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ABSTRACT
�ere are many scenarios where we may want to �nd pairs of tex-
tually similar documents in a large corpus (e.g. a researcher doing
literature review, or an R&D project manager analyzing project
proposals). To programmatically discover those connections can
help experts to achieve those goals, but brute-force pairwise com-
parisons are not computationally adequate when the size of the
document corpus is too large. Some algorithms in the literature
divide the search space into regions containing potentially simi-
lar documents, which are later processed separately from the rest
in order to reduce the number of pairs compared. However, this
kind of unsupervised methods still incur in high temporal costs. In
this paper, we present an approach that relies on the results of a
topic modeling algorithm over the documents in a collection, as
a means to identify smaller subsets of documents where the simi-
larity function can then be computed. �is approach has proved
to obtain promising results when identifying similar documents
in the domain of scienti�c publications. We have compared our
approach against state of the art clustering techniques and with
di�erent con�gurations for the topic modeling algorithm. Results
suggest that our approach outperforms (> 0.5) the other analyzed
techniques in terms of e�ciency.
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1 INTRODUCTION
Given the huge amount of information about any domain that is
being produced or captured daily, it becomes crucial to provide
mechanisms for automatically identifying the elements that can
bring value for the involved agents (general consumers, experts,

�is work is supported by project Datos 4.0 with reference TIN2016-78011-C4-4-R,
�nanced by the Spanish Ministry MINECO and co-�nanced by FEDER..
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
K-CAP 2017, Austin, TX, USA
© 2017 ACM. 978-1-4503-5553-7/17/12. . .$15.00
DOI: 10.1145/3148011.3148019

companies, investors…) and discard the noisy, non-relevant infor-
mation. Much of the information is presented in the form of textual
documents, making necessary for experts to browse through many
of these texts to �nd relevant data. A way to explore the knowledge
inside collection of documents is by moving from one information
element to another based on certain criteria that relates them. �is
approach requires to calculate a similarity matrix with all possible
comparisons between elements, so we can later select the most
pertinent ones. Since computing a n ⇥ n matrix takes O(n2) time,
obtaining all possible pairs of similarities in a large collection of
documents can be unfeasible because of the exponential cost of
comparing every pair of elements.

Our work is derived from a real need in the domain of digital
libraries, where we targeted the task of �nding relations among
texts based on similar content inside a corpus containing 7,487
digital books and 97,532 chapters (104,960 documents in total). Since
the time consumed in calculating the similarity score between two
documents was t = 7.62 ⇤ 10�4 seconds in a 15x CPU@2.30Ghz
and 64GB RAM server, the total time to compute all combinations
over the whole corpus went up to around 5 days. Considering that
other tasks leveraging the entire collection such as training a Topic
Model only required 48 minutes to be executed, calculating the
similarity scores between pairs of documents becomes a signi�cant
bo�leneck when making sense of big collections of documents.

One possible way of �nding similarity-based links between pair
of documents, is to 1) process the items following di�erent anno-
tation techniques (entities, keywords, etc) that allow machines to
programmatically leverage on their content. 2) create a vectorial
representation based on those features for each document and 3)
compare them following some distance/divergence functions [21].

In order to reduce the execution time, some approaches have
introduced mechanisms (mainly clustering algorithms and pre-
electionmethods) to alleviate the problem ofmaking this calculation
over thewhole set of pairs in the collection. However thosemethods
are still quite costly.

A novel clustering technique based on topic model distributions
is proposed in this paper, in order to reduce the required time to �nd
relations between documents in a large corpus of textual documents
without compromising e�ciency.

We leverage on Probabilistic Topic Models (PTM) [6] as represen-
tational models and, in particular, Latent Dirichlet Allocation (LDA)
[10] as the way to make this process of �nding relations among
documents in a corpus more agile and computationally feasible.
Probabilistic Topic Modeling techniques [7] are statistical methods
that analyze the words of the original texts to discover the themes
that run through them. Based on these insights, we can further
study how those subjects are connected to each other, and how
they change over time. Originally developed as a text-mining tool,
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topic models are now being used to detect instructive structures in
data [5] such as computer vision to classify images [24], connect
images and captions [8], or build image hierarchies [4] [22]; popu-
lation genetics [25], and social networks [20]. LDA reduces each
document to a vector composed by a �xed set of real numbers, each
of which represents a probability distribution of a given topic.

