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ABSTRACT 
The1 Cloud radio access network (C-RAN) offers a revolutionary 
approach to cellular network deployment, management and 
evolution. Advances in software-defined radio (SDR) and 
networking technology, moreover, enable delivering software-
defined everything through the Cloud. Resources will be pooled 
and dynamically allocated leveraging abstraction, virtualization, 
and consolidation techniques; processes will be automated using 
common application programming interfaces; and network 
functions and services will be programmatically provided 
through an orchestrator. OOCRAN, oocran.dynu.com, is a 
software framework that is based on the NFV MANO 
architecture proposed by ETSI. It provides an orchestration layer 
for the entire wireless infrastructure, including hardware, 
software, spectrum, fronthaul and backhaul. OOCRAN extends 
existing NFV management frameworks by incorporating the 
radio communications layers and their management 
dependencies. The wireless infrastructure provider can then 
dynamically provision virtualized wireless networks to wireless 
service providers. The testbed’s physical infrastructure is built 
around a computing cluster that executes open-source SDR 
libraries and connects to SDR-based remote radio heads. We 
demonstrate the operation of OOCRAN and discuss the temporal 
implications of dynamic LTE small cell network deployments. 
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1 INTRODUCTION 
We are witnessing an explosive expansion of Cloud computing 
and the use of data centers for providing diverse types of 
commercial and non-commercial services. The benefits come 
from the increased freedom of development, scalability and 
personalization of systems and services, and the rapid 
deployment of new functionalities, products and services. 
Virtualization is the enabler of resource sharing and its use 
reaches far beyond processing, storage and wired networking 
[1]. Research and development (R&D) is now incorporating 
virtualization technology into wireless communications 
networks with a special emphasis on the physical layer using 
software-defined radio (SDR) technology [2] [3]. 

Wireless communications and Cloud computing have 
important differences that need to be considered when merging 
the two. The Cloud provides computing, storage, data, 
applications, and other services that are hosted on some remote 
physical resources, such as a data center or a server connected to 
the Internet. Wireless communications networks have strict 
Quality of Service (QoS) requirements and exhibit a high degree 
of heterogeneity of equipment, system configurations, and 
services. Moreover, currently deployed 4G long-term evolution 
(LTE) networks fall short in terms of capacity and latency for 
enabling the tactile Internet, autonomous control of terrestrial 
and aerial vehicles, and massive connectivity of the Internet of 
Things. In addition, the end-to-end wireless network 
infrastructure and resources that deliver the services are often 
proprietary and heavily regulated. Despite the technological and 
non-technological barriers that exist today, using and improving 



 

Cloud computing technology is needed to enable the evolution 
of wireless communications and networking technology and 
services [4]. 

The business model behind the Cloud radio access network 
(C-RAN) is based on the Infrastructure-as-a-Service (IaaS) model. 
A pool of physical resources, which include antenna sites, 
networking components and processors, is virtualized and 
offered to mobile virtual network operators (MVNOs) to build 
their networks as most suitable for the services they intend to 
offer [5]. As technology evolves, MVNOs will be able to load 
software images of wireless networks that can be dynamically 
customized and adapted to the changing operational conditions. 
That is, a MVNO can request more resources or release resources 
on the fly to “reimage” its network. Whereas this seems like a 
logical extension of Cloud computing, several research 
challenges remain. 

Telecommunications infrastructure providers have been 
showing growing interest in incorporating Cloud computing 
technology in their service networks. The feasibility and benefits 
of using data centers and the Cloud led to gradually moving 
their network infrastructure to a virtual environment. During 
the 2013 Mobile World Congress several institutions agreed on 
standardizing the administration of the virtualized network 
infrastructure.  

