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ABSTRACT
With future exascale computers expected to have millions of com-

pute units distributed among thousands of nodes, system faults are

predicted to become more frequent. Fault tolerance will thus play

a key role in HPC at this scale. In this paper we focus on solving

the 5-dimensional gyrokinetic Vlasov-Maxwell equations using the

application code GENE as it represents a high-dimensional and

resource-intensive problem which is a natural candidate for exas-

cale computing. We discuss the Fault-Tolerant Combination Tech-
nique, a resilient version of the Combination Technique, a method

to increase the discretization resolution of existing PDE solvers. For

the first time, we present an efficient, scalable and fault-tolerant

implementation of this algorithm for plasma physics simulations

based on a manager-worker model and test it under very realistic

and pessimistic environments with simulated faults. We show that

the Fault-Tolerant Combination Technique – an algorithm-based for-

ward recovery method – can tolerate a large number of faults with

a low overhead and at an acceptable loss in accuracy. Our parallel

experiments with up to 32k cores show good scalability at a relative

parallel efficiency of 93.61%. We conclude that algorithm-based

solutions to fault tolerance are attractive for this type of problems.
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1 INTRODUCTION
Experts widely agree that supercomputers will exhibit faulty behav-

ior multiple times per day in the exascale era [5]. Current petascale

systems already face this problem. The Tsubame 2 supercomputer

reported 962 faults in 18 months, which means it had a mean time

between failures (MTBF) of about 13.5 hours; the Blue Waters sys-

tem suffered 2-3 node failures per day; and Titan supercomputer

has also been reported to fail several times per day [20]. In exascale

supercomputers with several million processors, jobs could fail as

often as every 30 minutes [22]. For this reason, the fault tolerance

community has been working hard to find efficient methods to deal

with system errors. Examples are dedicated checkpointing proto-

cols, fault prediction and replicating the data or hardware. We are

particularly interested in algorithm-based fault tolerance (ABFT)
to handle fail-stop errors when solving PDEs, thus exploiting the

numerical properties of a specific algorithm to make it resilient to

faults. In this work we consider only hard faults, e.g. process fail-

ures, but our framework is also capable of detecting and recovering

from soft faults such as bit flips. The procedure to recover from soft

faults is mostly identical to the case of hard faults but adds a very

cheap routine that searches for data corruption within the grids

(see [14]).

We focus on high-dimensional partial differential equations

(PDEs) because they pose many challenges for HPC, the most ob-

vious being the exponential increase in discretization points with

the problem’s dimensionality. For more than 3 dimensions, one

quickly runs into memory problems. Such PDEs are commonplace

in physics and require days to solve on full machines. These ap-

plications are, therefore, natural candidates for testing new fault

tolerance techniques.

In this paper we consider one of these applications – the sim-

ulation of hot, magnetized plasma, whose study plays a central

https://doi.org/10.1145/3148226.3148229
https://doi.org/10.1145/3148226.3148229
https://doi.org/10.1145/3148226.3148229
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role in developing plasma fusion reactors. We briefly introduce

a well-known numerical method – the Sparse Grid Combination
Technique – which can be used not only to increase the resolu-

tion of parallel PDE solvers, but also to make them fault-tolerant.

We have argued in the past that the Combination Technique is a

promising algorithm for future exascale systems. We have shown

that the Combination Technique converges in the presence of faults

affecting plasma simulations [18]. We have also implemented a

highly-scalable version of the Combination Technique, which is

application-independent [13]. Finally, we have put our parallel algo-

rithms to test with a simple PDE solver (a linear advection-diffusion

equation), showing that it both converges and scales [12]. In this

paper we present a major milestone of our work: we apply the

parallel Fault-Tolerant Combination Technique (FTCT) to large-scale
plasma physics simulations, and test it in realistic (and pessimistic)

fault scenarios. We argue that this implementation could be used

in future exascale systems.

The novel contributions of this paper are as follows:

• Applying the FTCT to plasma physics in our highly scalable

framework using dynamic communicator regrouping.