One of the main advantages is that PTM’s do not require any
prior annotations or labeling of the documents. �e topics emerge,
as hidden structures, from the analysis of the original texts. �e
topics produced by topic modeling techniques are clusters of similar
words. A topic model captures this intuition in a mathematical
framework, which allows examining a set of documents and dis-
cover, based on the statistics of the words contained in each, what
the topics might be and what is the topic balance for each docu-
ment. �ose topics o�er a much more intuitive, yet sophisticated
way of performing knowledge discovery tasks in big collections of
documents.

In contrast to existing unsupervised approaches based on cen-
troids or density measures, our algorithm relies on the outcomes
of PTM’s to assign each document to a cluster without having to
consider the other elements in the corpus. �us, it only takes O(n)
time to compute all clusters.

In the following section, we provide an overview of the problem
to be solved along with existing solutions. A�er that, a detailed
description of our algorithm is given in Section 3. We then (Sec-
tion 4) experimentally verify the e�ciency and e�ectiveness of
our clustering algorithms using real data, and demonstrate that
our approach is competitive enough against both a centroid-based
and a density-based clustering baselines. Finally, the most relevant
results and conclusions are presented together with some future
lines work in Section 5.

2 BACKGROUND
Traditional retrieval tasks over large collections of textual docu-
ments [18] highly rely on individual features like term frequencies
(TF-IDF). However, new ways of characterizing documents based
on the automatic generation of models surfacing the main subjects
covered in the corpus have been developed during recent years.
Probabilistic Topic Modeling [6] algorithms are statistical methods
that analyze the words of the original texts to discover the themes
that run through them, how those themes are connected to each
other, or how they change over time.

Probabilistic topic models do not require any prior annotations or
labeling of the documents. �e topics emerge, as hidden structures,
from the analysis of the original texts. �ese structures are topics
distributions, per-resource topic distributions or per-resource per-
word topic assignments. In turn, a topic is a distribution over
terms that is biased around those words associated to a single
theme. �is interpretable hidden structure annotates each resource
in the collection and these annotations can be used to perform
deeper analysis about relationships between resources. In this way,
topic modeling provides us an algorithmic solution to organize and
annotate large collections of textual documents according to their
topics.

�e simplest generative topic model is Latent Dirichlet Alloca-
tion (LDA) [10]. �is and other topic models such as Probabilistic

Latent Semantic Analysis (PLSA) [19] are part of the �eld known as
probabilistic modeling. �ey are well-known latent variable models
for high dimensional data, such as the bag-of-words representa-
tion for textual data or any other count-based data representation.
While LDA has roots in Latent Semantic Analysis (LSA) [14] and
PLSA (it was proposed as a generalization of PLSA), it was also
in�uenced by the generative Bayesian framework to avoid some of
the over-��ing issues that were observed with PLSA.

�is statistical model tries to capture the intuition that docu-
ments can exhibit multiple topics. Each document exhibits each
topic in di�erent proportion, and each word in each document is
drawn from one of the topics, where the selected topic is chosen
from the per-document distribution over topics. All the documents
in the collection share the same set of topics, but each document
exhibits these topics in a di�erent proportion. Documents are rep-
resented as a vector of counts withW components, whereW is the
number of words in the vocabulary. Each document in the corpus is
modeled as amixture overK topics, and each topick is a distribution
over the vocabulary ofW words. Formally, a topic is a multinomial
distribution over words of a �xed vocabulary representing some
concept. Each topic is drawn from a Dirichlet distribution with
parameter � , while each document’s mixture is sampled from a
Dirichlet distribution with parameter � . �ese two priors, � and
� , are also known as hyper-parameters and they are estimated
following some heuristic.

A Dirichlet distribution is a continuous multivariate probabil-
ity distribution parameterized by a vector of positive reals whose
elements sum to 1. It is continuous because the relative likelihood
for a random variable to take on a given value is described by a
probability density function, and also it is multivariate because it
has a list of variables with unknown values. In fact, the Dirichlet
distribution is the conjugate prior of the categorical distribution
and multinomial distribution.

Unlike a restrictive clustering model, where each document is
assigned to one cluster, LDA allows documents to exhibit multiple
topics. Moreover, since LDA is unsupervised, the topics covered
in a set of documents are discovered from the own corpus; the
mixed-membership assumptions lead to sharper estimates of word
co-occurrence pa�erns.

