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ABSTRACT
The focus of this work is to exploit ontologies to make robotic
systems more accessible to non-expert users, therefore support-
ing the deployment of robot-integrated applications. Due to the
increasing number of robotic platforms available for commercial
use, robotic systems are nowadays being approached by users with
di�erent backgrounds, who are often more interested in the robots’
high-level capabilities than their technical architecture.Without the
right expertise however, using robots is restricted to the capabilities
exposed by the platform provider, i.e. they can only be used as end
products rather than as development platforms. Our hypothesis is
that an ontological representation of the capabilities of robots could
make these capabilities more accessible, reducing the complexity
of robot programming and enabling non-experts to exploit these
systems to a much larger extent. To demonstrate this, an ontology
abstracting the capabilities exposed by the most common robotic
middleware (ROS) is integrated in a system to allow non-experts to
program robots of di�erent types and capabilities without previous
knowledge either of the speci�c robotic platform being considered,
or of the intricate systems used in its implementation. Our experi-
ments, in which non-experts users had to con�gure the system in
order to make robots achieve di�erent tasks, show how the e�orts
required for realizing basic tasks using available robotic platforms
can be sensibly reduced through our approach.

CCS CONCEPTS
• Computing methodologies → Knowledge representation and
reasoning; Mobile agents; • Computer systems organization
→ External interfaces for robotics;
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1 INTRODUCTION
Autonomous mobile agents and robotics in general are experienc-
ing a new wave of interest thanks to the accelerating advancements
in many areas, such as computer vision, arti�cial intelligence, data
management and communication, sensors, and actuators [19]. To-
day, a considerable amount of e�cient techniques for basic robotic
tasks (perception, manipulation, navigation etc.), as well as hard-
ware and software components, are available, along with an increas-
ing number of cost-accessible robotic platforms in the market [23].

As a consequence, robotic systems are being approached by
users with di�erent backgrounds, who are often less interested in
the low-level technological components making up the system (e.g.
communication, synchronization, drivers) [22], than they are in
exploiting the capabilities o�ered by the robot at a higher level (e.g.
autonomous navigation, vision, natural language generation). Lack-
ing the required technical knowledge to exploit such capabilities
for their own purpose, these users are then restricted to using the
system as an end-product, within the limits of usage anticipated
by the robot’s provider (e.g. remote control interfaces, and in some
cases, restricted programming facilities/APIs).

We argue that this is a waste of the potential of current robotic
platforms. Indeed, as support for smart cities for example, robots
could be integrated in a number of applications such as parking
monitoring, building surveillance or garbage collection. Without
the expertise of dedicated robot developers, however, the imple-
mentation of such scenarios is only limited to using the capabilities
allowed by the commercial platforms (e.g. using a remote-controlled
drone to record photos or videos), while more advanced usages,
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supported in principle by those systems, are not actually achiev-
able (e.g. programming the drone to autonomously survey an area
through several of its sensors).

1.1 Robotic Middleware
The limitations described above could be overcome by integrating a
middleware between the application and the robots, able to abstract
from the technical implementation of the robotic platform, to enable
access and exploitation of the robot’s high-level capabilities (vision,
movement, perception, actuation) in a simpli�ed and homogeneous
manner.

A step towards this is the ROS framework (Robot Operating
System).1 ROS is a collaborative project developed with the aim to
relieve developers from the management of low-level components.
It has been considerably promoted by the robotics community
in recent years, with many current robotic platforms (including
commercial, low cost ones such as drones) having been developed
directly with ROS, or having been made compliant afterwards.

ROS however remains a low-level technical platform, providing
a layer directly above the hardware components of a robot and
enabling expert developers to more easily share and reuse speci�c
modules. In other words, programming robots for high-level tasks
with ROS still requires a �ne-grained understanding of the technical
architecture of the robot, and advanced knowledge of robotics,
computer programming, and of the ROS framework itself. This
particular issue is further emphasized considering that, while there
are only a limited number of di�erent types of high-level capabilities
a robot might o�er, there is a high variety of di�erent low-level
components to actually implement them.

