
A Fixpoint Semantics for Nondeterministid Data Flow

JOHN STAPLES AND V. L. NGUYEN

University of Queensland, St. Lucia, Australia

Abstract. Criteria for adequacy of a data flow semantics are discussed and Kahn’s successful semantics
for functional (deterministic) data flow is reviewed. Problems arising from nondeterminism are intro-
duced and the paper’s approach to overcoming them is introduced. The approach is based on generalizing
the notion of input-output relation, essentially to a partially ordered multiset of input-output histories.
The Brock-Ackerman anomalies concerning the input-output relation model of nondeterministic data
flow are reviewed, and it is indicated how the proposed approach avoids them. A new anomaly is
introduced to motivate the use of multisets. A formal theory ofasynchronous processes is then developed.
The main result is that the operation of forming a process from a network of component processes is
associative. This result shows that the approach is not subject to anomalies such as that of Brock and
Ackerman.

Categories and Subject Descriptors: F. 1 .O [Computation by Abstract Devices]: General; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming Languages-denotational semantics

General Terms: Theory

Additional Key Words and Phrases: Asynchronous, data flow, denotational, nondeterminism, semantics

1. Introduction

Data flow is a general term for the behavior exhibited by networks of machines (or
virtual machines) of the following class.

Data flow machines have designated input ports and output ports. Each port has
a designated data type. Their input ports are always ready to receive data, which is
stored (“buffered”) for later processing. The capacity of such buffering is un-
bounded. No assumptions are made about the timing of the events that produce
output.

Such a machine, or a description of its behaviors, may be called an asynchronous
process.

The assumption of unbounded buffering capacity is not a restrictive one. Within
this class of models, we can define nondeterministic processes which “lose” input
data randomly, in such a way as to model bounded or null-buffering capacity.
Also, subclasses of processes can be defined that are implicitly tightly synchronized
with each other, by the fact that at each transition a datum is read from each input
port and written at each output port. Since both these cases are subcases of the
general case of unbounded buffering, we do not consider them separately.

Part of the work of the first author was done while on leave at the Computer Science Department,
Stanford University. The work of the second author was supported by an Australian Computer Research
Board Postgraduate Scholarship.
Authors’ present addresses: J. Staples, Department of Computer Science, University of Queensland, St.
Lucia, Queensland 4067, Australia; V. L. Nguyen, Computer Science Department, Cornell University,
Ithaca, NY 14853.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1985 ACM 0004-541 l/85/0400-041 1$00.75

Journal ofthe Association for Computing Machinery, Vol. 32, No. 2, April 1985, pp. 41 l-444.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3149.3155&domain=pdf&date_stamp=1985-04-01

412 J. STAPLES AND V. L. NGUYEN

fact = 1

FIG. 1. Recursive definition of a factorial process.

A semantics for data flow is a theoretical model of the possible behaviors of such
machines. Mechanistic machine models are possible, but more abstract models are
valuable for supporting reasoning about the properties of machines.

From the point of view of this paper, a fixpoint semantics is one in which the
behaviors of a network can be characterized as the limit (least upper bound) of a
sequence of approximations, each approximation being a finite behavior realizable
by a finite execution of the machine in question.

Such a semantics has an intuitive appeal. It also has the technical merit of
supporting reasoning about machine behaviors by induction on the sequence of
approximations.

It is not a priori clear that some other type of semantics might not have equal or
greater benefits. If we enumerate some criteria that a semantics should satisfy,
however, then we see that our approach meets them well and compares well with
previous approaches.

Here are some such criteria. The purpose of the paper is to show how our
approach meets all of them except extensionality. In Section 9, we compare our
approach with previous work.

1.1. CRITERIA FOR A DATA FLOW SEMANTICS

1.1.1. Modularity. There should be a way to define a single process for each
network of machines, from the processes of its components, which refers only to
the external behavior of the network.

1.1.2. Input-Output Correct. The set of total input-output histories of a
machine should be derivable from its process. This set is the set of pairs (x; y),
where x is an input history, that is, a sequence of data values for each input port,
and y is an output history that describes a total response (over all time) of the
machine to the input x.

If the set of all partial and total output histories is derivable from its process, we
shall call the process model partially input-output correct.

I. I .3. Support Definition by Recursion. For the present, we illustrate this
concept informally by means of the diagram in Figure 1, which is a recursive
definition of a factorial process. It converts an input history comprising a finite or

A Fixpoint Semantics for Nondeterministic Data Flow 413

infinite sequence of natural numbers into an output history comprising their
factorials, in order.

Each of the components of this network is deterministic. Its total input-output
history is a function; each input history uniquely determines a’ corresponding
total output. The functions for the components of the network may be de-
lined as follows, where we abbreviate “if . . . tell” to “it&.” We denote by X. Y the
concatenation of the sequences X and Y. Likewise for vectors of sequences,
(X, U).(Y, V) denotes (X. Y, 17. V). The symbol I denotes the empty sequence.

itet(l) = (1,1,1)
itet(0.X) = (O,O, I).itet(X)
itet(n.X) = (I, 1, n).itet(X), n>O

succ(l) = I
succ(n.X) = (n + l).succ(X)

pred(l) = I
pred(0.X) = 0

pred((n + 1).X) = n.pred(X)
mult(X,I) = I
mult(l, Y) = I

mult(a.X, b. Y) = (a*b).mult(X, Y)

fanout = (X, X)
slavemerge(X, I, 2) = I

slavemerge(a.X, 0. Y, c. Z) = a.slavemerge(X, Y, c. Z)
For b # 0, slavemerge(a.X, b. Y, c. Z) = c.slavemerge(a.X, Y, Z)

1.1.4. Abstract. If two networks define the sawle process, then so should their
substitutions in every context. Intuitively, a context is a network with a hole in it,
in which another network may be substituted.

1.1.5. Extensional. If two machines define different processes, then their
substitutions in some context should have different sets of total input-output
histories.

1.1.6. General. In particular, we seek to model nondeterminism, including
the aspect of fairness, as discussed in 3.1.

1.2. REVIEW OF KAHN’S MODEL. All the criteria listed above, except gener-
ality, are satisfied by Kahn’s semantics for deterministic data flow [4]. In this paper,
a new semantics of asynchronous processes is developed. It provides a lixpoint
characterization of network processes, extending Kahn’s model [4] of deterministic
processes.

According to Kahn [4], a deterministic asynchronous process over a given data
type D is characterized by its input-output (or history) function, which specifies
the complete output sequences (or histories) at all output ports, given input
sequences at all input ports.

For good practical and theoretical reasons, Kahn made some mild assumptions
about the nature of these functions, in terms of the following partial order on data
sequences.

A sequence A is defined to be less than or equal to another sequence B if and
only if A is a prefix (initial subsequence) of B.

With respect to that order, Kahn assumed that history functions are continuous.
That means they are monotonic (future input defines an output that extends the

414 J. STAPLES AND V. L. NGUYEN

(4 (b)

FIG. 2. An example of the use of Kahn’s method. (a) P. (b) Network defining Q. (c) Labeled edges of
network.

output defined by the current input) and continuous at limits (a finite output,
which can occur at all, occurs in response to some finite initial part of the input).

Kahn’s theory is simple and elegant. A network of processes is characterized as
a system of mutually recursive equations for the history on each edge, in terms of
the input histories and the history functions of the components. Its behavior for
given input sequences can be obtained, and approximations to its behavior com-
puted, by the well-known lixpoint method. The history function of the composite
process can be defined in the same way, and it is continuous.

Here is an example of the use of Kahn’s method.
Consider a process P as in Figure 2a. The figure gives names to each of the input

and output ports of P. The history function of this process has the form

jDxD+DxD.

We may write fcomponentwise as f= (J;, f2), where fi: D x D + D and similarly
for&.

Now suppose that we wish to compute the history function of the process Q
obtained from P by connecting out2 to in2; as in Figure 2b. Kahn’s method is to
assign history variables to edges (e.g., as in Figure 2c), then to write down the
mutually recursive equations in these variables that are defined by the history
function, thus:

Y = h(X,Y),
= = fi(X,Y).

These equations can be arranged in the form X = F,(X), as follows:

(~4 4 = (h 0 (T v-l), h 0 (%m))(x 4,

where

prl = The projection of an ordered pair onto its first coordinate;
X = The function with constant value x;
0 = The composition operation on functions.

This function F is continuous with respect to the prefix partial order on histories,
in both X and x. The following two properties of that partial order ensure that a
well-known theory can be applied to show that, for continuous functions F, such
an equation has a least solution. Intuitively, the least solution is the solution of
practical interest.

(a) There is a least element, I, in the partial order. (It is just the empty history.)

A Fixpoint Semantics for Nondeterministic Data Flow 415

(b) Increasing sequences of histories have least upper bounds. (The union of an
increasing sequence of histories is a history that is the least upper bound of the
sequence.)

In general, a partial order that satisfies these two conditions is called an w-chain
complete partial order (cpo).

The least solution of X = F,(X) is the least upper bound (lub) of the increasing
sequence

L W-U Fx(FxU-I), . . .

and is usually denoted

lubn FW,

or loosely,

lub F:(l).

Recall that our ultimate goal is to solve for the output history of the new process
in terms of its input history. Since X = (y, z), the solution for z is just

z = prz(lub F:(i)).

This description of the solution makes it clear that we can compute approxi-
mations to the solution, provided F, is computable. It can also be shown that z is
a continuous function of x.

Unfortunately, however, Kahn’s method does not extend naively to general
asynchronous processes, as shown in [2] and [3], and as reviewed in Section 3.

1.3. A POINT OF NOTATION. In his original paper, Kahn restricted his theory
to a proper subset of the continuous functions, as we explain in 2.3.2. He called
the smaller class of processes he considered deterministic. (This name can cause
confusion, since not every such process is definable by a single deterministic
automaton. Consider, for example, the process comprising two parallel, not inter-
connected, copies of the identity process.)