2.1 Similarity Measures Across Documents
In a Topic Model the feature vector is a topic distribution expressed
as vector of probabilities. Taking into account this premise, the
similarity between two topic-based resources will be based on the
distance between their topic distributions, which can be also seen
as two probability mass functions. A commonly used metric is the
Kullback-Liebler (KL) divergence. However, it presents two major
problems: (1) when a topic distribution is zero, KL divergence is
not de�ned and (2) it is not symmetric, which does not �t well with
semantic similarity measures that are usually symmetric [27].

Jensen-Shannon (JS) divergence [26][23] solves these problems
considering the average of the distributions as below [12]:

�S(p,q) =
K’
i=1

pi ⇤ log
2 ⇤ pi
pi + qi

+

K’
i=1

qi ⇤ log
2 ⇤ qi
qi + pi

(1)
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where K is the number of topics and p,q are the topics distributions
It can be transformed into a similarity measure as follows [13] :

sim �S (Di ,D j ) = 10��S (p,q) (2)
where Di ,D j are the documents and p,q the topic distributions of
each of them.

Hellinger (He) distance is also symmetric and is used along with
JS divergence in various �elds where a comparison between two
probability distributions is required [9] [17] [11]:

He(p,q) = 1
p
2
·

vut K’
i=1

(ppi �
p
qi )2) (3)

It can be transformed into a similarity measure by subtracting it
from 1 [27] such that a zero distance means max. similarity score
and vice versa:

simHe (Di ,D j ) = 1 � He(p,q) (4)

3 THE APPROACH
Our algorithms draw inspiration from other clustering techniques
to divide the initial space of elements into smaller sub-groups where
the complexity of calculating all possible distances is signi�cantly
reduced. Existing unsupervised approaches based on centroids or
density measures require to make comparisons between elements
to �nd groups of similar elements in the collection. �ey normally
follow an iterative methodology to produce the �nal solution, based
on calculating distances between the elements inside each interme-
diate state. A naı̈ve approach would need to calculate all possible
distances between elements, which takes O(n2) time for a n ⇥ n
matrix. �at makes it impossible to apply such techniques on large
collections of documents, since the cost of comparing each element
with the others escalates quickly. For those big volumes of data, a
clustering task that only takes linear time to discover the clusters
can signi�cantly alleviate this problem. For example, a classi�cation
method that does not require any other data except the element
information to assign the item to the corresponding cluster will
take O(n) time to compose those groups.

�e classi�cation method needs to take advantage of both the
vectorial representations of the documents and the similarity mea-
sure used to relate them in a corpus. Since the representational
model considered is based on Probabilistic Topic Models (and more
speci�cally on LDA), the classi�cation method leverages on the
particular behavior of Dirichlet distributions, which describes each
document by a density vector where the sum of all the probability
values must be equal to 1.0. �us, analyzing the relations between
the topics that compose a topic distribution becomes more impor-
tant than comparing their probability values with another topic
distribution.

Our hypothesis is that, given a collection of topic distributions,
an unsupervised classi�cation with high precision and linear com-
puting time can be performed by considering only the topic distri-
bution of each document and without needing to further compare
it with other document’s distributions.

All algorithms have been compared in terms of cost, e�ective-
ness and e�ciency [16]. Cost is based on the number of pairwise

similarity values. E�ectiveness handles relevance measures such
as precision and recall. And e�ciency tries to measure the overall
balance between cost and e�ectiveness. More details about those
measures will be included in Section 4.

3.1 Trends-based Clustering
Topic distributions are formalized as probability distributions fol-
lowing a Dirichlet distribution, so their probability values sum to 1.
In this way, the relevance of a topic is in�uenced and at the same
time in�uences the relevance of the others items in the distribution.
Our �rst approach named Trends on Dirichlet distribution-based
Clustering (TDC) considers changes in the relevance, i.e. proba-
bility values of the topics instead of directly relying on the scores
associated to a given topic distribution. It expresses the oscillations
between topic weights considering a �xed order between them. �e
order can be any, as long as it remains constant in all distributions.
�us, a probability-vector composed by n density values is trans-
lated to a trend-expression made out of n � 1 trend-values such as
(1) upward, (2) downward and (0) sustained. �is trend-expression
will identify the cluster the distribution falls into, and therefore the
corresponding item belongs to. TDC is de�ned as:

TDC(P) = T (5)

where: Ti = 1, when Pi < Pi+1
Ti = 2, when Pi > Pi+1
Ti = 0, when Pi = Pi+1

For example, given the distribution P1 = [0.23, 0.18, 0.33, 0.13, 0.13],
the assigned cluster will be T = 2120. �e �rst value is 2 because
0.23 is greater than 0.18 (same for other values).

