
Open Orchestration Cloud Radio Access
Network (OOCRAN) Testbed*

Marti Floriach-Pigem
Dept. of Signal Theory and

Communication
Barcelona Tech-UPC
Castelldefels, Spain

mfloriach90@gmail.com

Guillem Xercavins-Torregrosa
Dept. of Signal Theory and

Communication
Barcelona Tech-UPC
Castelldefels, Spain

guillemxercavins@gmail.com

Vuk Marojevic
Wireless@VT, Bradley Dept. of

Electrical and Computer Engineering
Virginia Tech

Blacksburg, VA, USA
maroje@vt.edu

 Antoni Gelonch-Bosch
Dept. of Signal Theory and

Communication
Barcelona Tech-UPC
Castelldefels, Spain
antoni@tsc.upc.edu

ABSTRACT
The1 Cloud radio access network (C-RAN) offers a revolutionary
approach to cellular network deployment, management and
evolution. Advances in software-defined radio (SDR) and
networking technology, moreover, enable delivering software-
defined everything through the Cloud. Resources will be pooled
and dynamically allocated leveraging abstraction, virtualization,
and consolidation techniques; processes will be automated using
common application programming interfaces; and network
functions and services will be programmatically provided
through an orchestrator. OOCRAN, oocran.dynu.com, is a
software framework that is based on the NFV MANO
architecture proposed by ETSI. It provides an orchestration layer
for the entire wireless infrastructure, including hardware,
software, spectrum, fronthaul and backhaul. OOCRAN extends
existing NFV management frameworks by incorporating the
radio communications layers and their management
dependencies. The wireless infrastructure provider can then
dynamically provision virtualized wireless networks to wireless
service providers. The testbed’s physical infrastructure is built
around a computing cluster that executes open-source SDR
libraries and connects to SDR-based remote radio heads. We
demonstrate the operation of OOCRAN and discuss the temporal
implications of dynamic LTE small cell network deployments.

CCS CONCEPTS
• Networks → Wireless access points, base stations and
infrastructure; Cloud computing; Network management

* This is the author's version of the work. It is posted here for your personal use.
Not for redistribution. For citation purposes, the definitive version of record is: M.
Floriach-Pigem, G. Xercavins-Torregosa, V. Marojevic, A. Gelonch-Bosch, “Open
orchestration Cloud radio access network (OOCRAN) testbed,” UCC'17 Companion,
Dec. 5–8, 2017, Austin, TX, USA.
© 2017 Copyright is held by the owner/author(s).

KEYWORDS
Cloud radio access network; orchestration; long-term evolution;
network functions virtualization; testbed; software-defined radio

1 INTRODUCTION
We are witnessing an explosive expansion of Cloud computing
and the use of data centers for providing diverse types of
commercial and non-commercial services. The benefits come
from the increased freedom of development, scalability and
personalization of systems and services, and the rapid
deployment of new functionalities, products and services.
Virtualization is the enabler of resource sharing and its use
reaches far beyond processing, storage and wired networking
[1]. Research and development (R&D) is now incorporating
virtualization technology into wireless communications
networks with a special emphasis on the physical layer using
software-defined radio (SDR) technology [2] [3].

Wireless communications and Cloud computing have
important differences that need to be considered when merging
the two. The Cloud provides computing, storage, data,
applications, and other services that are hosted on some remote
physical resources, such as a data center or a server connected to
the Internet. Wireless communications networks have strict
Quality of Service (QoS) requirements and exhibit a high degree
of heterogeneity of equipment, system configurations, and
services. Moreover, currently deployed 4G long-term evolution
(LTE) networks fall short in terms of capacity and latency for
enabling the tactile Internet, autonomous control of terrestrial
and aerial vehicles, and massive connectivity of the Internet of
Things. In addition, the end-to-end wireless network
infrastructure and resources that deliver the services are often
proprietary and heavily regulated. Despite the technological and
non-technological barriers that exist today, using and improving

Cloud computing technology is needed to enable the evolution
of wireless communications and networking technology and
services [4].