In this paper, we focus on simplifying the time-consuming pro-
cess of con�guring/programming a robot for speci�c tasks, and
in enabling it for non-expert users of robotic platforms. Our hy-
pothesis is that this can be achieved through using an additional
ontological representation of the high-level capabilities o�ered by
a robotic platform on top of the existing ROS middleware, as an
abstraction and an intermediary to the actual technical realization
of those capabilities within the system.

1.2 Motivating scenario: Integrating robots in
smart-cities

Milton Keynes is a city in Buckinghamshire, England, growing in
attention not only for being an example of modern urban design,
but also for being the fastest growing city in the UK (in terms of
jobs, people and houses). The city engaged in a large “Future City”
program, at the center of which the MK:Smart project2, which
has developed a state-of-the-art data acquisition and management
infrastructure (the MK Data Hub3) and an IoT network with live
sensors capturing many aspects of the functionalities of the city
(energy and water consumption, transport data, satellite-acquired
data, social and economic datasets, and crowdsourced data from
social media or specialized applications). The MK Data Hub was
built with the idea that a common facility to e�ciently manage,
integrate and re-deliver data from a variety of sources could be

1http://www.ros.org/
2http://www.mksmart.org/
3https://datahub.mksmart.org/

exploited by applications and services, reducing their development
costs and enabling intelligent data management (mining, analytics,
aggregation, alignment, linking) at the scale of the entire city.

Our current goal is to create applications where robots are also
integrated, namely by developing scenarios where robots act both
as data collectors [28] and data consumers [9] of the Data Hub. In
a practical example, we are looking into exploiting teams of robots
of di�erent characteristics and capabilities (i.e. drones and ground
robots) for the surveillance and maintenance of green spaces. The
main problem we encountered here is that, without the required
expertise especially in application development in ROS, we can
only exploit the few capabilities exposed by the drone interface
(namely, tele-operated navigation and video recording), while more
advanced abilities could have enabled our application to better ex-
ploit the drone (e.g. through programmed trajectories, or the ability
to use the drone’s sensors for surveying the area or even to perform
object detection with ARtags4). Even with the required expertise
in robotic application development and a su�cient understanding
of the drone’s technical architecture, the task of implementing an
application accessing such capabilities at a low-level would still rep-
resent a major e�ort, even more so if needing to integrate several
di�erent robot architectures (di�erent types of drones and ground
robots).

1.3 Proposed approach and contributions
From the scenario presented above, it is clear that the problem to
tackle relates to the ability to program di�erent robotic platforms
to their full extent homogeneously and with reduced e�ort, i.e.
without incurring into the time-expensive process of learning low-
level ROS programming for the speci�c set of robot architectures at
hand. Ontological representations have been used both as a mean
to improve system interoperability and to provide meaningful, con-
ceptual abstractions of complex and detailed domains. The question
arising here is therefore: Could an ontological representation of robot
capabilities, able to abstract from the low-level implementation of
the robot, improve the ability of non-experts to exploit such a robot
to achieve speci�c tasks? It can be expected that answering this
question positively would provide a way to facilitate the integra-
tion of robots in a larger variety of applications and environments,
including smart-cities.

To answer this question, we propose to develop a system able
to understand the capabilities of a robot by relying on an ontology
that abstracts from the capabilities of ROS components, and then to
use such a system to show how non-experts can access and instruct
robots of di�erent types and capabilities without previous experi-
ence in doing so. The main idea here is to abstract the ROS layer
using an ontological representation, where the ROS components
running on the robot are mapped onto capabilities of a higher level.
For example, given a ROS component connected to the robot motor
and producing sensor data such as velocity or acceleration, we can
derive that the robot is able to manage its speed, hence possessing
the capability of Movement.

