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ABSTRACT
Automated planning is a prominent Artificial Intelligence challenge,
as well as being a common capability requirement for intelligent
autonomous agents. A critical aspect of what is called domain-
independent planning, is the application knowledge that must be
added to the planner to create a complete planning application. This
is made explicit in (i) a domain model, which is a formal represen-
tation of the persistent domain knowledge, and (ii) an associated
problem instance, containing the details of the particular problem
to be solved. Both these components are used by automated plan-
ning engines for reasoning, in order to synthesize a solution plan.
Formulating knowledge for use in planning engines is currently
something of an ad-hoc process, where the skills of knowledge en-
gineers significantly influence the quality of the resulting planning
application. On top of that, a notion of quality of the knowledge
captured within a domain model is missing; it is therefore hard to
provide useful guidelines to knowledge engineers.

This paper raises some issues relating to the engineering of appli-
cation knowledge for automated planning, focussing on the domain
model. It uses the idea of a domain model as a formal specification
of a domain, and considers what it means to measure the quality
of such a specification. To do this it proposes definitions of the
attributes of a domain model and its encoding language, which are
needed by the automated planning community in order to improve
tools for supporting the engineering of planning knowledge, and
to advance toward a shared and inclusive definition of quality of
domain models.

CCS CONCEPTS
•Computingmethodologies→Artificial intelligence;Knowl-
edge representation and reasoning; Planning and schedul-
ing;

KEYWORDS
Automated Planning, Knowledge Engineering, Domain Model

∗Corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
K-CAP’17, Austin, Texas USA
© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . . $15.00
DOI: 10.475/123_4

ACM Reference format:
Thomas L. McCluskey, Tiago S. Vaquero, and Mauro Vallati. 2017. Engineer-
ing Knowledge for Automated Planning: Towards a Notion of Quality. In
Proceedings of ACM Conference on Knowledge Capture, Austin, Texas USA,
December 2017 (K-CAP’17), 8 pages.
DOI: 10.475/123_4

1 INTRODUCTION
Automated planning is a research discipline that addresses the
problem of generating a totally- or partially-ordered sequence of
actions that transform the environment from some initial state to
a desired goal state. Automated planning has been successfully
applied for decades in several areas, including space exploration
[1], machine tool calibration [27], and urban traffic control [25] to
mention a few.

Undoubtedly, the intensive development of domain-independent
planners has contributed to the advancement of planning technol-
ogy, as planning engines can be exploited as embedded compo-
nents within a larger framework. Since they accept the domain and
problem instance in a well defined interface language and return
plans using the same syntax, they can be interchanged without any
changes to the rest of the system. On the other hand, the efficiency
of plan generation remains one of the most prominent challenges
in artificial intelligence. Domain-independent planning engines
have to deal with the complexity issues inherent in plan genera-
tion, which are exacerbated by the separation of planner logic from
domain knowledge.

Knowledge Engineering in Planning and Scheduling (KEPS) was
defined in the 2003 PLANET Roadmap [23], specifically for domain-
independent planners, as the collection of processes involving (i)
the acquisition, validation and verification, and maintenance of
planning domain models, (ii) the selection and optimisation of ap-
propriate planning machinery, and (iii) the integration of (i) and
(ii) to form automated planning and scheduling (P&S) applications.
KEPS can be seen as a special case of knowledge engineering, where
the need for methodologies for acquiring, domain modelling and
managing formally captured knowledge has long been accepted.
It is also related to the area of capturing conceptual knowledge
and developing domain models for Qualitative Reasoning in the
general Modelling and Simulation area [4]. However, the pecu-
liarities of automated planning and scheduling applications distin-
guish KEPS from general knowledge-based and simulation systems.
Firstly, KEPS is concerned with the acquisition and representation
of knowledge about actions, resources, processes, events, and the
effect these have on a state. Secondly, this knowledge is to be used
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to create a system that synthesises plans, rather than performing
the more common functions of knowledge systems such as clas-
sification, diagnosis or decision making. Thirdly, the knowledge
is often acquired in two parts: a specification of persistent knowl-
edge (in the literature this part is called the “domain” or “domain
model”) and a specification of particular scenarios representing the
planning problem instance. As an illustrative example, planning
has recently been applied to the area of urban traffic control[38].
In the resulting industrial-led project using real scenarios and data
[25], the domain model used contains representations of continuous
processes, events and actions, and the scenarios (problem instances)
contain hundreds of assertions concerning road links, junctions,
traffic flows and traffic signal configurations.