• Statistical error analysis of the FTCT for moderate to mas-

sively faulty environments for a realistic application.

• Comparison of the FTCT to the classical Combination Tech-

nique regarding scalability.

2 PLASMA SIMULATIONS WITH THE
COMBINATION TECHNIQUE

Scientists building the plasma fusion reactor ITER describe the

project as “a major step that may provide a future energy alterna-

tive for all humankind”
1
. With a projected cost of 14 billion USD

shared among 35 countries, the prospect of clean, safe, and abun-

dant energy obtained from plasma fusion seems closer than ever.

Numerical simulations have played a key role in this field, since

they are used to study both turbulent plasma flow and optimal

reactor geometries. The former is currently a major challenge for

plasma physicists. With temperatures reaching 100 million Kelvin,

various anomalous transport phenomena arise that complicate the

extraction of energy from plasma reactions. These turbulent pro-

cesses can be better understood with the help of high-resolution

simulations.

One of the most robust numerical codes dedicated to studying

the physics of plasma turbulence is GENE [15]. The code solves

the gyrokinetic Vlasov-Maxwell equations, a system of nonlinear

integrodifferential equations of the general form

∂u

∂t
= L (u) +N (u) , (1)

where L and N are the linear and nonlinear parts of the differ-

ential operator, and u ≡ u (x ,y, z,v ∥ , µ; t ) is the (5+1)-dimensional

distribution function of the plasma field. GENE uses a 5D Cartesian

grid to discretize the three spatial dimensions x , y, z and the two

velocity dimensions v ∥ and µ. It also simulates the interaction of

different species (such as ions or electrons), each of which has its

1
https://www.iter.org/faq#Is_there_consensus_in_the_scientific_community_about_

the_ITER_Project

own 5D grid. The domain – normally a part of a tokamak or stellara-

tor fusion reactor – is parallelized in all dimensions using domain

decomposition, and the time evolution is solved with a Runge-Kutta

scheme of fourth order. Experiments with up to 262k cores have

shown that GENE scales very well [17]. But despite being highly op-

timized, GENE can only resolve small cross-sections of the physical

domains of large reactors (such as ITER), since every increase in

the resolution of the 5D grid comes at a huge computational cost.

One way to address this problem is using extrapolation algo-

rithms. This is the class of algorithms we are interested in. In par-

ticular, one can apply the Sparse Grid Combination Technique [8] to
high-dimensional PDE solvers.

The idea is the following. Consider the exact solution of a PDE,

u, and its numerical approximation un defined on a d-dimensional

Cartesian grid Ωn with (2n1 ± 1) × · · · × (2nd ± 1) grid points (±1

depending on whether the grid has boundary points in a given

dimension). We use boldface letters to denote d-dimensional multi-

indices, e. g., n = (n1, . . . ,nd ). The Combination Technique defines

a set of grids Ωi with different discretization resolutions, all of them

coarser (i. e., with fewer discretization points) than Ωn. One then
solves the PDE on all grids Ωi, giving a set of solutions ui which
are combined together with certain weights ci,

u
(c )
n =

∑
i∈I

ciui. (2)

Here, I is the set of multi-indices that define the grids Ωi, and

u
(c )
n is the resulting combination solution, which should be a good

approximation of the reference (full grid) solution un,

u
(c )
n ≈ un.

Given certain smoothness conditions, it is expected that the ap-

proximation quality is only slightly reduced, and that computing

the individual ui and combining them is cheaper than computing

un directly. It might even be the case that computing un directly

is not even possible, which is often the case for high-dimensional

problems.We call eachui a component solution, each Ωi a component
grid, and each ci a combination coefficient.

Evidently, only certain choices of the combination coefficients

ci result in a good extrapolation. The Truncated Combination Tech-
nique is one such choice, which is defined as

u
(c )
n,τ =

d−1∑
q=0

(−1)q
(
d − 1

q

) ∑
i∈Id,nq,τ

ui, (3)

where the index set is defined by

I
d,n
q,τ = {i : |i|1 = n + (d − 1) + |τ |1 − q, i > τ }, (4)

and

(d−1
q

)
is a binomial coefficient. With this choice, u

(c )
n,τ should

approximate a full grid solutionun′ with n′ = n ·1+τ , and the trun-
cation parameterτ defines aminimum resolution in each dimension.