4Markers supporting augmented reality tasks such as, the appearance of virtual objects
and video tracking to calculate a camera’s position, see http://www.hitl.washington.
edu/artoolkit/.
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To achieve this, the following steps were carried out: (i) studying
and understanding the ROS middleware, in order to be able to
abstract the capabilities of ROS components; (ii) formalizing the
ROS framework into an ontology, which generalizes from speci�c
robotic platforms; and (iii) enclosing the ontology in a system to
automatically understand a robot’s capabilities.

In summary, the main contributions of this paper are:
• A method to extract an ontological representation of a ro-
bot’s capabilities from its ROS con�guration.
• A tool using this ontological representation as an interme-
diary between the robot’s architecture and a programming
interface using a set of common, homogeneous instructions
in a simple visual language.
• A demonstration that this tool enables non-expert users to
use robots to achieve speci�c, non-trivial tasks.
• Showing that this tool allows generalization from multiple
types of robotic platforms, supporting interoperability.

2 RELATEDWORK
This section focuses �rst on how ontologies were used to facili-
tate the use of complex systems, then on how capabilities were
represented in robotics.

Our work very much relates to the area of sensemaking, where
meaningful representations are used to facilitate insight and sub-
sequent intelligent actions [25]. External knowledge in the form
of ontologies has been used to achieve a wide range of tasks, such
as semantic enrichment [2, 16], visualization [4, 30], text process-
ing [1, 29], and enterprise knowledge management [18, 24].

The power of ontologies was also promoted in the Internet-of-
Things (IoT), namely by initiatives such as the Semantic Sensor
Web for networks and sensors [8, 26], smart homes and environ-
ments integrating heterogeneous devices and services and allowing
personalized interactions [7, 31], as well as smart products [10, 20].
Similar to our work, the main objective here is to use semantic
technologies to enable the abstraction of the heterogeneous tech-
nologies such as sensors and devices, so to improve interoperability
and simplicity, support non-expert end-users and allow the devel-
opment of more situation-aware applications. These works have
generally focused either on representing the information related to
the sensing devices, without trying to abstract actual capabilities, or
on the development of middleware frameworks, therefore focusing
on the data-integration problem. An attempt to combine these two
aspects is presented in [15].

In robotics, the need for standards and common vocabularies
to promote interoperability and reusability has been raised by the
Ontologies for Robotics and Automation working group5 (ORA)
sponsored by the IEEE Robotics & Automation Society, which pre-
sented the CORA ontology to describe the most general concepts
and relationships in robotics and automation [11]. An ontology to
de�ne devices with widely di�ering capabilities, software require-
ments and communication technologies is integrated in the mid-
dleware presented by [13]. A canonical robotic command language
(CRCL) was presented by [3] to provide generic commands which
are not speci�c to the language of either the planning system or the
5https://standards.ieee.org/develop/wg/ORA.html

robot controller. With respect to our work, these representations
focus on low-level functional aspects of the robot as a device, e.g.
its parts, positions and coordinates, without leaving any possibility
of abstraction.

Formal models for robot capabilities can be found in the area of
task allocation and planning. This body of works de�nes capabili-
ties as related to some kind of resource, e.g., sensors/actuators [17],
processing capacities or software modules [6, 21]. Others de�ne
capabilities as subtasks or basic skills [12, 14]. A task-independent
model of robot capabilities is also presented by [5]. In [27], rep-
resentations of robot actions and perceptions are combined with
common-sense knowledge in the context of autonomous robot con-
trol. These models di�er from our work in that capabilities do not
abstract from the hardware/software architectures, i.e. they repre-
sent how a robot can do something (and what) at a �ne-grained
or medium level of granularity. Also, tasks are generally domain-
speci�c and manually de�ned.

Finally, robots with higher level capabilities have been used in
systems aiming at teaching computer programming, such as Dash6
or the Blocky7 visual programming tool. These tools are however
only focused on the educational aspects, through interactivity and
advanced visualization.