Studies on KEPS have led to the creation of several tools and
techniques to support the design of domain knowledge structures,
and the use of planners for real-world problems. Most of these tools
have been presented in specialised workshops such as the Knowl-
edge Engineering for Planning and Scheduling1 workshop and the
Verification and Validation of Planning Systems2 workshop, as well
as competitions such as the International Competition on Knowledge
Engineering for Planning & Scheduling (ICKEPS).3 The competitions
have motivated the development of powerful KEPS systems and
advances in domain modelling techniques, languages and analysis
approaches. However, the 2016 edition of ICKEPS [5] also high-
lighted two main issues. Firstly, most teams did not use any KEPS
tools (except text editors), and thus relied only on their expertise.
Even more worrying is the fact that some teams were not aware
of the existence of KEPS tools. Secondly, the number of partici-
pants of ICKEPS is still not very large, especially when compared
with the latest edition of the International Planning Competition
[36]: this suggests that the planning community underestimates
the importance of knowledge engineering, despite its enormous im-
pact on applicability of domain-independent planning in real-world
scenarios.

Methods, algorithms, tools and representation languages to sup-
port and organise the design of such domain models are impor-
tant (e.g. as shown by CommonKADS [33] in the related area of
Knowledge-Based Systems), but they need to be related to com-
monly agreed domain model properties and metrics for the objects
being designed. Within the process of domain model creation and
design, this paper focuses on attempting to define a set of funda-
mental domain model properties –a research topic that does not
seem to have progressed since much earlier work [21]. The intro-
duction and discussion of properties is of pivotal importance for
the planning and the artificial intelligence community: it allows
to improve KEPS tools, for supporting the knowledge engineering
of planning domain models, and to advance towards a shared and
inclusive definition of quality of domain models.

The remainder of this paper is organised as follows. Section 2
contextualises andmotivates thework presented in this paper. Then,
in Section 3, the relevant background information on automated
planning is introduced. Section 4 the concept of the domain model
is defined, and in Section 5 properties and metrics are introduced
and described. The implications of the introduced properties are
1 http://icaps14.icaps-conference.org/workshops_tutorials/keps.html
2http://icaps11.icaps-conference.org/workshops/vvps.html
3http://icaps-conference.org/index.php/Main/Competitions

further discussed in Section 6, and in Section 7 conclusions are
given.

2 MOTIVATION
The accelerated development of AI Planning has facilitated take up
of planning tools as components in autonomous systems. This take
up has meant that engineering issues surrounding automated plan-
ning is of growing importance. Stakeholders, and users in particular,
of autonomous systems need to be assured of the dependability of
such systems. There is a need to demonstrate traditional engineer-
ing qualities within a product, such as the validity and reliability of
the autonomous system. This is of paramount importance in many
applications which are safety critical or safety related, in particular,
in the areas of robotics and autonomous vehicles. Thus, being able
to define and measure qualities of the planning-related knowledge
is necessary in the process of engineering the final product.

A particular issue in the emerging aspects of agent capabilities, is
their ability to be able to autonomously capture, engineer and refine
knowledge. In this case, engineers who create these agents require
methods, metrics and evaluation criteria to discuss the quality of
the knowledge captured by the agent. A major part of this captured
knowledge, to enable rational planning and reasoning, would be in
the form of a domain model. In order to compare different learning
algorithms one needs to be able to discuss and ultimately measure
the quality of the resulting model.