Comparisons with multi-indices are done component-wise, so i > τ
means ik > τk for all k = 1, . . . ,d .

As an example in two dimensions, consider computing the solu-

tion u(4,4) . One could try to approximate it using the Combination

Technique, for example, with the choice n = 4 and τ = (0, 0). This

https://www.iter.org/faq#Is_there_consensus_in_the_scientific_community_about_the_ITER_Project
https://www.iter.org/faq#Is_there_consensus_in_the_scientific_community_about_the_ITER_Project
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Figure 1: Grids resulting from a 2D Combination Technique with n = 4 and τ = (0, 0). The result of the combination is a sparse
grid Ω

(c )
n .

would result in the following combination:

u
(c )
4, (0,0)

= u(1,4) + u(2,3) + u(3,2) + u(4,1) − u(1,3) − u(2,2) − u(3,1) .

This combination scheme is illustrated in Figure 1. Alternatively,

one could increase the truncation parameter and choose n = 3,

τ = (1, 1), resulting in the combination

u
(c )
3, (1,1)

= u(2,4) + u(3,3) + u(4,2) − u(2,3) − u(3,2) .

This combination uses fewer component solutions but they have

higher resolution. In order to combine functions defined on grids

with different resolutions, one can interpolate them all to the full

grid resolution or combine them on the smallest function space

containing all grid points of the component grids, which is a sparse
grid [4]. This is where the method gets its name from.

In short, the Combination Technique is a way to approximate a

(very expensive) full grid solution by solving the same PDE on a

set of (cheap) anisotropic grids of lower resolution instead. Under

certain smoothness assumptions, one can show that the approx-

imation error of the Combination Technique solution u
(c )
n,τ is in

O (h2n · (logh
−1
n )d−1), only slightly worse than that of the full grid

solution un, which is in O (h2n ) [8]. The Combination Technique

has been used to solve a wide range of PDEs, from the Schrödinger

equation [6] to turbulence problems with the Navier-Stokes equa-

tions [7].

Another advantage of using the Combination Technique to solve

PDEs is that it offers an additional level of parallelism (in addition to

any parallelization used to solve the individual component solutions

ui). Since we solve the same PDE on each grid Ωi, the ui can be

computed independently of each other, i. e., in parallel. Only their

combination according to the formula (2) requires communication.

This additional parallelism is why the Combination Technique is a

good candidate to compute on future exascale computers [19].

3 PARALLEL FRAMEWORK AND FAULT
TOLERANCE

3.1 Parallel Implementation of the
Combination Technique

The Combination Technique can be parallelized in different ways

(see [2] and [10, Chapter 3]). Our implementation is based on the

manager-worker principle described in [13]. The main steps are

shown in Algorithm 1. All but one processes are workers, and

they are divided into G groups or process groups. Each group is

responsible for calculating one or multiple component solutions

ui, i ∈ I. In other words, each process group is assigned a subset

Iд of the whole set of indices I =
⋃G
д=1 Iд , and their task is to

compute all ui in that subset. The remaining process is the manager.

At initialization, it decides how to divide the workload among the

groups (line 2). An efficient load balancing algorithm is described in

[11]. The initial conditions are set for each solution (line 3), and the

workers start solving their subset of solutions, one after the other.

The manager indicates how many time steps of the PDE solver

should be performed (say, Nt time steps) (lines 7-8). At this point,

the different groups are working independently of each other. Once

a group is done with all its tasks, it sends a signal to the manager

process. Once all groups are done, the manager sends a signal to the

groups to trigger the combination step. At this point, each group

first combines its subset of solutions (line 13). Then, the groups

combine their resulting combination solutions globally to obtain

the final u
(c )
n,τ (line 14). This combined solution can then be used as

initial condition for all ui for the next set of time steps Nt (line 17).