3 AN ONTOLOGY-BASED SYSTEM TO
ABSTRACT ROBOT CAPABILITIES

In this section, we present the ontology-based system which ex-
tracts and abstracts the capabilities of robotic platforms. We start
with a more detailed description of the ROS framework.

3.1 ROS: The Robot Operating System
ROS is a collection of tools, libraries, and conventions that aim
at simplifying the creation of complex and robust robot behaviors
across a wide variety of robotic platforms. Themain idea behind it is
to free developers as much as possible from the burden of managing
the communication between components, as well as promoting the
decomposition of their functionalities.

The core of any ROS application is the computational graph,
which consists of a network of all the data processes involved.
Main elements of this graph are nodes, messages, topics and services,
described in the following.
• Nodes consist of sets of processes performing a number of com-
putations. They are the minimal executable unit of ROS and
each one implements a speci�c functionality. For example, the
move_base node implements the robot navigation, kobuki_node
is a wrapper for the motors’ driver, and map_server is a node
broadcasting the map of an environment to the entire system.
• Messages consist of the typed data structures exchanged by the
nodes when they communicate with each other. An example is
the Twist message, composed by six �elds (three linear and three
angular velocities), used by the move_base node to send setpoints
to kobuki_node controlling the wheels.
• Topics are used to route messages between nodes asynchronously
with a publish/subscribe paradigm. Generally speaking, a send-
ing node creates a message and it publishes it on a topic, and the

6https://uk.makewonder.com/dash
7http://wiki.ros.org/blockly
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nodes that are interested in that message will subscribe to it. For
instance, move_base and kobuki_node exchange Twist messages
using a topic called /cmd_vel. Note that multiple nodes can pub-
lish on or subscribe to the same topic, but neither producers nor
consumers know who is producing/receiving the information.
The topic is therefore only a named channel upon which nodes
agree, and not a direct connection between them.
• Services are communications channels to route messages syn-
chronously through a request/reply (or client/server) paradigm.
They are de�ned by a pair of messages, one for the request and
one for the response. A server node provides a service and then
waits for a request, while a client node requires a service and wait
for the server to provide a response. An example of a service is the
one used by move_base to request the map from the map_server

node. Since the exchange of the map message OccupancyGrid is
too memory-demanding to be constantly published on a topic,
move_base requests the map only once, synchronously, through
the /map service, and then stores it locally.
Additional ROS elements also play a role in the computational

graph. Being of less relevance to the purpose of this work, they
have been omitted by our current implementation.

3.2 Abstracting capabilities from ROS
Once understood the main principles of ROS, the second step is to
provide a formal representation of ROS and its components. It is
worth mentioning here that, although our ROS representation is
inspired by the Event8 and Situation9 ontology design patterns, we
use the ontology as a mean to demonstrate our hypothesis, and it
is therefore out of the scope of this work to assess its originality or
robustness.

ROS Communication. The main ROS concepts presented above
are represented as a ros:ROSCommunication, depicted in Figure 1(a).

As one can see, a ros:ROSCommunication consists in a ros:Message
routed via a ros:Mode (consisting in a topic or a service communi-
cation) and a set of ros:CommunicationComponents (publishers, sub-
scribers, clients and servers), that instances of a ros:Node use as
a mean to communicate with each other. The class ros:Package is
used to identify the library to which the message belongs, since
these are generally named in the form of /$package/$message. For
example, the Twistmessage published by move_base belongs to the
package geometry_msgs.

The publish/subscribe paradigm is represented as a class ros:ROS
TopicCommunication in Figure 1(b). Here, messages are commu-
nicated through instances of ros:Publisher and ros:Subscriber

via instances of a speci�c ROS:Topic. Taking back the example of
move_base and kobuki_node of Section 3.1, we might have the fol-
lowing basic representation:
@prefix ros: <http://data.mksmart.org/onto-ros/class#>
@prefix : <http://data.mksmart.org/onto-ros/resource/>
:example1 a ros:TopicCommunication;

ros:isRoutedVia :cmd-vel;
ros:hasMessage :twist;
ros:hasPublisher :publisher1;
ros:hasSubscriber :subscriber1.