Another motivation is the increasing complexity of the domain
model, requiring the need to capture such knowledge in a struc-
tured and well-founded way. In multi-agent planning, for example,
plans may be both generated and executed in a distributed fashion
by a collection of agents. As well as the conventional dynamical
aspects of knowledge about actions, the public/privacy features
residing with individual agents need to be captured. Or again in
planning with hybrid systems, the specification of continuous vari-
ables, continuous processes, and exogenous events needs to be
captured faithfully as a necessary precondition for planning.

3 AUTOMATED PLANNING
Automated planning, and specifically classical planning, deals with
finding a (partially or totally ordered) sequence of actions transform-
ing the static, deterministic and fully observable environment from
some initial state to a desired goal state [13]. In the classical rep-
resentation atoms are predicates. States are defined as sets of ground
predicates. A planning operator o = (name(o), pre(o), eff− (o), eff+ (o))
is specified such that name(o) = op_name(x1, . . . ,xk ) (op_name is
a unique operator name and x1, . . . xk are variable symbols (ar-
guments) appearing in the operator), pre(o) is a set of predicates
representing the operator’s preconditions, eff− (o) and eff+ (o) are
sets of predicates representing the operator’s negative and positive
effects. Actions are ground instances of planning operators. An
action a = (pre(a), eff− (a), eff+ (a)) is applicable in a state s if and
only if pre(a) ⊆ s . Application of a in s (if possible) results in a state
(s \ eff− (a)) ∪ eff+ (a).

As stated, this knowledge is made explicit in two components:
a domain model and a problem instance. When using the domi-
nant family of planning knowledge representation languages - the
PDDL[12], the planning domain model and problem instance are
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provided to planners as two different files, and the same domain
model is used for all the problems of the application. In the restricted
world view of classical planning, a domain model is specified via
sets of predicates and planning operators. A problem instance is
specified via an initial state and set of goal atoms, that need to
be reached. A solution plan is a sequence of actions such that a
consecutive application of the actions in the plan (starting in the
initial state) results in a state that satisfies the goal.

The classical planning model can be extended, in order to han-
dle a wider range of constraints and increase expressiveness. For
instance, this is the case in Temporal Planning, where actions have
a duration that should be considered, or Uncertainty Planning, that
studies cases in which the environment is not fully observable and
effects are non-deterministic. A further extension is named PDDL+
[10], which contains constructs to define hybrid domains, includ-
ing processes and events. On this matter, the interested reader is
referred to [13] and [11].

4 THE DOMAIN MODEL IN AUTOMATED
PLANNING

Domain Modelling is a phrase used perhaps with a variety of mean-
ings in computer science and applied mathematics. A domain model
is often described as an abstract conceptual description of some ap-
plication, and is used as an aid to the software development process.
It is formed as part of the requirements analysis in order to spec-
ify objects, actors, roles, attributes, etc, independent of a software
implementation. A domain model is often represented imprecisely
using diagrams, such as in the Unified Modelling Language (UML)
[31], for “human consumption” –that is, for the benefit of analysts
and developers to explore requirements and to subsequently create
software in the application area being modelled.

The meaning of a domain model for representing knowledge
within a planning application is much more specific. It is still an
abstract conceptual description of some application area but it is
encoded for a different purpose: for the analysis, reasoning and ma-
nipulation by a planning engine in order to solve planning problems.

Let us assume that a requirements specification for the planning
component of some wider project is available. The requirements
may be in the minds of domain experts, be described informally in
diagrams and textual documents, or described (at least in part) in a
formal language (e.g., as in the use of LTL [30]). The requirement
specification would naturally contain descriptions of the kind of
planning problems that the planner needs to solve, and the kind of
plans that need to be provided as output. For example, it might be
essential that resource consumption is taken into consideration and
so plans need to be generated which achieve goals while minimising
resource consumption. Before a domain-independent planner can
be chosen and used, the domain information needs to be concep-
tualised and formalised. During this process the assumptions and
features that are essential to represent a domain model are derived
from the overall requirements. Within this context we define a
planning domain model as follows:

Definition 4.1. A planning domain model is a formal specifica-
tion of the application domain part of the requirements specification
which represents entities invariant over every problem instance,

(:action LOAD-TRUCK
:parameters
(?obj - obj
?truck - truck
?loc - location)

:precondition
(and (at ?truck ?loc) (at ?obj ?loc))
:effect
(and (not (at ?obj ?loc)) (in ?obj ?truck))
)

Figure 1: An example of a possible encoding of a LOAD-
TRUCK operator in PDDL.

such as object classes, functions, properties, relations, and opera-
tors.