We call the larger class of processes that are within the scope of Kahn’s method
functional; that is, the class that can be described by a continuous history function
from inputs to outputs.

2. Some Basic Ideas and Their Relationship to Kahn’s Theory
2.1. SOME BASIC DEFINITIONS. For simplicity, we assume all data values are

from some arbitrary but fixed data type. There is no difficulty in elaborating the
approach to deal with a multiplicity of data types.

A sequence of data values, finite or infinite, may be called a port history.
We assume that each process P has a fixed finite set of input ports and a fixed

finite set of output ports.
An association to each port of P of a port history may be called a history over

the ports of P, or a process history. It is convenient to decompose such a history
into two parts: the input history, which associates a port history to each input port,
and the output history, which associates a port history to each output port.

We may represent a history over the ports of P by a pair (u;v), where u denotes
an input history and v denotes an output history.

For x = (u;v), we may also write in(x) for u and out(x) for v.

416 J. STAPLES AND V. L. NGUYEN

Also we may write, for example, (u;v, w), if it is desired to reference the
decomposition of the output history into the disjoint parts v and w.

The prefix ordering on histories is defined as follows. For histories u and v,
u I v means that u and v have the same input and output ports, and, for each such
port, its u-history is an initial subsequence of its v-history.

For a given set p of ports, we may write Hist(p) for the partial order whose
elements are all histories over the ports in p, with the prefix order. When the port
set is clear from the context, we may abbreviate Hist(p) to Hist.

The least element, if any, of any partial order may be denoted 1.

2.2. THE CONCEPT OF PROCESS. Given a finite set p of input and output
ports, our concept of a process P over p will be that P is a partially ordered set,
whose elements are labeled by histories over p (equivalently, a partially ordered
multiset of such histories), which satisfies the axioms stated in Section 4.

We write c to denote the process partial order. Intuitively, for finite elements x
and y, x E y may be interpreted to mean that the least computation of x can be
extended to the least computation of y.

A fundamental reason for using multisets is to distinguish between the various
minimal computations of a single history, so that each can be regarded as a least
computation of some instance of that history.

2.3. EXAMPLE OF FUNCTIONAL PROCESSES. Recall that the defining property
of a functional process is that there is a function, f say, from input histories to
output histories that is continuous in the initial subsequence ordering and such
that, for every input history u,f(u) is the total output history for that input.

2.3.1. The Modeling of Functional Processes. We would like to define, from
the history function f of an arbitrary functional process, a process P(f) in our
sense, as follows.

P(f) = ((u;v):v If(U)).

We equip P(f) with the prefix ordering.
Notice that nothing is lost by representing f as P(f). We can recover f from

P(f). It is the set of elements h = (u;v) of P(f) such that h is the greatest element
of P(f) with input u.

In the context of nondeterminism, this approach succeeds for a large class of
functional processes, which includes all the deterministic processes originally
considered by Kahn. However, there are cases where, to conveniently interface
with nondeterministic processes, more care is needed. To illustrate this point,
consider the following example.

2.3.2. The History Function Detect. We consider a process that has two input
ports and one output port. It signals, by emitting a single 0, the arrival of any data
at either of its input ports. Formally, we define its history function Detect as follows.

Detect&I) = I,
Detect(a.X, Y) = 0,
Detect(X, b. Y) = 0.

Intuitively, Detect has the capacity to mask nondeterministic behavior. For our
approach, it is important, when dealing with nondeterministic behavior, to recog-
nize this capacity in functional processes. Since Kahn’s method considers functional
processes only in the context of other functional processes, this point is not
significant for his analysis.

A Fixpoint Semantics for Nondeterministic Data Flow 417

It is interesting that Kahn nevertheless ruled out processes such as Detect. His
requirement was that processes should be constructible from atomic processes,
each of which “is either computing or waiting for input on one of its input lines”
(Kahn’s underlining).

This requirement implies the following property (as we shall show in 2.4.1).

Property 2.1. For all finite x in P(f), there is a least z 5 x in P(f) such that
out(z) = out(x).

It is equivalent to omit the restriction to finite histories, as we show in 2.4.2.
An alternative, equivalent criterion is as follows. Here and later it will be useful

to call two elements x and y of a partial order P consistent if x and y have a
common upper bound in P.

The equivalence will be proved in 2.4.3.

Property 2.2. For all consistent x and y in P(f), the greatest lower bound of x
and y in Hist is the greatest lower bound of x and y in P(f).

It is clear that Detect fails these criteria since, for example, (I, 0;O) and (0, I;O)
are in P(Detect), but (I, I;O) is not.

2.3.3. Remark. Because it is important for our later work, we note here that
the property for joins (least upper bounds) corresponding to Property 2.2 is true
for all history functionsJ as a consequence of the monotonicity ofJ: Precisely, the
property is as follows.

Property 2.3. For all consistent x and y in P(f), the join x V y of x and y in
Hist is also an element of P(f).

To see that, write x = (u, v), y = (u’, v’), so that v 5 f(u), v’ I f(u’). Now
u I u V u’, so f(u) I f(u V u’), and similarly for f(u’), so f(u) V f(u’) I
f(u v u’).

Hence, v V v’ of Vf(u’) ~f(u V u’), so (u V u’, v V v’) is in P(f).

2.3.4. The Process DETECT. As a simple example of the application of our
approach, we describe a process DETECT, which is a model in our theory of the
functional process with history function Detect.

Since DETECT is based on a multiset of histories, we provide indices to label
different instances of the same history, in order to define conveniently their role in
the partial order.

In this simple example, there are only three possible indices, which, for detinite-
ness, we take to be the following strings of symbols; the empty string, the string
whose single symbol is 0, and the string whose single symbol is 1.

For each element (a, b;c) of P(Detect) and each index i, (a, b;C)i is an element
of DETECT if and only if the length of c equals the length of i. In case i is 0
(respectively, l), then a (respectively, b) is nonempty.

The ordering of DETECT is defined by

(a, b)i E (4 e;f)i

just if (a, b;c) 5 (d, e;f) and i is an initial subsequence ofj.
For example, (I, O;O), and (0, I;O)o are in DETECT, but (1, O;O)O and (0, I;O),

are not. Both (0, O;O),, and (0, O;O), are in DETECT.
The process DETECT models the capacity of Detect to mask nondeterminism,

intuitively by recognizing its capacity to make a nondeterministic choice of input
port. Formally, DETECT satisfies the following generalization of Property 2.2.

418 J. STAPLES AND V. L. NGUYEN

Property 2.4. Every consistent pair x and y in P has a greatest lower bound in
P; which is an instance of the greatest lower bound of x and y in Hist.

The process DETECT satisfies this condition simply because, although (I, O;O)l
and (0, I;O)o are both in DETECT, they are not consistent.

2.4. RETRACTING HISTORY FUNCTIONS. A function f satisfying one of the
equivalent properties 2.1 and 2.2 is called retracting. So maybe the process P(f),
which it defines. For example, all one-input functional processes are retracting.

The name is derived as follows. Given such a function J; a function g may be
defined by

g(y) is the least x such that y = f(x).

Then, gofis a retraction of the domain offin the sense that it maps each input
history x in the domain of fto the least input history having the output f(x). In
particular, it leaves those least input histories invariant.

In this notation we can say: retracting history functions f define P(f)‘s, which
are processes in our sense and which are sets rather than multisets.

Functional processes that have retracting history functions may be called retract-
ing also. In our theory, it is just the retracting functional processes that are
representable as partially ordered sets; other processes need the power of the
multiset concept.

2.4.1. Proof That Kahn’s Deterministic Processes Are Retracting. Recall that
Kahn’s concept of a deterministic process requires that it should be built from a
network of atomic processes, each of which “is either computing or waiting for
output on one of its input lines.”

Here we show that all such processes are retracting. In Lemma 7.4, we show
that, for functional processes, retracting is preserved under network construction.
Hence, all Kahn’s deterministic processes are retracting.

Our argument is in the contrapositive. We consider P(f), which is not retracting,
and we show that it does not satisfy Kahn’s condition.

Since P(f) is not retracting, it has a finite element h = (u;v), such that there is
no least history h ’ zz h with the same output history as h.

Now since prefix ordering on histories is noetherian (synonyms: wellfounded, all
descending chains are finite), then there are two distinct minimal histories below
k =Y

x = (PY) and Y = (4;v)

with the same output history as h.
We see as follows that x and y have a greatest lower bound in P(f). From 2.3.3,

the set of common lower bounds of x and y is a directed subset of P(f). That set
is finite, since x and y are finite. Hence, it has a greatest element, which we denote
x A y. Consider this meet z = x A y of x and y. Say z = (p ,A q;w). Since P(f) is
not retracting, w # v. Since x and y both have minimal inputs for output v, it is
necessary to increment the input history of z before the output history can be
incremented.

Consider arbitrary z, = (r,; w) such that z < z, < x, and consider arbitrary
z, = (rY;w) such that z < z,, < y.

Each of z, and z, increments input port histories of z. By the definition of z, the
two increments have no input events in common. Neither can they be inconsistent.

On the other hand, there are output-producing transitions of the process from z
towards x and from z toward y. They occur in response to different input

A Fixpoint Semantics for Nondeterministic Data Flow 419

configurations, contradicting Kahn’s determinism condition; which concludes the
proof. Cl

2.4.2. Proof That Property 2.1 Is Equivalent to: for All x in P(f), There Is a
Least z I x in P(f) Such that out(z) = out(x). Clearly this form implies Property
2.1. We consider the converse.