The business model behind the Cloud radio access network
(C-RAN) is based on the Infrastructure-as-a-Service (IaaS) model.
A pool of physical resources, which include antenna sites,
networking components and processors, is virtualized and
offered to mobile virtual network operators (MVNOs) to build
their networks as most suitable for the services they intend to
offer [5]. As technology evolves, MVNOs will be able to load
software images of wireless networks that can be dynamically
customized and adapted to the changing operational conditions.
That is, a MVNO can request more resources or release resources
on the fly to “reimage” its network. Whereas this seems like a
logical extension of Cloud computing, several research
challenges remain.

Telecommunications infrastructure providers have been
showing growing interest in incorporating Cloud computing
technology in their service networks. The feasibility and benefits
of using data centers and the Cloud led to gradually moving
their network infrastructure to a virtual environment. During
the 2013 Mobile World Congress several institutions agreed on
standardizing the administration of the virtualized network
infrastructure.

An important push in this direction has come from the
European Telecommunications Standards Institute (ETSI). ETSI
clarifies the scope of network functions virtualization (NFV) and
defines standard specifications that are meant to fulfill the
operational and management requirements of next generation
wireless networks [6]. NFV decouples the physical network
equipment from the network functions. A NFV implementation
is understood as an instance, or virtual network function (VNF),
and is completely software-defined. Reference [7] demonstrates
VNFs by executing the 3G and 4G core networks (CNs) in virtual
machines (VMs). OpenStack and the kernel-based virtual
machine (KVM) hypervisor provide the overall virtualization and
management layers. Reference [8] presents the design,
implementation, and evaluation of two LTE CN architectures,
one being based on the principles of software-defined
networking (SDN) and the other on NFV. Reference [9] describes
the virtualization process of a base station and CN, whereas [10]
performs a comparison between the proposed SDN and NFV
solutions in mobile radio environments.

Fig. 1 illustrates the ETSI NFV management and orchestration
(MANO) architecture, which is composed of three main building
blocks:

 The Orchestrator manages the overall network and is
responsible for including new services and VNF
packages.

 The VNF Manager oversees the lifecycle management of
VNFs on the NFV infrastructure (NFVI) according to the
specifications provided by the orchestrator.

 The Virtualized Infrastructure Manager (VIM)
manages the compute, storage and network resources of
the NFVI.

Figure 1: ETSI NFV MANO architecture.

During the past ten years a plethora of Cloud computing
solutions have been developed for providing IaaS. These tools
allow managing servers as well as network infrastructure.
Among the most popular IaaS frameworks are OpenStack [11],
Eucalyptus [12], and the Ubuntu Cloud infrastructure [13].
OpenStack has become a prominent solution because of its
capability to satisfy the network infrastructure providers’ needs
in terms of massive computing and storage and complex
networking. It can be considered as a VIM in the ETSI MANO
reference architecture.

In our research we assume that wireless infrastructure
customers, typically MVNOs, lease resources as needed or
periodically from an IaaS provider to build their networks [5].
These virtualized wireless networks will be tailored to the
services they provide by using virtual wireless network
components as their building blocks, rather than dealing directly
with the computing, spectrum, remote radio heads (RRHs),
antennas, fronthaul/backhaul, and other physical resources. The
MVNO thus deploys a network of virtual resources with agreed
communications, computing and networking capabilities.

We have identified a gap between experiments in isolated
radio environments and production-ready virtualized wireless
networks. In order to leverage research and education in this
field and facilitate transition to practice, we introduce the Open
Orchestration C-RAN (OOCRAN) testbed, oocran.dynu.com.
OOCRAN extends existing NFV management frameworks by
incorporating the radio communications layers and some of their
management dependencies. It provides an orchestration layer for
the entire wireless infrastructure—hardware and software—so
that the wireless infrastructure provider (WIP) can dynamically
provision virtualized wireless networks to wireless service
providers (WSPs) and satisfy the instantaneous communications
needs. This paper presents our C-RAN testbed and illustrates the
key features and example applications of OOCRAN. Section 2
summarizes the testbed highlights. Section 3 presents the
OOCRAN architecture and hardware components, whereas

Section 4 introduces the software layers. Section 5 discusses
some use cases for deploying SDR LTE networks on the testbed
to enable research and education. We conclude the paper with
an outlook on research on virtualized wireless networks,
adaptive network services, and ultra-dense 5G networks.