3.2 Ranking-based Clustering
We propose a clustering technique named Ranking on Dirichlet
distribution-based Clustering (RDC) that only considers the top n
topics from the ranked list of probability distributions to classify
similar topic distributions. It is based on the focal document selec-
tion proposed by [29] to validate LDA-based similarity algorithms
against human perception of similarity. RDC is de�ned as:

RDC(P) = R (6)

where 8i 2 R,Ri >= Ri+1 and 8j 2 P ,R1 >= Pj
�is is based on the assumption that the highest weighted topics

have a high in�uence in the rest of topics in terms of calculating
distances, when comparing continuous multivariate probability
distributions. Since similarity measures (Section 2.1) based on prob-
ability distributions are oriented to determine the uncertainty of
the distribution, when a mixture of probability distributions is con-
sidered, as in the case of Topic Models, the top n distributions (i.e.
the most relevant topics) should be su�cient to allow us grouping
similar distributions. Taking into account the above considerations,
the RDC algorithm classi�es a topic distribution according to only
n highest probability values. For instance, given the following topic
distribution: P2 = [0.23, 0.18, 0.33, 0.13, 0.13], the assigned cluster
is 3 from RDC-1 because that is the topic with the highest weight.
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3.3 Cumulative Ranking-based Clustering
A variant of the previous algorithm, named Cumulative Ranking on
Dirichlet distribution-based Clustering (CRDC), also aims to discover
the most representative topics that can help to group similar topic
distributions. While RDC is based on a �xed number of topics,
CRDC is based on the cumulative sum of the weights of the highest
topics. �e number of topics is now dynamically determined by a
threshold, and once this threshold is reached no more topics are
considered. CRDC is de�ned as:

CRDC(P) = C (7)

where 8i 2 C,Ci >= Ci+1 and
TÕ
i=1

Ci >= w withT size ofC , andw

a cumulative weight threshold.
For instance, considering a CRDC algorithm considering a cumu-

lative weight threshold of 0.9, and the following topic distribution:
P3 = [0.36, 0.58, 0.05, 0.01]. �e assigned cluster will be 2—1. To
come up with this cluster, a ranked list of topics based on their
weights is �rst calculated, Rp = 2|1|3|4. �en, a sum of weights
according to the order described by Rp is performed. When the
accumulated sum is greater than the threshold, the topics taking
part of the sum will be selected to “label” the cluster. In this case,
the cumulative weight threshold is 0.9 therefore using only the �rst
two topics we exceed the threshold: w = 0.58 + 0.36 = 0.94

4 EXPERIMENTS
In this section we present the experimental setup for evaluating our
trends-based (TDC), ranking-based (RDC) and cumulative ranking-
based (CRDC) clustering approaches, considering both JS diver-
gence and He distance as similarity measures. We describe the
datasets and baseline algorithms that will be used for comparison.

4.1 Datasets
We used two datasets to evaluate the performance of the algo-
rithms. �e �rst dataset, DIRICHLET-RANDOM-MIXTURE (DRM),
is synthetic [2]. To generate the dataset, we sampled k probabilis-
tic distributions from a randomly k-dimensional selector based on
Dirichlet distributions. �is implies that all probabilities must to
sum to 1 for each sampled point. �e number of sampled points
from this mixture of Dirichlet distributions is n = 1000.

�e second dataset has been created from a collection of research
papers published in the Advances in Engineering So�ware (AIES)
journal. �ey were retrieved from the Springer API by using the li-
brAIry [1] framework and a Topic Model based on LDA was created
from them. �e sample is also composed by n = 1000 documents.

Topic models were trained from these datasets by using the cri-
teria described by [28]: � = 50/k , � = 0.01 and k = 2 ⇤ (

p
(n/2)),

where k is the number of topics and n is the number of docu-
ments. Since both datasets contain 1000 documents (n), the hyper-
parameters � and � are assigned as follow: � = 1.136, and � = 0.01,
and the number of topics is �xed to k = 44. Further tuning of the
se�ings is not crucial in this evaluation process, because we are
not focusing on the quality of the model but on the e�ciency when
calculating similarities from their representational distributions.