Each element x of P(f) is the limit of an increasing sequence (xn) in P(f) of
finite elements, from the continuity ofJ: Say (yn) is a least element below x such
that out(y,,) = out(x,,). Then (y,,) is increasing, since out(x,, A yn+l) = out(x,J, so
that y,, 5 x, A Y,+I 5 Y,,+~. From the continuity of J; P(f) is w-complete, so (y,J
has a limit, y say, in P(f).

If z 5 x and out(z) = out(x), then out(z A y,J = out(y,J, so yn I z A yn 5 z
for all n, hence y I z. That is, y is the least element w of P(f) below x such that
out(x) = out(w). cl

2.4.3. Proof OfEquivalence of Property 2.1 and Property 2.2. First, we suppose
Property 2.2 and show Property 2.1. Since the prefix ordering on histories is
noetherian, then, given x = (u;v), there exists at least one minimal z = (u ‘;v) such
that z 5 x.

Suppose that z’ is another such minimal element. Then z A z’ is below z and
has output history v also, so z A z’ = z; thus z I z’. Symmetrically, z’ 5 z.

Conversely, suppose now Property 2.1, and consider x zz z, y I z. By hypothesis,
there is a least w below z such that out(w) = out(x) A out(y), = k say.

Note that out(w A x) = out(w), so w 5 w A x. That is, w = w A x and so w I x.
Similarly, w 5 y.

Hence, w is a lower bound for x and y in P(f). From 2.3.3, the union of w with
(in(x) A in(y);l) is in P(f). It is the greatest lower bound of x and y in Hist, as
required. 0

3. Anomalies and Other Motivations
We describe some basic nondeterministic processes. We review the Brock-Acker-
man anomalies, to show how they are resolved in our approach. We also introduce
a new anomaly, to motivate our use of multisets.

3.1. NONDETERMINISM AND FAIRNESS: THE FAIR MERGE

3.1.1. An Unfair Merge Process UM. Intuitively, we seek a process that can
merge two streams of input data into a single output stream. It should be nonde-
terministic so that it will not wait forever for data from an input which receives
none, while there are data available at the other input.

A first try at defining the total input-output history relation rUM of UM might
comprise the following recursive definition.

hd-,.-l-j = (4,
ru&a.X,I) = a.X,
ru,&, b. Y) = b. Y,

rUM(a.X, b. Y) = a.rUM(X,b. Y) U b.rU&a.X, Y).

However, a process with such a relation has the disadvantage of being unfair. Its
input-output relation permits it to favor a single infinite stream of input data,
forever neglecting some or all of the data available at the other input.

From a practical point of view, such processes are not always appropriate, as the
example of 3.1.3 illustrates. Hence, we make the following definition. However,
UM does have a role in the theory of data flow, as illustrated in 3.1.4.

420 J. STAPLES AND V. L. NGUYEN

3.1.2. A Fair Merge Process MERGE. The merge process to be considered has
two input ports, say left and right, and a single output port. Intuitively, for given
input histories, the corresponding complete output history is an arbitrary merging
of the input histories.

The total input-output history relation r~ of MERGE is defined as follows,
where “\,, denotes the set difference operator.

r&Y, Y) = ruM(X, Y)\ y b&X’, Y)\ ‘;! ru.dX, Y’),

where X’, Y’ range over the proper prefixes of X and Y, respectively.
The anomalies discussed in the following paragraphs show that this relation rM

is inadequate for modeling the merge process.
We can however use rM as a stage in the definition of an adequate merge model.

Note that it makes sense to apply the operation P() to rM, as follows:

P(rM) = ((x;y): there is x’ 5 x and y’ 5 y such that y’ is in r&x’)].

We construct a process MERGE from the elements of P(rM).
As in the discussion of DETECT, we use indices to name conveniently the

multiple instances of histories that are involved.
We take as indices all sequences of zeros and ones, of length n, n = 1, 2, . . . w.

For (x, y;z) in P(rM),

(x,Y;z)~ is in MERGE

just if the length of i equals the length of z, and if the zeros and ones of i specify a
decomposition of z into two disjoint sequences that are initial subsequences of x
and y, respectively.

The partial order on the elements of MERGE is defined as follows.

just if (x, y;z) 15 (u, v; w) and i is an initial subsequence ofj. It is straightforward to
check that MERGE satisfies the conditions of Section 4.

3.1.3. An Example of the Role of Fairness. Consider a network as in Figure
3, wherein all processes other than MERGE are deterministic, as follows. 1” outputs
an infinite sequence of ones; 0 outputs a single zero. The null process outputs
nothing. The process cat is defined as follows.

cat& Y) = I,
cat(a.X, Y) = a.cat(X, Y)
cat(O.X, Y) = Y.

if a # 0,

As MERGE is fair, the process defined by this network can generate 1” for all
natural numbers n, but not 1”. If we had used UM instead, the process would have
had the option of outputting 1”.

That is actually a matter of some practical importance. For example, one wishes
to be able to model, by an elaboration of this example, the capacity to reset suitably
configured processes. In the absence of fairness in an asynchronous system, that is
impossible.

3.1.4. An Example of the Role of Unfairness. Although one might doubt
whether a practical machine design would ever call for an unfair merge process,
unfair merging can easily arise in the analysis of nondeterministic processes. Here
is a contrived example of that.

A FixpoiniSemantics for Nondeterministic Data Flow 421

0 0

I:‘AGh
I

“b cal

FIG. 3. A network illustrating the role of fairness.

Consider a process with two input ports and one output port. Its behavior is to
read integers from its left input and copy them onto its output, until it reads an
integer of the form

such that

2” 3y 5’ 7” . . . n > 2,

x” + y” = z”.

After copying that integer to its output, the subsequent behavior is to fairly
merge its two inputs.

Does this process fairly merge? That is, is this process sMERGE, in the ordering
of processes to be defined in 4.1. l? It is hard to say! One can say, however, that it
is 5 UM. It then follows from our later work that a network M in which our process
occurs defines a process P, which is 5 the corresponding process Q defined by
using UM instead. Thus, if a result of the form P 5 R is required, it is sufficient to
show Q 5 R.

3.2. THE FIRST ANOMALY OF BROCK AND ACKERMAN. BrockandAcker-
man [2] observed that the two networks of Figures 4a and 4b, while having the
same total input-output history relation, nevertheless can be distinguished in the
context of Figure 4c, by the different responses of the two substituted networks to
input “0”. The earlier work of [5] in this area was not conclusive.

All the components in all networks of Figure 4, except for MERGE, are
deterministic. For definiteness, a boolean data type is assumed. The history
functions of the deterministic components may be defined as follows:

cons-‘(l) = I,
cons-‘(a.X) = (a, X),

cons& Y) = I,
cons(a.X, Y) = a. Y,

wait(X,I) = I,
wait(X, b. Y) = X,

not(l) = I,
-not(O.X) = l.not(X),
not(1.X) = O.not(X).

It may help analysis of the difference between the two networks to consider them
in the forms of Figures 5a and 5b, where the deterministic processes da and db

422 J. STAPLES AND V. L. NGUYEN

(4 tz
@I

FIG. 4. Networks MA and MB. (a) MA. (b) MB. (c) Context.

U

(4

U

O-4

FIG. 5. Different forms of networks MA and MB. (a) MA. (b) MB.

have history functions defined as follows:

da(x,y) = (cons(head(x),y),head(x),tail(x)),
db(x,y) = (cons(wait(head(x),y),y),head(x),tail(x)),

where

head(l) = I,
head(a.X) = a,

tail(l) = I,
tail(a.X) = x.

The point of the anomaly is that in MB, if one inputs “0” and then waits for
output before inputting “ 1,” then MB outputs a stream of the form “0.0. . . .”
However, when MA is subjected to the same treatment, the resulting streams may
have either of the forms “0.0 - . - ” or “0.1”

A Fixpoint Semantics for Nondeterministic Data Flow

(0 :O.O) (0.1 ; 0.1)

423

\/
(0 ; 0)

I (1 ; 1)
64

(0 ;O.O) (0.1 ; 0.1)

I
(0 : 0)

\ /
(1 ; 1)

(b)

FIG. 6. Parts of the input-output histories. (a) MA. (b) MB.

This difference is masked in the total input-output history relations by the fact
that input “0.1” to MB can result in output of the form “0.1 . . . ,” if one does not
wait for the first output datum before inputting the “1.”

This difference is not exposed simply by considering partial as well as total
input-output histories, since the latter determine the former. However, if we do
consider the partial as well as the total input-output histories, we have the
opportunity to resolve the anomaly by the use of our concept of order, introduced
in 2.2.

For, in MA with input “0,” the least computation that produces an output “0”
is the one in which MERGE processes no input-leaving it free to subsequently
choose a “1” at the right input. In MB with input “0” however, the least compu-
tation that produces an output “0” is one in which the MERGE process does select
a “0” from its left input, and by outputting it ensures that the MB output will have
the form “0.0”

The set of partial and total input-output histories, ordered in accordance with
the principle of 2.2, is sketched in part in Figure 6. We see that the partial orders
are different.

In fact, the method we shall develop does not lead precisely to these orders, but
to orders of which these are homomorphic images. However, the distinction
remains.

3.3. THE SECOND ANOMALY OF BROCK AND ACKERMAN. This anomaly
was described in [3]. It is similar in essence to the previous one.

Two networks NA and NB, as sketched in Figures 7a and 7b, have the same total
input-output history relation, but are distinguished in the context of Figure 7c by
input “0.”

The following functions are the history functions of those deterministic processes
that occur in these networks, but have not previously been defined.

3.3.1. Definition. A duplicating function, duplicate, is defined by

duplicate(l) = I,
duplicate(a.X) = a.a.duplicate(X).

3.3.2. Definition. A filter A is defined by

A(I) = I,
A(a) = a,

A(a.b.X) = a.b.

