrease is the key observation for the e�ciency of our algorithm as

it limits the number of times a new phase starts, which is the expensive part of our algorithm.

Lemma 3.7 (Running Time). For every κ ≥ 1 and δ ≥ 1, the total update time of Algorithm 1
is O(TBFS(X) ⋅ (q/κ + nX/δ 2 + 1) + q), where TBFS(X) is an upper bound on the time needed for
computing a BFS tree up to depth X .

Proof. Besides the constant time per insertion we have to compute a BFS tree of depth X at the

beginning of every phase. The �rst cause for starting a new phase is that the number of edge

deletions in a phase reachesκ, which can happen at mostq/κ times. The second cause for starting

a new phase is that we insert an edge (u,v) such that dG0
(u, s) > dG0

(v, s) + δ . By Lemmas 3.4

and 3.5 this implies that the sum of the distances of all nodes to s has increased by at least Ω(δ 2)
since the beginning of the current phase. There are at most n nodes of distance at most X to s
which means that the sum of the distances is at most nX . Therefore such a decrease can occur

at most O(nX /δ 2) times. The overall running time thus is O(TBFS(X) ⋅ (q/κ + nX/δ 2 + 1) + q).

The 1-term is just a technical necessity as the BFS tree has to be computed at least once. �

The algorithm above provides an additive approximation. In the following we turn this

into a multiplicative approximation for a �xed distance range. Using a multi-layer approach

we enhance this to a multiplicative approximation for the full distance range in Sections 3.2

(sequential model) and 3.3 (distributed model).

Lemma 3.8 (Multiplicative Approximation). Let 0 < ε ≤ 1, X ≤ n, and set γ = ε/4. If γ 2qX ≥ n
and γnX 2 ≥ q, then by setting κ = q1/3X 1/3γ 2/3/n1/3 and δ = n1/3X 2/3γ 1/3/q1/3, Algorithm 1 has a
total update time of

O (TBFS(X) ⋅ q
2/3n1/3

ε2/3X 1/3
+ q) ,

where TBFS(X) is an upper bound on the time needed for computing a BFS tree up to depth X .
Furthermore, it provides the following approximation guarantee: dG0

≥ dG(x , s) for every node x
and dG0

(x , s) ≤ (1 + ε)dG(x , s) for every node x such that X /2 ≤ dG0
(x , s) ≤ X .

Proof. To simplify the notation a bit we de�ne A = κδ , which gives A = γX . By Lemma 3.7,

Algorithm 1 runs in time

O (TBFS(X) ⋅ (q
κ
+ nX
δ 2
+ 1) + q) .

11



It is easy to check that by our choices of κ and δ the two terms appearing in the running time

are balanced and we get

q

κ
= nX

δ 2
= q2/3n1/3

γ 2/3X 1/3
= O (q

2/3n1/3

ε2/3X 1/3
) .

Furthermore the inequalities γ 2qX ≥ n and γnX 2 ≥ q ensure that κ ≥ 1 and δ ≥ 1.

We now argue that the approximation guarantee holds. By Lemma 3.1, we already know

that

dG(x , s) ≤ dG0
(x , s) ≤ dG(x , s) +A

for every node x such that dG0
(x , s) ≤ X . We now show that our choices of κ and δ guarantee

that A ≤ εdG(x , s), for every node x such that dG0
(x , s) ≥ X /2, which immediately gives the

desired inequality.

Assume that dG0
(x , s) ≤ dG(x , s) +A and that dG0

(x , s) ≥ X /2. We �rst show that

γ ≤ 1

2(1 + 1

ε )
.

Since ε ≤ 1 we have 2(ε + 1) ≤ 4. It follows that

1

2(1 + 1

ε )
≥ ε

4

= γ .

Therefore we get the following chain of inequalities:

(1 + 1

ε
)A = (1 + 1

ε
)γX ≤

(1 + 1

ε )X
2(1 + 1

ε )
= X

2

≤ dG0
(x , s) .

We now subtract A from both sides and get

A

ε
≤ dG0

(x , s) −A .

Since dG0
(x , s) −A ≤ dG(x , s) by assumption, we �nally get A ≤ εdG(x , s). �

3.2 Sequential model

It is straightforward to use the abstract framework of Section 3.1 in the sequential model. First

of all, note that in the sequential model computing a BFS tree takes time O(m), regardless of

the depth. We run O(logn) “parallel” instances of Algorithm 1, where each instance provides a

(1 + ε)-approximation for nodes in some distance range from X /2 to X . However, when X is

small enough, then instead of maintaining the approximate distance with our own algorithm it

is more e�cient to maintain the exact distance using the algorithm of Even and Shiloach [ES81].

Theorem 3.9. In the sequential model, there is an incremental (1+ε)-approximate SSSP algorithm
for inserting up to q edges that has a total update time of O(mn1/4

√
q logn/√ε) wherem is the

number of edges in the �nal graph. It answers distance and path queries in optimal worst-case
time.

12



Proof. If q ≤ 8n1/2/ε , we recompute a BFS tree from scratch after every insertion. This takes

time O(mq) = O(mq1/2q1/2) = O(mn1/4q1/2/ε1/2).