8http://krisnadhi.github.io/onto/event.owl
9http://www.ontologydesignpatterns.org/cp/owl/situation.owl

:twist a ros:Message.
:cmd-vel a ros:Topic.
:move-base a ros:Node;

ros:hasComponent :publisher1.
:kobuki-node a ros:Node;

ros:hasComponent :subscriber1.

A ros:ServiceCommunication is represented in Figure 1(c) as com-
posed by the pair hros:RequestMessage,ros:ResponseMessagei, re-
spectively sent by instances of a ros:ServiceClient and a ros:Ser-

viceServer.
The service is o�ered through an instance of the ros:Service

class, which speci�es the ros:Mode of Figure 1(a). A minimal repre-
sentation of a service exchanging the map between move_base and
the map_server node would, for instance, be as follows:
@prefix ros: <http://data.mksmart.org/onto-ros/class#>
@prefix : <http://data.mksmart.org/onto-ros/resource/>
:example2 a ros:ServiceCommunication;

ros:isRoutedVia :map;
ros:hasMessage :occupancy-grid;
ros:hasClient :client1;
ros:hasServer :server1.

:occupancy-grid a ros:Message.
:map a ros:Service.
:move-base a ros:Node;

ros:hasComponent :client1.
:map-server a ros:Node;

ros:hasComponent :server1.

Components capabilities. In Figure 2 we show how ROS compo-
nents are mapped to ros:Capabilities. The main insight here is
that high-level capabilities are implemented in the robot through
a set of ROS nodes, messages, topics and services, which we can
map and represent in a knowledge base to infer what the robot is
able to do.

Let us consider again the example of move_base that publishes
the Twist messages on the /cmd_vel topic. By analyzing the compu-
tational graph while the robot is operating, one can notice that a
communication component, published by move_base, is producing
setpoints on /cmd_vel, and therefore derive that the robot is able to
move, hence owning a capability such as capa:Directional_Move-
ment.

Based on this example, establishing the mappings between a
ROS system and the capabilities o�ered by the corresponding robot
(using the schema of Figure 2) is equivalent to creating a set of rules
whose premises are speci�c sets of hros:Node,ros:Message,ros:Topici,
which allow to derive the presence of a capability. Unfortunately,
ROS does not provide standards for naming topics or nodes. De-
velopers implement their own nodes and can choose a di�erent
name for the topic where the setpoints will be published. This lack
of standardization makes it di�cult to rely on topics and nodes
to discriminate the robot capabilities in the ROS computational
graph. However, a major e�ort has been put into standardizing ROS
messages, and a wide variety of messages are now commonly used
to represent most of the information used by ROS-based systems.10
Messages have a clear semantics: For instance, geometry_msgs/Pose
will only provide information about the position of the robot in a

10http://wiki.ros.org/common_msgs
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(a) (b) (c)

Figure 1: ROS basic structure (a), Structure of ros:Topic (b) and Structure of a ros:Service (c).

Figure 2: Mapping ROS components to capabilities.

3D space. We can therefore encode this convention as a triple (rule)
of the form hros:Message,ros:evokes,ros:Capabilityi.

In addition, the way messages are exchanged can also be ex-
ploited to identify capabilities, e.g. a publisher of a Pose message
identi�es the current position of the robot, therefore evoking the
ability of sensing itself (self perception), while a subscriber of Pose
expects a desired position to be send to the robot, evoking the abil-
ity of autonomous navigation. In order to represent how di�erent
capabilities can be evoked by a read or a published message, we use
triples of the form hros:Capability,ros:hasModality,ros:Modalityi.
A modality is either read or write, representing respectively capa-
bilities giving information about the robot (e.g. sensor data) and
capabilities expecting some inputs (e.g. navigation). In the remain-
der of this paper, we will refer to these as read capabilities and write
capabilities.