2 TESTBED OBJECTIVES AND HIGHLIGHTS
The testbed objectives were defined to support experimental
research and education on virtualized wireless networks in a
laboratory and campus environment. These are:

 Provide a cloud computing platform for executing VNFs,
 Enable real-time resource management across

heterogeneous resource pools,
 Provide high flexibility, capacity, and extensibility, and
 Be compliant with the ETSI NFV MANO architecture.

The testbed design should (1) leverage the virtualization
capability of C-RANs, as opposed to solely centralizing the
baseband processing, and (2) enable the generation and real-time
processing of RF signals in a Cloud computing environment.

OOCRAN uses the IaaS reference model as the basis of its
design. It fills the orchestration and management gap of next
generation virtualized wireless networks by providing a clear
and easy way to dynamically configure and assemble the
building blocks of virtualized wireless networks and deploy them
on shared infrastructure. It achieves this by virtualizing physical
resources and managing shared access to limited computing and
radio resources under a given policy. The modular design and
isolation between hardware and software facilitates testbed
upgrades. The OOCRAN framework manages the virtual-to-
physical resource mapping and allows creating new wireless
networks as supported by the available physical resources [14].

OOCRAN is an orchestration layer that follows the ETSI
MANO architecture for creating, coordinating and managing
wireless networks. An OOCRAN user can take the role of a WIP,
a WSP or a wireless test provider (WTP). This enables analyzing
different ways of splitting the resource deployment,
management and maintenance responsibilities and evaluating
resource access policies using a single framework. In the role of
a WIP, OOCRAN can create complete communications systems
by chaining several VNFs and delivering them to the WSP.
Acting as a WSP, OOCRAN can precisely manage the wireless
infrastructure and introduce proper management policies to
optimize the system behavior for the given environmental
conditions and service demands. Acting as a WTP, OOCRAN
facilitates creating specific operating conditions and test
procedures and uses Cloud-based system monitoring tools to
analyze the system. In other words, a WTP creates local or
remote wireless laboratories that are tailored to the R&D needs.

The OOCRAN framework has been developed using
OpenStack Newton release as the VIM with the Neutron and
Heat options. The Neutron extension allows OOCRAN users to
customize remote access to the virtual networks they create.
Heat, on the other hand, allows saving a defined infrastructure
as a description file, facilitating quick deployment or deletion.

The KVM hypervisor provides an open source high performance
platform.

The core of the OOCRAN management environment is based
on the Django framework, which facilitates the creation of
complex, database-driven Web sites and thus simplifies the
development of new use cases. The user interface is based on
Web services, which allow activating schedulers, queues, alarms,
monitoring and scripting tools to properly manage VNFs and
their configurations. These tools enable building a detailed
control layer of the virtual infrastructure and applying various
operational policies that take into account the state of resources
and services.

The wireless system is implemented combining several VMs,
each performing specific VNFs. These VMs execute SDR
waveforms and run on general-purpose processors with access
to SDR hardware and RF equipment. They are capable of
generating and processing real-time signals and interfacing radio
links and CN functionalities. The currently available system is
LTE, created as a fork of the srsLTE software library [15]. All the
source code is open and released under the AGPL license. It can
be freely downloaded from the OOCRAN project repository [16].

The OOCRAN testbed is capable of running in simulation
mode as well as creating an emulated or real wireless network. A
combination of simulated and real system components allows
rapid prototyping and testing in controlled RF environments.

3 ARCHITECTURE AND EQUIPMENT
Fig. 2 depicts the OOCRAN testbed architecture. It features
several components that enable implementing, managing, and
analyzing virtualized wireless networks. A computing cluster
emulates the data center of the C-RAN. The RRHs are accessed
through the radio aggregation unit (RAU), using the terminology
of the Next Generation Fronthaul Interface (NGFI) for 5G [17].
Together they form the remote radio system. RF instruments can
be attached for signal or spectrum analysis, among others.