This is repeated until some convergence criterion is met or a certain

number of time steps has been carried out.

In our current implementation, all process groups comprise of

the same number of processes, which makes communication easier

since all process groups can use the same domain decomposition

for each component grid. Therefore, when communicating across

different groups, only the processes that contribute to the same

geometrical region of the domain communicate with each other.

This approach greatly reduces the communication overhead and

has been shown to scale up to 180k cores [12].

To balance the workload, we estimate the runtime of each com-

ponent grid a priori based on the number of grids points it has and

its anisotropy, sort them, and distribute them among the groups

(see details in [11]). In general, the larger the number of component

grids per group, the easier it is to balance the workload.

Deciding how many groups to use requires some preliminary

testing. If one defines a large number of groups, one can solve many

tasks in parallel, which is good, but each group would have a small

number of cores, limiting the size of the grids that can be solved.
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Algorithm 1 The Truncated Fault-Tolerant Combination Tech-

nique in Parallel

1: Define d , n, τ , generate index set I =
⋃d+1
q=0 I

d,n
q,τ and compute

coefficients ci
2: Distribute tasks among G groups with index sets Iд , д =

1, . . . ,G
3: Set initial conditions ui ← u (x, t = 0), i ∈ I
4: Set starting time

5: while not converged do
6: for д ∈ 1, . . . ,G do in parallel
7: for i ∈ Iд do
8: ui ← Solve(ui,Nt ) ▷ Do Nt time steps of solver

9: DecideToKill( ) ▷ Decide if process should die

10: if faults detected then
11: Recover()

12: for д = 1, . . . ,G do in parallel
13: u

(д)
n,τ ←

∑
i∈Iд ciui ▷ Each group combines locally

14: u
(c )
n,τ ←

∑G
д=1 u

(д)
n,τ ▷ All groups combine globally

15: for д ∈ 1, . . . ,G do in parallel
16: for i ∈ Iд do
17: ui ← sample(u

(c )
n,τ ) ▷ Use combination solution as

next initial value

If each component solution ui is expensive to compute, one might

be forced to define larger groups, losing some parallelism across

groups.

3.2 The Fault-Tolerant Combination Technique
Now suppose faults occur, affecting one or more process groups.

For simplicity, assume only one process group is affected. Its set

of component solutions is therefore partially or entirely damaged.

The Fault-Tolerant Combination Technique (FTCT) defines a way to

deal with such scenarios [9]. It sets the combination coefficients

of the affected component solutions to zero, ci = 0, i ∈ K , where

K ⊂ I is the subset of indices affected by faults. The rest of the

combination coefficients are adapted in order to obtain the best

possible combination of the component solutions unaffected by

faults
2
. This alternative combination is not as good as the original,

but it is still very good [9]. More importantly, we avoid creating

extra checkpoints to ensure fault tolerance – the FTCT is a forward

recovery technique. In some cases, however, we might choose to

recompute some of the lost ui if they are very cheap (i.e., they have

comparably few grid points). The reason is that it is considerably

harder to find alternative combination coefficients when these low

resolution solutions go missing [9]. In these cases, the last com-

bined solution u
(c )
n,τ serves as a checkpoint, which is available in

the memory of each process group. This will become more clear

in the results section, where we will see the effect of recomputing

some component solutions on the scaling results.

Evidently, if many component solutions are affected, it might not

be possible to combine the other ones in a way that gives a good

2
Finding the optimal coefficients given the constraint ci = 0 for i ∈ K is not easy (it

is in fact NP-hard), so some additional considerations apply. The details are found in

[9].

approximation. To ensure that there are always enough component

solutions to combine, the FTCT adds a few component solutions to

the original set. In particular, it adds new ui with |i|1 = n + |τ |1 − 1
and |i|1 = n + |τ |1 − 2. In our 2D example with n = 4 and τ = (0, 0),
the component solutions added would be

u(2,1) , u(1,2) and u(1,1) .

These will have a combination coefficient equal to zero if no faults

occur, but they might be used in the combination if some of the

other solutions go missing due to faults.