If q > 8n1/2/ε , the algorithm is as follows. Let X∗
be the smallest power of 2 greater than

or equal to 2n1/4q1/2/ε1/2 (i.e., X∗ = 2
⌈log (2n1/4q1/2/ε1/2)⌉

). First of all, we maintain an Even-

Shiloach tree up to depth X∗
, which takes time O(mX∗) = O(mn1/4q1/2/ε1/2) by Theorem 1.2.

Additionally, we run O(logn) instances of Algorithm 1, one for each logX∗ ≤ i ≤ ⌈logn⌉. For

the i-th instance we set the parameter X to Xi = 2
i

and κ and δ as in Lemma 3.8. Every time

we start a new phase for instance i , we also start a new phase for every instance j such that

j ≤ i . This guarantees that if a node leaves the range [Xi/2,Xi] (which in the incremental model

can only happen if the distance to the root goes below Xi/2) it will immediately be covered by

a lower range. Since the graph is connected, we now have the following property: for every

node v with distance more than X∗
to s there is at least one index i such that v is in the range

[Xi/2,Xi], i.e., at the beginning of the current phase of instance i the distance from v to s was

between Xi/2 and Xi . By Lemma 3.8 this previous distance is a (1 + ε)-approximation of the

current distance. The algorithm can, at no overhead in asymptotic running time, easily track

the smallest i such that v is in the range [Xi/2,Xi] for every node v .

The cost of starting a new phase for every instance j ≤ i is O(m logn) since we have to

construct a BFS tree up to depth X j for all j ≤ i . By Lemma 3.8 the running time of the i-th

instance of Algorithm 1 therefore is O(mq2/3n1/3 logn/(ε2/3X 1/3

i )), which over all instances

gives a running time of

O
⎛
⎝ ∑
logX ∗≤i≤⌈logn⌉

mq2/3n1/3 logn

ε2/3X
1/3

i

⎞
⎠
= O (mq2/3n1/3 logn

ε2/3X∗1/3
) = O (mn1/4q1/2 logn

ε1/2
) .

Note that for each instance i of Lemma 3.8 only applies if γ 2qXi ≥ n and γnX 2

i ≥ q. These two

inequalities hold because q and X∗
are large enough:

γ 2qXi = ε2qXi/16 ≥ ε2qX∗/16 ≥ ε3/2q3/2n1/4/8 ≥ ε3/2n3/4n1/4/ε3/2 = n
γnX 2

i = εnX 2

i /4 ≥ εn(X∗)2/4 ≥ 4εn3/2q/(4ε) = n3/2q ≥ q

Finally, we argue that the number q of insertions does not have to be known beforehand. We

use a doubling approach for guessing the value ofq where the i-th guess isqi = 2
i
. When the num-

ber of insertions exceeds our guess qi , we simply restart the algorithm and use the guess qi+1 =
2qi from now on. The total running time for this approach is O(∑⌈logq⌉

i=0 mn1/4q
1/2

i logn/ε1/2)
which is O(mn1/4q1/2 logn/ε1/2). �

3.3 Distributed Model

In the distributed model we use the same multi-layer approach as in the sequential model.

However, we have to consider some additional details for implementing the algorithm because

not all information is globally available to every node in the distributed model. Computing a

BFS tree up to depth X takes time TBFS = O(X) in the distributed model. In the running time

analysis of Lemma 3.7 we thus charge time O(X) to every phase and constant time to every
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insertion. We now argue that this is enough to implement the algorithm in the distributed

model.

After the insertion of an edge (u,v) the nodesu andv have to compare their initial distances

dG0
(u, s) and dG0

(v, s). They can exchange these numbers with a constant number of messages

which we account for by charging constant time to every insertion.

The root node s has to coordinate the phases and thus needs to gather some special infor-

mation. The �rst cause for starting a new phase is when the level of some node decreases by

at least δ . If a node detects a level decrease by at least δ , it has to inform the root s about the

decrease so that s can initiate the beginning of the next phase. The tree maintained by our

algorithm, which has depth at most X , can be used to send this message. Therefore the total

time needed for sending this message is O(X), which we charge to the current phase. Note

that, similar to recomputing the BFS tree, this happens in a recovery stage during which no

new edges are inserted.

The second cause for starting a new phase is that the number of edge insertions since the

beginning of the current phase exceeds κ. Therefore it is necessary that the root s knows the

number of edges that have been inserted. We count the number of insertions at the root as

follows. After each insertion of an edge (u,v) the node v sends a message to the root to inform

it about the edge insertion. We will make sure that this message arrives at the root with small

enough delay; in particular each insertion message will arrive at the root after κ/2 recovery

stages. Again, the tree maintained by our algorithm, which has depth at most X , can be used

to send the insertion messages to the root. During each recovery stage we move up all the

insertion messages that have not yet arrived at the root along 2X/κ nodes in the tree (i.e., we

decrease the level of each such message by at least 2X/κ). To avoid congestion we aggregate

insertion messages meeting at the same node by simply counting the number of insertions.