Fig. 3a shows a photo of the testbed hardware. The roles and
capabilities of the hardware components are discussed in
continuation.

Figure 2: OOCRAN testbed architecture.

CONTROLLER
InfiniBand

SWITCH

COMPUTER1

147.83.118.228

Ethernet

SWITCH

External Equipment

CONTROL

DATA

RAU

Remote Radio System

COMPUTER2

Internet

 (a) (b)

Figure 3: OOCRAN testbed hardware (a) and software (b)
modules.

3.1 Computing Cluster
The testbed is built around a computing cluster. Using the
OpenStack terminology, one PC acts as the Controller and the
other two as Computers, all running Ubuntu 16.04. The
Controller features a 3rd generation Intel i7 8-core processor
running at 2.5 GHz and using 8 GB of RAM. Its mission is to
administrate the C-RAN. Among other things it manages the VM
lifecycle, user-defined networks, and virtual routers. The two
other Computers are two rackmount workstations, model
SuperServer 6018TR-TF from SuperMicro. Each has two 2.6 GHz
Intel Xeon 12-core processors, two Gigabit Ethernet ports, and
one 56 Gbps InfiniBand port. These workstations host the VMs.
They carry out the heavy computation, processing and
forwarding the incoming data flows to the RF and CN
components.

The InfiniBand Switch IS5022 is an 8-port non-blocking and
unmanaged 40 Gbps switching system that is capable of
delivering 640 Gbps bandwidth with 100 ns port-to-port latency.
It acts as a general switch of the testbed’s high speed network
that connects the computing cluster with the remote radio
system.

3.2 Remote Radio System
One additional PC—Intel i7-6700 8-core processor operating at
3.4 GHz with 32 GB of RAM—is included in the testbed as the
RAU. It connects to the data center via the InfiniBand switch and
to the RRHs through Gigabit Ethernet. The RAU handles the
necessary data forwarding between the two networks.

Five RRHs are currently available as part of the OOCRAN
testbed. We use the N210 model of Universal Software Radio
Peripherals (USRPs) from Ettus Research. These USRPs allow
sampling at up to 50 Mega-samples per second (MS/s), are
capable of generating or capturing RF signals below 6 GHz
and connect to the processing center through Gigabit Ethernet.
The remote radio system also features the following two RRHs:
the ZedBoard with the AD-FMCOMMS3-EBZ daughterboard,
capable of capturing 56 MHz of instantaneous RF bandwidth, and
LimeSDR, which extends the bandwidth to 61.44 MHz.

3.3 External Equipment
RF instruments, such as spectrum analyzers, as well as additional
computing or radio equipment can be connected to the testbed
through the Ethernet switch or the RAU. This allows extending
the experimental and RF analysis capabilities of the testbed.

4 SOFTWARE LAYERS
The OOCRAN software layers have been designed to provide a
wireless management framework that extends the functionalities
of ETSI MANO. These layers facilitate the focus on designing
optimized management algorithms, called actuators. Our
software framework, depicted in Fig. 3b, consists of six
functional modules: GUI, MONITOR, NS_ENGINE, RF_ENGINE,
QUEUE_TASKS and DRIVERS.

4.1 GUI
The graphical user interface (GUI) provides a user-friendly
operating environment to facilitate the interaction between the
user (human network operator) and the virtual infrastructure or
network services (NSs). The GUI has been developed using
Python 2.7 and Django. Django uses a model-view-controller,
which facilitates making modification to the provided code. This
allows saving the NSs and VNFs and defining actuators that can
execute one or several tasks such as perform a partial
reconfiguration or modify the lifecycle of the VNFs according to
the state of the NS.

4.2 MONITOR
The MONITOR module configures the third-party programs
Grafana/InfluxdB. InfluxDB is a framework that captures the
state of the virtualized wireless infrastructure (VWI) and saves it
in a database. OOCRAN accesses this database, processes the
saved states by searching for predefined patterns, and starts the
VWI reconfiguration process if the state matches the specified
conditions. Grafana is a plotting tool that is used to plot the
desired data. By using both frameworks we are capable of
capturing data from VNFs, processing the data and creating
customized graphs and alarms. This allows processing and
exposing the state of a VNF (computational load, active users,
waveform type, etc.).