This is in line with terminology from general Knowledge Engi-
neering, specific work on domain “theories” of physical systems
[4], and what is called the “domain file” in the most common plan-
ning domain encoding language, PDDL [26]. In particular, we ex-
pect the language in which the domain model is written to have
a well-defined syntax and operational semantics: this means that,
independent of planner and domain, there is a defined process for
executing plans which correspond to sequences of actions in the
application domain. In other words, there is a sound interpretation
of the dynamics for any well-formed domain model [21], and such
interpretations are embedded into validator tools such as VAL [17].
Adding in a problem instance, gives a knowledge model:

Definition 4.2. Aplanningknowledgemodel is a domainmodel
and a corresponding problem instance

An example of PDDL encoding of part of a domain model is
the LOAD-TRUCK operator, shown in Figure 1. Such an operator
describes how the state of the world is changed (effect section)
when a truck is loaded at a location ?loc, and lists the preconditions
that must be met in order to correctly apply the operator.

5 MODEL QUALITY
The central part of a domain model in AI Planning is the repre-
sentation of the set of actions that a planner can reason about and
the elements that support the specification of actions. It forms a
potentially complex knowledge base, and its correctness is an es-
sential factor in the overall quality of the planning function. Indeed,
Bensalem et al. [3] state that domain models present the biggest
validation and verification challenge to the Planning and Schedul-
ing community. Questions include: how should domain models be
formulated, debugged and generally judged to be fit for a purpose?
how should we determine the quality of the domain model and the
quality of the language in which it is written? what are the criteria
for choosing one domain model encoding rather than another, within
that language?

For example, it has been shown that the choice of representation
within the same language of a domain –as well as the order in which
elements are listed within the domain– have a significant bearing
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on the efficiency of planning [32, 37], and the process of domain
model production may have a general bearing on quality [34]. As
well as informing the general AI community, and the planning
applications community, answers to these questions will form the
underpinning of any tool sets to assist in this development process.

Domain models are often formulated into a planner input lan-
guage directly from a requirements specification using only basic
editors (these are so-called hand-crafted domain models), such as
PDDL-studio [29] or the online editor PDDL editor 4. In some
cases, the requirements are encoded firstly into a more application-
oriented language such as UML in itSIMPLE [40], or in AIS-DDL
in the KEWI interface [41], and then mapped into the target plan-
ner’s input language. The international competition on knowledge
engineering for automated planning and scheduling in 20095 for
example, was dedicated to evaluating systems that expect the re-
quirements to be captured in an application-oriented notation, then
the domain model is produced automatically or semi-automatically.
Hence, in this case, the quality of the domain model is dependent
both on the initial encoding and the correctness of the translation
process.

As a variation on this, domain models can be formulated by
automated acquisition tools, such as in the LAMP system [42],
and the LOCM system [6]. These type of systems acquire domain
models from example plans with little or no pre-engineered domain
knowledge. The LAMP system can form PDDL domain models
from example plan scripts and associated initial and goal states. It is
aimed at helping knowledge engineers create a new domain model,
as the authors maintain that, after learning, the model needs to be
hand-crafted to remove bugs. Another system, LOCM, exploits the
assumption of an object-centred domain to enable it to learn from
plan scripts only. As with LAMP, LOCM outputs a model in a PDDL
format, but it inputs only training plan scripts: it does not require
representations of initial and goal states, or any descriptions of
predicates, object classes, states etc. In the context of an engineering
process, training plans would therefore be considered part of the
requirements specification: they would be examples of the kinds of
plans that the system would be required to generate. For this class
of learning system, the concept of quality of the domain model is
key to being able to evaluate the learning process.