Thus, we need to spend an additional O(X /κ) rounds in each recovery stage. In this way, the

�rst insertion message arrives at the root after κ/2 recovery stages and after κ recovery stages

the �rst κ/2 messages have arrived Accumulated over κ recovery stages after insertions, the

total time for sending the insertion messages is O(κX /κ) = O(X), which we charge to the

current phase. Thus, to get the same approximation guarantee and the same asymptotic running

time as in Section 3.3, we slightly modify the algorithm to start a new phase as soon as the root

has been noti�ed of κ/2 insertions.

Theorem 3.10. In the distributed model, there is an incremental algorithm for maintaining a (1+
ε)-approximate BFS tree under up toq insertions that has a total update time ofO(q2/3n1/3D2/3/ε2/3),
where D is the dynamic diameter.

Proof. Our algorithm consists of O(logD) layers. For each 0 ≤ i ≤ ⌈logD⌉ we set Xi = 2
i

and

do the following: (1) If q ≤ 16n/(ε2Xi), we recompute a BFS tree up to depth Xi from scratch

after every insertion. (2) If q > 16n/(ε2Xi) and Xi ≤ 4

√
q/√εn, we maintain an Even-Shiloach

tree up to depth Xi . (3) If q > 16n/(ε2Xi) and Xi > 4

√
q/√εn we run an instance of Algorithm 1

with parameters Xi = 2
i

and κi and δi as in Lemma 3.8. We use the following slight modi�cation

of Algorithm 1: every time a new phase starts for instance i , we re-initialize all instances j of

Algorithm 1 such that j ≤ i by computing a BFS tree up to depth X j . Note that if D is not known

in advance, our algorithm can simply increase the number of layers until the BFS tree computed

at the initialization of the current layer contains all nodes of the graph.
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We �rst argue that this algorithm provides a (1+ε)-approximation. The algorithm maintains

the exact distances for all nodes that are in distance at most 16n/(ε2q) or 4

√
q/√εn from the

root as in these cases the distances are obtained by recomputing the BFS tree from scratch or

by the Even-Shiloach tree. For all other nodes we have to argue that our multi-layer version

of Algorithm 1 provides a (1 + ε)-approximation. Note that for each instance i the result of

Lemma 3.8 only applies if γ 2qXi ≥ n and γnX 2

i ≥ q. These two inequalities hold because q and

Xi are large enough:

γ 2qXi = ε2qXi/16 ≥ ε2(16n/(ε2Xi))Xi/16 = n
γnX 2

i = εnX 2

i /4 ≥ εn(4
√
q/

√
εn)2/4 = q .

In each instance i , the approximation guarantee of Lemma 3.8 holds for all nodes whose distance

to the root was between Xi/2 and Xi since the last initialization of instance i . Every time we

re-initialize instance i , some nodes that before were in the range [Xi/2,Xi] might now have

a smaller distance and will thus not be “covered” by instance i anymore. By re-initializing all

instances j ≤ i as well we guarantee that such nodes will immediately be “covered” by some

other instance of the algorithm (or by the exact BFS tree we maintain for small depths). Since

the graph is connected, we thus have the following property: for every node v with distance

more than 4

√
q/√εn to the root there is an index i such that at the beginning of the current

phase of instance i the distance from v to the root was between Xi/2 and Xi . By Lemma 3.8 this

previous distance is a (1 + ε)-approximation of the current distance.

We will now bound the running time. We will argue that the running time in every layer i

is O(q2/3n1/3X 2/3

i /ε2/3). If the number of insertions is at most q ≤ 16n/(ε2Xi), then computing

a BFS tree from scratch up to depth Xi after very insertion takes time O(qXi) in total, which

we can bound as follows:

qXi = q2/3q1/3Xi =
q2/3n1/3X

2/3

i

ε2/3
.

By Theorem 1.2 maintaining an Even-Shiloach tree up to depth Xi ≤ 4

√
q/√εn takes time

O(nXi) = O(√qn/√ε). Since we only do this in the case q > 16n/(ε2Xi), we can use the

inequality

n < ε2qXi

16

≤ qX 4

i

ε

to obtain

nXi =
√
qn

√
ε
=
n1/3n1/6

√
q

√
ε

≤
n1/3q1/6X

4/6

i
√
q

√
ε ⋅ ε1/6

= q2/3n1/3X
2/3

i

ε2/3
.

Finally we bound the running time of our slight modi�cation of Algorithm 1 in layer i . Every

time we start a new phase in layer i , we re-initialize the instances of Algorithm 1 in all layers

j ≤ i . The re-initialization takes in each layer j takes time O(X j) as we have to compute a BFS

tree up to depth X j . Thus, the cost of starting a new phase in layer i is proportional to

∑
0≤j≤i

X j = ∑
0≤j≤i

2
j ≤ 2

i+1 = 2Xi
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which asymptotically is the same as only the time needed for computing a BFS tree up to depthXi .

Thus, by Lemma 3.8 the running time of instance i of Algorithm 1 is O(q2/3n1/3X 2/3

i /ε2/3 + q).