MONITOR captures the alarms that the Grafana/InfluxdB
programs generate from the state of the NSs and VNFs. All
alarms include a unique identifier related to a specific actuator.
The module checks the credentials and the alarm identifier and,
when both align, sends a command to NS_ENGINE to execute
the corresponding actuator. This could, for example, trigger a
partial reconfiguration of a set of VNFs.

4.3 NS_ENGINE
The NS_ENGINE module manages the NSs and the actuators. It
decides about the NS/VNF lifecycle or the actions following
certain conditions (time, alarm, input, etc.). This module is
supported by RabbitMQ, which manages process queues and,
among others, allows executing tasks asynchronously. When the

C
O
N
T
R
O
L
L
E
R

VNF

QUEUE_TASKS MONITOR

NS_ENGINE

VNF VNF

OpenStack

RF_ENGINE

GUI
OOCRAN

DRIVERS

InfluxDB/

Grafana

NS_ENGINE needs to apply a change to the infrastructure, it
updates its own database and sends a new task to the queue
manager (QUEUE_TASKS). When the new task arrives, it is
executed by the DRIVERS module that uses third-party
application programming interfaces (APIs) to perform the
update.

4.4 RF_ENGINE
The RF_ENGINE module manages the pool of radio resources
(RF channels, transmission power levels, transmitter masks, etc.).
It creates slices of spectrum and assigns them to different VNFs
to avoid RF interference among coexisting radios and networks.
NS_ENGINE interacts with RF_ENGINE when creating a new NS
or VWI.

These modules are compatible with the VIMs of OpenStack
or Vagrant; this allows building and maintaining portable virtual
software development platforms.

4.5 Interfaces
The OOCRAN software base is a fork of the Django framework
and, therefore, all Django APIs can be used. OOCRAN
incorporates APIs from OpenStack, Vagrant, InfluxDB and
Grafana to create, delete, reconfigure and monitor the NSs. Fig.
3b shows the interfaces among the OOCRAN modules and other
management components. The information exchanges between
modules are done through calls to classes and their methods.
Third-party program drivers use HTTP RESTful APIs, which
allows installing RabbitMQ, InfluxDB, Grafana, and OpenStack
on different computers. Alarms use Webhook, an HTTP callback
that detects changes in the working conditions of a program.

5 EXAMPLE SCENARIOS
The assessment of management frameworks or the design of
resource management strategies can be done using simulated
scenarios. On the other hand, the virtualization of physical
resources and the associated management issues, such as
resource slicing, isolation, and dynamic provisioning, require
real RF equipment. VMs can be effectively deployed to host LTE
base stations (eNodeBs) and user equipment (UEs). Additional
VMs can simulate RF channels or connect to physical RRHs. This
allows switching between simulated and real wireless links or
using mixed links. Here we show the deployment of an LTE VWI
and discuss VWI reconfiguration.

5.1 Virtualized LTE System
The scenario for creating the minimum infrastructure for the
LTE downlink signaling is shown in Fig. 4.

VNFs are attached to two different subnets with different
functionalities: a) the DataFlow Network carries the data
instances and b) the Management Network carries the control
instances. The IP address assignment is done by means of DHCP
in both cases. The DataFlow Network interconnects VNFs with
external RRHs for sending or receiving IQ samples. The
Management Network provides connectivity between
OOCRAN/InfluxDB/SDN and the VNFs to send information

Figure 4: Real LTE RF link setup.

about operational states. More precisely, the state of the eNodeB
VNFs is provided and VNF reconfiguration triggered using a
secure shell (SSH) connection. The VNF application metrics are
sent to the InfluxDB database using the Python API. Alarms
from InfluxdB/Grafana are displayed at the following URL:
http://oocran:8000/alerts/messages.

OOCRAN assembles the required infrastructure building
blocks for any real or simulated communications network and
configures the corresponding VNF interfaces.