Assessing the quality of the domain model is naturally part of the
verification and validation (V&V) processes of the overall planning
system. The importance of V&V in domain models for planning
has long been recognised in both domain independent work [24]
and more specifically in space applications [28]. Ways to assess
the quality of a domain model can be classed into two types –
dynamic and static– in a similar way to investigating program code
quality. In practice, debugging and validating the domain model
is invariably done using dynamic testing, i.e testing the ability to
execute a planner with a domain model and a particular problem
instance. This dynamic view of V&V of the domain model is taken
in the work of Bensalem et al. [3]. The authors focus on model
checking, a method often used to test formal specifications, that
exhaustively checks all reachable states, to test whether a path
can be found to a goal. Model checking is not feasible for larger

4http://editor.planning.domains/
5ICKEPS 2009. http://kti.mff.cuni.cz/ bartak/ICKEPS2009/

Figure 2: An overview of the introduced domain model
properties, and how they relate with domain requirements,
planning engine, (potentially) generated plans, the current
knowledge model, and the exploited language.

domain models, however, as the state space to be explored can be
astronomical. What states may be reachable depends on the starting
position of the domain model checking process. In other words, the
process works with a fixed initial state, whereas in AI Planning we
need to investigate the domain model over a range of initial states.

Here we consider static as well as dynamic properties of syntacti-
cally correct domain models, and through these, introduce notions
of quality. In the style of software quality domain models and soft-
ware metrics, we define three attributes of domainmodels (accuracy,
consistency, and completeness), one of a domain model’s encoding
language (adequacy), and one of a domain model-planner pairing
(operationality). These attributes (and metrics related to them) are
intended to be used to investigate issues in the engineering of do-
main models, to be embedded in knowledge engineering tools, and
hence to contribute to the overall validation and verification of the
planning system.

Figure 2 shows the introduced domain model properties, and the
way in which they relate with the aspects and elements involved
in the knowledge engineering process of planning applications, i.e.,
the domain requirements, the planning engine, the resulting (po-
tentially) generated solutions plans, the current knowledge model,
and the exploited model language.

5.1 Consistency and Accuracy
Let us assume the knowledge model contains a set of logical expres-
sions. We will take a model-theoretic approach to the semantics
of domain models and problem instances, and use this to form the
property definitions as shown in Figure 2. An interpretation of
the planning knowledge model is a mapping of its components
to features (objects, relations, etc.) in some application domain.
Facts in an initial state then become simple assertions, and ground
operators then become more complex assertions about when it is
possible to execute an action, and what effects the action has, in the



Engineering Knowledge for Automated Planning: Towards a Notion of Quality K-CAP’17, December 2017, Austin, Texas USA

application domain. Clearly we are interested in knowledge models
that have an interpretation given by the requirements specification
that makes the assertions in the model true.

Definition 5.1. A knowledge model is consistent if there exists
at least one interpretation that makes all its assertions true.

Consistency is checking whether there is any interpretation that
can make the planning domain knowledge true, and therefore can
be considered simply as a property of the knowledge model. Consis-
tency checks are therefore application-independent. They can spot
obvious but common errors, e.g. if the domain knowledge admits a
state which contains both a fact and the fact’s negation, then no
interpretation can make the state true, and hence no interpretation
can satisfy it. Or again, if the operator in Figure 1 contained as
an additional precondition the term (not (at ?obj ?loc)) then no
interpretation could satisfy it, and hence the operator could never
be grounded into a usuable action.

We can widen this definition to accuracy by considering the
truth of the assertions when the interpretation is given by the
requirements specification of the application at hand.

Definition 5.2. A knowledge model accurately represents part
of the requirement specification if the interpretation given to it by
mapping its components to features (objects, relations, etc.) in that
specification, makes all assertions in the knowledge model true.