3.3 Fault Simulation Layer
Faults are simulated and handled using an additional software

layer that emulates a few core functionalities of ULFM [3], such as

MPI_Comm_shrink. These allow us to detect failed communication

partners and to remove them from the communicator. We chose

to implement this layer in order to be able to use the native MPI

installation of the Hazel Hen supercomputer instead of having to

install ULFM, which is currently not possible. Additionally, the

native installation of MPI is optimized for the system.

With our layer we can simulate process failures by calling a

KillMe() function at given times. This function forces the calling

process to go idle, returning the same type of error messages as

ULFM. Our layer can, therefore, be exchanged with ULFM since

the interface is the same, and we plan to do this in the future.

3.4 Fault Handling and Recovery
Faults are detected at the global communication step, during which

the manager can identify failed groups. It then enters into recov-

ery mode, first determining which component solutions had been

assigned to the failed groups. It then computes the alternative com-

bination coefficients and communicates them to the living groups,

which can then combine their component solutions locally. After

this step the global combination is performed, but before moving

on to the next set of time steps, the manager reassigns the compo-

nent solutions of failed groups to the remaining living groups. The

algorithm can then continue as before.

What happens to the failed process groups? This depends on

whether all processors in the group failed, or only a subset. In

the past we have removed the complete process group from the

communicator even if only a few of its processes were affected by

faults. This is easy to implement but wastes compute resources.

In our current implementation, we reuse the living ranks within

a failed group (if there are any), tagging them as spare processes
(’SP’, Figure 2). These can be used to restore other groups in later

iterations (Figure 3).

This is implemented by using two communicators: one world
communicator that contains only active processes and one spare
communicator that contains active and spare processes. When-

ever a process failure occurs we execute MPI_Comm_Shrink on

both communicators to remove the failed rank(s). Next, the man-

ager rank checks whether there are enough spare processes to

replace the failed rank(s). If this check returns true, the respective

spare processes are assigned to the world communicator by calling

MPI_Comm_Split on spare. In case there are not enough spare pro-

cesses, the manager removes the failed process group and tags all
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PG1 PG2 PG3 PG4
SP

PG1 PG2 PG3

Figure 2: An example scenariowith 16 processes divided into
4 process groups. After a process failure occurs in a pro-
cess group (PG) the remainingMPI ranks are assigned to the
group of spare processes (SP) and the failed rank is excluded.

PG1 PG2 PG3

SP
SP

PG1 PG2 PG3

Figure 3: A process group (PG) can be restored if all failed
ranks can be replaced by spare processes (SP).

the remaining processes of the group as spare processes. Again we

use MPI_Comm_Split to remove those processes from world. This
scheme allows for a transparent implementation of the process

exchange as the application only uses the world communicator

and does not know about spare. Hence, the implementation can be

easily exchanged or extended in the future.

3.5 Fault Distribution
A common way to model the probability of faults affecting a system

is to use a Weibull distribution function, which is given by

f (t ; λ,k ) =
k

λ

( t
λ

)k−1
e−(t/λ)

k
(5)

for t ≥ 0. Here k and λ denote, respectively, the shape and scale

parameter. λ is related to the mean value by E[f (t ; λ,k )] = λΓ(1 +
1/k ). Hence, it can be adjusted tomodel environments with different

failure rates.

We inject faults as proposed in [9] by drawing values from the

Weibull distribution. This value is added to the initialization time

of the process and marks the time the process will fail. After each

computation of a component grid the process checks if the cur-

rent time exceeds the failure time and calls the KillMe() function

accordingly. This is done in the DecideToKill() function in Algo-

rithm 1.

4 SIMULATION SCENARIOS AND RESULTS
4.1 Scenarios
For all our experiments, we chose an ion-temperature gradient (ITG)

test case with initial condition alm, which is a typical initial value

scenario with one species [16, Appendix A.2.1]. All simulations

were run in local mode, which means that only a small part of

the complete tokamak fusion reactor is simulated. We used a 3D

Combination Technique of level n = 3 in dimensions (z, µ,v ∥ ),
keeping the dimensions x andy constant (with 9 and 1 discretization

points respectively). The reason for the constant y direction is that

the linear and local computations in GENE are decoupled in the

y direction. Therefore, every y coordinate is simulated separately.