An important push in this direction has come from the 
European Telecommunications Standards Institute (ETSI). ETSI 
clarifies the scope of network functions virtualization (NFV) and 
defines standard specifications that are meant to fulfill the 
operational and management requirements of next generation 
wireless networks [6]. NFV decouples the physical network 
equipment from the network functions. A NFV implementation 
is understood as an instance, or virtual network function (VNF), 
and is completely software-defined. Reference [7] demonstrates 
VNFs by executing the 3G and 4G core networks (CNs) in virtual 
machines (VMs). OpenStack and the kernel-based virtual 
machine (KVM) hypervisor provide the overall virtualization and 
management layers. Reference [8] presents the design, 
implementation, and evaluation of two LTE CN architectures, 
one being based on the principles of software-defined 
networking (SDN) and the other on NFV. Reference [9] describes 
the virtualization process of a base station and CN, whereas [10] 
performs a comparison between the proposed SDN and NFV 
solutions in mobile radio environments. 

Fig. 1 illustrates the ETSI NFV management and orchestration 
(MANO) architecture, which is composed of three main building 
blocks: 

 The Orchestrator manages the overall network and is 
responsible for including new services and VNF 
packages. 

 The VNF Manager oversees the lifecycle management of 
VNFs on the NFV infrastructure (NFVI) according to the 
specifications provided by the orchestrator. 

 The Virtualized Infrastructure Manager (VIM) 
manages the compute, storage and network resources of 
the NFVI. 
 

 

Figure 1: ETSI NFV MANO architecture. 

During the past ten years a plethora of Cloud computing 
solutions have been developed for providing IaaS. These tools 
allow managing servers as well as network infrastructure. 
Among the most popular IaaS frameworks are OpenStack [11], 
Eucalyptus [12], and the Ubuntu Cloud infrastructure [13]. 
OpenStack has become a prominent solution because of its 
capability to satisfy the network infrastructure providers’ needs 
in terms of massive computing and storage and complex 
networking. It can be considered as a VIM in the ETSI MANO 
reference architecture. 

In our research we assume that wireless infrastructure 
customers, typically MVNOs, lease resources as needed or 
periodically from an IaaS provider to build their networks [5]. 
These virtualized wireless networks will be tailored to the 
services they provide by using virtual wireless network 
components as their building blocks, rather than dealing directly 
with the computing, spectrum, remote radio heads (RRHs), 
antennas, fronthaul/backhaul, and other physical resources. The 
MVNO thus deploys a network of virtual resources with agreed 
communications, computing and networking capabilities. 

We have identified a gap between experiments in isolated 
radio environments and production-ready virtualized wireless 
networks. In order to leverage research and education in this 
field and facilitate transition to practice, we introduce the Open 
Orchestration C-RAN (OOCRAN) testbed, oocran.dynu.com. 
OOCRAN extends existing NFV management frameworks by 
incorporating the radio communications layers and some of their 
management dependencies. It provides an orchestration layer for 
the entire wireless infrastructure—hardware and software—so 
that the wireless infrastructure provider (WIP) can dynamically 
provision virtualized wireless networks to wireless service 
providers (WSPs) and satisfy the instantaneous communications 
needs. This paper presents our C-RAN testbed and illustrates the 
key features and example applications of OOCRAN. Section 2 
summarizes the testbed highlights. Section 3 presents the 
OOCRAN architecture and hardware components, whereas 



 

Section 4 introduces the software layers. Section 5 discusses 
some use cases for deploying SDR LTE networks on the testbed 
to enable research and education. We conclude the paper with 
an outlook on research on virtualized wireless networks, 
adaptive network services, and ultra-dense 5G networks. 

2  TESTBED OBJECTIVES AND HIGHLIGHTS 
The testbed objectives were defined to support experimental 
research and education on virtualized wireless networks in a 
laboratory and campus environment. These are: 

 Provide a cloud computing platform for executing VNFs, 
 Enable real-time resource management across 

heterogeneous resource pools, 
 Provide high flexibility, capacity, and extensibility, and 
 Be compliant with the ETSI NFV MANO architecture. 

The testbed design should (1) leverage the virtualization 
capability of C-RANs, as opposed to solely centralizing the 
baseband processing, and (2) enable the generation and real-time 
processing of RF signals in a Cloud computing environment. 