Figure 1: Similarity values grouped by frequency in AIES

4.2 Similarity�reshold
Since there is no uni�ed criteria to select a threshold inside the
distance scores spectrum that allows us to determine when two
documents are similar, we decided to study the distribution of simi-
larity values calculated from all pairwise comparisons. In Figure 1,
the result of grouping all similarities by the two most representative
decimals, i.e. the �rst two decimals of the similarity value, is shown.
�en, a polynomial function (red line) is approximated to describe
the trend of these values. In this function, the similarity score 0.83
emerges as a global minimum and has been used for �ltering out
the non-similar document pairs.

4.3 Baselines
We compare the performance of TDC, RDC and CRDC algorithms
against the following baselines:

• K-Means as a centroid-based clustering approach.
• DBSCAN as a density-based clustering approach.
• Random, which randomly selects R from the dataset

Initially, K-Means [3] randomly composes a set of centroids and
assigns each point of the sample to its nearest cluster based on a
distance measure. �en, a new set of centroids is calculated from
the previous ones according to the assigned points. �is process
is repeated until the set of centroids does not change signi�cantly
between consecutive iterations or a maximum number of iterations
is reached. �e scalable K-Means approach used in our experiments
is an improved version of k-means which obtains an initial set
of centers ideally close to the optimum solution. �e algorithm
implemented at the Apache Commons Math library 1 was used in
the experiments. Based on empirical results, the best con�guration
is: k = number � o f � topics = 44 andmaxIterations = 50

Awidely known density-based algorithm isDBSCAN [15], which
compose clusters from the neighborhood of each point considering
at least a minimum number of points and a given radius. �us,
it requires to specify the radius of the point’s neighborhood, Eps,
and the minimum number of points in the neighborhood MinPts.
Based on empirical results, the best results were obtained with the
following con�guration: eps = 0.1 andminPts = 50

1 h�p://commons.apache.org/proper/commons-math/
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�e Random algorithm takes as input a parameter m and ran-
domly divides the dataset into m equal-sized groups of similar
documents. For the evaluation,m was set to the number of topics,
the dimension of the dataset.

With respect to the proposed algorithms and taking into account
empirical results, the RDC algorithm is set to use the top1 highest
topics, and the cumulative weight threshold for the CRDC algorithm
is set to 0.9.

4.4 Measure
A gold-standard is created for each dataset and distance metric
considered. �ey are created by calculating all pairwise similarities
from their documents. Since the n ⇥ n similarity matrix requires
O(n2) time to be calculated, the selected size of datasets has not
been too large n = 1000.

We considered three measures to evaluate our algorithms with
respect to the baseline:

• cost: based on the number of similarity score calculations
required by the algorithm:

cost = (reqSim �minSim)/(totalSim �minSim) (8)

�e minSim corresponds to the number of similar docu-
ments obtained from using the threshold score previously
mentioned in section 4.2. �e totalSim corresponds to
the Cartesian product of existing documents: totalSim =
n ⇤ n = 1, 000, 000. And the reqSim corresponds to the
number of similarities calculated by the algorithm.

• e�ectiveness: based on precision and recall . It expresses
the quality of the algorithm:

e f f ecti�eness =
precision2 + recall2

2
(9)

• e�ciency: based on the previous ones, it express a com-
promise between quality and performance:

e f f icienc� = e f f ecti�eness � cost (10)

4.5 Results
�e code used to evaluate the algorithms along with the results
obtained are available on GitHub [2].

In terms of e�ectiveness (Figures 2 and 3), the results highlight
that K-Means and CRDC outperform the other algorithms. K-Means
was expected to be a top performer because the algorithm itself
performs comparisons to map clusters. �e fact that CRDC has
such good performance encourages us to think that, in fact, the
most relevant topics when they altogether exceed a certain high
weight threshold, are those that best represent the document and
allow to group together similar documents. However, as shown in
tables 1, 2, 4 and 3, considering a �xed number of more relevant
topics (RDC) or considering the trend of their weights (TDC) does
not seem to perform so well on aggregating similar documents,
since their precision and recall values are very low in both cases. It
is surprising that the DBSCAN has such low value. Taking a look at
its precision and recall values, and also seeing the number of groups
that each algorithm has created (Figure 4), we believe that having
a corpus containing a very cohesive set of documents (all papers
in corpus belong to the same journal) a�ects the performance of
this algorithm since it divides the corpus into a lower number of

Figure 2: E�ectiveness (JS-based) in AIES

Figure 3: E�ectiveness (He-based) in AIES

groups. �is way, it obtains high values of recall because most of
the pair-wise distances are computed, but very low precision.