The x coordinate is constant as 9 points already offer sufficient

resolution for this scenario. For global and non-linear simulations,

which we plan for the future, this changes and combination in all 5

dimensions would be possible.

We present results for two scenarios: In test case A, we set the

truncation parameter to τ = (4, 4, 4) in dimensions (z, µ,v ∥ ). In test

case B, we use τ = (5, 5, 5). This results in 10 component grids for

both scenarios. In all experiments we used 512 processes split into

4 process groups (so 128 processes per group). We combined the

solutions after every iteration step and performed 6000 time-steps

in total, with a time step size of 0.005 s. The shape parameter k
of the Weibull distribution was set to 0.7, which accounts well for

the mean-time between failures (MBFT) of a single node, including

infantmortality [21].We then analyzed the error for different failure

rates λ. All tests were repeated 30 times for each value of λ to

investigate the statistical properties of the errors for different failure

scenarios.

4.2 Error Analysis
In Figures 4 and 5 we plot the L2 error of the combination tech-

nique with faults compared to the reference solution of level n′ =
(3, 1, 8, 8, 8) in dimensions (x ,y, z,v ∥ , µ ). Notice that the different
choices of λ result in different numbers of faults – up to 117 faults

for λ = 10
5
. Note that the number of faults is defined as the num-

ber of iterations in which process failures occur. In case multiple

processes fail in the same iteration this is counted as one fault.

The L2 error is computed by simply taking the L2 vector norm of

the difference between the absolute values of two grids, as suggested

in [10, Section 5.2.2]:

√√√ ∑
p⃗∈Ωn′

(���un′ (p⃗)��� − ����u (c )n,τ (p⃗)
����

)
2

,

where p⃗ is a five-dimensional coordinate on the reference grid and

un′ (p⃗) and u
(c )
n,τ (p⃗) the respective values of the grid at position p⃗

for the reference and the combination solution. As the combination

does not contain all grid points un′ (p⃗), we interpolate the combined

solution onto the reference grid first. The reason for taking the

absolute value before calculating the difference is that the solutions

may have different phase shifts in the complex plane which are

not relevant for the physical interpretation. By taking the absolute

value of the complex numbers, we remove the influence of the phase

shift on the vector norm. In addition to this, the five-dimensional

vectors un′ and u
(c )
n,τ are normalized to 1 – using the L2 norm –

before the norm calculation.

We can see that the error increases with the number of faults,

but it still remains quite close to the reference solution. For test

case B, the average error is smaller than test case B since we chose

a higher truncation parameter τ and n, which results in a more

accurate combination. In the worst-case scenario (test case B with

λ = 10
5
) the error increases by 20% on average, which, considering

that each fault causes a loss of about 25% (for the first fault) to

33% (every other fault) of the component grids, this increase is
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Figure 4:L2 error of the FTCTas a function of thenumber
of faults: test case A.
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Figure 5:L2 error of the FTCTas a function of thenumber
of faults: test case B.

λ favд fmax fmin eavд emax emin ∆e (%)

10
7

1.43 6 0 0.0431 0.0454 0.0429 0.480%

10
6

6.75 19 3 0.0437 0.0460 0.0429 1.91%

10
5

35.5 50 19 0.0463 0.0508 0.04339 7.955%

Table 1: Statistical results of the error of the FTCT for
different λ in test case A. f represents the number of
faults, e the L2 error to the reference and ∆e the average
increase in the error compared to a simulation without
faults.

λ favд fmax fmin eavд emax emin ∆e (%)

10
7

2.55 6 0 0.00908 0.00915 0.00908 0.0882%

10
6

13.5 26 7 0.00945 0.0103 0.00908 4.09%

10
5

70.3 117 50 0.0109 0.0135 0.00960 20.2%

Table 2: Statistical results of the error of the FTCT for
different λ in test case B.

completely tolerable. The average, maximum and minimum errors

can be seen in Tables 1 and 2.
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Figure 6: L2-error of different runs of test case B compared
to the last iteration with process error for λ = 106 (bottom)
and λ = 107 (top) .