The signal generated by the eNodeB transmitter instance is
sent to the RRH. The radiated RF signal is captured by another
RRH and sent to a spectrum analyzer instance. The spectrum
analyzer instance executes the UHD_FFT tool from GNU Radio
(www.gnuradio.org). Fig. 5 captures the Horizon front end from
OpenStack, the Ubuntu instance screen and the UHD_FFT tool
showing a capture of the LTE downlink spectrum generated by
the eNodeB instance. This spectrum exhibits enough quality,
that is, enough signal strength with respect to the noise floor.

The UE receiver, a UE instance with its USRP and processing
unit, can demodulate the signal with a resulting block error rate
below 0.1, which indicates proper system operation.

5.2 Dynamic VWI Deployment
This scenario describes the dynamic deployment of a VWI, more
precisely, a small cell-based wireless infrastructure (30 m cell
radius). Here the OOCRAN management layer takes the role of a
WIP. It designs and generates a suitable VWI on demand (using
slices of physical resources) to satisfy the WSP needs. The virtual
wireless network maps to physical resources and includes slices
of RRHs, spectrum, transmission and processing power, among
others.

Some general assumptions of this scenario are
 Use of omnidirectional antennas,
 Line of sight links and free space path loss model,
 RRHs can operate at various frequencies,
 eNodeB sends data to multiple subscribers at the same

time and assigns different bit rates,
 1.4 MHz LTE channel bandwidth.
The simulated LTE downlink scenario adds a simulated

channel and UE substituting the RF path of Fig. 4. It includes
several VNFs: a data source, an eNodeB transmitter, the channel,
a UE receiver, and a controller that allows selecting the working
parameters, such as channel conditions and LTE link parameters.

eNodeB

UDP :8086

UDP :8000

UDP :8888

UDP, IP: 192.168.10.x

InfluxDB API

SSH

DataFlow Network: 10.0.0.0/24

Management Network: 192.168.10.11-254

InfluxDB

OOCRAN

Figure 5: Spectrum of the 1.4 MHz LTE downlink signal
that is transmitted by the eNodeB instance and captured
by another RRH.

Table 1: Time to setup a VWI

eNodeBs Coverage Area Time
1 *(30 m)² = 2826 m² 30.12 s
5 14,130 m² 33.49 s
10 28,260 m² 45.87 s
20 56,520 m² 60.19 s
30 84,780 m² 84.63 s

Once the VWI is configured and deployed for providing the

specific service, it needs to be periodically adapted to the
changing operational conditions, including changing traffic
loads, channel impairments, and service requirements. One
possibility is to create a tailored VWI for the new condition. The
time that is required to set up and deploy a new VWI needs to be
considered to ensure non-disruptive NS. All subscribers attached
to the old VWI are released and remain disconnected from the
network until the setup of the new infrastructure is completed.

The time it takes to set up and deploy a new VWI is a
function of the number of eNodeBs needed to provide the
desired coverage. Table 1 shows some figures. About a minute is
needed to deploy a new VWI on the Barcelona Tech/EETAC
campus with an area of about 58,241 m².

Fast swapping of a working VWI for another that better suits
the new expected traffic load allows adapting the traffic capacity
of the working VWI to the traffic demand. The relatively long
times for VWI shutdown and redeployment calls for more
sophisticated strategies to minimize the impact on user service
perception. One solution is defining long periods for updates,
e.g. one hour, or maintaining the old virtual network until the
new network is established, introducing the notion of VWI soft
handover. Another solution is creating a VWI repository.
OOCRAN can then select the VWI that best matches the actual
traffic demand, user distribution, and other conditions or
requirements.

6 CONCLUSIONS
The discussion on how to apply ETSI NFV MANO to manage
practical C-RAN deployments is still in its early stage. This paper
has introduced the OOCRAN testbed and a methodology for
setting up a wireless access network with real and simulated RF
links. OOCRAN facilitates testing different infrastructure
sharing methods and deployment strategies by providing
monitoring and system analysis tools that do not jeopardize real-
time execution. It enables creating and using a VWI repository
for different types of experiments. The testbed is modular and
can be easily extended with hardware or software to take into
account additional environmental, service and network
considerations, such as heterogeneous networks. It provides a
platform for experimental research and education on virtualized
wireless networks. Future work will address the creation of
tailored and adaptive network services, analyze dynamic VWI
deployment solutions and fundamental limitations, and tackle
ultra-dense 5G networks, where efficient orchestration is critical.