424 J. STAPLES AND V. L. NGUYEN

trot
P fanouf

(4 @I (4

FIG. 7. Networks NA and NB. (a) NA. (b) NB. (c) Context.

3.3.3. Definition. A filter B is defined by

B(I) = I,
B(a) = I,

B(a.b.X) = ah.

One sees that in the context of Figure 7c, N.4 has the option of an output stream
of the form “0.1 . . . ,” whereas NB does not.

Again, this difference in behavior is masked in the total input-output history
relations by the fact that one is unable to distinguish between inputting at the right
port before output appears, and after output appears.

Again, the distinction can be made straightforwardly by choosing to order the
partial and total input-output histories in accordance with the principle of 2.2.
Relevant fragments of these orders are sketched in Figure 8.

3.4. AN ANOMALY TO SHOW THE NECESSITY OF MULTISETS. Sinceboth of
the Brock-Ackerman anomalies are resolvable without the use of multisets, it is
worthwhile to exhibit an anomaly that is not.

Consider the two networks LA and LB of Figures 9a and 9b. The deterministic
processes not yet defined. have the following history functions.

1 emits a single “ 1.”

KO(I) = I,
KO(l2.X) = 0,

Kl(I) = I,
Kl(u.X) = 1.

The processes LA and LB have the same input-output history relations, but
perform differently in the context of Figure 9c with input “0.”

Intuitively, if one inputs “0” to the left input port of LB and then waits for
output before inputting “ 1” at the right input port, then the output at the left
output port must be “0.0.” Under the same conditions, LA may output either “0.0”
or “0.1” at the left output port.

This distinction, however, cannot be described by attributing to LB any reline-
ment of the prefix order on the partial and total input-output history relations

A Fixpoint Semantics for Nondeterministic Data Flow 425

to,1 ; 0.0) (0. 1 ; 0.1) to,1 ; 0.0) (0, 1 ; 0.1)

\ /
to..1 ; 0) to,1 :O)

(l-1 ; 1) (1,l; 1)
(a) (b)

FIG. 8. Relevant fragments of partial or total input-output histories. (a) Part of NA order. (b) Part of
NB order.

FIG. 9. Networks LA and LB. (a) LA. (b) LB. (c) Context.

because any such order should include

(O,l;O, I) 5 (0, l;O, 1)

and

(0, l;O, 1) I (0, l;O.l, 1)

but not their transitive closure,

(0, I;O, I) % (0, l;o. 1) 1).

(c)

The resolution of this anomaly in our approach is that the two appearances of
(0, l;O, 1) in the desired inequalities are different instances of that history in the
multiset order.

The partial ordering principle of 2.2 leads to partially ordered multisets of input-
output histories for LA and LB, which are sketched in part in Figures 1Oa and lob.

426 J. STAPLES AND V. L. NGUYEN

(0,l ; 0,1:
I 1 (0.1 ;O.l)

(0, .I ; 0, .L)

(A-,-l ; 1,-L)

~~ z; 1,o

I I ,

(4 (W

FIG. 10. Parts of the input-output histories for LA and LB. (a) LA. (b) LB.

4. An Axiomatic Definition of Process

As previously motivated, we define a process P over some fixed, finite set of
ports p to be a structure

P = (E, c, h),

which satisfies the conditions stated in the following paragraphs. Here E is the set
of elements of P, c is the partial order relation on E, and h is a function from E
to Hist(p).

The axioms as stated here are, in some respects, more general than is convenient
in applications. For example, they do not require a process to have a defined
response to every finite or infinite input stream, nor do they require a process to
be extensional in the sense that a process is uniquely determined by its response to
all its environments (such a process concept has also been called fully abstract).
We have chosen this weak axiomatization because it is a convenient framework
within which to develop the elements of the theory.

Notation
(a) In the following axioms, P denotes an arbitrary process. Objects not specifically

defined are implied to be elements of P.
(b) Here and later we may refer to the least upper bound of an increasing sequence

in a partial order as its limit.
(c) Recall that two elements x and y of a partial order P are called consistent if

they have a common upper bound in P.
(d) We call an element x of Pfinite if h(x) is a finite history.
(e) We write in(x) for the restriction of h(x) to the inports of P, and out(x) for

the restriction of h(x) to the outports of P.

AXIOM 4.1. Processes are poles.

That is, there is a least element I of P, and h(l) = 1.

AXIOM 4.2. Principal ideals have prefix order.

That is, if x and y are consistent and h(x) 5 h(y), then x E y.

A Fixpoint Semantics for Nondeterministic Data Flow 427

AMOM 4.3. Processes are countably based.

That is, every element of P is the limit of an increasing sequence of finite
elements of P.

AXIOM 4.4. The function h: (E, E) + Hist is continuous.

That is,

(a) for all x and y, x E y implies that h(x) d h(y);
(b) for every increasing sequence (x,) in P that has a limit in P, h(lim x,) =

limh(x,).

AXIOM 4.5. Processes are locally join-closed.

That is, if x and y are consistent, then x and y have a least upper bound x V y
in P such that x V y E z and h(x V y) = h(x) V h(y).

AXIOM 4.6. Processes are locally meet-closed.

That is, if x and y are consistent, then they have a greatest lower bound x A y in
P such that h(x A y) = h(x) A h(y).

Note that only Axioms 4.1 and 4.3 impose consistency requirements, so the
axioms are satisfied by trees that satisfy Axioms 4.1-4.4, inclusive. Some of the
following would be simplified by considering only trees satisfying Axioms 4.1-4.4;
but that would obscure the relationship with Kahn’s work.

4.1, THE CPO OF ALL PROCESSES OVER A GWEN SET OF PORTS. The collection,
say Proc(p), of all processes over a given port set p is a large one. In set-theoretical
terms, it is a class rather than a set, since we have made no restriction on the width
of processes. Note Axiom 4.3 restricts their height.

Nevertheless, a simple and useful cpo structure can be defined on this class as
follows.

Strictly, the cpo we consider is the cpo of isomorphism classes of processes. We
ignore this distinction except where it is useful, but we do state the definition of
process isomorphism in 4.2.

The purpose of such a cpo structure on the class of all processes is to support
definition by recursion.

For q G p, we identify Proc(q) with the subset (in fact, ideal) of Proc(q), which
comprises processes that have empty sequences at ports of q/p.

4.1 .I. Definition of the cpo of All Processes over a Given Set of Ports. We
partially order the class Proc(p) of all processes over a given port set p as follows.
BY

P = (EP, S, b) 5 Q = (EQ, CQ, ha)

we mean that (up to isomorphism)

(a) EPC EQ;
(b) Ep is the restriction of tQ to Ep;
(c) hp is the restriction of hQ to Ep;
(d) P is an ideal of Q. That is, Ep is a subset of EQ, which includes all y in EQ such

that for some x in Ep, y E x.

In fact, we could develop our theory without assuming (d). To do so would be a
little easier and shorter, and would generalize the work of this paper. It would not,

428 J. STAPLES AND V. L. NGUYEN

however, extend the work of this paper, since the small extra effort we make shows
that our stronger concept of order is preserved by network construction.

Nevertheless, it is useful to define a process P to be a subprocess of a process Q
if it satisfies (a), (b), and (c) above.

With this definition of partial order, it is clear that the process whose only
element is I is the least element of Proc(p). Also, every increasing sequence (P,)
in Proc(p) has a least upper bound P that is just the union of the terms of the
sequence.

More precisely, writing

Pn = (En, % h,),

we note that

(a) the set of elements of P is U, P,,;
(b) x c y in P only if x E, y in all P,, in which both x and y occur;
(c) h(x) in P is h,(x) for all P,, in which x occurs.

It is straightforward to check that P is a process, that each P,, is an ideal of P (so
that P is an upper bound for the sequence) and that for each upper bound Q of the
sequence, P 5 Q.

4.2. PROCESS HOMOMORPHISMS AND ISOMORPHISMS. Intuitively, a process ho-
momorphism m: P + Q is a function that maps the elements of P to (some or all
of) the elements of Q, and that preserves the process structure.

The basic structure of a process comprises its order and history function.
However, we also wish the lattice structure on principal ideals to be preserved,
which accounts for (e). Further, we wish to preserve the ability to interpret c as
stated in 2.2. That is the reason for (f).

4.2.1. Definition of Homomorphism. Writing P = (EP, EP, hp), and similarly
for Q, a homomorphism m: P + Q is a function EP + Eo which satisfies the
following conditions:

(a) Preservation of least element.

m(l) = 1.

(b) Monotonicity.

XEPY implies m(x) EP m(v).

(c) Preservation of histories.

b(x) = h&m(X)).

(d) Preservation of limits; that is, m is continuous.
(e) Preservation of lattice structure of principal ideals. For all consistent x and y,

m(x) V m(y) = m(x V ~4,
m(x) A m(y) = m(x A y).

(f) Preservation of computability interpretation. For all y’ such that m(y) =
m(f), if m(x) E m(y’), then x E y.

4.2.2. Definition of Isomorphism. An isomorphism m: P + Q is a homomor-
phism such that there is a homomorphism k: Q + P (necessarily unique) such that
m 0 k is the identity function on Q, and k 0 m is the identity function on P.

LEMMA 4.7. A homomorphic image of a process is a process.

A Fixpoint Semantics for Nondeterministic Data Flow 429

That is, if m: P + Q is a homomorphism, then the set m(P) of images of
elements of P under m is a process when equipped with order and history function
by restriction from Q.

To prove that, one checks straightforwardly each of the conditions of the
definition of process.

5. Net works of Processes

5.1. INTRODUCTION. The network schemes we consider are the same as those
in [7] and [9]. They are as simple as possible, in order to illustrate the basic idea.
The method can be extended to deal with more elaborate network concepts, but
we shall not do so here.