Since q ≤ εnX 2

i /4 as argued above we have q ≤ nX 2

i and thus

q2/3n1/3X
2/3

i

ε2/3
≥ q2/3n1/3X 2/3

i = q2/3(nX 2

i )1/3 ≥ q2/3q1/3 = q .

It follows that the running time of instance i is O(q2/3n1/3X 2/3

i /ε2/3) and the total running time

over all layers is

O
⎛
⎝ ∑
0≤i≤⌈logD⌉

q2/3n1/3X
2/3

i

ε2/3
⎞
⎠
= O

⎛
⎝ ∑
0≤i≤⌈logD⌉

q2/3n1/3(2i)2/3
ε2/3

⎞
⎠
= O (q

2/3n1/3D2/3

ε2/3
) .

By using a doubling approach for guessing the value of q we can run the algorithm with the

same asymptotic running time without knowing the number of insertions beforehand. �

3.4 Removing the Connectedness Assumption

The algorithm above assumes that the graph is connected. We now explain how to adapt the

algorithm to handle graphs where this is not the case.

Note that an insertion might connect one or several nodes to the root node. For each newly

connected node, every path to the root goes through an edge that has just been inserted. In

such a situation we extend the tree maintained by the Algorithm 1 by performing a breadth-

�rst search among the newly connected nodes. Using this modi�ed tree, the argument of

Lemma 3.1 to prove the additive approximation guarantee still goes through. Note that each

node can become connected to the root node at most once. Thus, we can amortize the cost of

the breadth-�rst searches performed to extend the tree over all insertions.

This results in the following modi�cation of the running time of Lemma 3.7: In the sequential

model we have an additional cost of O(m) as each edge has to be explored at most once in one

of the breadth-�rst searches. In the distributed model we have an additional cost of O(n) as

every node is explored at most once in one of the breadth-�rst searches. The total update time

of the (1+ε)-approximation in the sequential model (Theorem 3.9) clearly stays una�ected from

this modi�cation as we anyway have to consider the cost of O(m) for computing a BFS tree. In

the distributed model the argument is as follows. In the proof of Theorem 3.10 we bound the

running time of each instance i of Algorithm 1 by O(q2/3n1/3X 2/3

i /ε2/3). Since q and Xi satisfy

the inequality q > 16n/(ε2Xi) ≥ n/Xi , we have q2/3n1/3X
2/3

i /ε2/3 ≥ q2/3n1/3X
2/3

i ≥ n. Thus the

additional O(n) is already dominated by O(q2/3n1/3X 2/3

i /ε2/3) and the total update time stays

the same as stated in Theorem 3.10. Note that if the number of nodes n is not known in advance

because of the graph not being connected, we can use a doubling approach to guess the right

range of n.

4 Decremental Algorithm

In the decremental setting we use an algorithm of the same �avor as in the incremental setting

(see Algorithm 2). However, the update procedure is more complicated because it is not obvious
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how to repair the tree after a deletion. Our solution exploits the fact that in the distributed

model it is relatively cheap to examine the local neighborhood of a node. As in the incremental

setting, the algorithm has the parameters κ, δ , and X .

Algorithm 2: Decremental algorithm

// At any time, T0 is the BFS tree computed at the beginning of the

current phase, F ′ is the forest resulting from removing all deleted

edges from T0, and T is the current approximate BFS tree

1 Procedure Delete(u, v)
2 k ← k + 1
3 if k = κ then
4 Initialize()

5 else
6 Remove edge (u,v) from F ′

7 RepairTree()

8 if RepairTree() reports distance increase by at least δ then Initialize()

9 Procedure Initialize() // Start new phase

10 k ← 0

11 Compute BFS tree T0 of depth X rooted at s
12 Compute current distances dG0

(⋅, s)
13 T ← T0
14 F ′ ← T0

15 Procedure RepairTree()
16 F ← F ′

17 U ← {u ∈ V ∣ u has no parent in F and u ≠ s}
18 foreach u ∈U do // Search process

19 Perform breadth-�rst search from u up to depth δ and try to �nd a node v such

that (1) dG0
(v, s) < dG0

(u, s) and (2) dG(u,v) ≤ δ
20 if such a node v could be found then
21 Add edge (u,v) of weight dwF (u,v) = dG(u,v) to F
22 else
23 return “distance increase by at least δ”

24 T ← F

The Procedure RepairTree of Algorithm 2 either computes a (weighted) tree T that ap-

proximates the true distances with an additive error of κδ , or it reports a distance increase by

at least δ since the beginning of the current phase. Let T0 denote the BFS tree computed at

the beginning of the current phase, let F ′ be the forest resulting from removing those edges

from T0 that have already been deleted in the current phase, and the let U be the set of nodes

(except for s) that have no parent in F ′. After every deletion, the Procedure RepairTree tries

17



to construct a tree T by starting with the forest F ′. Every node u ∈ U tries to �nd a “good”

node v to reconnect to and if successful will use v as its new parent with a weighted edge (u,v)
(whose weight corresponds to the current distance between u and v). Algorithm 2 imposes two

conditions (Line 19) on a “good” node v . Condition (1) avoids that the reconnection introduces

any cycles and Condition (2) guarantees that the error introduced by each reconnection is at

most δ and that a suitable node v can be found in distance at most δ to u. As δ is relatively

small, this is the key to e�ciently �nding such a node. In the following, we denote the distance

between two nodes x and y in a graph F with weighted edges by dwF (x ,y). Note that here we

have formulated the algorithm in a way such that the Procedure RepairTree always starts with

a forest F ′ that is the result of removing all edges from T0 that have been deleted so far in the

current phase, regardless of trees previously computed by the Procedure RepairTree.