Consistency is thus a special case of accuracy. Accuracy is an
attribute of the knowledge model, related to application domain
features considered as part of the requirements specification.

Verifying accuracy is essentially an informal process if the re-
quirements are described informally. If the requirements are already
encoded in some formal language, then a knowledge model is ac-
curate if the requirements provide a model of the knowledge (in
the sense that the knowledge model is an abstract algebra, and the
requirements a concrete algebra).

5.2 Use of the Properties in PDDL encodings
In PDDL, a knowledge model is encoded as a domain file and a
problem file. The dynamics that will allow the planner to generate
a solution plan, that when executed from the initial state can reach
the goal state, are described in the domain model file. To check the
accuracy of operators in this file we could:

• create all possible reachable groundings of operators, using
the objects in the problem file;

• map the logical expression in the precondition of each
grounded schema to a set P of relations and properties in
the requirements;

• map the logical expression in the effects to a set E of rela-
tions and properties in the application; and

• check that if P is true in the application, then the action
domain modelled could be executed, and if executed would
make E true.

A similar process would be used to assess the accuracy of the prob-
lem instance contained in the problem file: it is a matter of checking
that the initial state and goal maps to the problem embedded in the
requirements specification.

If a domain model is inaccurate, then it may be possible to cre-
ate metrics to measure the inaccuracy. For example, in a PDDL

domain model learning system such as LAMP [42], there is a need
to evaluate the quality of the domain model learned, as part of the
learning tools’ evaluation. Using a comparison with a hand-crafted
domain model, the authors judge the accuracy of the domain model
by counting the number of missing predicates in the learned do-
main model. To relate it to our definition, the hand-crafted domain
model takes the role of part of the requirements –in this case these
requirements are themselves stated precisely in a formal language–
though it is a matter for future research to discover sound ways of
measuring differences when comparing two domain models [35].

As a rule of thumb, if all the considered problem instances are
shown to be inconsistent in a similar way, it may be argued that
the domain model is inconsistent as well. On the other hand, if the
consistency of a domain model is merely assessed by analysing the
consistency of problems, the fact that no inconsistencies have been
identified in such a set of considered problems, is not sufficient for
claiming that the domain model is consistent for every possible
problem from the domain.

5.3 Completeness
In software engineering, the completeness of formal specifications
has been recognised as a difficult but important topic that is best
tackled in specific types of application (e.g., Leveson deals with
process control systems using a check-list [19]). For automated
planning, we introduce the following definition:

Definition 5.3. Given a specific problem instance and a domain
model, and I their interpretation mapping to the requirements
specification, then the domain model is complete if the following
conditions hold:

• (i) for any solution plan S for problem instance P that can
be formed from ground operators in the domain model,
I (S ) is an acceptable solution for I (P ) in the requirements;

• (ii) the converse is also true, that is, for any acceptable
solution S ′ to problem I (P ) there exists a solution plan S
derivable from the domain model for problem P such and
I (S ) = S ′.

In practice, the requirements would contain a set of problems
P1..Pn requiring solution for a fixed domain model (DM), hence
each PiDM would need to be complete in this sense. As an example,
failing to include operator schema in a domain model which are
necessary to provide solutions, cause incompleteness. Using these
definitions, it is possible to find domain models which are complete
but not accurate. This is so because, given a complete domain model,
it would be possible to add a construction (e.g., an extra operator)
that interpreted to something false in the requirement specification,
but which never interfered in the solutions of required problems to
be solved.

5.4 Adequacy
Adequacy is a relationship between the requirements and the lan-
guage in which the domain model is encoded. Given the fact that
requirements cannot be changed or (usually) easily modified, we
define the adequacy on the basis of the chosen language.

Definition 5.4. A language is adequatewith respect to a require-
ments specification if it has the expressive power to represent the
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requirements within a domain model in sufficient detail so that a
complete domain model can be expressed.