In such a network scheme there are places for finitely many processes. Static
connections are made from output ports to input ports. Each input port can be
connected to at most one output port, and vice versa. Connections from output
ports to input ports of the same process are permitted.

For simplicity, we assume that each port of each place in a network scheme has
a port name. Thus, a network scheme defines a one-one pairing of a set a of input
port names of p with a set b of output port names of p. We may denote the pairing
loosely by (a$). Where the ambiguity is not important, we may also use (a$) to
denote the network scheme.

In the process to be defined by substituting processes for the places in the scheme,
the connected ports are hidden.

Fanout, and hiding of disconnected input and output ports can be accomplished
by use of appropriately defined processes. The example of fanout was treated in
1.1.3.

To construct a process from component processes using a network scheme, we
follow [7] and [9] in using two kinds of operation, as described in the following
sections.

It is essential to the interest of the work that the concept of network construction
should be intuitively satisfying. Accordingly, we discuss the intuitive content of
each definition before formalizing it.

5.2. THE DISJOINT UNION OPERATION. To avoid irrelevant details about re-
naming ports, we shall assume that no two processes whose disjoint union is to be
formed have any port names in common.

We call this operation disjoint union because it creates from two component
processes a composite process that models the grouping together of the components
without any interconnections. The implementation of this concept is by means of
the elementary notion of Cartesian product.

Thus, the disjoint union PI 6 . . . lj P,, of processes PI, . . . , P,, is the Cartesian
product of PI, . . . , P,,, with the usual product order induced by the orders of P,,
. . .) P,. See Figure 11.

The partial order and history function of the disjoint union are just the products
of those of the components.

The following properties are elementary and will not be discussed in detail.

Property 5.1. Disjoint union is continuous.

That is,

(a) ifP, I PZ and Qi 5 Qz, then PI lj QI 5 PZ lj QI;
(b) for all increasing sequences (P,) and (Qn) of processes,

lub,P, ti lub,Q, = lub,lub,P, ti Qn = lub,P, ti Qn.

430 J. STAPLES AND V. L, NGUYEN

FIG. 11. The disjoint union PI 6 Pz.

Property 5.2. Disjoint union is associative.

That is, up to isomorphism,

P, ti *** 0 Pj 6 Pi+1 6 * ’ ’ ti Pn = (PI U ’ . * ti Pi) 6 Pi+ 1 ti * * * ti Pa.

Property 5.3. Disjoint union is commutative.

That is, up to isomorphism,

P, tiP,=P*IjP,.

5.3. INTRODUCTION TO LINKING. Given a process P and strings a and b of
input port names and output port names, respectively, of the same length, we
denote by LinkJ P) the process obtained from Pas follows. Intuitively, we connect
the ports of a to the ports of b, one to one, in order, then hide all the input and
output ports so connected. See Figure 2b.

To be more precise, the construction of Link&P) is as follows. The same
approach has previously been used in [7] and [9] for different process models. A
more convenient and modular definition of Link+(P), together with a proof that
it is a process, will be given in 6.7.

First, we describe the construction completely, then we discuss it.
We write haib for the composition of the history map h of the process under

discussion with that projection on histories, which removes from histories of P the
histories of ports in a or b.

5.3.1. Definition of Linking. If t is a process history and d is a string of port
names, denote by t(d) the restriction oft to the ports of d. Now various sequences
(t,,) can be chosen as follows:

Step 1. Choose t 1 to be the least element of P.

Step h + 1. Choose th+, in P with finite history such that

b+](a) 5 tdb) and th c th+l.

We call a finite or infinite sequence generated in this way an (a;b)-finite sequence.
Similarly, the limit of such a sequence may be called (a;b)-finite limit.

We also refer to the more general definition of sequence, which is obtained from
the above by omitting the condition that t h+l has a finite history. We call such
sequences (a;b)-sequences, and their limits (a$)-limits.

We call two (a;b)-limits x and y (a;b)-equivalent if there is z in P such that

ha;b(Z) = h&X) = ha;&) and z E x, z c y.

It is straightforward to check from Axiom 4.6 that this relation is an equivalence
relation. Accordingly, we define the elements of Link,,b(P) to be the set of (a$)-
equivalence classes of (a;b)-finite limits of P.

A Fixpoint Semantics for Nondeterministic Data Flow 431

The partial order of Link&P) is that generated by the partial order of P, if
x c y then their equivalence classes are ordered likewise. The history function of
Link&P) is that induced by ha:b.

5.3.2. Discussion of Linking. It is intuitively satisfying that we restrict the
(a$)-sequences in the definition of linking to have elements of finite history, since
it is then clear that all such sequences correspond to operationally realizable
behaviors. It is not however essential, as we show in 6.1.

Hence, that restriction is not an essential difference from the iterations that are
performed during Kahn’s calculation of the history function in the deterministic
case. The essential extension of Kahn’s method is that we do not require of th+I
that its output histories be as great as possible for the given input.

5.4. THE COMPOSITE PROCESS DEFINED BY A NETWORK. To define the com-
posite process created by the substitution of component processes into a network
scheme, we first take the disjoint union of the components and then link that
disjoint union as prescribed by the network scheme.

The examples given in our introductory discussion may now be reviewed in
order to check that the precise definitions yield the resolutions of the anomalies
described. We repeat, however, that the method described here is not as economical
as possible in its use of multisets, so that the process calculated by the theory may
be homomorphic but unequal to the intuitively expected one. This lack of economy
is compensated for by the considerable convenience of Axioms 4.5 and 4.6, and is
insignificant in the sense of 7.4.

6. The Theory of Linking
Here we establish the technical basis for our main results.

6.1. AN EQUIVALENT DEFINITION OF LINKING. The form of definition of
Link,;b given in 5.3.1 is intuitively appealing, but is not very convenient technically.

Here we establish that it is equivalent to replace 5.3.1 by the following definition,
which is the form most used in the remainder of this paper.

6.1.1. TheAlternative Definition. Instead of basing the definition of Link&P)
on equivalence classes of (a$)-finite limits, the limits we use are the limits of
arbitrary increasing sequences of the objects th defined in 5.3.1.

The equivalence of this definition and 5.3.1 is established by the following
lemmas, which also show that the restriction of finiteness of histories may be
omitted in either case.

We define two sequences to be consistent if there is a common upper bound for
all the elements of both.

We define the concatenation of two consistent (a;b)-sequences, the first of finite
length, say (x;:i = 1,. . . , m) and (y,), to be the sequence (z,,), where

Zj = Xi, llilm,
Z m+i = Xm v Yi+l, i= 1,2,....

LEMMA 6.1. For every (a;b)-sequence (t,),

Ma) 5 t,(b).

PROOF. By induction on n. In brief, tl = I and for n = k + 1,

h+,(a) 5 Mb), by definition of (a;b)-sequence

432 J. STAPLES AND V. L. NGUYEN

and

lk(b) 5 tk+l(b), since tk E tk+l. cl

COROLLARY 6.2. Every (a;b)-sequence offnite length can be extended to an
infinite (a;b)-sequence with the same limit, simply by repeating the last term
indefinitely.

LEMMA 6.3. The concatenation of an (a;b)-sequence of finite length with a
consistent (a;b)-sequence is again an (a;b)-sequence, which is (a;b)-finite if the
component sequences are (a;b)-finite.

PROOF. Evident, based upon the fact that, if t(u) zz t(b) and t’(u) 5 t’(b), then
(t V t’)(u) I (t V t’)(b). 0

LEMMA 6.4. If x E y and y is finite and y(a) I x(b) and x is an (a;b)-limit,
then so is y.

(Note that since y is finite, all (a;b)-sequences converging to x or y are (a;b)-
finite. In particular, x and y are (a;b)-finite limits.)

PROOF. Say x is the limit of the (a;b)-sequence (x,). As h(x,) has limit h(x)
and h(y) is finite, there is some n such that y(a) 5 x,(b). Define a suitable (yn) by:

Yi = xi, 15i5n,
Yj = YY j> n. 0

LEMMA 6.5. (6.1.1 is equivalent to 5.3.1.) Zf (x,,) is an increasing sequence of
(a;b)-finite limits that has a limit x in P, then x is an (a;b)-finite limit.

PROOF. Say x, is the limit of the (a;b)-finite sequence (x,,&. We define as
follows an (a;b)-finite sequence (z,) such that x,,,,, E zk(n) E x, where k(n) =
n(n + 1)/2.

ZI = x,,l(=J-);

in order to achieve zk(n+l) = zk(n) V x,,+~++~, we define for k(n) < i 5 k(n + l),

Zi = Zk(n) V Xn+l,i-k(n). 0

LEMMA 6.6. If x E y and y(a) 5 x(b) and x is an (a;b)-finite limit, then so
is y.

PROOF. Say (x,) is an (a; b)-finite sequence with limit x. Say (yn) is an increasing
sequence of finite elements with limit y.

For each fixed m, h(y,,,) is finite, so there is k(m) such that

Y,(a) 5 Xk(m)(b).

Define z, to be y,,, V x&m).
Note that

Z,(a) = J’,(a) v Xk(m)(a) 5 Xk(m)(b) 5 x(b),

so from Lemma 6.4, zm is an (a;b)-finite limit.
Evidently, (z,) is an increasing sequence with limit y, so Lemma 6.5 applies to

show that y is (a;b)-finite. 0

LEMMA 6.7. Every (a;b)-limit is an (a;b)-finite limit.

PROOF. Say (t,) is an (a;b)-sequence with limit t. The argument is by induction
on n. Since tl = I, trivially it is an (a;b)-finite limit. Then, Lemma 6.6 applies

A Fixpoint Semantics for Nondeterministic Data Flow 433

repeatedly to show that each t;, in turn, is an (a$)-finite limit. Finally, Lemma 6.5
applies to show that the limit t is also. 0

6.2. OPERATORS FOR MAKING LINKING STEPS. It will be convenient for the
modular development of the theory to introduce an operator that, intuitively
speaking, performs in parallel all possible instances of “Step h + 1” of 6.1.1. We
shall also use it to define further operators that can perform an arbitrary finite
number of such steps.