4.1 Analysis of Procedure for Repairing the Tree

In the following we �rst analyze only the Procedure RepairTree. Its guarantees can be summa-

rized as follows.

Lemma 4.1. The Procedure RepairTree of Algorithm 2 either reports “distance increase by at
least δ” and guarantees that there is a node x with dG0

(x , s) ≤ X such that

dG(x , s) ≥ dG0
(x , s) + δ ,

or it returns a tree T such that for every node x with dG0
(x , s) ≤ X we have

dG0
(x , s) ≤ dG(x , s) ≤ dwT (x , s) ≤ dG0

(x , s) + κδ .

It runs in time O(κδ) after every deletion.

We �rst observe that if the Procedure RepairTree returns a graph, this graph is actually

a tree. The input of the procedure is the forest F ′ obtained from removing some edges from

the BFS tree T0. In this forest we have dG0
(v, s) = dG0

(u, s) − 1 for every child u and parent v .

In the Procedure RepairTree, we add, for every node u that is missing a parent, an edge to a

parent v such that dG0
(v, s) < dG0

(u, s). Thus, the decreasing label dG0
(v, s) for every node v

guarantees that T is a tree.

Lemma 4.2. The graph T computed by the Procedure RepairTree is a tree.

We will show next that the Procedure RepairTree is either successful, i.e., every node in U
�nds a new parent, or the algorithm makes progress because there is some node whose distance

to the root has increased signi�cantly.

Lemma 4.3. For every node u ∈U , if dG(u, s) < dG0
(u, s)+δ , then there is a node v ∈ V such that

(1) dG0
(v, s) < dG0

(u, s) and

(2) dG(u,v) ≤ δ .
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Proof. If dG(u, s) ≤ δ , then set v = s . As dG0
(s, s) = 0 and u ≠ s , this satis�es both conditions.

If dG(u, s) > δ , then consider the shortest path from u to s in G and de�ne v as the node

that is in distance δ from u on this path, i.e., such that dG(v, s) = dG(u, s) − δ . We then have

dG0
(v, s) ≤ dG(v, s) = dG(u, s) − δ < dG0

(u, s) + δ − δ = dG0
(u, s) . �

Note that in the proof above we know exactly which node v we can pick for every node

u ∈U . In the algorithm however the node u does not know its shortest path to s in the current

graph and thus it would be expensive to speci�cally search for the node v on the shortest path

from u to s de�ned above. However, we know that v is contained in the local search performed

by u. Therefore u either �nds v or some other node that ful�lls Conditions (1) and (2).

We now show that every reconnection made by the Procedure RepairTree adds an additive

error of δ , which sums up to κδ for at most κ reconnections (one per previous edge deletion).

Lemma 4.4. For the tree T computed by the Procedure RepairTree and every node x such that
dG0

(x , s) ≤ X we have
dG(x , s) ≤ dwT (x , s) ≤ dG0

(x , s) + κδ .

Proof. We call the weighted edges inserted by the Procedure RepairTree arti�cial edges. In the

tree T there are two types of edges: those that were already present in the BFS tree T0 from the

beginning of the current phase and arti�cial edges added in the Procedure RepairTree.

First, we prove the inequality dG(x , s) ≤ dwT (x , s). Consider the unique path from x to s in

the tree T consisting of the nodes x = xl ,xl−1, . . .x0 = s . We know that every edge (x j+1,x j) in

T either was part of the initial BFS tree T0, which means that dwT (x j+1,x j) = 1 = dG(x j+1,x j), or

was inserted later by the algorithm, which means that dwT (x j+1,x j) = dG(x j+1,x j). This means

that in any case we have dwT (x j+1,x j) = dG(x j+1,x j) and therefore we get

dwT (x , s) =
l−1

∑
j=0

dwT (x j+1,x j) =
l−1

∑
j=0

dG(x j+1,x j) ≥ dG(x , s) .

Second, we prove the inequality dwT (x , s) ≤ dG0
(x , s) + κδ . Consider the shortest path

π = xl ,xl−1, . . . ,x0 from x to s in T , where xl = x and x0 = s . Let S j (with 0 ≤ j ≤ l) denote the

number of arti�cial edges on the subpath x j ,x j−1, . . .x0. For each edge deleted so far, π contains

at most one arti�cial edge. Therefore we have S j ≤ κ for all 0 ≤ j ≤ l . Now consider the following

claim.

Claim 4.5. For every 0 ≤ j ≤ l we have dwT (x j , s) ≤ dG0
(x j , s) + S jδ .

Assuming the truth of the claim, the desired inequality follows straightforwardly since

xl = x , x0 = s , and Sl ≤ κ.