OOCRAN uses the IaaS reference model as the basis of its 
design. It fills the orchestration and management gap of next 
generation virtualized wireless networks by providing a clear 
and easy way to dynamically configure and assemble the 
building blocks of virtualized wireless networks and deploy them 
on shared infrastructure. It achieves this by virtualizing physical 
resources and managing shared access to limited computing and 
radio resources under a given policy. The modular design and 
isolation between hardware and software facilitates testbed 
upgrades. The OOCRAN framework manages the virtual-to-
physical resource mapping and allows creating new wireless 
networks as supported by the available physical resources [14]. 

OOCRAN is an orchestration layer that follows the ETSI 
MANO architecture for creating, coordinating and managing 
wireless networks. An OOCRAN user can take the role of a WIP, 
a WSP or a wireless test provider (WTP). This enables analyzing 
different ways of splitting the resource deployment, 
management and maintenance responsibilities and evaluating 
resource access policies using a single framework. In the role of 
a WIP, OOCRAN can create complete communications systems 
by chaining several VNFs and delivering them to the WSP. 
Acting as a WSP, OOCRAN can precisely manage the wireless 
infrastructure and introduce proper management policies to 
optimize the system behavior for the given environmental 
conditions and service demands. Acting as a WTP, OOCRAN 
facilitates creating specific operating conditions and test 
procedures and uses Cloud-based system monitoring tools to 
analyze the system. In other words, a WTP creates local or 
remote wireless laboratories that are tailored to the R&D needs. 

The OOCRAN framework has been developed using 
OpenStack Newton release as the VIM with the Neutron and 
Heat options. The Neutron extension allows OOCRAN users to 
customize remote access to the virtual networks they create. 
Heat, on the other hand, allows saving a defined infrastructure 
as a description file, facilitating quick deployment or deletion. 

The KVM hypervisor provides an open source high performance 
platform. 

The core of the OOCRAN management environment is based 
on the Django framework, which facilitates the creation of 
complex, database-driven Web sites and thus simplifies the 
development of new use cases. The user interface is based on 
Web services, which allow activating schedulers, queues, alarms, 
monitoring and scripting tools to properly manage VNFs and 
their configurations. These tools enable building a detailed 
control layer of the virtual infrastructure and applying various 
operational policies that take into account the state of resources 
and services. 

The wireless system is implemented combining several VMs, 
each performing specific VNFs. These VMs execute SDR 
waveforms and run on general-purpose processors with access 
to SDR hardware and RF equipment. They are capable of 
generating and processing real-time signals and interfacing radio 
links and CN functionalities. The currently available system is 
LTE, created as a fork of the srsLTE software library [15]. All the 
source code is open and released under the AGPL license. It can 
be freely downloaded from the OOCRAN project repository [16]. 

The OOCRAN testbed is capable of running in simulation 
mode as well as creating an emulated or real wireless network. A 
combination of simulated and real system components allows 
rapid prototyping and testing in controlled RF environments. 

3  ARCHITECTURE AND EQUIPMENT 
Fig. 2 depicts the OOCRAN testbed architecture. It features 
several components that enable implementing, managing, and 
analyzing virtualized wireless networks. A computing cluster 
emulates the data center of the C-RAN. The RRHs are accessed 
through the radio aggregation unit (RAU), using the terminology 
of the Next Generation Fronthaul Interface (NGFI) for 5G [17]. 
Together they form the remote radio system. RF instruments can 
be attached for signal or spectrum analysis, among others.  

Fig. 3a shows a photo of the testbed hardware. The roles and 
capabilities of the hardware components are discussed in 
continuation. 

 
 

 

Figure 2: OOCRAN testbed architecture. 
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Figure 3: OOCRAN testbed hardware (a) and software (b) 
modules. 