We do not contrive a sense in which all of these operators are totally defined, or
continuous; but they lead to the definition of continuous operators, as we shall see.

6.2.1. Definition of Step+ Intuitively, a single step in our linking construc-
tion adds to a subprocess P (intuitively, the elements already found) of a process
Q, some additional elements from Q.

The function has two variables and is defined as follows:

Step&P, Q) = (X in Q:x is finite and for some din P, d E x and d(b) r x(a)).

It is straightforward to show that Step&P, Q) is a process. It is also straightfor-
ward to check that

LEMMA 6.8. Step,,b commutes with disjoint union.

More precisely, for each (a;b), none of whose ports are in the port set of Q,

Step&P, Q) ti R = Step&P, Q ti R).

6.3. TAKING A FINITE SEQUENCE OF STEPS: THE Next AND Step$ OPERA-
TORS. Given a linking (a;b) on a process P, Step,,& P) is the first step in the
construction of the linked process and, for example,

Stq,;b(Step,;b(L P), P)

is the second.
To define the general case, it is convenient to introduce an operator

Nexfaib: Proc x Proc + Proc x Proc

defined by

NexL,dP, Q) = (S~ekb(P, Q>, Q>.

We can then define the k-step function Step$ by

Steph$(P) = I
ste&“(P) = Step,;b(NeXt:&, P)).

We note that

LEMMA 6.9. The elements of Stepg& P) = prl (Next&& P)) are the last terms
of (a;b)-finite sequences of length n.

The proof is a straightforward induction of n, from the definition of Next. q

LEMMA 6.10. Step$(P) is a monotonic function of k and P.

PROOF. Say h I k and P 5 Q. We first observe that

Step$(P) C Step$(Q).

That is evident from Lemma 6.9 and the fact that P I Q.

434 J. STAPLES AND V. L. NGUYEN

To show that the left side is an ideal of the right, suppose that x is in the left
side, y is in the right, and 9 E x. Writing (xi: i = 1, . . . , h) for an (&)-finite
sequence in P with limit x, we note that xi A y is in P, since P I Q, and (Xi A y:
i= l,..., h) is an (a$)-finite sequence in P with limit y. Cl

LEMMA 6.11. Step$i is continuous.

PROOF. Say (P,,) is increasing with limit P. In view of Lemma 6.10, we have to
show that

Step$(P) G lub,Step$(P,).

Each element of Steph$(P) is the limit of an (a$)-finite sequence (Xi : i = 1, . . . ,
k) in P. But by definition of least upper bound for processes, each -xi is in some
Pm(i), i = 1, . . . , k, so x is in Steph$(P,,J, where m = maxi=l,...,k m(i); as re-
quired. Cl

It is not difficult to check from Lemma 6.8 that:

LEMMA 6.12. Steph$ commutes with disjoint union.

That is, if (a$) is disjoint from the port set of Q, then

(Step$h(P)) 6 Q = Step$!i(P b Q).

Here are some further lemmas about Next,;b and Step$, which will be used
later. We write Q C P to denote that Q is a process obtained by restricting P to a
subset of its elements, without assuming that Q is an ideal of P.

LEMMA 6.13. If a C c are input port sets and b G d are output port sets, then

Next,,dP, Q> G Next,,tdP, Q).
COROLLARY 6.14. Under the same conditions, Step$(P) C Step$(P).

LEMMA 6.15. Zf a G c and b C d, then Step$(Step$(P)) = Step$(P).

This is proved by considering the (c;d)-iterative sequences of length k. Every
(c;d)-sequence is an (a;b)-sequence.

Hence, we see that

LEMMA 6.16. Zf (a;b) and (c;d) are disjoint, then Step&(P) G
Stepbt&Step$(P)).

PROOF. From Lemma 6.13,

Steph$(P) G Step$(P),

so from Lemma 6.10,

Step~~&3tep~$,(P)) C StepL$(Step$(P)).

But from Lemma 6.15, the left side is Stephk,‘,,(P). Cl

To obtain an inclusion of the converse type, we use the following lemma.

LEMMA 6.17. If (a;b) and (c;d) are disjoint, if (xi: i = 1, . . . , m) is an (ac;bd)-
sequenceund(yi:l = 1, n) is an (a;b)-sequence, if xm c yn and if x,(d) 2
y,(c), then the concatenation (zi:i = 1, . . . , m + n - 1) of (xi) and (yi) is an
(ac;bd)-sequence whose limit is y.

A Fixpoint Semantics for Nondeterministic Data Flow

PROOF. By definition,

Zm+i = Xm v Yi+l , i=O,...,n- 1.

Now yl = I, so z,(ac) I z,,,-I by hypothesis.
For 1 <i<m- 1,

and

zm+i-l(b) = (Xrn V Yi)(b)) = xm(b) v Yi(bh
2 x,(a) V Yi+l(a) by hypothesis,
= z,+i(a),

Ztn+i-l(d) = xm(d) V yi(d) = xm(d) = Yn(C),
2 X,(C) V Yi+l(C) = Zm+i(C).

LEMMA 6.18. If< a$) and (c;d) are disjoint then

Step$(Stepj(P)) G Step$J$J(P).

435

0

PROOF. Sayx=x,where(xi:i= I,..., n) is a (c;d)-finite sequence of (a;b)-
finite limits of (a$)-sequences of length m. Cl

One proves that x is the limit of an (ac;bd)-finite sequence of length at most
m,n by induction on n, using the previous lemma. The base case is trivial since
XI = 1.

6.4. COMPLETE ITERATIONS: THE Iter OPERATOR

6.4.1. Definition of Iter. We define a continuous function Iter: Proc + Proc
by

Iter,,b(P) = lub,,Stepgi(P) 3 *
It follows from Lemma 6.12 that

LEMMA 6.19. Iter commutes with disjoint union.

That is, ifp is a port set that is disjoint from the ports of Q, then

(Iter&P)) ti Q = Iter,,b(P ti Q).

LEMMA 6.20. Disjoint iterations associate (and commute).

That is, if (a$) and (c;d) are disjoint, then

Iter&Iter&P)) = Iterac;bd(P)(=Iter,:d(Iter,;b(P))).

PROOF. We have to show that

lub,Step$(lub,Step$j(P)) = lub,Step~&,(P).

Since both are subprocesses of P, it is enough to show that each side is a subset of
the other. 0

That the right side is included in the left follows from Lemmas 6.10, 6.11, and
6.16. The converse follows from Lemmas 6.10, 6.11, and 6.18.

6.5. A CLOSED ITERATION OPERATOR. We now define, for all processes over
the given set of ports and for each linking (a$), a closed iteration operator Closit,,,.

Closit& P) is the set of all limits in P of increasing sequences in Itera;b(P).

436 J. STAPLES AND V. L. NGUYEN

It is straightforward to check that this subset of P defines a subprocess, which we
hereafter denote by Closit,,b(P) also.

We first show

LEMMA 6.2 1. Closit is monotonic.

PROOF. Say P I Q. From Lemma 6.10, Iter,,b(P) 5 Iter&Q). It is therefore
evident that Closit,;b(P) is a subset of Closit,g,(Q).

Suppose then that x, y are limits in P, Q, respectively of increasing sequences
(x,), (y,) in Iter& P), Iter,,b(Q), respectively, and that y E x in Q.

First note that since P 5 Q, then y is in P.
As all elements of Iter,,b(P) and Iter&Q) are finite, and as y E x, so that

h(y) 5 h(x), then for all y1 there is m(n) such that h(y,) 5 h(x,,&. Since both are
below x, then y,, E x,(,), from Axiom 4.2. Thus, yn is in Iter,,b(P), so that y is in
Closit& P), as required. 0

LEMMA 6.22. Closit is continuous.
PROOF. In view of Lemma 6.21, it remains to show, for an arbitrary increasing

sequence (P,) of processes with limit P, that Closit,,b(P) 5 lub Closit,,b(Pn).
Say x is the limit in P of (x,) in Iter,,b(P). Each xn is in some P,,,(,), by definition

of Iter(P), as required for the result. 0

It follows from Lemma 6.19 that

COROLLARY 6.23. Closit commutes with disjoint union.

That is, if (a$) is disjoint from the port set of Q then

Closit,,b(P lj Q) = (Closit,g,(P)) lj Q.

It follows from Axiom 6.20 that

COROLLARY 6.24. Closit is associative.

That is, if (a;b) and (c;d) are disjoint port sets, then

Closit,,b(Closit,,d(P)) = Closi&j(P).

6.6. A PORT-HIDING OPERATOR. We define an operation Hide,;b, which forms
a process of equivalence classes as in 5.3.1. It is convenient, however, to define the
operator over all processes.

Thus, for an arbitrary process Q, which includes the ports of (a$), call x and y
in Q(a;b)-equivalent, if there is some z in Q such that z E x, z E y and

ha;&) = ha&) = ha;dY).

The elements of Hide&Q) are the (a$)-equivalence classes of Q.
The ordering of Hide&Q) is defined by

x c y means that for some x’ in x and y’ in y, x’ c y’.

The history function of Hide,& Q) is induced in the evident way by ha;b on Q.
First, we check that Hide&Q) is a process. We use the following lemmas.

LEMMA 6.25. Every (a;b)-equivalence class has a least element.

PROOF. By definition of (a;b)-equivalence, (a;b)-equivalence classes are down-
wards directed. That is, if x and y are (a;b)-equivalent, then there is z such that
z c x and z c y and z is (a;b)-equivalent to both x and y. Hence, it is enough to
show that (a;b)-equivalence classes have minimal elements.