Finally, a ros:Capability might also use the message �elds to
identify how to parametrize the capability to achieve the desired
behavior of the robot, in the case of a write capability, or which
is the information carried by a message correlated to the speci�c
capability.

Capability taxonomy. Based on the principles outlined above, we
designed a basic taxonomy11 including the mappings between ROS
components (especially messages) and speci�c capabilities. These
were de�ned in a bottom-up fashion, by collecting the speci�c ca-
pabilities from the robotic platforms supported by ROS12 as well as
from the most adopted ROS libraries, then abstracting them itera-
tively onto capabilities of higher levels. Due to space limitations,
we only present here the three macro-classes we used in our work:
Sensing, which includes all the capabilities enabled by the robot sen-
sors (vision, depth sensing, light sensing etc.); Movement, comprising
the activities related to changing position (tele-operation, body-
part movement, autonomous navigation etc.); and RobotKnowledge,
which includes capabilities the robots might have to represent their
surrounding environment (such as the map representation). While
establishing the taxonomy of capabilities is naturally a constantly
evolving work, we asked ROS experts to verify that our current
coverage is correct and reasonably complete.

3.3 Extracting capabilities from ROS
The �nal step consists of using the de�ned ontology to create a
system that can automatically extract high level capabilities by
inspecting the ROS setup of a robot. The system’s architecture,
shown in Figure 3, relies on the following components:
1) The Robot, representing the architecture of the physical system.

It consists of a collection of ROS nodes and topics currently in
execution on a speci�c platform.

2) The Dynamic Node, which dynamically creates publishers and
subscribers using the information derived from the ontology.

11Available at https://tinyurl.com/ybqg7om5. Being an evolving work, further contri-
butions to the taxonomy are left for future work.
12http://robots.ros.org/
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Figure 3: System general architecture.

In the case of a request for a reading capability, the dynamic
node creates a subscriber associated to the speci�c topic, and
relays to the server the messages received from the robot. For
writing capabilities, the parameters received from the server are
structured in a message and then sent to the platform through
an ad-hoc publisher.

3) The Analyzer, interfacing with the robot system to determine all
the capabilities the robot processes. This component scans all
the active topics in the robot system, and then associates to the
relevant topics an appropriate capability based on the ontology
based on the mappings described previously.

4) The Server, acting as a bridge between the robot system imple-
mented in ROS and the outer world (namely, the users). The
server invokes the analyzer when starting, in order to populate
the knowledge base with the available capabilities and topics,
and translates the high level capabilities to the correct ROS topics
every time it receives a request.

4 EVALUATION
We set up our evaluationwith the goal of showing how our ontology-
based approach could indeed make robots more accessible to users
without previous expertise in robotics or ROS. To this end, we
designed a user-interface wrapping our system, and asked non-
experts users to use this interface to instruct robots of di�erent
types to solve some high-level tasks. We measured indicators of
the e�orts required to achieve those tasks, as described below after
an introduction to the interface.

4.1 User interface
To make robots’ capabilities available to users, we created a ba-
sic imperative programming language, in which the atomic blocks
are invocations of the available robot capabilities (e.g. navigating
to a certain coordinate). We included in this language also basic
programming constructs, such as if-then-else, while-do and repeat
statements, allowing the user to build condition-constrained be-
haviors. The parameters of a capability could also be used in the
conditions, so to exploit any robot output to drive the program �ow
(e.g. moving forward until an ARtag is detected). Such a language

could be easily extended with common features of other existing
languages (for loops, break and the use of variables); however, we
considered this set of programming blocks su�cient for the purpose
of our experiment.

Given a robot running on ROS, the user was shown an inter-
face, as in Figure 4, including: (i) a left pane showing the robot
capabilities as inferred by the ontology-based system, as well as
the necessary control parameters; (ii) a right pane with the list of
available programming blocks (right side) and (iii) a central pane for
building the robot program, i.e. a sequence of blocks to be executed.