3.1  Computing Cluster 
The testbed is built around a computing cluster. Using the 
OpenStack terminology, one PC acts as the Controller and the 
other two as Computers, all running Ubuntu 16.04. The 
Controller features a 3rd generation Intel i7 8-core processor 
running at 2.5 GHz and using 8 GB of RAM. Its mission is to 
administrate the C-RAN. Among other things it manages the VM 
lifecycle, user-defined networks, and virtual routers. The two 
other Computers are two rackmount workstations, model 
SuperServer 6018TR-TF from SuperMicro. Each has two 2.6 GHz 
Intel Xeon 12-core processors, two Gigabit Ethernet ports, and 
one 56 Gbps InfiniBand port. These workstations host the VMs. 
They carry out the heavy computation, processing and 
forwarding the incoming data flows to the RF and CN 
components. 

The InfiniBand Switch IS5022 is an 8-port non-blocking and 
unmanaged 40 Gbps switching system that is capable of 
delivering 640 Gbps bandwidth with 100 ns port-to-port latency. 
It acts as a general switch of the testbed’s high speed network 
that connects the computing cluster with the remote radio 
system. 

3.2  Remote Radio System 
One additional PC—Intel i7-6700 8-core processor operating at 
3.4 GHz with 32 GB of RAM—is included in the testbed as the 
RAU. It connects to the data center via the InfiniBand switch and 
to the RRHs through Gigabit Ethernet. The RAU handles the 
necessary data forwarding between the two networks. 

Five RRHs are currently available as part of the OOCRAN 
testbed. We use the N210 model of Universal Software Radio 
Peripherals (USRPs) from Ettus Research. These USRPs allow 
sampling at up to 50 Mega-samples per second  (MS/s),  are   
capable   of   generating   or   capturing   RF signals below 6 GHz 
and connect to the processing center through Gigabit Ethernet. 
The remote radio system also features the following two RRHs: 
the ZedBoard with the AD-FMCOMMS3-EBZ daughterboard, 
capable of capturing 56 MHz of instantaneous RF bandwidth, and 
LimeSDR, which extends the bandwidth to 61.44 MHz. 

3.3 External Equipment 
RF instruments, such as spectrum analyzers, as well as additional 
computing or radio equipment can be connected to the testbed 
through the Ethernet switch or the RAU. This allows extending 
the experimental and RF analysis capabilities of the testbed. 

4  SOFTWARE LAYERS 
The OOCRAN software layers have been designed to provide a 
wireless management framework that extends the functionalities 
of ETSI MANO. These layers facilitate the focus on designing 
optimized management algorithms, called actuators. Our 
software framework, depicted in Fig. 3b, consists of six 
functional modules: GUI, MONITOR, NS_ENGINE, RF_ENGINE, 
QUEUE_TASKS and DRIVERS. 

4.1 GUI 
The graphical user interface (GUI) provides a user-friendly 
operating environment to facilitate the interaction between the 
user (human network operator) and the virtual infrastructure or 
network services (NSs). The GUI has been developed using 
Python 2.7 and Django. Django uses a model-view-controller, 
which facilitates making modification to the provided code. This 
allows saving the NSs and VNFs and defining actuators that can 
execute one or several tasks such as perform a partial 
reconfiguration or modify the lifecycle of the VNFs according to 
the state of the NS. 

4.2 MONITOR 
The MONITOR module configures the third-party programs 
Grafana/InfluxdB. InfluxDB is a framework that captures the 
state of the virtualized wireless infrastructure (VWI) and saves it 
in a database. OOCRAN accesses this database, processes the 
saved states by searching for predefined patterns, and starts the 
VWI reconfiguration process if the state matches the specified 
conditions. Grafana is a plotting tool that is used to plot the 
desired data. By using both frameworks we are capable of 
capturing data from VNFs, processing the data and creating 
customized graphs and alarms. This allows processing and 
exposing the state of a VNF (computational load, active users, 
waveform type, etc.).  

MONITOR captures the alarms that the Grafana/InfluxdB 
programs generate from the state of the NSs and VNFs. All 
alarms include a unique identifier related to a specific actuator. 
The module checks the credentials and the alarm identifier and, 
when both align, sends a command to NS_ENGINE to execute 
the corresponding actuator. This could, for example, trigger a 
partial reconfiguration of a set of VNFs. 