In the following we prove the claim by induction on j. In the induction base we have j = 0

and thus x j = s and S j = 0. The inequality then trivially holds due to dwT (s, s) = 0. We now prove

the inductive step from j to j + 1. Note that S j ≤ S j+1 ≤ S j + 1 since the path is exactly one edge

longer. Consider �rst the case that (x j+1,x j) is an edge from the BFS tree T0 of the graph G0. In

that case we have dwT (x j+1,x j) = dG0
(x j+1,x j) = 1. Furthermore, since (x j+1,x j) is an edge in
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the BFS tree T0 we know that x j lies on a shortest path from x j+1 to s in G0. Therefore we have

dG0
(x j+1, s) = dG0

(x j+1,x j) + dG0
(x j , s). Together with the induction hypothesis we get:

dwT (x j+1, s) = dwT (x j+1,x j)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=dG

0
(x j+1,x j)

+ dwT (x j , s)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤dG
0
(x j ,s)+Sj ⋅δ (by IH)

≤ dG0
(x j+1,x j) + dG0

(x j , s)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=dG
0
(x j+1,s)

+ S j
®
=Sj+1

⋅δ

= dG0
(x j+1, s) + S j+1 ⋅ δ .

The second case is that (x j+1,x j) is an arti�cial edge. In that case we have dwT (x j+1,x j) =
dG(x j+1,x j) and by the algorithm the inequality dG(x j+1,x j)+dG0

(x j , s) ≤ dG0
(x j+1, s)+δ holds.

Note also that S j+1 = S j + 1. We therefore get the following:

dwT (x j+1, s) = dwT (x j+1,x j)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=dG(x j+1,x j)

+ dwT (x j , s)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤dG
0
(x j ,s)+Sj ⋅δ (by IH)

≤ dG(x j+1,x j) + dG0
(x j , s)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤dG

0
(x j+1,s)+δ

+S j ⋅ δ

= dG0
(x j+1, s) + (S j + 1)

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
=Sj+1

⋅δ

= dG0
(x j+1, s) + S j+1 ⋅ δ . �

Remark 4.6. In the proof of Lemma 4.4 we need the property that after up to κ edge deletions

there are at most κ “arti�cial” edges on the shortest path to the root in T . This also holds if we

allow deleting nodes (together with their set of incident edges). Thus, we can easily modify our

algorithm to deal with node deletions with the same approximation guarantee and asymptotic

running time.

To �nish the proof of Lemma 4.1 we analyze the running time of the Procedure RepairTree

and clarify some implementation details for the distributed setting. In the search process, every

node u ∈U tries to �nd a nodev to connect to that ful�lls certain properties. We search for such

a node v by examining the neighborhood of u in G up to depth δ using breadth-�rst search,

which takes time O(δ) for a single node. Whenever local searches of nodes in U “overlap” and

two messages have to be sent over an edge, we arbitrarily allow to send one of these messages

and delay the other one to the next round. As there are at most κ nodes in U , we can simply

bound the time needed for all searches by O(κδ).

Weighted Edges. The tree computed by the algorithm contains weighted edges. Such an

edge e corresponds to a path π of the same distance in the network. We implement weighted

edges by a routing table for every node v that stores the next node on π if a message is sent

over v as part of the weighted edge e .
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Broadcasting Deletions. The nodes that do not have a parent in F ′ before the procedure

RepairTree starts do not necessarily know that a new edge deletion has happened. Such a node

only has to become active and do the search if there is a change in its neighborhood within

distance δ , otherwise it can still use the weighted edge in the tree T that it previously used

because the two conditions imposed by the algorithm will still be ful�lled. After the deletion of

an edge (x ,y), the nodes x and y can inform all nodes at distance δ about this event. This takes

time O(δ) per deletion, which is within our projected running time.

4.2 Analysis of Decremental Distributed Algorithm

The Procedure RepairTree provides an additive approximation of the shortest paths and a

means for detecting that the distance of some node to s has increased by at least δ since the

beginning of the current phase. Using this procedure as a subroutine we can provide a running

time analysis for the decremental algorithm that is very similar to the one of the incremental

algorithm.

Lemma 4.7. For every X ≥ 1, κ ≥ 1, and δ ≥ 1 the total update time of Algorithm 2 is O(qX /κ +
nX 2/δ 2 + qκδ + n) and it provides the following approximation guarantee: If dG0

(x , s) ≤ X , then

dG0
(x , s) ≤ dG(x , s) ≤ dwT (x , s) ≤ dG0

(x , s) + κδ .

Proof. Using the distance increase argument of Lemma 3.5, we can bound the number of phases

by O(q/κ + nX 2/δ 2). To every phase, we charge a running time of O(X), which is the time

needed for computing a BFS tree up to depth X at the beginning of the phase. Additionally we

charge a running time of κδ to every deletion since the Procedure RepairTree, which is called

after every deletion, has a running time of O(κδ) by Lemma 4.1.

As in the incremental distributed algorithm we have to enrich the decremental algorithm

with a mechanism that allows the root node to coordinate the phases. We explain these

implementation details and analyze their e�ects on the running time in the following.