Adequacy is related to the level of granularity needed by the
requirements, and derives from the idea of representational or
expressive adequacy of a knowledge representation language. As
many extensions of PDDL have been introduced in the last decades,
each of them extending the expressive power of the language, an
obvious example of inadequacy is where we might use basic PDDL,
that does not allow to represent any sort of numerical or temporal
information, but where the requirements demand that actions have
a specific temporal duration.

It should be noted that the completeness of a domain model
depends on language adequacy. A domain model could be accurate
(all the features present conform to the requirements, in the sense
that their interpretation is true), but it may be the case that some
requirements cannot be represented at all. Hence, the completeness
of a domain model may be prevented because of an inadequate
language.

5.5 Operationality
In the automated planning and scheduling literature, the validation
of a domain model is often solely based on a test of whether it
will lead to acceptable behaviour in a planning and scheduling or
application system [20, 34], that is, if an acceptable plan can be
output. In fact, given the definition of completeness we introduced
in Section 5.3, the above mentioned informal definition of opera-
tionality can be seen as a weak form of completeness. However,
there are normally many encodings of any given domain model
that would pass this test, but some encodings lead to much more
efficiently generated solutions than others. In our applied work on
Urban Traffic Control, for example, we showed that, using the same
planner, improving the efficiency of the encoding considerably en-
hanced the scope of the problem instances that the planner could
solve [25].

Given that a complete domain model exists, there will always be
ways of re-representing the domain model without compromising
completeness. These domain models may give different results
when input to a planner: for example, some may not satisfy some
real time constraints in the requirements of the application domain.
In this sense, operationality is also a relationship partly dependent
on the choice of the planning engine.

More generally, it is also possible that two distinct domainmodels
are complete, but one leads to a more efficient implementation, or
better quality plans. Hence, the process of finding an acceptable
plan in an application depends not only on the strategy used by
the planner, but also the domain model. In particular, if the model
is not accurate, then the planner will generate flawed plans or no
plans at all.

The speed of plan generation can be affected dramatically under
such circumstances. For instance, case studies have shown that
fixing and refining the domain model itself (e.g., adding additional
relevant knowledge) can improve the performance of planners,
without modifying the planners and their search mechanism [39].
In addition, works like [2, 7, 8, 18] show that adding relevant, re-
dundant constraints (in the form of control knowledge and rules)

in the domain model can also speed up planning engines, thus pro-
vide a solution plan in a shorter CPU-time. Moreover, it is worth
reminding that CPU-time is not the only resource that can be con-
strained in requirements: RAM and hard drive usage, for instance,
can represent critical resources as well.

For a given planner and requirements specification, we define
Operationality as an attribute of a domain model and a planning
engine E as follows.

Definition 5.5. A domain model is operational with respect to
planning engine E if E produces a solution S to a problem instance
P with acceptable resource bounds, such that I (S ) is an acceptable
solution to I (P ) according to the requirements.

In this context, acceptable resource bounds can be defined –for
instance– in terms of runtime, memory usage, number of CPUs,
etc. Of course, it is assumed that such resource bounds allow the
planning engine E to run properly. From this perspective, the oper-
ationality property of a domain model can also change over time,
as acceptable resource bounds may be reduced –due to modified
application requirements–, the planning engine can be substituted,
or the machine on which the planning engine is executed may
be changed. Since planning engines’ performance can be signifi-
cantly affected by the hardware and software configuration of the
exploited machine [16], it may also be the case that exogenous
events –such as a major release of a compiler, or a new version of
an operating system– can impact on the operationality of a given
domain model, with regards to a considered planning engine. Note
that the definition does not demand that the planner outputs all
the acceptable solutions; this is somewhat infeasible computation-
ally, hence we have a weaker definition that is more in tune with
practice.