�e results also show that the behavior of the algorithms does
not di�er signi�cantly when using di�erent similarity measures, for
example JS divergence (Figure 2) and He distance (Figure 3). �is
highlights the importance of the documents’ topic distributions
to successfully classify them into smaller groups of similar items,
while other particular aspects such as the distance or similarity
metric used to compare them are less in�uential.

Size CRDC DBSCAN K-Means RDC TDC Random
200 0.94 0.10 0.96 0.31 0.42 0.12
300 0.93 0.15 0.94 0.30 0.39 0.08
400 0.93 0.15 0.89 0.29 0.39 0.09
500 0.92 0.30 0.90 0.28 0.38 0.09
600 0.92 0.19 0.88 0.28 0.38 0.08
700 0.92 0.20 0.91 0.28 0.38 0.09
800 0.92 0.12 0.89 0.30 0.39 0.10
900 0.92 0.13 0.87 0.30 0.40 0.10
1000 0.93 0.13 0.90 0.30 0.40 0.10

Table 1: Precision (JS-based) in AIES
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Figure 4: Clusters in AIES

Size CRDC DBSCAN K-Means RDC TDC Random
200 0.75 0.07 0.84 0.23 0.08 0.33
300 0.74 0.08 0.83 0.23 0.06 0.32
400 0.76 0.09 0.76 0.22 0.06 0.32
500 0.73 0.08 0.74 0.21 0.08 0.31
600 0.72 0.08 0.73 0.21 0.06 0.30
700 0.71 0.10 0.76 0.21 0.06 0.30
800 0.73 0.11 0.78 0.22 0.07 0.31
900 0.73 0.12 0.80 0.22 0.08 0.32
1000 0.74 0.15 0.77 0.23 0.08 0.32

Table 2: Precision (He-based) in AIES

Size CRDC DBSCAN K-Means RDC TDC Random
200 0.92 1.00 0.79 0.96 0.02 0.87
300 0.91 0.89 0.84 0.96 0.02 0.84
400 0.92 0.92 0.90 0.96 0.02 0.86
500 0.91 0.94 0.88 0.96 0.03 0.85
600 0.91 0.94 0.87 0.96 0.02 0.83
700 0.91 0.92 0.90 0.96 0.02 0.83
800 0.92 0.92 0.88 0.96 0.02 0.83
900 0.92 0.95 0.86 0.96 0.02 0.83
1000 0.92 0.93 0.89 0.97 0.02 0.84

Table 3: Recall (JS-based) in AIES

Size‘ CRDC DBSCAN K-Means RDC TDC Random
200 0.84 1.00 0.65 0.96 0.02 0.82
300 0.84 0.98 0.76 0.95 0.02 0.78
400 0.84 0.98 0.79 0.94 0.02 0.79
500 0.85 0.94 0.87 0.95 0.02 0.78
600 0.86 0.96 0.80 0.95 0.02 0.76
700 0.85 0.98 0.80 0.95 0.02 0.76
800 0.85 0.99 0.81 0.95 0.02 0.76
900 0.85 0.99 0.75 0.95 0.02 0.77
1000 0.86 1.00 0.74 0.96 0.02 0.78

Table 4: Recall (He-based) in AIES

Figure 5: Cost (JS-based) in AIES

Figure 6: Cost (He-based) in AIES

In terms of cost (Figures 5 and 6), the best clustering algorithm,
as expected, is based on random selection. �is is due to the fact
that the number of pairs compared by this algorithm is always
the minimum, given the dataset is simply randomly divided into
m equal-sized groups, where m is equals to the number of topics,
i.e. dimension of the dataset. Since K-Means and DBSCAN make
comparisons between documents until their internal condition is
satis�ed, they are themost ine�cient approaches. K-Means involves
the highest cost because it compares all the documents with the 44
centroids in each iteration.

Among our proposals, the main reason for an algorithm to
present a higher cost is due to the number of groups the corpus is
divided into (see Figure 4). �e greater the number of groups, the
fewer the number of later comparisons that have to be made and,
therefore, the lower the cost of the algorithm.