ACKNOWLEDGMENTS
This work has been partially supported by the Spanish
Government, Ministerio de Ciencia e Innovación, through award
number TEC2014-58341-C4-3-R and the NLnet Foundation.

REFERENCES
[1] I. Gomez, V. Marojevic, and A. Gelonch. 2012. Resource Management for

Software-Defined Radio Clouds. IEEE Micro, vol. 32, no. 1, pp. 44-53, Jan.-Feb.
2012. DOI: 10.1109/MM.2011.81

[2] I. Gomez-Miguelez, V. Marojevic, and A. Gelonch. 2013. Deployment and
Management of SDR Cloud Computing Resources: Problem Definition and
Fundamental Limits. EURASIP Journal on Wireless Comm. & Networking,
2013:59, pp. 1-11, March 2013.

[3] M. Richart, J. Baliosian, J. Serrat, and J-J Gorricho. 2016. Resource Slicing in
Virtual Wireless Networks: A Survey. IEEE Trans. on Network and Service
Management, Vol. 13, No. 3, pp, 462-476, Sept. 2016.

[4] L. Doyle, J. Kibiłda, T. K. Forde, and L. DaSilva. 2014. Spectrum Without
Bounds, Networks Without Borders. Proceedings of the IEEE, vol. 102, no. 3,
pp. 351-365, March 2014. doi: 10.1109/JPROC.2014.2302743

[5] V. Marojevic, I. Gomez, and A. Gelonch. 2012. Cognitive Resource
Management for all Wireless Access Layers. IEEE Vehicular Technology
Magazine, Vol. 7, Iss. 2, pp. 100-106, June 2012.

[6] ETSI-European Telecommunications Standards Institute, http://www.etsi.org/
[7] Intel, White Paper, Carrier Cloud Telecoms – Exploring the Challenges of

Deploying Virtualisation and SDN in Telecoms Networks,
https://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/carrier-cloud-telecoms.pdf

[8] A. Jain, N. S. Sadagopan, S. K. Lohani and M. Vutukuru. 2016. A Comparison
of SDN and NFV for Re-designing the LTE Packet Core. In Proceedings 2016
IEEE Conf. on Network Function Virtualization and Software Defined Networks
(NFV-SDN), Palo Alto, CA, pp. 74-80. DOI: 10.1109/NFV-SDN.2016.7919479

[9] ETSI. 2013. Network Functions Virtualisation (NFV); Architectural
Framework. ETSI GS NFV 002 V1.1.1, October, 2013.

[10] C. Bouras, A. Kollia, and A. Papazois. 2017. SDN & NFV in 5G: Advancements
and challenges. In Proceedings of the 20th Conference on Innovations in Clouds,
Internet and Networks (ICIN), Paris, France, pp. 107-111. DOI:
10.1109/ICIN.2017.7899398

[11] OpenStack - Open Source Software for Creating Private and Public Clouds
Web Site, https://www.openstack.org/

[12] Eucalyptus Github Repository, https://github.com/eucalyptus/eucalyptus
[13] Ubuntu Documentation, UbuntuCloudInfrastructure,

https://help.ubuntu.com/community/UbuntuCloudInfrastructure
[14] V. Marojevic, et al. 2012. Resource Management Implications and Strategies

for SDR Clouds. J. Analog Integrated Circuits and Signal Processing, Vol. 73, Iss.
2, pp. 473-482, Sept. 2012, Springer US.

[15] srsLTE Repository, https://github.com/srsLTE/srsLTE
[16] OOCRAN Project Repository, https://github.com/oocran
[17] IEEE Standards Association, NGIF – Next Generation Fronthaul Interface Web

Site, https://standards.ieee.org/develop/wg/NGFI.html

http://www.etsi.org/
https://github.com/oocran
https://standards.ieee.org/develop/wg/NGFI.html