4.3 NS_ENGINE 
The NS_ENGINE module manages the NSs and the actuators. It 
decides about the NS/VNF lifecycle or the actions following 
certain conditions (time, alarm, input, etc.). This module is 
supported by RabbitMQ, which manages process queues and, 
among others, allows executing tasks asynchronously. When the 

C
O
N
T
R
O
L
L
E
R

VNF

QUEUE_TASKS MONITOR

NS_ENGINE

VNF VNF

OpenStack

RF_ENGINE

GUI
OOCRAN

DRIVERS

InfluxDB/

Grafana



 

NS_ENGINE needs to apply a change to the infrastructure, it 
updates its own database and sends a new task to the queue 
manager (QUEUE_TASKS). When the new task arrives, it is 
executed by the DRIVERS module that uses third-party 
application programming interfaces (APIs) to perform the 
update. 

4.4 RF_ENGINE 
The RF_ENGINE module manages the pool of radio resources 
(RF channels, transmission power levels, transmitter masks, etc.). 
It creates slices of spectrum and assigns them to different VNFs 
to avoid RF interference among coexisting radios and networks. 
NS_ENGINE interacts with RF_ENGINE when creating a new NS 
or VWI.  

These modules are compatible with the VIMs of OpenStack 
or Vagrant; this allows building and maintaining portable virtual 
software development platforms. 

4.5 Interfaces 
The OOCRAN software base is a fork of the Django framework 
and, therefore, all Django APIs can be used. OOCRAN 
incorporates APIs from OpenStack, Vagrant, InfluxDB and 
Grafana to create, delete, reconfigure and monitor the NSs. Fig. 
3b shows the interfaces among the OOCRAN modules and other 
management components. The information exchanges between 
modules are done through calls to classes and their methods. 
Third-party program drivers use HTTP RESTful APIs, which 
allows installing RabbitMQ, InfluxDB, Grafana, and OpenStack 
on different computers. Alarms use Webhook, an HTTP callback 
that detects changes in the working conditions of a program. 

5  EXAMPLE SCENARIOS 
The assessment of management frameworks or the design of 
resource management strategies can be done using simulated 
scenarios. On the other hand, the virtualization of physical 
resources and the associated management issues, such as 
resource slicing, isolation, and dynamic provisioning, require 
real RF equipment. VMs can be effectively deployed to host LTE 
base stations (eNodeBs) and user equipment (UEs). Additional 
VMs can simulate RF channels or connect to physical RRHs. This 
allows switching between simulated and real wireless links or 
using mixed links. Here we show the deployment of an LTE VWI 
and discuss VWI reconfiguration. 

5.1 Virtualized LTE System 
The scenario for creating the minimum infrastructure for the 
LTE downlink signaling is shown in Fig. 4. 

VNFs are attached to two different subnets with different 
functionalities: a) the DataFlow Network carries the data 
instances and b) the Management Network carries the control 
instances. The IP address assignment is done by means of DHCP 
in both cases. The DataFlow Network interconnects VNFs with 
external RRHs for sending or receiving IQ samples. The 
Management Network provides connectivity between    
OOCRAN/InfluxDB/SDN  and   the   VNFs  to  send   information 

 

Figure 4: Real LTE RF link setup. 

about operational states. More precisely, the state of the eNodeB 
VNFs is provided and VNF reconfiguration triggered using a 
secure shell (SSH) connection. The VNF application metrics are 
sent to the InfluxDB database using the Python API. Alarms 
from InfluxdB/Grafana are displayed at the following URL: 
http://oocran:8000/alerts/messages.  

OOCRAN assembles the required infrastructure building 
blocks for any real or simulated communications network and 
configures the corresponding VNF interfaces.  

The signal generated by the eNodeB transmitter instance is 
sent to the RRH. The radiated RF signal is captured by another 
RRH and sent to a spectrum analyzer instance. The spectrum 
analyzer instance executes the UHD_FFT tool from GNU Radio 
(www.gnuradio.org). Fig. 5 captures the Horizon front end from 
OpenStack, the Ubuntu instance screen and the UHD_FFT tool 
showing a capture of the LTE downlink spectrum generated by 
the eNodeB instance. This spectrum exhibits enough quality, 
that is, enough signal strength with respect to the noise floor. 