Many state-of-the-art domain-independent PDDL planners auto-
matically investigate operationality (as well as performing checks
that help promote confidence in the consistency or accuracy of a
knowledge model). They exploit a pre-processing step –such as
the reachability analysis– for assessing whether the specified goals
can be achieved by exploiting the available actions, and objects
described in the initial state. While this pre-processing step can
be incomplete, for the sake of planning efficiency, recent works
have been focused on providing formal and complete unsolvabil-
ity proofs, under the form of certificates, of a considered planning
problem [9]. Furthermore, Göbelbecker et al. [14] introduced an
approach that, given a problem that is unsolvable (i.e., inconsis-
tent), can suggest how to modify the model in order to make it
solvable. Finally, there are tools such as Torchlight [15] which focus
on investigating the shape of the search space for some well-known
heuristics approaches. This sort of techniques can already be fruit-
fully exploited for obtaining an overview of the consistency of a
problem model, described in PDDL and, implicitly, to investigate
also the domain model.

6 DISCUSSION
One key question is how well a modelling language supports the
pursuit of forming high quality knowledge models, and particu-
larly domain models. Do the language features support the faithful
engineering of a model? PDDL, for example, was shown to not be
too good in this case [22] primarily because there are few inbuilt
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(:process keepinter
:parameters (?p - phase ?i - intersection)
:precondition (and

(inter ?p) (contains ?i ?p)
(< (intertime ?i) (interlimit ?p) )

)
:effect (and

(increase (intertime ?i) (* #t 1 ) )
))

Figure 3: An example of a process in PDDL+ which models
time passing between phases of traffic signals in a road in-
tersection (the time between phases is called the inter-green
time)

constructs such as state invariants which help cut down on bugs.
The weakness in using PDDL for knowledge engineering is that there
is typically much meta knowledge left implicit that governs what is
an acceptable state or problem instance in an application, and what
is not, which cannot be captured by the PDDL. In an application, this
meta knowledge can be stated as a set of invariants on planning states,
and proves very useful in checking the validity of problem instances,
but must be stated within another formalism.

Another question is, do the definitions of the key criteria easily
generalise to more expressive languages.

Consider PDDL+. this is a language for encoding domain models
which contain processes, events and continuous variables, as well
as actions and discrete variables. An example of a simple PDDL+
process definition is given in Figure 3. This models the passing of the
inter-green time between two consecutive phases of traffic signals
in a road intersection. While the general definition of accuracy
for a PDDL+ model is still appropriate, the procedure to check
PDDL given relies on there being a finite grounding of operators,
which is not the case for a hybrid language containing continuous
variables. Also, the operational semantics of PDDL+ is much more
complex than that of classical planning, with problems to do with
co-occurrence of actions and processes, and cascading of events, as
is found in hybrid automata [10]. Thus while the properties defined
in the paper are still useful, checking the quality of such expressive
models is more difficult.

Consider the case of Multi Agent Planning: For multi-agent plan
generation, the additional machinery required is the public/privacy
nature of features (predicates, actions). There have been several
schemes on how to deal with this, such as the use of features being
either global to all agents, or restricted to one agent. We could
localise the quality criteria to each agent, then look at the overall
quality in terms of the sum of the individual. Plan generation can be
conceptualised as each agent creating their own complete plan, and
the public part of these plans being combined by a central agent in
order to achieve the main goal. In this case, in contrast to the case
for PDDL+, there needs to additional quality criteria to deal with
the communication and/or privacy aspects. Additionally, concepts
such operationally are more complex, since the execution of plans
depends on more than one agent.

7 CONCLUSION
In this paper we have investigated the role and nature of the plan-
ning domain model, and discussed its importance in the process of
creating a planning application.

Notions of the “quality” of a domain model are needed for many
reasons, not least (i) to help engineers construct models, (ii) to
underpin tools and environments that help in the process of creating
models, (iii) to assist in the efficiency of planning, (iv) to assess
action learning programs, (v) and to compare one domain model
against another.

We have introduced notions of consistency, accuracy, complete-
ness, adequacy and operationality with respect to the formation of
planning domain models and their associated problem instances.
We have introduced a much-needed discussion on the subject, and
explored the implications of these definitions as aspects of the qual-
ity of the planning knowledge model. Our future work will further
explore these definitions and how they can be used to compare and
contrast existing KEPS tools and methods.
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