Figure 4: Interface presented to the users in order to pro-
gram a robot. Available capabilities are on the left, the pos-
sible programming blocks to be used on the right, and the
main program is in the middle.

4.2 Experimental Setup
Four exercises of increasing di�culty were asked to be performed
by each user, which corresponded to creating a program allowing
a robot to achieve a speci�c task. In order to demonstrate that
the ontology-based system could allow the abstraction of robot
capabilities independently from the platform, we set up two variants
of each exercise, a simulated one with a ground wheeled robot
operating in an o�ce environment (s-variant), and a real-world
one with a drone �ying in an indoor space (r-variant). Table 1
presents the robot capabilities available in each setting13.

Exercise 1: Single command. The �rst exercise required to imple-
ment a single movement behavior. In the s-variant, the user had to
instruct the robot to move to a speci�c point in space corresponding
to a room. Similarly, in the r-variant, the user had to instruct the
drone with a single movement command.

13For clarity, autonomous navigation is related to the action “go to a coordinate X,Y”,
while directional movement is intended as commands such as “turn right” or “move
forward”.
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Table 1: Robot capabilities for the two exercise variants.

Mode s-variant r-variant

autonomous navigation take-o�
write directional movement land

directional movement
vision
current position vision

read current speed current position
map representation object recognition
object recognition

Exercise 2: Command sequence. In the second exercise, users
needed to instruct a robot with a sequence of two single actions. In
the s-variant, the users needed to instruct the robot to navigate to
two rooms of the o�ce, one after the other. In the r-variant, the
user had to instruct the drone with any motion command, then
ending its movement with a landing command.

Exercise 3: Condition-based halt. The third exercise required users
to implement a sequence of actions with a termination condition.
In the s-variant, the robot needed to perform a patrolling of three
rooms of the o�ce, stopping only once all the rooms had been
visited at least twice. In the r-variant, the user had to instruct the
drone to keep on turning on itself until an ARtag was seen, in which
case it would land.

Exercise 4: Object recognition. In the �nal exercise, users had to in-
struct the robot to perform autonomous navigation through several
ARtags. In the s-variant, the robot had to patrol a set of rooms until
an ARtag was detected. In the r-variant, the user had to implement
a behavior for the drone to perform 3 di�erent movement actions
every time an ARtag was seen.

4.3 Results and discussion
A total of 14 users were involved in the evaluation, equally shared
between the s- and the r-variant. Those users were essentially
members of our research lab with at least some basic programming
skills (to make the exercise meaningful), but with no experience in
either ROS or robotics in general. As a starting point, users were
�rst allowed to familiarize themselves with the interface, namely
through clicking on the di�erent sections to understand the general
behavior of the tool. Users were however prevented from reading
the description of the capabilities. After this �rst step, they were
asked to solve all four exercises one after the other. For every
exercise, we measured the time from the end of the task description
until the �nal execution of the program.

Table 2 shows the average time avg(�) required by the users to
solve each exercise, along with the average number of programming
blocks avg(��) and the number of capabilities num(���) required
to solve the task.

All the exercises were successfully carried out by all users. As
one can see, Ex. 1 took slightly longer (especially in the s-variant),
when compared with other more complex exercises. This can be
attributed to the time users required to familiarize themselves with
the capabilities of the robot they were working with, which they
could not have known beforehand. The relatively high variance in
the time taken for Ex. 4 is due to this particular exercise having

Table 2: Results for the s-variant and the r-variant. These
are compared with the e�orts required by a ROS expert to
achieve the same tasks, measured in terms of number of
lines of code num(��), ROS components num(���) and ROS
message types num(���) that were employed.