The UE receiver, a UE instance with its USRP and processing 
unit, can demodulate the signal with a resulting block error rate 
below 0.1, which indicates proper system operation. 

5.2 Dynamic VWI Deployment 
This scenario describes the dynamic deployment of a VWI, more 
precisely, a small cell-based wireless infrastructure (30 m cell 
radius). Here the OOCRAN management layer takes the role of a 
WIP. It designs and generates a suitable VWI on demand (using 
slices of physical resources) to satisfy the WSP needs. The virtual 
wireless network maps to physical resources and includes slices 
of RRHs, spectrum, transmission and processing power, among 
others.  

Some general assumptions of this scenario are 
 Use of omnidirectional antennas, 
 Line of sight links and free space path loss model, 
 RRHs can operate at various frequencies, 
 eNodeB sends data to multiple subscribers at the same 

time and assigns different bit rates, 
 1.4 MHz LTE channel bandwidth. 
The simulated LTE downlink scenario adds a simulated 

channel and UE substituting the RF path of Fig. 4. It includes 
several VNFs: a data source, an eNodeB transmitter, the channel, 
a UE receiver, and a controller that allows selecting the working 
parameters, such as channel conditions and LTE link parameters. 
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Figure 5: Spectrum of the 1.4 MHz LTE downlink signal 
that is transmitted by the eNodeB instance and captured 
by another RRH. 

Table 1: Time to setup a VWI 

eNodeBs Coverage Area Time 
1 *(30 m)² = 2826 m² 30.12 s 
5 14,130 m² 33.49 s 
10 28,260 m² 45.87 s 
20 56,520 m² 60.19 s 
30 84,780 m² 84.63 s 

 
Once the VWI is configured and deployed for providing the 

specific service, it needs to be periodically adapted to the 
changing operational conditions, including changing traffic 
loads, channel impairments, and service requirements. One 
possibility is to create a tailored VWI for the new condition. The 
time that is required to set up and deploy a new VWI needs to be 
considered to ensure non-disruptive NS. All subscribers attached 
to the old VWI are released and remain disconnected from the 
network until the setup of the new infrastructure is completed. 

The time it takes to set up and deploy a new VWI is a 
function of the number of eNodeBs needed to provide the 
desired coverage. Table 1 shows some figures. About a minute is 
needed to deploy a new VWI on the Barcelona Tech/EETAC 
campus with an area of about 58,241 m². 

Fast swapping of a working VWI for another that better suits 
the new expected traffic load allows adapting the traffic capacity 
of the working VWI to the traffic demand. The relatively long 
times for VWI shutdown and redeployment calls for more 
sophisticated strategies to minimize the impact on user service 
perception. One solution is defining long periods for updates, 
e.g. one hour, or maintaining the old virtual network until the 
new network is established, introducing the notion of VWI soft 
handover. Another solution is creating a VWI repository. 
OOCRAN can then select the VWI that best matches the actual 
traffic demand, user distribution, and other conditions or 
requirements. 

6 CONCLUSIONS 
The discussion on how to apply ETSI NFV MANO to manage 
practical C-RAN deployments is still in its early stage. This paper 
has introduced the OOCRAN testbed and a methodology for 
setting up a wireless access network with real and simulated RF 
links. OOCRAN facilitates testing different infrastructure 
sharing methods and deployment strategies by providing 
monitoring and system analysis tools that do not jeopardize real-
time execution. It enables creating and using a VWI repository 
for different types of experiments. The testbed is modular and 
can be easily extended with hardware or software to take into 
account additional environmental, service and network 
considerations, such as heterogeneous networks. It provides a 
platform for experimental research and education on virtualized 
wireless networks. Future work will address the creation of 
tailored and adaptive network services, analyze dynamic VWI 
deployment solutions and fundamental limitations, and tackle 
ultra-dense 5G networks, where efficient orchestration is critical. 
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