A Fixpoint Semantics for Nondeterministic Data Flow 437

However, that follows from the fact that the prefix ordering of histories is
noetherian (descending chains are finite), in view of Axiom 4.2. Cl

LEMMA 6.26. If y c x are (a;b)-equivalence classes and y’, x’ are their least
elements, then y’ c x’.

PROOF. Observe that y A x’ E y and out(y A x’) = out(y) so that y’ c y A
x’ c_ x’, as required. q

LEMMA 6.27. If x and y are consistent and hJx) 5 ha;b(y) and x’, y’ are the
least elements of their equivalence classes, then x’ c y’.

PROOF. Say x c w and y E w. Since

ho;/,(x A y) = ha&) A b(y) = ha&),

then x A y is (a;b)-equivalent to both x and y. Hence, x’ E x A y, by definition of
x’. Then, by Lemma 6.27, x’ E y’, as required. Cl

COROLLARY 6.28. Hide,;b(P) satisfies Axiom 4.2.

The remainder of the proof that Hide,,b(P) is a process is straightforward and is
omitted.

LEMMA 6.29. IfP E Q, then x, y in P are (a;b)-equivalent in P just ifthey are
(a;b)-equivalent in Q.

PROOF. If there is z in Q as in the definition of (a;b) equivalent, then z is in P,
as required, because z C x. 0

LEMMA 6.30. Hide,;b is monotonic.

That is, if P 5 Q, then (up to isomorphism) Hide&P) I Hide&Q).

PROOF. From Lemma 6.29, the embedding of P in Q induces an embedding of
Hide&P) in Hide&Q), in which the equivalence class of x in P is identified with
the equivalence class of x in Q (though they need not be equal as sets).

Moreover, if x is in Hide,;& P) and y is in Hide&Q) and y E x in Hide&Q),
then by definition of E in Hide&Q), there is some element y* of y, which is below
some element x* of x, where we can assume that x* is in P.

Now x* A y* c x* and so x* A y* is in P. It is an element of y, so y is in
Hide&P), as required for monotonicity. 0

LEMMA 6.3 1. Hide,;b is continuous.

PROOF. In view of the previous result, it remains to show that, if (P,) is an
increasing sequence of processes with limit P, then (up to isomorphism)

Hide,g,(P) = lub Hide&P,,).

The inclusion of the right side in the left follows from monotonicity, so we show
the converse inclusion.

Consider x in Hide&P). It is the equivalence class of some x’ in U, P,,. But
that means x’ is in some P,, as required. 0

The next two lemmas are straightforward.

LEMMA 6.32. Hide is associative.

That is, if p and q are disjoint port sets, then

Hide,(Hide,(P)) = HidepUq(P).

438 J. STAPLES AND V. L. NGUYEN

LEMMA 6.33. Hide commutes with disjoint union.

That is, if the port set p is disjoint from the ports of Q, then

Hide,(P ti Q) = Hide,,(P) 6 Q.

We next show

LEMMA 6.34. Hide commutes with Step.

That is, if (a$) and (c;d) are disjoint and P is a subprocess of Q, then

Step,;dHide,dP), Hidec;dQ)) = Hide,d(%hdP, Q>>.
PROOF. Suppose first that x is an element of the left side. Then, x is in Hide&Q)

and there is e in Hide&P) such that e E x and e(b) 2 x(a). Thus
e, x are (c;d)-equivalence classes of elements, e’ and x’ say, of P and Q, respectively,
such that e’ c_ x’ and e’(b) L x’(a). Hence, x’ is in Step,,b(P, Q) and so x is in
Hide,d@teP,;b(P, Q>>.

If conversely x is an element of the right side, then x is the (c;d)-equivalence
class of x’ say in Q such that for some e’ in P, e’ c x and e’(b) I x’(a). It follows
that, writing e for the (c;d)-equivalence class of e’, e E x and e(b) :, x(a); so that
x is in the left side, as required. q

As a corollary, we have

COROLLARY 6.35. Hide commutes with Closit.

That is, if (a$) and (c;d) are disjoint, then

Hide,,b(Closit,,d(P)) = ClOSit,d(Hide,;b(P)).

6.7. THE LINKINGOPERATO'R. Wecan now define

Link,,b(P) = Hide,;b(ClOSit,;b(P)).

It is immediate from Corollary 6.23 and Lemma 6.33 that

LEMMA 6.36. Linking commutes with disjoint union.

That is, if (a$) is disjoint from the ports of Q, then

Link,,b(P) lj Q = Link,;b(P ti Q).

Likewise, it is immediate from Corollary 6.24, Lemma 6.32, and Corollary 6.35
that

LEMMA 6.37. Linking is associative.

That is, if (a$) and (c;d) are disjoint, then

Li&;b(Link,;d(P)) = Link,,bd(P).

7. Network Construction
7.1. THE PROCESS DEFINED BY A NETWORK. Recall from 5.1 that a network

defines a linking (a$) of the ports of PI ti . - - ti P,,. In our theory, the process
defined by that network is

NetP,;b(Pl, Pn) = Link&P, ir * * * cJ P,).

7.1.1. Recursive Definitions of Networks. The operator Netp, being a compo-
sition of continuous operators, is continuous. Thus, for a given network scheme,

A Fixpoint Semantics for Nondeterministic Data Flow

the equation

X = Netp,,dK f’2, . . . , PA,
for example, has a least solution for given P2, . . . , P,,.

439

7.2. THE ASSOCIATIVITY PROPERTY. The anomalies discussed in Section 3 can
be viewed as failures of an associativity property for the theories in which they
occur. For example in those theories, and in the notation of 3.3, the following two
methods of computing the process of the substitution of NB in the context of
Figure 7c do not give the same result.

(a) First form the process defined by NB, then use it to form the process defined
by the larger context.

(b) Form in one step the process defined by the larger context and NB, from the
components of NB and the components of that context.

To state this example with precision, it is necessary to set up a precise theory in
which the anomaly occurs. We omit that theory since it is not central to this work,
but we invite the reader to try the exercise, using as much precision as desired.

This type of behavior does not occur in our theory. More precisely we have the
following result.

THEOREM 7.1. (ASSOCIATIVITY THEOREM). If a network defines a linking
(ac;bd) on the disjoint union PI in . . . ti P,,, such that (a;b) and (c;d) form a
disjoint decomposition of (ac; bd), and no ports of Pk+, , . . . , P,, occur in (a; b), then
(up to isomorphism)

Netp,,dPI, . . . , P,J = Netp,dNetpdP1, . . . , Pk), pk+l, . . . , Pd.

In view of the definition of Netp, we have to show

Link,,&P 6 Q) = Link&Link&P) ti Q).

But that is immediate from Lemmas 6.36 and 6.37.

7.3. RELATIONSHIP TO KAHN’S THEORY. General discussion of the relationship
of our approach to Kahn’s has been given already. Hence, we consider here only
the key issue of expressing Kahn’s method in our approach.

Rather than discussing functional processes by means of the construction P(f),
it is more natural in our approach, and more general, to make the following
definition.

7.3.1. Definition of Explicitly Functional Processes. We call a process explic-
itly functional (meaning, recognizable as functional from the way it is presented) if
for all x and y in P such that in(x) and in(y) are consistent histories, x and y are
consistent. Note in that case, out(x) and out(y) are consistent.

Clearly, all retracting functional processes of the form P(f) are explicitly func-
tional. It is also clear that:

L!ZIH~A 7.2. Explicitly functional processes are functional.

That is, for a given input history u there is a greatest output history v such that
(u; V) is a process history.

Furthermore, it is clear that the disjoint union of explicitly functional processes
is explicitly functional.

The following lemma shows that explicit functionality is also preserved by
linking, and hence by network construction.

440 J. STAPLES AND V. L. NGUYEN

LEMMA 7.3. Linking preserves explicit functionality.

For that we have to prove:

If (xn) and (yn) are (a$)-sequences of an explicitly functional process P, with
limits x and y such that in(h,;b(x)) and in(h& y)) are consistent, then x and y
are consistent.

PROOF. By induction on n, as follows, show that x,, and y, are consistent. It
then follows from the definition of explicit functionality that their limits are
consistent.

The assertion is trivial for xl = yl = 1. Suppose then that x, and y, are consistent.
Then, x,(b) and yn(b) are consistent and, by hypothesis, the histories at input ports
not in a of xn+r and Y,,+~ are pairwise consistent; hence, the inputs of xn+, and Y,,+~
are consistent. Since P is explicitly functional, it follows that x~+~ and Y,+~ are
consistent. 0

It follows that

THEOREM 7.4. Our modeling of Kahn’s deterministic processes commutes with
network construction.

That is, for retracting functions fi, . . . ,fn and a linking (a$),

NetndP(f;), . . . , P(h)) = P(f),
wherefis a retracting function that is the function computed by Kahn’s method.

COROLLARY 7.5. All of Kahn’s deterministic functions are retracting.

7.4. PROCESS HOMOMORPHISMS COMMUTE WITH NETWORK CONSTRUCTION.
We mentioned in 3.2 that our method is not as economical as seems possible in
its use of multisets, but that the processes we compute have homomorphic images
that are as depicted in that section.

Naturally, one would hope that a lack of economy in describing a process would
not affect the correctness of the description. That is confirmed by the following
result, which is proved straightforwardly by following through the steps of the
network construction definition.

If ??Zi: Pi +Qiy i= 1 * . 3 n are process homomorphisms and (a$) is a linking
defining the process Ne&;b(Pr, . . . , P,), then a homomorphism

m: Netp,dPl, . . ., PA --, Netp,,dQ,, . . . , Qn>
is induced such that

m(Netp,,b(PI, . . . , PA) = Netp,;b(mdPd, . . . , m,(P,N.