Reporting Distance Increase. When a node v detects a distance increase by more than δ ,

it tries to inform the root about the distance increase by sending a special message. It sends

the message to all nodes in distance at most 2X from v in a breadth-�rst manner, which takes

time O(X). If the root is among these nodes, the root initiates a new phase and the cost of

O(X) is charged to the new phase. Otherwise, the nodes in distance at most X from v know

that their distance to the root is more than X . In that case in particular all nodes in the subtree

of v in F ′ have received the message and know that their distance to the root is more than X
now. All nodes that are in distance at most X from v do not have to participate in the algorithm

anymore. Thus, we can charge the time of O(X) for sending the message to these at least X
nodes. This give a one-time charge of O(1) to every node and adds O(n) to the total update

time. A special case is when v becomes disconnected from the root and its new component has

size less than X . In that case the time for sending the message to all nodes in the component

takes time proportional to the size of the component, which again results in a charge of O(1) to

each node.
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Counting Deletions. We count the number of deletions at the root as follows. First, observe

that we do not have to count those deletions that result in a distance increase by more than δ
because after such an event either a new phase starts or the deletion only a�ects nodes whose

distance to the root has increased to more than X after the deletion. The remaining deletions

can be counted by sending one message per deletion to the root using the tree maintained by

the algorithm such that each deletion message will arrive at the root after κ/2 recovery stages.

During each recovery stage we move up all the deletion messages that have not yet arrived at

the root along 2X/κ nodes in the tree. To avoid congestion we aggregate deletion messages

meeting at the same node by simply counting the number of deletions. Note that the level

of a node in the tree might increase by at most κδ with every deletion. Therefore we need

spend time O(X /κ +κδ) during each recovery stage to ensure that every deletion message that

has not yet arrived at the root decreases its level in the tree by at least 2X /κ. In this way, the

�rst deletion message arrives after κ/2 reocvery stages and after κ recovery stages the �rst

κ/2 messages have arrived at the root. This process takes total time O(X + κ2δ) for κ recovery

stages after deletions. We can charge time O(X) to the current phase and time O(κδ) to each

deletion ocurring in the phase. Thus, to obtain an additive approximation of exactly κδ , we

slightly modify the algorithm to start a new phase as soon as the root has been noti�ed of κ/2
deletions. �

We use a similar approach as in the incremental setting to get the (1 + ε)-approximation.

We run i “parallel” instances of the algorithm where each instance covers the distance range

from 2
i

to 2
i+1

. By an appropriate choice of the parameters κ and δ for each instance we can

guarantee a (1 + ε)-approximation.

Lemma 4.8. Let 0 < ε ≤ 1 and assume that ε5qX /32 ≥ n and nX 3/2 ≥ q. Then, by setting
κ = q1/5X 1/5/n1/5 and δ = n2/5X 3/5/q2/5, Algorithm 2 runs in time O(q4/5n1/5X 4/5). Furthermore,
it provides the following approximation guarantee: For every node x such that dG0

(x , s) ≤ X we
have

dG0
(x , s) ≤ dG(x , s) ≤ dwT (x , s)

and for every node x such that dG(x , s) ≥ X/2 we additionally have

dwT (x , s) ≤ (1 + ε)dG0
(x , s) ≤ (1 + ε)dG(x , s) .

Proof. Since ε5qX /32 ≥ n implies qX ≥ n we have κ ≥ 1 and since nX 3/2 ≥ q we have δ ≥ 1. It is

easy to check that by our choices of κ and δ the three terms in the running time of Lemma 4.7

are balanced and we get:

q

κ
⋅X = nX

δ 2
⋅X = qκδ = q4/5n1/5X 4/5 .

Furthermore, since qX ≥ n we have q4/5n1/5X 4/5 ≥ n1/5(qX)4/5 ≥ n1/5n4/5 = n and therefore the

running time of the algorithm is O(q4/5n1/5X 4/5).

We now argue that the approximation guarantee holds. By Lemma 4.7, we already know

that

dG0
(x , s) ≤ dG(x , s) ≤ dwT (x , s) ≤ dG0

(x , s) + κδ
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for every node x such that dG0
(x , s) ≤ X . We now show that our choices of κ and δ guarantee

that κδ ≤ εdG0
(x , s), for every node x such that dG0

(x , s) ≥ X/2, which immediately gives the

desired inequality. By our assumptions we have n ≤ ε5qX /32 and therefore we get

κδ = q1/5X 1/5

n1/5
⋅ n

2/5X 3/5

q2/5
= n1/5X 4/5

q1/5
≤ εq1/5X 1/5X 4/5

2q1/5
= εX

2

≤ εdG0
(x , s) .

The value (1 + ε)dG0
(x , s) is thus a (1 + ε)-approximation of dG(x , s). �

Theorem 4.9. In the distributed model, there is a decremental algorithm for maintaining a (1+ε)-
approximate BFS tree over q deletions with a total update time of O(q4/5n1/5D4/5/ε), where D is
the dynamic diameter.