The iteration at which faults occur also has a significant impact

on the overall error. Figure 6 shows the error of the solution com-

pared to the last iteration in which a process failure occurred in the

respective run. It seems that the later a fault occurs, the larger the

resulting error. For moderate numbers of faults, this has an even

larger contribution to the overall error than the total number of

faults. For really high number of faults (for example, for tests with

λ = 10
5
having 70 faults on average), this effect is less predominant.

4.3 Recovery overhead
Figure 7 (top) shows the times required by the different steps of the

FTCT algorithm for one run of test case B with 84 faults and 512

cores. We plot the maximum runtime of the respective steps during

the whole simulation. Most of the time is spent solving the PDE.

The combine step takes about one sixth of the time required by the

solve function
3
. The recovery overhead is almost negligible – 60.83

s compared to 6,780 s of the solve time (0.89% for 84 recoveries, or

0.72 s per recovered fault). This is cheaper than pure checkpointing,

since it would take 1.13 s only to recompute the last time-step.

Additionally, the time to write the checkpoint is about five times

larger than one iteration step.

3
This is an upper bound, since in these experiments we combined after every time

step. In general, one can combine only after a few time steps and keep the accuracy of

the combination [10, Section 5.2.2].
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Naturally, the time to solve a time-step of a PDE depends on

the specific application and the solver used, so it could be much

smaller for other codes. However, GENE has been highly optimized

over many years and is therefore an illustrative application
4
. But

more importantly, the steps of the FTCT should scale.

4.4 Scaling
Figure 7 (middle) shows our scaling results for one run. Here we

used different parameters for the Combination Technique to demon-

strate the scalability for a large-scale simulation. For this purpose

we chose τ = (3, 3, 3) and n = 10, which results in 185 combination

grids
5
. Again, we fixed the number of discretization points in x to

513 and y to 1. We simulated 300 time-steps and combined every

100 time-steps (3 combinations in total)
6
. In all cases, each process

group had 1024 processes, and we doubled the number of groups

for each experiment. For the experiments with faults, we begin

with 4 process groups. We plot the most expensive steps of the

Combination Technique (solve and combine) with faults, as well

as the cost to recover from one fault, always choosing the same

group to fail. Those times are compared to our scaling results of a

classical Combination Technique without faults [10, Section 5.2.2].

Both solve and combine are slightly more expensive in the fault

scenario, since we lose one whole process group (1024 cores) when

the first fault occurs, but in both cases, both steps scale. There

is an additional increase in the solve time for our fault-tolerant

implementation that comes from having more component grids

than the classical Combination Technique, but the extra cost is very

small. Similarly, the time for the combination step increases as well.

The recover step scales well up to 16k cores and then we see a

slight increase for 32k cores. Further investigations showed that

the recovery time is mainly dominated by the recomputation time.

For each of the runs, only a few “cheap” (very coarse) component

solutions needed to be recomputed. As each of these component

solutions is only solved by one process group (of fixed size in our

case), the recovery time cannot scale in cases where we have more

process groups than component solutions to recompute – some

of the process groups are idle in this case. Furthermore, different

numbers of solutions fail in the different runs, which results in

different numbers of solutions that need to be recomputed. As those

solutions vary in the number of points as well as in their anisotropy,

recovery times vary for each experiment. This makes it difficult

to predict or interpret the scaling of the recovery step. However,

recomputing a single solution should scale with the number of cores

in a process group if the solver – in our case GENE – still scales.

Additionally, the need to recompute decreases with the number of

process groups, since fewer solutions fail and therefore one can

avoid recomputing in more cases.