Ex. 1 Ex. 2 Ex. 3 Ex. 4
s-variant

us
er
s avg(��) 1 2 4 9.5

num(���) 1 1 1 2
avg(�) 1:22 ± 42s 1:04 ± 23s 1:15 ± 16s 6:52 ± 1:46

ex
pe
rt num(��) 35 58 64 82

num(���) 1 2 2 3
num(���) 1 2 2 3

r-variant

us
er
s avg(��) 1 2 4 8

num(���) 1 2 4 4
avg(�) 1:16 ± 3s 01:16 ± 8s 4:05 ± 15s 5:47 ± 1:39

ex
pe
rt num(��) 34 39 56 59

num(���) 1 2 4 4
num(���) 1 2 3 3

multiple solutions, some of which taking longer to implement than
others.

A key, straightforward conclusion from this table is that users
of this tool, who had no experience of programming robots and
no prior knowledge of the architecture of the robot they were
manipulating, managed to successfully program such a robot to
achieve tasks from the very simple Ex. 1 to the more di�cult Ex. 4
in a matter of a few minutes. Considering the inherent complexity
of robot programming and of understanding not only what a robot
can do (what capabilities it possesses), but also how to use it (how
to invoke those capabilities), this can be considered a non-trivial
achievement.

A direct comparisonwith how the same userswould have achieved
the same tasks without the tool provided is not feasible and would
turn out to be meaningless. However, it appears a straightforward
assumption that, those users not being familiar with ROS, the sim-
ple (in our tool) process to understand the di�erent components
of the robot, what they do and, crucially, how to invoke them,
would require more than a few minutes by itself. ROS is a complex
framework, requiring hours of practice to master. In addition, ana-
lyzing the computational graph of the speci�c robot to understand
which topics and services are being be used (i.e. what the tool does
through the ontology) is far from an easy task. A number of ROS
nodes would need to be implemented from scratch to encapsulate
the required functionalities, and managing the correct publishers
and subscribers. Lastly, the nodes would need to be deployed and
integrated with the robot architecture. Knowledge of speci�c pack-
ages (e.g. the move_base node for autonomous navigation) is also
required by some of the exercises. In other words, while a direct
comparison could not have been performed, there is little doubt
that signi�cantly more e�ort would have been required to enable
our non-expert users to achieve the same results with ROS, as it
did with our tool.

As an additional point towards the validity of our claim that
our tool reduces the e�ort required to exploit robots’ capabilities
and therefore make them more accessible, we asked an expert in
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robotics with extensive experience in ROS to achieve the same task.
Once again, the objective here is not to compare the experts to
the non-experts using two di�erent frameworks, but to provide
an intuitive understanding of the di�culty of realizing the tasks
achieved by our users without our tool. In Table 2, we therefore
show for each task in each variant:

• The number num(��) of lines of code used by the ROS expert,
• The number num(���) of ROS communication components
(publishers and subscribers) employed
• The number num(���) of message types used.

These metrics give an estimate of the e�ort required by a ROS
developer to solve the speci�ed tasks. Lines of code set a lower
bound for the implementation time, while number of components
and messages outline the complexity of the solution.

This comparison further show how programming a robot is
made “easier” and, through abstracting capabilities from the techni-
cal aspects of their implementation, requires less complexity. Our
approach and the associated tool therefore represent a viable solu-
tion to enable non-expert users to exploit robots in ways that were
before only accessible to expert ROS programmers.

5 CONCLUSIONS
In this paper, we have shown how a layer of ontological knowledge
can empower non-expert users to access robotic systems of di�erent
types and capabilities. We developed an ontology-based system for
robot programming abstracting from the speci�c components of
the robot operating system (ROS), and showed how this allows
non-experts to make robots achieve speci�c tasks without having
any previous experience in robotics.

Several directions can be taken as future work. We are looking
into re�ning the taxonomy of robot capabilities, to allow both high-
level and �ne-grained actions. In addition, we are also interested in
testing our system with other types of robots, e.g. by employing
robots with manipulators. Another possible direction is to extend
the system into a collaborative programming environment were
multiple users can work together in programming a (set of) robots.
Finally, we intend to make the system reusable by providing the
high-level capabilities in the form of public APIs.
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