Proof. Our algorithm consists of O(logD) layers. For each 0 ≤ i ≤ ⌈logD⌉ we set Xi = 2
i

and do

the following: Ifq ≤ 32n/(ε5Xi), we recompute a BFS tree up to depthXi from scratch after every

deletion. If q > 32n/(ε5Xi) and Xi ≤ (q/n)2/3, we maintain an Even-Shiloach tree up to depth Xi .

If q > 32n/(ε5Xi) and Xi > (q/n)2/3 we run an instance of Algorithm 2 with parameters Xi = 2
i

and κi and δi as in Lemma 4.8. Note that D might increase over the course of the algorithm due

to edge deletions (or might not be known in advance). Therefore, whenever we initialize the

algorithm in the layer with the current largest index, we do a full BFS tree computation. If the

depth of the BFS tree exceeds Xi , we increase the number of layers accordingly and charge the

running time of the BFS tree computation to the layer with new largest index.

We �rst argue that this algorithm provides a (1+ε)-approximation. The algorithm maintains

the exact distances for all nodes that are in distance at most 32n/(ε5q) or (q/n)2/3 from the

root as in these cases the distances are obtained by recomputing the BFS tree from scratch or

by the Even-Shiloach tree. For all other nodes we have to argue that our multi-layer version

of Algorithm 2 provides a (1 + ε)-approximation. Note that the approximation guarantee of

Lemma 3.8 only applies if ε5qXi/32 ≥ n and nX
3/2

i ≥ q. These two inequalities hold because q
and Xi are large enough:

ε5qXi/32 ≥ ε5(32n/(ε5Xi))Xi/32 = n
nX

3/2

i ≥ n((q/n)2/3)3/2 = q .

In each instance i of Algorithm 2, the approximation guarantee of Lemma 3.8 holds for all nodes

whose distance to the root at the beginning of the current phase of instance i was at most Xi
and whose current distance to the root is at least Xi/2. Whenever an instance i starts a new

phase, there might be some nodes who before were contained in the tree of instance i , but

are not contained in the new tree anymore because their distance to the root has increased to

more than Xi . Since Xi = Xi+1/2 we know that those node will immediately be “covered” by an

instance with larger index. Thus, after each recovery stage every node that is connected to the

root will be contained in the tree of some instance i such that the preconditions of Lemma 3.8

apply and thus the distance to the root in that tree provides a (1+ε)-approximation. In particular

each node simply has to pick the tree of the smallest index containing it.

We will now bound the running time. We will argue that the running time in every layer i

is O(q4/5n1/5X 4/5

i /ε). If the number of insertions is at most q ≤ 32n/(ε5Xi), then computing a
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BFS tree from scratch up to depth Xi after very insertion takes time O(qXi) in total, which we

can bound as follows:

qXi = q4/5q1/5Xi ≤
q4/5321/5n1/5X

4/5

i

ε
= O

⎛
⎝
q4/5n1/5X

4/5

i

ε

⎞
⎠
.

By Theorem 1.2 maintaining an Even-Shiloach tree up to depth Xi ≤ (q/n)2/3 takes time

O(nXi) = O(q2/3n1/3). Since we only do this in the case q > 32n/(ε5Xi), we can use the

inequality

n < ε5qXi

32

≤ ε5qXi ≤
qX 6

i

ε15/2

to obtain

nXi ≤ q2/3n1/3 = q2/3n1/5n2/15 ≤ q2/3n1/5
q2/15X

4/5

i

ε
= q4/5n1/5X

4/5

i

ε
.

Finally we use Lemma 4.8 to bound the running time of Algorithm 2 in layer i byO(q4/5n1/5X 4/5

i /ε)
as well. Thus, the running time over all layers is

O
⎛
⎝ ∑
0≤i≤⌈logD⌉

q4/5n1/5X
4/5

i

ε

⎞
⎠
= O

⎛
⎝ ∑
0≤i≤⌈logD⌉

q4/5n1/5(2i)4/5
ε

⎞
⎠
= O (q

4/5n1/5D4/5

ε
) .

By using a doubling approach for guessing the value of q we can run the algorithm with the

same asymptotic running time without knowing the number of deletions beforehand. �

5 Conclusion and Open Problems

In this paper, we showed that an approximate breadth-�rst search spanning tree can be main-

tained in amortized time per update that is sublinear in the diameter D in partially dynamic

distributed networks when amortized over a su�cient number of updates. Many problems

remain open. For example, can we get a similar result for the case of fully-dynamic networks?

How about weighted networks (even partially dynamic ones)? Can we also get a sublinear time

bound for the all-pairs shortest paths problem? Moreover, in addition to the sublinear-time

complexity achieved in this paper, it is also interesting to obtain algorithms with small bounds

on message complexity and memory.

We believe that the most interesting open problem is whether the sequential algorithm in

this paper can be improved to obtain a deterministic incremental algorithm with near-linear total

update time. As noted earlier, techniques from this paper have led to a randomized decremental

algorithm with near-linear total update time [HKN14b] (the same algorithm also works in the

incremental setting). Whether this algorithm can be derandomized was left as a major open

problem in [HKN14b]. As the incremental case is usually easier than the decremental case, it is

worth obtaining this result in the incremental setting �rst.
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