�e behavior of the DBSCAN algorithm depends remarkably
on the similarity metric used. We think that this may be due to
the way in which both measures satisfy the triangle inequality
condition, since one is based on divergence (JS) and the other
on distance (He). �is property, which de�nes distance(a,b) 
distance(a, c) + distance(c,b), is very important in the calculations
that DBSCAN makes to discover the groups, since it only calculates
the distances between near points.
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Figure 7: E�ciency (JS-based) in AIES

Figure 8: E�ciency (He-based) in AIES

Finally, in terms of e�ciency (Figures 7, 8), regardless of the
similarity measure used, the algorithm that yields the best perfor-
mance according to the results obtained is CRDC. Overall, CRDC
demonstrates a high accuracy classi�cation and a lower cost by
improving the performance o�ered by centroid-based or density-
based approaches.

We have also created a synthetic dataset, DRM (Section 4.1),
composed of 1000 Dirichlet distributions with the same dimensions
than topics in AIES: k = 44. Unlike AIES, topic distributions have
been randomly generated which imply that the similarity values are
not so high: min = 0.06,mean = 0.18 andmax = 0.61. Following
the same criteria than before (Section 4.2), the similarity threshold
is now �xed to 0.34 (Figure 9). Results in terms of e�ectiveness
(Figure 10) show a poor performance of the RDC and CRDC al-
gorithms. �e reason is that both are based on the fact that the
highest weighted topics are shared between similar distributions.
However, this condition is not satis�ed when the similarity value
between them is low.

To con�rm this behavior, we created a third dataset (DRM2) with
the same size but with only 4 dimensions (4 topics). �e goal is to
achieve more similar distributions than in DRM even though they
are also randomly generated. Since the similarity values range from
min = 0.04,mean = 0.34 tomax = 0.99, the similarity threshold is
now �xed to 0.66 (more details in section 4.2). �e results (Figure 11)

Figure 9: Similarity values grouped by frequency in DRM

Figure 10: E�ectiveness (JS based) in DRM

Figure 11: E�ectiveness (JS based) in DRM2

show an improvement in the accuracy of both the RDC and CRDC
algorithms. Although scores are still not as high as for the AIES
dataset, the increase compared to the DRM dataset shows that
their precision and recall improve when the similarity threshold is
higher. On the other hand, both the DBSCAN and TDC algorithms
show similar behavior in both datasets, which means that their
performance is not a�ected by the similarity threshold.
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5 CONCLUSIONS AND FUTUREWORK
Processing a continuously growing collection of human generated
documents requires techniques that divide the space into smaller
regions containing potentially similar documents. Some algorithms
in the literature tackle this problem from an unsupervised point of
view, but they incur in high temporal costs and may not be suited
for the domain being studied.

�ree novel unsupervised clustering algorithms, TDC, RDC and
CRDC, are described in this paper relying on the distributions in-
ferred from a topicmodeling algorithm (LDA).�ey are presented as
a means to identify a smaller set of documents where only the simi-
larity function has to be computed. �ey leverage on the particular
behavior of Dirichlet distributions describing topic distributions,
where the highest weighted topics have a high in�uence on the rest
of topics. �is also means that given a topic distribution, the rela-
tions between their topic weights such as order or trends between
them, are more important than the density values.

Although we initially thought that using only a �xed number
of topics with higher weights of a topic distribution (RDC), or tak-
ing into account only the trend changes between the weights of
consecutive topics (TDC), could be enough to classify similar topic
distributions, the results obtained have shown that these properties
are not su�cient. Results in terms of e�ciency, e�ectiveness and
cost have been shown comparing the proposed algorithms with
existing centroid-based and density-based clustering techniques.
�ey reveal that obtaining the most representative topics of a topic
distribution by comparing the sum of their weights with respect
to the rest (CRDC) is a promising approach, which improves the
e�ciency obtained by other centroid-based and density-based ap-
proaches. While K-Means takes O(nk ⇤ logn) and DBSCAN takes
O(n ⇤ logn) time to classify n documents in a collection, the pro-
posed algorithms only take linear time (O(n)) because they do not
require any other data except their own topic distribution to assign
it to a cluster.

A hierarchical approach for RDC algorithm was also considered
but it did not produce good results. Hybrid methods combining
some of these novel approaches with existing techniques will be
performed in future work on the same line.
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