8. Total Behaviors of Networks
8.1. INTRODUCTION. Our approach includes both partial and total input-

output histories within a single partially ordered multiset. Hence, it is not imme-
diately clear that, in the notation of 1.1.2, our approach can be more than partially
correct.

For, the question of whether a given response of a nondeterministic machine is
total cannot generally be resolved by inspecting the input-output histories. Con-
sider, for example, a machine with no inputs and one output, which merely decides
whether or not to output a single “0,” then implements its decision. In the approach

A Fixpoint Semantics for Nondeterministic Data Flow 441

as outlined so far, we would model this machine’s behavior by the same process as
for the deterministic variant that always outputs the zero.

Hence, we refine the approach slightly, as follows.

8.2. A TOTALITY PREDICATE. We extend our concept of process P to include
also a predicate T on (or, a distinguished subset T of) the set of elements of P.

Intuitively, T(x), for x in P, means that in some executions x is a total behavior
for input in(x).

We allow, but shall not require, T(x) for elements x, which are necessarily total
in the sense that there is no y in P with x c y, x # y, and in(x) = in(y). It is
simpler to allow necessarily total elements to “speak for themselves.” The only
duty of the T predicate is to speak for those elements that may be chosen to be
total behaviors but that are not necessarily total.

8.3. AXIOMS FOR A TOTALITY PREDICATE? In view of the policy just stated,
to allow necessarily total elements to speak for themselves, we introduce no axioms
about the totality predicate.

That does not mean that introducing the predicate is vacuous. Having done so,
we have to specify, for example, how such predicates are constructed for processes
defined by networks. Our proofs (of associativity, for example) have to be refined
so as to establish assertions about the totality predicates associated with the
networks involved.

8.4. NOTES ON INCORPORATING THE TOTALITY PREDICATE. Here is a brief
indication of how the preceding material is refined to incorporate a totality
predicate. We may write, for example, Tp for the totality predicate of P.

We add to the definition of the partial ordering of all processes the requirement

and

TP(x) implies To(x), for all x in P.

To(m(x)) implies there is y in P such that m(x) = m(y) and Tp(y).

Note that this is weaker than requiring that Tp(x) be the restriction of To to
elements of P.

In the definition of homomorphism m: P + Q, we add the clause

Tp(x) implies Tp(m(x)), for all x in P.

The totality predicate of a disjoint union is the conjunction of the totality
predicates of its components.

To be intuitively correct, the totality definition for Step,,b(P, Q) should take into
account that output from ports of b must reach the linked ports of a and be
processed.

For the sake of generality, we have not required that a process P include elements
with all possible input histories. It would be natural to require the following
additional axiom, which would slightly simplify our treatment of totality.

AXIOM 8.1. Process input is asynchronous.

For all y E x and h such that in(y) 5 h I in(x), there is z such that y E z c x,
in(z) = h and out(z) = out(y).

If such an axiom were assumed, then a natural definition of totality for
Step&P, Q) would be as follows:

442 J. STAPLES AND V. L. NGUYEN

Definition. T(x) in Step&P, Q) means T(x) in Q, and there is d in P such
that x(a) = d(b).

Since, however, we are not assuming the above additional axiom, we make the
following definitions.

Definition. T(x) in Step&P, Q) means TQ(x), and there is d in P such that x
is a maximal y in Q such that d E y and y(a) 5 d(b).

Definition. T(x) in Closit,;b(P, Q) means T(x) in Q and x is a maximal y in Q
such that y(a) 5 y(b).

Definition. T(x) in Hide&P) means TV, for some x’ in X.

Definition. For retracting history functions fl the totality predicate of P(f) is
always false.

With these definitions, our preceding work refines without substantial alteration
so as to give the same results for processes with totality predicates.

9. Relationship to Previous Work
Since Kahn’s successful development of a fixpoint theory for deterministic asyn-
chronous processes [4], several attempts [1-3, 5-91 have been made to provide a
similar theory for asynchronous processes in general. The approach in [5] is
erroneous, however, as indicated in [9].

We shall comment only on previous work specific to the study of asynchronous
processes; except to note that the work of [I] concerns nondeterminism in syn-
chronous processes. It does not bring to that problem a generalization of Kahn’s
method, but rather observes that its trace-combining method is consistent with
Kahn’s when a model of Kahn’s asynchronous deterministic processes is set up
within its theory.

None of the work discussed meets the extensionality criterion, so we shall not
mention it again.

Previous work on this problem has been in two main groups. Park [6] is a recent
example of the work of one group. It fails the modularity and generality criteria of
1.1 and relies on the extraneous concept of oracle. Park’s approach fails the
generality criterion because its nondeterminism arises through the use of fair
oracles, and so fails to capture unfairness, which we have argued has theoretical
value. It fails the modularity criterion because oracle inputs of network components
never get hidden.

The other group includes [3], [7], [8], and [9]. It may be divided into two
subgroups; those that consider only finite input-output behaviors and those that
consider also, or only, infinite input-output behaviors.

The former subgroup fails the generality criterion because finite histories cannot
distinguish between fair and unfair merges. It also fails the input-output correctness
criterion because it is unable to distinguish between arbitrarily long finite histories
and infinite histories.

The latter subgroup avoids that problem and seems essentially equivalent, in one
of two senses, to the work of this paper. We developed our approach because it
was not clear previously that processes can be defined iteratively. That is valuable
both for computation of approximations and theoretical reasoning by induction.

An exhaustive comparison of our approach with those of [3] and [7] has not
been made, and would be better based on a formulation of our approach, which is
more general with respect to types of networks considered and data types (both of

A Fixpoint Semantics for Nondeterministic Data Flow 443

which we have kept as simple as possible). Nevertheless, we offer the following
general comments.

The equivalence of our approach and those of [3] and [7] is in different senses
in each case. For, whereas both papers model processes as partially ordered multisets
of events, different intuitions motivate the choices of partial order, so that appar-
ently different concepts of network construction are used. The intuitions are as
follows:

(a) Partial ordering of events is temporal ordering. This concept is due to Pratt in
an unpublished draft of [8], and is also used in [7].

(b) Partial ordering of events is causality ordering. This approach is due to Brock
and Ackerman [2], and is also used in [9].

To discuss these views from the perspective of this paper, we assume that each
process has a fixed, finite set of ports at which all events occur, and that events at
a single port are totally ordered.

Consider (a). Each trace has an associated history. The traces may be ordered
by: t, c t2 means, t, G t2 and the restriction of the t2 ordering to elements of t,
gives tl. In this way, a set of traces defines a partially ordered multiset of histories.
Such a partial order may not satisfy our axioms, but apparently could fail to do so
only for inessential reasons. Assuming there is no difficulty arising from a lack of
traces to specify behavior in various situations, then we would expect the partial
order of traces so obtained to be the homomorphic image of a partial order that
satisfies our axioms. The concept of network construction has the same effect as
ours, although the definition is quite different.

The concept (b) may be reduced to that of (a) by regarding each trace of type (b)
(scenario, in Brock and Ackerman’s terminology) as a scheme of traces of type (a).
That is, a scenario stands for all the traces that can be obtained from it by extensions
of its partial order.

ACKNOWLEDGMENTS. Thanks to David Park, Ross Paterson, Vaughan Pratt, and
Bill Wadge for helpful criticism at various stages. Thanks also to Zohar Manna for
hospitality to the first author during January-March 1983 at the Computer Science
Department, Stanford.

REFERENCES

I. BACK, R. J. R., AND MANNILA, H. A refinement of Kahn’s semantics to handle nondeterminism
and communication. In Proceedings oJthe ACM Symposium on Distributed Computing (Ottawa,
Ontario, Canada, Aug, 18-20). ACM, New York, 1982, pp. I I I-120.

2. BROCK, J. B., AND ACKERMAN, W. B. An anomaly in the specifications of nondeterministic packet
systems. Computation Structures Group Note CSG-33, MIT-LCS, Massachusetts Institute of
Technology, Cambridge, Mass., November 1977.

3. BROCK, J. D., AND ACKERMAN, W. B. Scenarios: A model of nondeterminate computation. In
Formalisation ofprogramming Concepts, J. Diaz, and 1. Ramos, Eds. Lecture Notes in Computer
Science, vol. 107. Springer-Verlag, New York, 1981, pp. 252-259.

4. KAHN, G. The semantics ofa simple language for parallel programming. In Information Processing
74: Proceeding of the IFIP Congress 77, J. L. Rosenfeld, Ed. North-Holland, New York, 1974, pp.
47 1-475.

5. KOSINSKI, P. R. A straightforward denotational semantics for non-determinant data flow programs.
In Conference Record of the Fifth Annual ACM Symposium on Principles of Programming Lan-
guages (Tucson, Arizona, Jan. 23-25). ACM, New York, 1978, pp. 214-221.

6. PARK, D. The “fairness” problem and nondeterministic computing networks. Duplicated notes.
Warwick University, 1982.

444 J. STAPLES AND V. L. NGUYEN

7. PATERSON, R., AND STAPLES, J. An algebra of processes with a finite basis. Tech. Report No. 29,
Dept. Computer Science, Univ. of Queensland, Queensland, Australia, 1981.

8. PRATT, V. R. On the composition of processes. In Conference Record of the 9th Annual ACM
Symposium on Principles of Programming Languages (Albuquerque, N.M., Jan 25-27). ACM,
New York, 1982, pp. 2 13-223.

9. STAPLES, J., AND NGUYEN, V. L. Computing the behaviour of nondeterministic processes. Theor.
Comput. Sci. 26 (1983) 343-353.

RECEIVED JULY 1982; REVISED OCTOBER 1984; ACCEPTED NOVEMBER 1984

Journal of the Association for Computing Machinery, Vol. 32, No. 2, April 1985.