This effect can be seen in Figure 7 (bottom) where we show

the average of 3 runs for every group configuration. The average

runtime of the recovery step scales well up to 32k cores. Only for

16k cores the scaling seems a little off, which is caused by one

4
Additionally, other more realistic simulation scenarios with GENE (e.g. nonlinear,

global simulations) are much more expensive than the scenario we chose.

5
The classical (non-fault-tolerant) Combination Technique without additional grids

would have 136 component grids.

6
The full grid solution we are approximating would have roughly 2

9×1×213×213×213

grid points, whichwould be impossible to solve directly even on the full supercomputer.

100

101

102

103

104

R
u

nt
im

e
[s

]

solve

write checkpoint

combine

recovery

1024 2048 4096 8192 16384 32768

Number of cores

101

102

103

104

105

R
u

nt
im

e
[s

]

solve no fault

solve fault

combine no fault

combine fault

recover fault

1024 2048 4096 8192 16384 32768

Number of cores

100

101

102

103

104

105

R
u

nt
im

e
[s

]

solve no fault

solve fault

combine no fault

combine fault

recover fault

Figure 7: Top: Runtimes for the most expensive steps of the
FTCT. We plot the maximum time a process spends in to-
tal for each step. Middle: Scaling results for one specific run
with and without faults. In all fault scenarios, one process
of the first process group fails. Bottom: Average runtimes of
three scaling runs.
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large runtime for the recovery step in one of the three runs. The

overall relative parallel efficiency is 93.61% compared to 4k cores

with faults. If we compare it to 1k cores without faults, we still

obtain a parallel efficiency of 76.97%. The increase in the solve time

is 10.93%, and 21.37% for the combination time. It is important to

remember that each run is different in the sense that the tasks are

distributed non-deterministically, and so is the time needed for the

recompute step. For example only in one of the three 32k test cases

we had to recompute component solutions. Nevertheless, these

results show that in average we can expect good scaling even with

high process numbers. Finally, the recovery overhead only takes

a minor portion of the overall runtime. In more realistic scenarios

where faults occur very rarely and millions of time-steps (instead

of 300) are simulated, this overhead would be even smaller.

5 CONCLUSIONS
In this work we showed a scalable implementation of the Fault-
Tolerant Combination Technique to solve higher-dimensional PDEs,

and in particular the gyrokinetic Vlasov equations. The Combina-

tion Technique allows us to increase the discretization resolution

of a simulation at lower cost than on a full grid, and it is also fault

tolerant. We simulated various fault scenarios with a high number

of faults and showed that the error remains small. Even in extreme

scenarios with up to 117 independently failing ranks the error in-

creased in average only by 20%. In addition to the number of faults,

the time at which faults occur also has a significant impact. For

GENE we noticed that faults at the end of the simulation result in

less accurate solutions compared to faults at earlier time-steps.

We also showed that the overhead of the recovery method is

smaller than the cost of performing a single iteration in a test-case

with 512 cores. This is much cheaper than pure checkpointing –

writing a single checkpoint took about five times as long. For a

large test-case with 185 component grids and one failing rank we

observed good scalability on up to 32k cores. Moreover, the runtime

overhead compared to a non-fault-tolerant Combination Technique

is small. In particular, for all test-cases the recovery overhead, i.e.

the time for reorganizing communicators, redistributing and recom-

puting of component grids, remained small compared to the solver

runtime and therefore has only a minor effect on the scalability. We

conclude that the fault-tolerant Combination Technique is a good

method to achieve reliable results even in environments with high

failure rates.

6 RELATEDWORK
The FTCT has been studied in several works. In [9] Harding et al.

investigated the statistical properties of the FTCT. However, only

the influence of very few faults is examined and only a simple

advection problem is investigated.

A parallel implementation of the FTCTwith GENE is presented in

[2]. The authors use ULFM-MPI and can tolerate real system faults.

In contrast to our implementation, the combination is performed on

the target full grids, which increases the memory overhead signifi-

cantly. In [1], the framework is also applied to Lattice Boltzmann

and SFI applications, with a scaling analysis up to 3k cores. In [10,

Chapter 3.6] further comparison to our framework concerning the

load balancing scheme and the combination structure can be found.
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